欧阳成,莫嘉琪.两参数非线性反应扩散积分微分方程的内层激波渐近解[J].数学年刊A辑,2017,38(4):365~374
两参数非线性反应扩散积分微分方程的内层激波渐近解
Interior Shock Asymptotic Solutions to Nonlinear Reaction Diffusion Integral Differential Equations with Two Parameters
投稿时间: 2016-02-16  最后修改时间: 2016-12-24
DOI:10.16205/j.cnki.cama.2017.0030
中文关键词:  Reaction diffusion, Singular perturbation, Initial boundary value problem
英文关键词:Reaction diffusion, Singular perturbation, Initial boundary value problem
基金项目:本文受到国家自然科学基金(No.11202106)和浙江省自然科学研究项目(No.LY13A010005)的资助.
作者单位E-mail
欧阳成 湖州师范学院理学院, 浙江 湖州 313000. oyc@hutc.zj.cn 
莫嘉琪 安徽师范大学数学系, 安徽 芜湖 241003. mojiaqi@mail.ahnu.edu.cn 
摘要点击次数: 37
全文下载次数: 35
中文摘要:
      研究了一类两参数非线性反应扩散积分微分奇摄动问题. 利用奇摄动方法, 构造了 问题的外部解、内部激波层、边界层及初始层校正项, 由此得到了问题解的形式渐近展开式. 最后利用积分微分 方程的比较定理证明了该问题解的渐近展开式的一致有效性.
英文摘要:
      The singular perturbation problem for the nonlinear reaction diffusion integral differential problem with two parameters is considered. By using the singular perturbation method, the outer solution, interior shock layer, boundary layer and initial layer corrective terms are constructed, then the formal asymptotic expansion of solution is obtained. Finally, the uniform validity of asymptotic expansion for solution to this problem is proved by using the comparison theorem for integral differential equation.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:上海市邯郸路220号复旦大学数学科学学院 E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持