刘玉记.具有脉冲的分数阶Bagley-Torvik 模型边值问题[J].数学年刊A辑,2018,39(3):309~330
具有脉冲的分数阶Bagley-Torvik 模型边值问题
Boundary Value Problems for Fractional Order Bagley-Torvik Models with Impulse Effects
投稿时间: 2015-11-26  最后修改时间: 2017-07-12
DOI:10.16205/j.cnki.cama.2018.0027
中文关键词:  脉冲分数阶Bagley-Torvik微分方程, 边值问题, Schaefer不动点定理
英文关键词:Impulsive fractional order Bagley-Torvik differential equation, Boundary value problem, Schaefer's fixed point theorem
基金项目:本文受到广东省自然科学基金(No.S2011010001900)和广州市科技计划项目(No.201804010350)的资助.
作者单位E-mail
刘玉记 广东财经大学数学与统计学院, 广州 510320. liuyuji888@sohu.com 
摘要点击次数: 146
全文下载次数: 147
中文摘要:
      将具有脉冲的分数阶Bagley-Torvik微分方程边值问题巧妙地转化为积分方程, 定义加权Banach空间及全连续算子, 运用不动点定理获得该边值问题解的存在性定理. 举例说明了定理的应用. 最后提出有趣的研究问题.
英文摘要:
      The author converts the boundary value problem for impulsive fractional order Bagley-Torvik differential equation to an integral equation technically (a new method). By defining a weighted function Banach space and a completely continuous operator, some existence results for solutions are established. This analysis relies on the well known Schauder's fixed point theorem. Examples are given to illustrate the main results.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:上海市邯郸路220号复旦大学数学科学学院 E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持