李兴校,宋虹儒.单位球面中具有3个不同 Blaschke 特征值的 Blaschke 平行子流形[J].数学年刊A辑,2018,39(3):249~272
单位球面中具有3个不同 Blaschke 特征值的 Blaschke 平行子流形
On the Blaschke Parallel Submanifolds in the Unit Sphere with Three Distinct Blaschke Eigenvalues
投稿时间: 2016-04-29  最后修改时间: 2017-03-21
DOI:10.16205/j.cnki.cama.2018.0023
中文关键词:  平行 Blaschke 张量, 消失的 mo 形式, 常 数量曲率, 平行 平均曲率向量
英文关键词:Parallel Blaschke tensor, Vanishing mo form, Constant scalar curvature, Parallel mean curvature vector
基金项目:本文受到国家自然科学基金(No.11671121, No.11171091, No.11371018)的资助.
作者单位E-mail
李兴校 河南师范大学数学与信息科学学院, 河南 新乡 453007. xxl@henannu.edu.cn 
宋虹儒 新乡市平原外国语学校, 河南 新乡 453500. yaozheng-shr@163.com 
摘要点击次数: 160
全文下载次数: 194
中文摘要:
      Blaschke 张量 $A$ 是单位球面 $\bbs^n$中子流形的 \mo 微分几何的一个基本不变量, 而$A$的特征值称为 Blaschke 特征值. 作者研究了$\bbs^n$ 中 具有平行 Blaschke 张量的子流形(简称为 {Blaschke 平行子流形}). 主要结果是对 $\bbs^n$ 中具有3个不同 Blaschke 特征值 的 Blaschke 平行 子流形进行了完全的分类.
英文摘要:
      As is known, the Blaschke tensor $A$ (a symmetric covariant $2$-tensor) is one of the fundamental \mo invariants in the \mo differential geometry of submanifolds in the unit sphere $\bbs^n$, and the eigenvalues of $A$ are referred to as the Blaschke eigenvalues. This paper deals with the submanifolds in $\bbs^n$ with parallel Blaschke tensor which are called Blaschke parallel submanifolds. The main theorem of this paper is the classification of Blaschke parallel submanifolds in $\bbs^n$ with exactly three distinct Blaschke eigenvalues.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:上海市邯郸路220号复旦大学数学科学学院 E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持