王晓明.关于Witt代数基本子代数的一点注记[J].数学年刊A辑,2016,37(4):397~404
关于Witt代数基本子代数的一点注记
A Note on Elementary Subalgebras of the Witt Algebra
投稿时间: 2015-01-19  最后修改时间: 2015-10-08
DOI:
中文关键词:  Witt 代数, 基本子代数, 簇, 维数
英文关键词:Witt algebra, Elementary subalgebra, Variety, Dimension
基金项目:本文受到国家自然科学基金(No.11501359, No.11271014) 的资助.
作者单位
王晓明 上海海洋大学信息学院, 上海 201306. 
摘要点击次数: 1845
全文下载次数: 
中文摘要:
      设$\mathfrak{g}=W_1$是特征$p>3$的代数闭域$k$上的Witt代数. 本文确定了$\mathfrak{g}$的极大基本子代数. 进一步具体给出了最大维数的 基本子代数的$G$共轭类, 这里$G$是$\mathfrak{g}$的自同构群. 从而证明了最大维数为$\frac{p-1}{2}$的基本子代数射影簇 ${\mathbb{E}}\big(\frac{p-1}{2}, \mathfrak{g}\big)$是不可约的且是一维的. 更进一步, 证明了${\mathbb{E}}(1,\mathfrak{g})$是不可约的, 具有维数$p-2$, 而${\mathbb{E}}(2,\mathfrak{g})$是等维的, 共有 $\frac{p-3}{2}$个不可约分支, 且每个不可约分支的维数是$p-4$. 而当 $3\leq r\leq \frac{p-3}{2}$时, ${\mathbb{E}}(r,\mathfrak{g})$是可约的. 给出了 ${\mathbb{E}}(r,\mathfrak{g})$ \big($3\leq r\leq \frac{p-3}{2}$\big) 维数的一个下界.
英文摘要:
      Let $\mathfrak{g}=W_1$ be the Witt algebra over an algebraically closed field $k$ of characteristic $p>3$. Maximal elementary subalgebras of $\mathfrak{g}$ are determined. Moreover, $G$ conjugacy classes of elementary subalgebras of maximal dimension under the automorphism group of $\mathfrak{g}$ are precisely given. As a consequence, the projective variety ${\mathbb{E}}\big(\frac{p-1}{2}, \mathfrak{g}\big)$ of elementary subalgebras of maximal dimension $\frac{p-1}{2}$ is shown to be irreducible and one-dimensional. Moreover, we show that ${\mathbb{E}}(1,\mathfrak{g})$ is irreducible and has dimension $p-2$, ${\mathbb{E}}(2,\mathfrak{g})$ is equidimensional and has $\frac{p-3}{2}$ irreducible components with the same dimension $p-4$. While ${\mathbb{E}}(r,\mathfrak{g})$ is reducible for $3\leq r\leq \frac{p-3}{2}$. A lower bound for the dimension of ${\mathbb{E}}(r,\mathfrak{g})$ \big($3\leq r\leq \frac{p-3}{2}$\big) is given.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:上海市邯郸路220号复旦大学数学科学学院 E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持