Exponential Convergence to Time-Periodic Viscosity Solutions in Time-Periodic Hamilton-Jacobi Equations*

Kaizhi $W A N{ }^{1}$

Abstract

Consider the Cauchy problem of a time-periodic Hamilton-Jacobi equation on a closed manifold, where the Hamiltonian satisfies the condition: The Aubry set of the corresponding Hamiltonian system consists of one hyperbolic 1-periodic orbit. It is proved that the unique viscosity solution of Cauchy problem converges exponentially fast to a 1-periodic viscosity solution of the Hamilton-Jacobi equation as the time tends to infinity.

Keywords Hamilton-Jacobi equations, Viscosity solutions, Weak KAM theory 2000 MR Subject Classification 35F25, 35B40, 37J99

1 Introduction

Consider the time-periodic Hamilton-Jacobi equation

$$
\begin{equation*}
u_{t}+H\left(x, u_{x}, t\right)=0, \quad t \in[0,+\infty), x \in M, \tag{1.1}
\end{equation*}
$$

where M is a closed (i.e., compact without boundary) and connected smooth manifold of dimension m. We choose, once and for all, a C^{∞} Riemannian metric on M. It is classical that there is a canonical way to associate to it a Riemannian metric on $T M$. The Hamiltonian $H(x, p, t): T^{*} M \times \mathbb{R} \rightarrow \mathbb{R}$, defined by $H(x, p, t)=\sup _{v \in T_{x} M}\left\{\langle p, v\rangle_{x}-L(x, v, t)\right\}$, is 1-periodic in t, where $\langle\cdot, \cdot\rangle_{x}$ represents the canonical pairing between the tangent and cotangent space, and $L(x, v, t): T M \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{2} Lagrangian and satisfies the following conditions:
(H1) Periodicity. L is 1-periodic in the \mathbb{R} factor.
(H2) Positive Definiteness. For each $x \in M$ and each $t \in \mathbb{R}$, the restriction of L to $T_{x} M \times\{t\}$ is strictly convex in the sense that its Hessian second derivative is everywhere positive definite.
(H3) Superlinear Growth. $\lim _{\|v\|_{x} \rightarrow+\infty} \frac{L(x, v, t)}{\|v\|_{x}}=+\infty$ uniformly on $x \in M, t \in \mathbb{R}$, where $\|\cdot\|_{x}$ denotes the norm on $T_{x} M$ induced by the Riemannian metric on M.
(H4) Completeness of the Euler-Lagrange Flow. The maximal solutions of the EulerLagrange equation, which in local coordinates is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial v}(x, \dot{x}, t)=\frac{\partial L}{\partial x}(x, \dot{x}, t),
$$

[^0]are defined on all of \mathbb{R}.
Such a Lagrangian L is usually called a time-periodic Tonelli Lagrangian in the literature. Without loss of generality, we will from now on always assume that the Mañé critical value (see [12]) of L is 0 .

For a given time-periodic Tonelli Lagrangian L, it is well known that the function U : $M \times[0,+\infty) \rightarrow \mathbb{R}$ defined by $U(x, t)=T_{t} u_{0}(x)$ is the unique viscosity solution of the Cauchy problem

$$
\begin{cases}u_{t}+H\left(x, u_{x}, t\right)=0 & \text { in } M \times(0,+\infty) \tag{1.2}\\ \left.u\right|_{t=0}=u_{0} & \text { on } M\end{cases}
$$

where $u_{0}: M \rightarrow \mathbb{R}$ is a continuous function and $T_{t}: C(M, \mathbb{R}) \rightarrow C(M, \mathbb{R}), t \geq 0$ is the LaxOleinik operator (see Section 2 for a definition) associated with the Lagrangian L (see [9] for instance).
(H5) The Aubry set of L consists of one hyperbolic 1-periodic orbit.
For any given time-periodic Tonelli Lagrangian L satisfying (H5), we show that for each $u_{0} \in C(M, \mathbb{R})$, the unique viscosity solution $U(x, t)$ of the Cauchy problem (1.2) converges exponentially fast to a 1-periodic viscosity solution of (1.1) as $t \rightarrow+\infty$.

The main result of this paper is as follows.
Theorem 1.1 If a time-periodic Tonelli Lagrangian $L: T M \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies (H5), then there exists $\rho>0$ such that for each $u_{0} \in C(M, \mathbb{R})$, there exists a constant $K>0$ and a 1-periodic viscosity solution \bar{u} of (1.1) such that

$$
\begin{equation*}
\|U(x, n+\tau)-\bar{u}(x,\langle\tau\rangle)\|_{\infty} \leq K \mathrm{e}^{-\rho n}, \quad \forall n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

where $\tau \in[0,1],\langle\tau\rangle=\tau \bmod 1$, and $\|\cdot\|_{\infty}$ denotes the supremum norm in the space $C(M \times$ $[0,1], \mathbb{R})$.

Remark 1.1 In fact, $\bar{u}(x, s)=\inf _{y \in M}\left(u_{0}(y)+h_{0, s}(y, x)\right)$ for all $(x, s) \in M \times \mathbf{S}$, where \mathbf{S} is the unit circle and h denotes the (extended) Peierls barrier (see Section 2 for a definition).

Remark 1.2 Inequality (1.3) implies that $\|U(x, t)-\bar{u}(x,\langle t\rangle)\|_{0} \leq K_{1} \mathrm{e}^{-\rho t}, \forall t>0$, where $K_{1}>0$ is a constant and $\|\cdot\|_{0}$ denotes the supremum norm in the space $C(M, \mathbb{R})$.

Remark 1.3 The essence of Theorem 1.1 is that the Lax-Oleinik operators possess an exponential convergence rate under the assumptions (H1)-(H5). See [8, 16-18] for various results on the rate of convergence of the Lax-Oleinik operators for the autonomous case.

Remark 1.4 In [15], Sánchez-Morgado provides a similar result to Theorem 1.1 for $M=$ \mathbf{T}^{m}, where \mathbf{T}^{m} denotes the flat m-torus. Our method here is totally different from that used in [15].

2 Preliminaries

The methods here are inspired from Mather-Mañé-Fathi theory (see [4-7, 10-14]) on Tonelli Lagrangian systems. We introduce the notations used in the sequel and review some definitions and results of Mather-Mañé-Fathi theory in this section.

We view \mathbf{S} as a fundamental domain in $\mathbb{R}: \bar{I}=[0,1]$ with the two endpoints identified. The unique coordinate s of a point in \mathbf{S} will belong to $I=[0,1)$. The standard universal covering projection $\pi: \mathbb{R} \rightarrow \mathbf{S}$ takes the form $\pi(\widetilde{s})=\langle\widetilde{s}\rangle$, where $\langle\widetilde{s}\rangle=\widetilde{s} \bmod 1$ denotes the fractional part of $\widetilde{s}(\widetilde{s}=[\widetilde{s}]+\langle\widetilde{s}\rangle$, where $[\widetilde{s}]$ is the greatest integer not greater than $\widetilde{s}) .\|\cdot\|$ denotes the usual Euclidean norm.

The Euler-Lagrange equation generates a flow of diffeomorphisms $\phi_{t}^{L}: T M \times \mathbf{S} \rightarrow T M \times \mathbf{S}$, $t \in \mathbb{R}$, defined by

$$
\phi_{t}^{L}\left(x_{0}, v_{0}, t_{0}\right)=\left(x\left(t+t_{0}\right), \dot{x}\left(t+t_{0}\right),\left\langle t+t_{0}\right\rangle\right),
$$

where $x: \mathbb{R} \rightarrow M$ is the maximal solution of the Euler-Lagrange equation with initial conditions $x\left(t_{0}\right)=x_{0}, \dot{x}\left(t_{0}\right)=v_{0}$. The completeness and periodicity conditions grant that this correctly defines a flow on $T M \times \mathbf{S}$.

Consider the action functional A_{L} from the space of continuous and piecewise C^{1} curves $\gamma:[a, b] \rightarrow M$, defined by

$$
A_{L}(\gamma)=\int_{a}^{b} L(\mathrm{~d} \gamma(\sigma), \sigma) \mathrm{d} \sigma
$$

where $\mathrm{d} \gamma:[a, b] \rightarrow T M$ denotes the differential of γ.
Recall the definition of the Lax-Oleinik operators T_{t} associated with L. For each $t \geq 0$ and each $u_{0} \in C(M, \mathbb{R})$, let

$$
T_{t} u_{0}(x)=\inf _{\gamma}\left\{u_{0}(\gamma(0))+A_{L}(\gamma)\right\}
$$

for all $x \in M$, where the infimum is taken among the continuous and piecewise C^{1} paths $\gamma:[0, t] \rightarrow M$ with $\gamma(t)=x$. For each $t \geq 0, T_{t}$ is an operator from $C(M, \mathbb{R})$ to itself.

As done by Mather in [14], it is convenient to introduce, for all $t<t^{\prime} \in \mathbb{R}$ and $x, x^{\prime} \in M$, the following quantity:

$$
F_{t, t^{\prime}}\left(x, x^{\prime}\right)=\inf _{\gamma} A_{L}(\gamma),
$$

where the infimum is taken over the continuous and piecewise C^{1} paths $\gamma:\left[t, t^{\prime}\right] \rightarrow M$ such that $\gamma(t)=x$ and $\gamma\left(t^{\prime}\right)=x^{\prime}$. For all $t<t^{\prime} \in \mathbb{R}$ and all $x, x^{\prime} \in M$, there exists a continuous and piecewise C^{1} path $\bar{\gamma}:\left[t, t^{\prime}\right] \rightarrow M$ with $\bar{\gamma}(t)=x$ and $\gamma\left(t^{\prime}\right)=x^{\prime}$ such that $F_{t, t^{\prime}}\left(x, x^{\prime}\right)=A_{L}(\bar{\gamma})$ (see [13, Tonelli's Theorem]). Such a curve is called a Tonelli minimizer (for the fixed endpoint problem). The function $F: \mathbb{R} \times \mathbb{R} \times M \times M \rightarrow \mathbb{R},\left(t, t^{\prime}, x, x^{\prime}\right) \mapsto F_{t, t^{\prime}}\left(x, x^{\prime}\right)$ is Lipschitz and bounded on $\left\{t^{\prime} \geq t+1\right\}$ (see for example [2, Lemma 3.3]).

Following Mañé [12] and Mather [14], define the action potential and the extended Peierls barrier as follows.

Action Potential. For each $\left(s, s^{\prime}\right) \in \mathbf{S} \times \mathbf{S}$, let

$$
\Phi_{s, s^{\prime}}\left(x, x^{\prime}\right)=\inf F_{t, t^{\prime}}\left(x, x^{\prime}\right)
$$

for all $\left(x, x^{\prime}\right) \in M \times M$, where the infimum is taken on the set of $\left(t, t^{\prime}\right) \in \mathbb{R}^{2}$ such that $s=\langle t\rangle$, $s^{\prime}=\left\langle t^{\prime}\right\rangle$ and $t^{\prime} \geq t+1$.

Extended Peierls Barrier. For each $\left(s, s^{\prime}\right) \in \mathbf{S} \times \mathbf{S}$, let

$$
h_{s, s^{\prime}}\left(x, x^{\prime}\right)=\liminf _{t^{\prime}-t \rightarrow+\infty} F_{t, t^{\prime}}\left(x, x^{\prime}\right)
$$

for all $\left(x, x^{\prime}\right) \in M \times M$, where the lim inf is restricted to the set of $\left(t, t^{\prime}\right) \in \mathbb{R}^{2}$ such that $s=\langle t\rangle$, $s^{\prime}=\left\langle t^{\prime}\right\rangle$. The function $h: \mathbf{S} \times \mathbf{S} \times M \times M \rightarrow \mathbb{R},\left(s, s^{\prime}, x, x^{\prime}\right) \mapsto h_{s, s^{\prime}}\left(x, x^{\prime}\right)$ is Lipschitz (see [3, Proposition 2] for details).

A continuous and piecewise C^{1} curve $\gamma: \mathbb{R} \rightarrow M$ is called global semi-static if

$$
A_{L}\left(\left.\gamma\right|_{\left[t, t^{\prime}\right]}\right)=\Phi_{\langle t\rangle,\left\langle t^{\prime}\right\rangle}\left(\gamma(t), \gamma\left(t^{\prime}\right)\right)
$$

for all $\left[t, t^{\prime}\right] \subset \mathbb{R}$. An orbit $(\mathrm{d} \gamma(\sigma),\langle\sigma\rangle)$ is called global semi-static if γ is a global semi-static curve. The Mañé set $\widetilde{\mathcal{N}}_{0}$ is the union in $T M \times \mathbf{S}$ of the images of global semi-static orbits. A continuous and piecewise C^{1} curve $\gamma: \mathbb{R} \rightarrow M$ is called global static if

$$
A_{L}\left(\left.\gamma\right|_{\left[t, t^{\prime}\right]}\right)=-\Phi_{\left\langle t^{\prime}\right\rangle,\langle t\rangle}\left(\gamma\left(t^{\prime}\right), \gamma(t)\right)
$$

for all $\left[t, t^{\prime}\right] \subset \mathbb{R}$. An orbit $(\mathrm{d} \gamma(\sigma),\langle\sigma\rangle)$ is called global static if γ is a global static curve. The Aubry set $\widetilde{\mathcal{A}}_{0}$ is the union in $T M \times \mathbf{S}$ of the images of global static orbits. For a time-periodic Tonelli Lagrangian satisfying (H5), we have $\widetilde{\mathcal{A}}_{0}=\widetilde{\mathcal{N}}_{0}$.

A time-periodic Tonelli Lagrangian L is called regular, if the liminf in the definition of the functions $h_{s, s^{\prime}}$ is a limit for all $s, s^{\prime}, x, x^{\prime}$. According to [2, Lemma 5.4], a time-periodic Tonelli Lagrangian L satisfying (H5) is regular. Thus, under the assumptions of Theorem 1.1, we have

$$
\lim _{n \rightarrow+\infty} F_{0, n+\tau}(x, y)=h_{0,\langle\tau\rangle}(x, y), \quad \forall(\tau, x, y) \in[0,1] \times M \times M .
$$

Since the family of functions $\left\{F_{0, n+\cdot}(\cdot, \cdot)\right\}_{n}$ is equi-Lipschitzian, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} F_{0, n+\tau}(x, y)=h_{0,\langle\tau\rangle}(x, y) \tag{2.1}
\end{equation*}
$$

uniformly on $(\tau, x, y) \in[0,1] \times M \times M$. Note that for each $u_{0} \in C(M, \mathbb{R})$, each $\tau \in[0,1]$, each $n \in \mathbb{N}$ and each $x \in M$, we have

$$
\begin{equation*}
T_{n+\tau} u_{0}(x)=\inf _{y \in M}\left(u_{0}(y)+F_{0, n+\tau}(y, x)\right) . \tag{2.2}
\end{equation*}
$$

From (2.1)-(2.2), it is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|T_{n+\tau} u_{0}(x)-\inf _{y \in M}\left(u_{0}(y)+h_{0,\langle\tau\rangle}(y, x)\right)\right\|_{\infty}=0 \tag{2.3}
\end{equation*}
$$

In view of (2.3), the function \bar{u} in Theorem 1.1 has the form

$$
\bar{u}(x, s)=\inf _{y \in M}\left(u_{0}(y)+h_{0, s}(y, x)\right)
$$

for all $(x, s) \in M \times \mathbf{S}$. Furthermore, from [17, Propositions 3.12-3.13], $\{\bar{u}\}_{u_{0} \in C(M, \mathbb{R})}$ is exactly the set of 1-periodic viscosity solutions or backward weak KAM solutions of (1.1). Now we recall the definition of the weak KAM solution of (1.1).

A backward weak KAM solution of the Hamilton-Jacobi equation (1.1) is a function w : $M \times \mathbf{S} \rightarrow \mathbb{R}$ such that w is dominated by L, i.e.,

$$
w\left(x_{1}, s_{1}\right)-w\left(x_{2}, s_{2}\right) \leq \Phi_{s_{2}, s_{1}}\left(x_{2}, x_{1}\right), \quad \forall\left(x_{1}, s_{1}\right), \quad\left(x_{2}, s_{2}\right) \in M \times \mathbf{S}
$$

and for every $(x, s) \in M \times \mathbf{S}$, there exists a curve $\gamma:(-\infty, \widetilde{s}] \rightarrow M$ with $\gamma(\widetilde{s})=x$ and $\langle\widetilde{s}\rangle=s$ such that

$$
w(x, s)-w(\gamma(t),\langle t\rangle)=A_{L}\left(\gamma_{[t, \tilde{s}]}\right), \quad \forall t \in(-\infty, \widetilde{s}] .
$$

Similarly, we say that $w: M \times \mathbf{S} \rightarrow \mathbb{R}$ is a forward weak KAM solution of (1.1) if w is dominated by L, and for every $(x, s) \in M \times \mathbf{S}$, there exists a curve $\gamma:[\widetilde{s},+\infty) \rightarrow M$ with $\gamma(\widetilde{s})=x$ and $\langle\widetilde{s}\rangle=s$ such that $w(\gamma(t),\langle t\rangle)-w(x, s)=A_{L}\left(\gamma_{[\widetilde{s}, t]}\right), \forall t \in[\widetilde{s},+\infty)$.

We denote by $\mathcal{S}_{-}\left(\mathcal{S}_{+}\right)$the set of backward (forward) weak KAM solutions. Given $\left(x_{0}, s_{0}\right) \in$ $M \times \mathbf{S}$, define $w^{*}(x, s):=h_{s_{0}, s}\left(x_{0}, x\right), w_{*}(x, s):=-h_{s, s_{0}}\left(x, x_{0}\right)$ for $(x, s) \in M \times \mathbf{S}$. Then $w^{*} \in \mathcal{S}_{-}, w_{*} \in \mathcal{S}_{+}$(see [3, Lemma 9]).

Define the projected Aubry set \mathcal{A}_{0} as

$$
\mathcal{A}_{0}:=\left\{(x, s) \in M \times \mathbf{S} \mid h_{s, s}(x, x)=0\right\} .
$$

Note that $\mathcal{A}_{0}=\Pi \widetilde{\mathcal{A}_{0}}$, where $\Pi: T M \times \mathbf{S} \rightarrow M \times \mathbf{S}$ denotes the projection. Define an equivalence relation on \mathcal{A}_{0} by saying that (x_{1}, s_{1}) and $\left(x_{2}, s_{2}\right)$ are equivalent if and only if

$$
\Phi_{s_{1}, s_{2}}\left(x_{1}, x_{2}\right)+\Phi_{s_{2}, s_{1}}\left(x_{2}, x_{1}\right)=0
$$

The equivalent classes of this relation are called static classes. Let A be the set of static classes. For each static class $\Gamma \in \mathbf{A}$, choose a point $(x, 0) \in \Gamma$ and let \mathbb{A}_{0} be the set of such points. Under the assumptions of Theorem 1.1, \mathbb{A}_{0} consists of only one point, denoted by $(p, 0) \in \mathcal{A}_{0}$. Thus, for each backward weak KAM solution w of (1.1), we have

$$
\begin{equation*}
w(x, s)=\min _{(q, 0) \in \mathbb{A}_{0}}\left(w(q, 0)+h_{0, s}(q, x)\right)=w(p, 0)+h_{0, s}(p, x) \tag{2.4}
\end{equation*}
$$

for all $(x, s) \in M \times \mathbf{S}$ (see [3, Theorem 7]).
Proposition 2.1 Under the assumptions of Theorem 1.1, let V be a neighborhood of the Aubry set $\widetilde{\mathcal{A}_{0}}$ in $T M \times \mathbf{S}$. Given $0<a_{1}<a_{2}<1$, there exists $T>0$ such that if $n \geq T, n \in \mathbb{N}$, $\tau \in[0,1]$, and $\gamma:[0, n+\tau] \rightarrow M$ is a Tonelli minimizer for the fixed point problem, then

$$
\left.(\mathrm{d} \gamma(\sigma),\langle\sigma\rangle)\right|_{\left[a_{1} n, a_{2} n\right]} \subset V
$$

Proof Suppose by contradiction that there exist $\left\{n_{i}\right\}_{i=1}^{+\infty} \subset \mathbb{N}$ with $n_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$, $\left\{\tau_{n_{i}}\right\}_{i=1}^{+\infty} \subset[0,1]$, a sequence $\left\{\gamma_{n_{i}}\right\}_{i=1}^{+\infty}:\left[0, n_{i}+\tau_{n_{i}}\right] \rightarrow M$ of Tonelli minimizers, and $\left\{\sigma_{n_{i}}\right\}_{i=1}^{+\infty}$ with $a_{1} n_{i} \leq \sigma_{n_{i}} \leq a_{2} n_{i}$ such that

$$
\begin{equation*}
\left(\mathrm{d} \gamma_{n_{i}}\left(\sigma_{n_{i}}\right),\left\langle\sigma_{n_{i}}\right\rangle\right) \notin V, \quad i=1,2, \cdots . \tag{2.5}
\end{equation*}
$$

For each i, we set $x_{n_{i}}=\gamma_{n_{i}}\left(n_{i}+\tau_{n_{i}}\right), y_{n_{i}}=\gamma_{n_{i}}(0)$. Passing as necessary to a subsequence, we may suppose that $x_{n_{i}} \rightarrow x_{0}, y_{n_{i}} \rightarrow y_{0}$ and $\tau_{n_{i}} \rightarrow \tau_{0}$ as $i \rightarrow+\infty$, where $x_{0}, y_{0} \in M$ and $\tau_{0} \in[0,1]$.

Since

$$
\begin{aligned}
\left|F_{0, n_{i}+\tau_{n_{i}}}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right)\right| \leq & \left|F_{0, n_{i}+\tau_{n_{i}}}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{n_{i}}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right)\right| \\
& +\left|h_{0,\left\langle\tau_{n_{i}}\right\rangle}\right\rangle\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right) \mid \\
& +\left|h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right)\right|,
\end{aligned}
$$

from (2.1) and the Lipschitz property of h, we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} A_{L}\left(\gamma_{n_{i}}\right)=\lim _{i \rightarrow+\infty} F_{0, n_{i}+\tau_{n_{i}}}\left(y_{n_{i}}, x_{n_{i}}\right)=h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right) . \tag{2.6}
\end{equation*}
$$

For each i, we set

$$
\left(\widetilde{x}_{n_{i}}, \dot{\widetilde{x}}_{n_{i}}, s_{n_{i}}\right)=\left(\gamma_{n_{i}}\left(\sigma_{n_{i}}\right), \dot{\gamma}_{n_{i}}\left(\sigma_{n_{i}}\right),\left\langle\sigma_{n_{i}}\right\rangle\right) .
$$

By (2.5), $\left(\widetilde{x}_{n_{i}}, \dot{\tilde{x}}_{n_{i}}, s_{n_{i}}\right) \notin V, \forall i$. Since $\gamma_{n_{i}}$ are minimizing extremal curves, using the a priori compactness Lemma 3.4 in [17], we conclude that $\left\{\left(\widetilde{x}_{n_{i}}, \dot{\tilde{x}}_{n_{i}}, s_{n_{i}}\right)\right\}_{i=1}^{+\infty}$ are contained in a compact subset of $T M \times \mathbf{S}$. So we may assume upon passing if necessary to a subsequence that $\left(\widetilde{x}_{n_{i}}, \dot{\tilde{x}}_{n_{i}}, s_{n_{i}}\right) \rightarrow(\widetilde{x}, \dot{\tilde{x}}, s) \in T M \times \mathbf{S}$ as $i \rightarrow+\infty$. Since $\left(\widetilde{x}_{n_{i}}, \dot{\tilde{x}}_{n_{i}}, s_{n_{i}}\right) \notin V, \forall i$, one has $(\widetilde{x}, \dot{\tilde{x}}, s) \notin \widetilde{\mathcal{A}_{0}}$.

Let $(\mathrm{d} \gamma(\sigma),\langle\sigma\rangle)=\phi_{\sigma-s}^{L}(\widetilde{x}, \dot{\tilde{x}}, s), \sigma \in \mathbb{R}$. We assert that the orbit $(\mathrm{d} \gamma(\sigma),\langle\sigma\rangle)$ is global semistatic, i.e., γ is a global semi-static curve. If this assertion is true, then $(\widetilde{x}, \dot{\tilde{x}}, s) \in \widetilde{\mathcal{N}}_{0}=\widetilde{\mathcal{A}}_{0}$, which is impossible since $(\widetilde{x}, \dot{\tilde{x}}, s) \notin \widetilde{\mathcal{A}_{0}}$. This contradiction proves the proposition.

Based on the above arguments, it is sufficient to show that γ is a global semi-static curve. We prove it by contradiction. Otherwise, there would be $j_{1}, j_{2} \in \mathbb{N}$ such that

$$
A_{L}\left(\left.\gamma\right|_{\left[s-j_{1}, s+j_{2}\right]}\right)>\Phi_{s, s}\left(\gamma\left(s-j_{1}\right), \gamma\left(s+j_{2}\right)\right) .
$$

It implies that there exist $j_{1}^{\prime}, j_{2}^{\prime} \in \mathbb{N}$ with $s-j_{1}^{\prime}+1 \leq s+j_{2}^{\prime}$ and a minimizing curve $\widetilde{\gamma}$: $\left[s-j_{1}^{\prime}, s+j_{2}^{\prime}\right] \rightarrow M$ satisfying $\widetilde{\gamma}\left(s-j_{1}^{\prime}\right)=\gamma\left(s-j_{1}\right)$ and $\widetilde{\gamma}\left(s+j_{2}^{\prime}\right)=\gamma\left(s+j_{2}\right)$ such that $A_{L}\left(\left.\gamma\right|_{\left[s-j_{1}, s+j_{2}\right]}\right)>A_{L}\left(\left.\widetilde{\gamma}\right|_{\left[s-j_{1}^{\prime}, s+j_{2}^{\prime}\right]}\right)$. Thus, there exists $\delta>0$ such that

$$
\begin{equation*}
A_{L}\left(\left.\widetilde{\gamma}\right|_{\left[s-j_{1}^{\prime}, s+j_{2}^{\prime}\right]}\right) \leq A_{L}\left(\left.\gamma\right|_{\left[s-j_{1}, s+j_{2}\right]}\right)-\delta . \tag{2.7}
\end{equation*}
$$

Since $\left(\widetilde{x}_{n_{i}}, \dot{\tilde{x}}_{n_{i}}, s_{n_{i}}\right) \rightarrow(\widetilde{x}, \dot{\tilde{x}}, s) \in T M \times \mathbf{S}$ as $i \rightarrow+\infty$, for every $\varepsilon>0$, by the differentiability of the solutions of the Euler-Lagrange equation with respect to initial values, we have

$$
\begin{equation*}
d\left((\mathrm{~d} \gamma(\sigma),\langle\sigma\rangle),\left(\mathrm{d} \gamma_{n_{i}}\left(\sigma+\sigma_{n_{i}}-s\right),\left\langle\sigma+\sigma_{n_{i}}-s\right\rangle\right)\right)<\varepsilon \tag{2.8}
\end{equation*}
$$

for all $\sigma \in\left[s-j_{1}, s+j_{2}\right]$ and i large enough. Using the periodicity of L, we have

$$
\begin{equation*}
A_{L}\left(\gamma_{n_{i}} \mid\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]\right)=\int_{s-j_{1}}^{s+j_{2}} L\left(\mathrm{~d} \gamma_{n_{i}}\left(\sigma+\sigma_{n_{i}}-s\right),\left\langle\sigma+\sigma_{n_{i}}-s\right\rangle\right) \mathrm{d} \sigma, \tag{2.9}
\end{equation*}
$$

In view of (2.8)-(2.9), we have

$$
\begin{equation*}
\left|A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]}\right)-A_{L}\left(\left.\gamma\right|_{\left[s-j_{1}, s+j_{2}\right]}\right)\right| \leq C \varepsilon \tag{2.10}
\end{equation*}
$$

for some constant $C>0$ independent of ε and sufficiently large i. Since ε may be taken arbitrary small, from (2.7) and (2.10) we obtain

$$
\begin{align*}
A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]}\right) & \geq A_{L}\left(\left.\gamma\right|_{\left[s-j_{1}, s+j_{2}\right]}\right)-C \varepsilon \\
& \geq A_{L}\left(\left.\widetilde{\gamma}\right|_{\left[s-j_{1}^{\prime}, s+j_{2}^{\prime}\right]}\right)+\frac{3 \delta}{4} \tag{2.11}
\end{align*}
$$

provided that i is large enough.
We set

$$
\bar{x}=\widetilde{\gamma}\left(s-j_{1}^{\prime}\right)=\gamma\left(s-j_{1}\right) \quad \text { and } \quad \underline{x}=\widetilde{\gamma}\left(s+j_{2}^{\prime}\right)=\gamma\left(s+j_{2}\right) .
$$

For i large enough, consider the following curves on M. Let $\alpha_{i}^{1}:\left[0, \sigma_{n_{i}}-j_{1}\right] \rightarrow M$ with $\alpha_{i}^{1}(0)=y_{n_{i}}, \alpha_{i}^{1}\left(\sigma_{n_{i}}-j_{1}\right)=\bar{x}$ and $\alpha_{i}^{2}:\left[\sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}\right] \rightarrow M$ with
$\alpha_{i}^{2}\left(\sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}\right)=\underline{x}$ and $\alpha_{i}^{2}\left(\tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}\right)=x_{n_{i}}$ be Tonelli minimizers. Set

$$
\widetilde{\gamma}_{n_{i}}(\sigma)= \begin{cases}\alpha_{i}^{1}(\sigma), & \sigma \in\left[0, \sigma_{n_{i}}-j_{1}\right], \\ \widetilde{\gamma}\left(\sigma-\sigma_{n_{i}}+j_{1}+s-j_{1}^{\prime}\right), & \sigma \in\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}\right], \\ \alpha_{i}^{2}(\sigma), & \sigma \in\left[\sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}\right] .\end{cases}
$$

It is clear that $\widetilde{\gamma}_{n_{i}}:\left[0, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}\right] \rightarrow M$ is a continuous and piecewise C^{1} curve connecting $y_{n_{i}}$ and $x_{n_{i}}$.

We set $\bar{x}_{n_{i}}=\gamma_{n_{i}}\left(\sigma_{n_{i}}-j_{1}\right)$ and $\underline{x}_{n_{i}}=\gamma_{n_{i}}\left(\sigma_{n_{i}}+j_{2}\right)$. For i large enough, compare $A_{L}\left(\widetilde{\gamma}_{n_{i}}\right)$ with $A_{L}\left(\gamma_{n_{i}}\right)$ as follows. In view of (2.8), we have

$$
\begin{align*}
& \left.\mid A_{L}\left(\left.\widetilde{\gamma}_{n_{i}}\right|_{\left[0, \sigma_{n_{i}}\right.}-j_{1}\right]\right)-A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[0, \sigma_{n_{i}}-j_{1}\right]}\right) \mid \\
= & \left|F_{0, \sigma_{n_{i}}-j_{1}}\left(y_{n_{i}}, \bar{x}\right)-F_{0, \sigma_{n_{i}}-j_{1}}\left(y_{n_{i}}, \bar{x}_{n_{i}}\right)\right| \\
\leq & D_{\text {Lip }} \varepsilon, \tag{2.12}
\end{align*}
$$

where $D_{\text {Lip }}>0$ is a Lipschitz constant of $F_{t, t^{\prime}}$ which is independent of t, t^{\prime} with $t+1 \leq t^{\prime}$ (see [2, Lemma 3.3]).

Note that

$$
\begin{aligned}
& A_{L}\left(\left.\widetilde{\gamma}_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}\right]}\right)-A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]}\right) \\
= & \int_{s-j_{1}^{\prime}}^{s+j_{2}^{\prime}} L\left(\mathrm{~d} \widetilde{\gamma}(\sigma), \sigma+s_{n_{i}}-s\right) \mathrm{d} \sigma-A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]}\right) .
\end{aligned}
$$

Since $s_{n_{i}} \rightarrow s$ as $i \rightarrow+\infty$,

$$
\left|A_{L}\left(\left.\widetilde{\gamma}\right|_{\left[s-j_{1}^{\prime}, s+j_{2}^{\prime}\right]}\right)-\int_{s-j_{1}^{\prime}}^{s+j_{2}^{\prime}} L\left(\mathrm{~d} \widetilde{\gamma}(\sigma), \sigma+s_{n_{i}}-s\right) \mathrm{d} \sigma\right| \leq \frac{\delta}{4}
$$

for i large enough. Hence,

$$
\begin{equation*}
A_{L}\left(\left.\widetilde{\gamma}_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}\right]}\right)-A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}-j_{1}, \sigma_{n_{i}}+j_{2}\right]}\right) \leq-\frac{\delta}{2} . \tag{2.13}
\end{equation*}
$$

From the Lipschitz property of $F_{t, t^{\prime}}$ and (2.8), we find

$$
\begin{align*}
& \left|A_{L}\left(\widetilde{\gamma}_{n_{i}} \mid{ }_{\left[\sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}\right]}\right)-A_{L}\left(\left.\gamma_{n_{i}}\right|_{\left[\sigma_{n_{i}}+j_{2}, \tau_{n_{i}}+n_{i}\right]}\right)\right| \\
= & \left.\mid F_{\sigma_{n_{i}}-j_{1}+j_{1}^{\prime}+j_{2}^{\prime}, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}} \underline{x}, x_{n_{i}}\right)-F_{\sigma_{n_{i}}+j_{2}, \tau_{n_{i}}+n_{i}}\left(\underline{x_{n_{i}}}, x_{n_{i}}\right) \mid \\
\leq & D_{\mathrm{Lip}} \varepsilon . \tag{2.14}
\end{align*}
$$

Since ε may be taken arbitrary small, from (2.12)-(2.14), we have

$$
\begin{equation*}
A_{L}\left(\widetilde{\gamma}_{n_{i}}\right) \leq A_{L}\left(\gamma_{n_{i}}\right)-\frac{\delta}{4} \tag{2.15}
\end{equation*}
$$

for i large enough.
Since

$$
\begin{aligned}
& \left|F_{0, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right)\right| \\
\leq & \left.\left|F_{0, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{n_{i}}\right\rangle}\right\rangle y_{n_{i}}, x_{n_{i}}\right)\left|+\left|h_{0,\left\langle\tau_{n_{i}}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right)\right|\right. \\
& +\left|h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{n_{i}}, x_{n_{i}}\right)-h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right)\right|,
\end{aligned}
$$

from (2.1) and the Lipschitz property of h, we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} F_{0, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}}\left(y_{n_{i}}, x_{n_{i}}\right)=h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right) . \tag{2.16}
\end{equation*}
$$

Combining (2.6) and (2.15)-(2.16), we have

$$
\begin{aligned}
h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right)-\frac{\delta}{4} & =\lim _{i \rightarrow+\infty} A_{L}\left(\gamma_{n_{i}}\right)-\frac{\delta}{4} \\
& \geq \liminf _{i \rightarrow+\infty} A_{L}\left(\widetilde{\gamma}_{n_{i}}\right) \\
& \geq \lim _{i \rightarrow+\infty} F_{0, \tau_{n_{i}}+n_{i}-j_{1}-j_{2}+j_{1}^{\prime}+j_{2}^{\prime}}\left(y_{n_{i}}, x_{n_{i}}\right) \\
& =h_{0,\left\langle\tau_{0}\right\rangle}\left(y_{0}, x_{0}\right),
\end{aligned}
$$

a contradiction. This contradiction shows that γ is global semi-static, which completes the proof of the proposition.

3 Proof of the Main Result

Let $\left(p, v_{p}, 0\right)$ be the unique point in $\widetilde{\mathcal{A}}_{0}$ with $\Pi\left(p, v_{p}, 0\right)=(p, 0) \in \mathbb{A}_{0}$, where $\Pi: T M \times \mathbf{S}^{1} \rightarrow$ $M \times \mathbf{S}$ denotes the projection. By (H5) the Aubry set $\widetilde{\mathcal{A}}_{0}$ consists of one hyperbolic 1-periodic orbit, denoted by $\Gamma: \phi_{\sigma}^{L}\left(p, v_{p}, 0\right)=\left(\mathrm{d} \gamma_{p}(\sigma),\langle\sigma\rangle\right), \sigma \in \mathbb{R}$.

Proof of Theorem 1.1 Our purpose is to show that there exists $\rho>0$ such that for each $u_{0} \in C(M, \mathbb{R})$, there exists $K>0$ such that the following two inequalities hold:

$$
\begin{array}{ll}
\bar{u}(x,\langle\tau\rangle)-T_{n+\tau} u_{0}(x) \leq K \mathrm{e}^{-\rho n}, & \forall n \in \mathbb{N}, \quad \forall(x, \tau) \in M \times[0,1] ; \\
T_{n+\tau} u_{0}(x)-\bar{u}(x,\langle\tau\rangle) \leq K \mathrm{e}^{-\rho n}, & \forall n \in \mathbb{N}, \forall(x, \tau) \in M \times[0,1] . \tag{I2}
\end{array}
$$

Step 1 We first prove inequality (I1). For any given $y \in M, h_{0, \cdot}(y, \cdot)$ is a backward weak KAM solution of (1.1). In view of (2.4), we have

$$
\begin{equation*}
h_{0,\langle\tau\rangle}(y, x)=h_{0,0}(y, p)+h_{0,\langle\tau\rangle}(p, x) \tag{3.1}
\end{equation*}
$$

for all $(x, \tau) \in M \times[0,1]$. Given $u_{0} \in C(M, \mathbb{R})$ and $(x, \tau) \in M \times[0,1]$, it is easy to see that for each $n \in \mathbb{N}$, there exists a minimizing extremal curve $\gamma_{n}:[0, \tau+n] \rightarrow M$ such that $\gamma_{n}(\tau+n)=x$ and

$$
\begin{equation*}
T_{n+\tau} u_{0}(x)=u_{0}\left(\gamma_{n}(0)\right)+A_{L}\left(\gamma_{n}\right) . \tag{3.2}
\end{equation*}
$$

In view of (3.1), we have

$$
\begin{aligned}
\bar{u}(x,\langle\tau\rangle) & =\inf _{y \in M}\left(u_{0}(y)+h_{0,\langle\tau\rangle}(y, x)\right) \\
& =\inf _{y \in M}\left(u_{0}(y)+h_{0,0}(y, p)+h_{0,\langle\tau\rangle}(p, x)\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\bar{u}(x,\langle\tau\rangle) \leq & u_{0}\left(\gamma_{n}(0)\right)+h_{0,0}\left(\gamma_{n}(0), p\right)+h_{0,\langle\tau\rangle}(p, x) \\
\leq & u_{0}\left(\gamma_{n}(0)\right)+F_{0, n_{1}}\left(\gamma_{n}(0), \gamma_{n}(\sigma)\right)+h_{0,0}\left(\gamma_{n}(\sigma), p\right) \\
& +h_{0,0}\left(p, \gamma_{n}(\sigma)\right)+F_{0, n_{2}+\tau}\left(\gamma_{n}(\sigma), x\right) \tag{3.3}
\end{align*}
$$

for all $\sigma \in[0, \tau+n]$ and all $n_{1}, n_{2} \in \mathbb{N}$. For $n \in \mathbb{N}$ large enough, let $j_{n}=\left[\frac{2 n}{3}\right]-\left[\frac{n}{3}\right]-1$. Taking $n_{1}=\left[\frac{j_{n}}{2}\right]+\left[\frac{n}{3}\right]+1, \sigma=n_{1}$ and $n_{2}=n-n_{1}$, by (3.3), we obtain

$$
\begin{equation*}
\bar{u}(x,\langle\tau\rangle) \leq u_{0}\left(\gamma_{n}(0)\right)+A_{L}\left(\gamma_{n}\right)+2 C_{\operatorname{Lip}} d\left(\gamma_{n}\left(\left[\frac{j_{n}}{2}\right]+\left[\frac{n}{3}\right]+1\right), p\right) \tag{3.4}
\end{equation*}
$$

where $C_{\text {Lip }}>0$ is a Lipschitz constant of h. From (3.2) and (3.4), we have

$$
\begin{equation*}
\bar{u}(x,\langle\tau\rangle)-T_{n+\tau} u_{0}(x) \leq 2 C_{\operatorname{Lip}} d\left(\gamma_{n}\left(\left[\frac{j_{n}}{2}\right]+\left[\frac{n}{3}\right]+1\right), p\right) . \tag{3.5}
\end{equation*}
$$

We now estimate the term in the right-hand side of (3.5). Consider the Poincaré map for the time-periodic Lagrangian system L,

$$
\varphi_{1,0}: T M \rightarrow T M, \quad\left(x_{0}, v_{0}\right) \mapsto \varphi_{1,0}\left(x_{0}, v_{0}\right)
$$

where $\varphi_{t, 0}\left(x_{0}, v_{0}\right)=(x(t), \dot{x}(t))$ and $x(t)$ denotes the solution to the Euler-Lagrange equation with initial conditions $x(0)=x_{0}, \dot{x}(0)=v_{0}$. Obviously, $\phi_{t}^{L}\left(x_{0}, v_{0}, 0\right)=\left(\varphi_{t, 0}\left(x_{0}, v_{0}\right),\langle t\rangle\right)$. It is easy to see that $\left(p, v_{p}\right)$ is a hyperbolic fixed point of $\varphi_{1,0}$. According to the Hartman-Grobman theorem, the Poincaré map $\varphi_{1,0}$ is locally conjugate to its linear part at the hyperbolic fixed point $\left(p, v_{p}\right)$. More precisely, there exist a neighborhood $V\left(p, v_{p}\right)$ of $\left(p, v_{p}\right)$ in $T M$ as well as a neighborhood $U(0)$ of 0 in $T_{\left(p, v_{p}\right)}(T M)$ and a homeomorphism $f: V\left(p, v_{p}\right) \rightarrow U(0)$, such that

$$
\begin{equation*}
D \varphi_{1,0}\left(p, v_{p}\right) \circ f=f \circ \varphi_{1,0} . \tag{3.6}
\end{equation*}
$$

Furthermore, there exists $0<\alpha<1$ such that f and f^{-1} are α-Hölder continuous (see [1]). Denote for brevity $P=\left(p, v_{p}\right)$. As the problem here is a local one, we can, using a local chart, suppose that $\varphi_{1,0}$ is a map from $\mathbb{R}^{2 m}$ to itself with P as a hyperbolic fixed point.

Let $B(P)$ be a sufficiently small neighborhood of P in $\mathbb{R}^{2 m}$ such that $B(P) \subset V(P)=$ $V\left(p, v_{p}\right)$. We choose a tubular neighborhood W_{Γ} of Γ such that for each $(q, v,\langle\sigma\rangle) \in \Gamma$, $d\left((q, v,\langle\sigma\rangle), \partial W_{\Gamma}\right)=\kappa$, where ∂W_{Γ} denotes the boundary of W_{Γ} and κ is a positive constant small enough such that for each $(q, v, 0) \in W_{\Gamma},(q, v) \in B(P)$. For the tubular neighborhood W_{Γ}, applying Proposition 2.1, there exists $T>0$ such that for $n \in \mathbb{N}$ with $n \geq T$, we have

$$
\left.\left(\mathrm{d} \gamma_{n}(\sigma),\langle\sigma\rangle\right)\right|_{\left[\frac{n}{3}, \frac{2 n}{3}\right]} \subset W_{\Gamma}
$$

It follows that

$$
\left(\mathrm{d} \gamma_{n}\left(\left[\frac{n}{3}\right]+1\right), 0\right), \cdots,\left(\mathrm{d} \gamma_{n}\left(\left[\frac{2 n}{3}\right]\right), 0\right) \in W_{\Gamma}
$$

Thus, we have

$$
\left(\mathrm{d} \gamma_{n}\left(\left[\frac{n}{3}\right]+1\right), \cdots, \mathrm{d} \gamma_{n}\left(\left[\frac{2 n}{3}\right]\right)\right) \in B(P)
$$

i.e.,

$$
\begin{equation*}
\varphi_{1,0}^{\left[\frac{n}{3}\right]+1}\left(P_{0}^{n}\right), \cdots, \varphi_{1,0}^{\left[\frac{2 n}{n}\right]}\left(P_{0}^{n}\right) \in B(P) \tag{3.7}
\end{equation*}
$$

where $P_{0}^{n}=\left(\gamma_{n}(0), \dot{\gamma}_{n}(0)\right)$. Set $A=D \varphi_{1,0}(P)$ and $P_{1}^{n}=\varphi_{1,0}^{\left[\frac{n}{3}\right]+1}\left(P_{0}^{n}\right)$. By (3.6)-(3.7), we have

$$
A f\left(P_{1}^{n}\right)=f \circ \varphi_{1,0}^{\left[\frac{n}{3}\right]+2}\left(P_{0}^{n}\right), \quad \cdots, \quad A^{j_{n}} f\left(P_{1}^{n}\right)=f \circ \varphi_{1,0}^{\left[\frac{2 n}{3}\right]}\left(P_{0}^{n}\right) .
$$

Thus $A^{i} f\left(P_{1}^{n}\right) \in U(0), i=0,1, \cdots, j_{n}$. Hence, there exists $\Delta>0$ such that

$$
\begin{equation*}
\left\|A^{i} f\left(P_{1}^{n}\right)\right\| \leq \Delta, \quad i=0,1, \cdots, j_{n} \tag{3.8}
\end{equation*}
$$

As $A: \mathbb{R}^{2 m} \rightarrow \mathbb{R}^{2 m}$ is hyperbolic, there exists an invariant splitting $\mathbb{R}^{2 m}=E^{s} \oplus E^{u}$. For each $z \in \mathbb{R}^{2 m}$, we have $z=z_{s}+z_{u}, z_{s} \in E^{s}, z_{u} \in E^{u}$ and $A z=A_{s} z_{s}+A_{u} z_{u}$, where $A_{s}=\left.A\right|_{E^{s}}$ and $A_{u}=\left.A\right|_{E^{u}}$. Let $f\left(P_{1}^{n}\right)=y_{s}^{n}+y_{u}^{n}, y_{s}^{n} \in E^{s}, y_{u}^{n} \in E^{u}$ and $A^{j_{n}} f\left(P_{1}^{n}\right)=z_{s}^{n}+z_{u}^{n}, z_{s}^{n} \in E^{s}$, $z_{u}^{n} \in E^{u}$. Let $\lambda_{1}, \cdots, \lambda_{m}$ be the eigenvalues of A_{s}. Then $\left|\lambda_{i}\right|<1$ for $i=1, \cdots, m$. Since A is similar to a symplectic matrix, $\frac{1}{\lambda_{1}}, \cdots, \frac{1}{\lambda_{m}}$ are the eigenvalues of A_{u}. Set $\lambda_{\max }=\max _{1 \leq i \leq m}\left|\lambda_{i}\right|$. It is a standard result that for arbitrary $\varepsilon>0$, we have

$$
\begin{equation*}
\left\|A_{s}^{i} z_{s}\right\| \leq\left(\lambda_{\max }+\varepsilon\right)^{i}\left\|z_{s}\right\|, \quad \forall z_{s} \in E^{s} \tag{3.9}
\end{equation*}
$$

for $i \in \mathbb{N}$ large enough. We choose $\varepsilon_{0}>0$ small enough such that $\lambda_{\max }+\varepsilon_{0}<1$. Then from (3.9) we have $\left\|A_{s}^{\left[\frac{\left.\dot{m}_{n}\right]}{2}\right]} y_{s}^{n}\right\| \leq\left(\lambda_{\max }+\varepsilon_{0}\right)^{\left[\frac{j n}{2}\right]}\left\|y_{s}^{n}\right\| \leq\left(\lambda_{\max }+\varepsilon_{0}\right)^{\left[\frac{j_{n}}{2}\right]} \Delta$ for n large enough. Similarly, we have $\left\|A_{u}^{\left[\frac{j n}{2}\right]} y_{u}^{n}\right\|=\left\|A_{u}^{-\left(j_{n}-\left[\frac{i n}{2}\right]\right)} z_{u}^{n}\right\| \leq\left(\lambda_{\max }+\varepsilon_{0}\right)^{j_{n}-\left[\frac{j n}{2}\right]}\left\|z_{u}^{n}\right\| \leq\left(\lambda_{\max }+\varepsilon_{0}\right)^{\left[\frac{j n}{2}\right]} \Delta$ for n large enough. Thus, we have

$$
\begin{equation*}
\left\|A^{\left[\frac{j_{n}}{2}\right]} f\left(P_{1}^{n}\right)\right\| \leq\left\|A_{s}^{\left[\frac{j_{n}}{2}\right]} y_{s}^{n}\right\|+\left\|A_{u}^{\left[\frac{\left.j_{n}\right]}{}\right]} y_{u}^{n}\right\| \leq 2 \Delta\left(\lambda_{\max }+\varepsilon_{0}\right)^{\left[\frac{j_{n}}{2}\right]} \tag{3.10}
\end{equation*}
$$

for n large enough. Since $j_{n}=\left[\frac{2 n}{3}\right]-\left[\frac{n}{3}\right]-1$, from (3.10) we have

$$
\begin{equation*}
\left\|A^{\left[\frac{p_{n}}{2}\right]} f\left(P_{1}^{n}\right)\right\| \leq 2 \Delta\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{n}{12}} \tag{3.11}
\end{equation*}
$$

for n large enough. Note that $A^{\left[\frac{j_{n}}{2}\right]} f\left(P_{1}^{n}\right)=f \circ \varphi_{1,0}^{\left[\frac{\eta_{n}^{2}}{2}\right]+\left[\frac{n}{3}\right]+1}\left(P_{0}^{n}\right)$ and $f(P)=0$. Since f^{-1} is α-Hölder continuous, from (3.11) we have

$$
\begin{align*}
\left\|\varphi_{1,0}^{\left[\frac{j_{n}}{2}\right]+\left[\frac{n}{3}\right]+1}\left(P_{0}^{n}\right)-P\right\| & =\left\|f^{-1} \circ A^{\left[\frac{j_{n}}{2}\right]} f\left(P_{1}^{n}\right)-f^{-1}(0)\right\| \\
& \leq C_{1}\left\|A^{\left[\frac{j_{n}}{2}\right]} f\left(P_{1}^{n}\right)-0\right\|^{\alpha} \\
& \leq C_{1} 2^{\alpha} \Delta^{\alpha}\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{\alpha n}{12}} \tag{3.12}
\end{align*}
$$

for n large enough, where $C_{1}>0$ is a constant. Therefore, there exists a constant $C_{2}>0$ independent of $u_{0} \in C(M, \mathbb{R})$ and $(x, \tau) \in M \times[0,1]$ such that

$$
\begin{equation*}
d\left(\gamma_{n}\left(\left[\frac{j_{n}}{2}\right]+\left[\frac{n}{3}\right]+1\right), p\right) \leq C_{2}\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{\alpha n}{12}} \tag{3.13}
\end{equation*}
$$

for n large enough. Note that the above estimate is independent of (x, τ). By (3.5) and (3.13), for sufficiently large n, we have

$$
\bar{u}(x,\langle\tau\rangle)-T_{n+\tau} u_{0}(x) \leq 2 C_{\operatorname{Lip}} C_{2}\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{\alpha n}{12}}, \quad \forall(x, \tau) \in M \times[0,1] .
$$

Hence, there exists a constant $C_{3}>0$ such that

$$
\bar{u}(x,\langle\tau\rangle)-T_{n+\tau} u_{0}(x) \leq C_{3}\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{\alpha n}{12}}, \quad \forall n \in \mathbb{N}, \forall(x, \tau) \in M \times[0,1],
$$

where the constant C_{3} depends on u_{0}. Since $0<\lambda_{\max }+\varepsilon_{0}<1$, there exists $\rho_{1}>0$ such that $\left(\lambda_{\max }+\varepsilon_{0}\right)^{\frac{\alpha}{12}}=\mathrm{e}^{-\rho_{1}}$. Thus, we have

$$
\begin{equation*}
\bar{u}(x,\langle\tau\rangle)-T_{n+\tau} u_{0}(x) \leq C_{3} \mathrm{e}^{-\rho_{1} n}, \quad \forall n \in \mathbb{N}, \forall(x, \tau) \in M \times[0,1] \tag{3.14}
\end{equation*}
$$

Step 2 We now prove inequality (I2). Given $u_{0} \in C(M, \mathbb{R})$ and $(x, \tau) \in M \times[0,1]$, there exists $y \in M$ such that

$$
\begin{equation*}
\bar{u}(x,\langle\tau\rangle)=u_{0}(y)+h_{0,0}(y, p)+h_{0,\langle\tau\rangle}(p, x) . \tag{3.15}
\end{equation*}
$$

To prove (I2), it suffices to show that for $n \in \mathbb{N}$ large enough, we can find a curve η : $[0, \tau+n] \rightarrow M$ with $\eta(0)=y$ and $\eta(\tau+n)=x$, such that

$$
\begin{equation*}
u_{0}(\eta(0))+A_{L}(\eta)-\bar{u}(x,\langle\tau\rangle) \leq C \mathrm{e}^{-\theta n} \tag{3.16}
\end{equation*}
$$

for some constants $C, \theta>0$ independent of $u_{0} \in C(M, \mathbb{R}),(x, \tau) \in M \times[0,1]$ and $n \in \mathbb{N}$. In fact, for $n \in \mathbb{N}$ large enough, if such a curve exists, then we have

$$
T_{n+\tau} u_{0}(x)-\bar{u}(x,\langle\tau\rangle) \leq u_{0}(\eta(0))+A_{L}(\eta)-\bar{u}(x,\langle\tau\rangle) \leq C \mathrm{e}^{-\theta n},
$$

which immediately implies the desired inequality (I2).
Our task now is to construct the curve mentioned above. Since $h_{0, \cdot}(p, \cdot)$ is a backward weak KAM solution of (1.1), there is a curve $\beta_{x,\langle\tau\rangle}:(-\infty, \widetilde{\tau}] \rightarrow M$ with $\beta_{x,\langle\tau\rangle}(\widetilde{\tau})=x$ and $\langle\widetilde{\tau}\rangle=\langle\tau\rangle$ such that

$$
\begin{equation*}
h_{0,\langle\tau\rangle}(p, x)-h_{0,\langle t\rangle}\left(p, \beta_{x,\langle\tau\rangle}(t)\right)=A_{L}\left(\left.\beta_{x,\langle\tau\rangle}\right|_{[t, \tilde{\tau}]}\right), \quad \forall t \in(-\infty, \widetilde{\tau}] . \tag{3.17}
\end{equation*}
$$

It is clear that $\beta_{x,\langle\tau\rangle}$ is a minimizing curve. From [2, Lemma 3.9], the α-limit set for any minimizing orbit is contained in the Aubry set $\widetilde{\mathcal{A}}_{0}$. Since $\widetilde{\mathcal{A}}_{0}$ consists of one hyperbolic 1periodic orbit Γ, the α-limit set for $\left(\mathrm{d} \beta_{x,\langle\tau\rangle}(\sigma),\langle\sigma\rangle\right)$ is exactly Γ. Similarly, since $-h_{\cdot, 0}(\cdot, p)$ is a forward weak KAM solution of (1.1), there exists a curve $\omega_{y, 0}:[\widetilde{o},+\infty) \rightarrow M$ with $\omega_{y, 0}(\widetilde{o})=y$ and $\langle\widetilde{o}\rangle=0$ such that

$$
\begin{equation*}
h_{0,0}(y, p)-h_{\langle t\rangle, 0}\left(\omega_{y, 0}(t), p\right)=A_{L}\left(\omega_{y, 0} \mid{ }_{[\tilde{o}, t]}\right), \quad \forall t \in[\widetilde{o},+\infty) \tag{3.18}
\end{equation*}
$$

Moreover, $\omega_{y, 0}$ is a minimizing curve and the ω-limit set for $\left(\mathrm{d} \omega_{y, 0}(\sigma),\langle\sigma\rangle\right)$ is also the hyperbolic 1-periodic orbit Γ (see [2, Lemma 3.9]).

Since Γ is a hyperbolic 1-periodic orbit, for the tubular neighborhood W_{Γ} there exist constants $T_{1}>0$ and $C_{4}>0$, such that

$$
\begin{equation*}
d\left(\left(\mathrm{~d} \omega_{y, 0}(\sigma+\widetilde{o}),\langle\sigma+\widetilde{o}\rangle\right),\left(\mathrm{d} \gamma_{p}(\sigma),\langle\sigma\rangle\right)\right) \leq C_{4} \mathrm{e}^{-\mu \sigma} \tag{3.19}
\end{equation*}
$$

for all $\sigma>T_{1}$, and

$$
\begin{equation*}
d\left(\left(\mathrm{~d} \beta_{x,\langle\tau\rangle}(\sigma+\widetilde{\tau}),\langle\sigma+\widetilde{\tau}\rangle\right),\left(\mathrm{d} \gamma_{p}(\sigma+\langle\tau\rangle),\langle\sigma+\langle\tau\rangle\rangle\right)\right) \leq C_{4} \mathrm{e}^{\mu \sigma} \tag{3.20}
\end{equation*}
$$

for all $\sigma<-T_{1}$, where T_{1} and C_{4} depend only on W_{Γ}, and μ denotes the smallest positive Lyapunov exponent of Γ.

We are now in a position to construct the curve η. For $n \in \mathbb{N}$ large enough such that $\frac{n}{3}>\max \left\{T_{1}, 2\right\}$, choose $0 \leq d_{1}<1$ so that $\left(\mathrm{d} \gamma_{p}\left(\frac{n}{3}+d_{1}\right),\left\langle\frac{n}{3}+d_{1}\right\rangle\right)=\left(p, v_{p}, 0\right)$. Then from (3.19) we obtain

$$
\begin{equation*}
d\left(\left(\mathrm{~d} \omega_{y, 0}\left(\frac{n}{3}+\widetilde{o}+d_{1}\right),\left\langle\frac{n}{3}+\widetilde{o}+d_{1}\right\rangle\right),\left(p, v_{p}, 0\right)\right) \leq C_{4} \mathrm{e}^{-\mu \frac{n}{3}} \tag{3.21}
\end{equation*}
$$

From $\langle\widehat{o}\rangle=0$ and the property of $F_{t, t^{\prime}}$, we have

$$
\begin{align*}
F_{0, \frac{n}{3}+d_{1}}\left(y, \omega_{y, 0}\left(\frac{n}{3}+\widetilde{o}+d_{1}\right)\right) & =F_{\widetilde{o}, \frac{n}{3}+\widetilde{o}+d_{1}}\left(y, \omega_{y, 0}\left(\frac{n}{3}+\widetilde{o}+d_{1}\right)\right) \\
& =A_{L}\left(\omega_{y, 0} \mid \widetilde{o}, \frac{n}{3}+\widetilde{o}+d_{1}\right] \tag{3.22}
\end{align*},
$$

where the last equality holds since $\omega_{y, 0}$ is a minimizing curve. Let $\eta_{1}:\left[0, \frac{n}{3}+d_{1}\right] \rightarrow M$ with $\eta_{1}(0)=y$ and $\eta_{1}\left(\frac{n}{3}+d_{1}\right)=p$ be a Tonelli minimizer. Then, in view of (3.21)-(3.22), we have

$$
\begin{align*}
& \left|A_{L}\left(\eta_{1}\right)-A_{L}\left(\omega_{y, 0} \left\lvert\,\left[\widetilde{o}, \frac{n}{3}+\widetilde{o}+d_{1}\right]\right.\right)\right| \\
= & \left|F_{0, \frac{n}{3}+d_{1}}(y, p)-F_{0, \frac{n}{3}+d_{1}}\left(y, \omega_{y, 0}\left(\frac{n}{3}+\widetilde{o}+d_{1}\right)\right)\right| \\
\leq & D_{\text {Lip }} C_{4} \mathrm{e}^{-\mu \frac{n}{3}} \tag{3.23}
\end{align*}
$$

where $D_{\text {Lip }}>0$ is a Lipschitz constant of $F_{t, t^{\prime}}$ which is independent of t, t^{\prime} with $t+1 \leq t^{\prime}$.
For the above sufficiently large $n \in \mathbb{N}$ with $\frac{n}{3}>\max \left\{T_{1}, 2\right\}$, let $a(n)=\frac{2 n}{3}-d_{1}+\tau$. It is clear that $a(n) \geq \frac{n}{3}$ and $\left(\mathrm{d} \gamma_{p}(-a(n)+\langle\tau\rangle),\langle-a(n)+\langle\tau\rangle\rangle\right)=\left(p, v_{p}, 0\right)$. From (3.20) we have

$$
\begin{equation*}
d\left(\left(\mathrm{~d} \beta_{x,\langle\tau\rangle}(-a(n)+\widetilde{\tau}),\langle-a(n)+\widetilde{\tau}\rangle\right),\left(p, v_{p}, 0\right)\right) \leq C_{4} \mathrm{e}^{-\mu \frac{n}{3}} \tag{3.24}
\end{equation*}
$$

Since $\beta_{x,\langle\tau\rangle}$ is a minimizing curve,

$$
\begin{equation*}
F_{-a(n)+\widetilde{\tau}, \widetilde{\tau}}\left(\beta_{x,\langle\tau\rangle}(-a(n)+\widetilde{\tau}), x\right)=A_{L}\left(\left.\beta_{x,\langle\tau\rangle}\right|_{[-a(n)+\tilde{\tau}, \tilde{\tau}]}\right) \tag{3.25}
\end{equation*}
$$

Let $\widetilde{\eta}_{2}:[-a(n)+\widetilde{\tau}, \widetilde{\tau}] \rightarrow M$ with $\widetilde{\eta}_{2}(-a(n)+\widetilde{\tau})=p$ and $\widetilde{\eta}_{2}(\widetilde{\tau})=x$ be a Tonelli minimizer. Then, by (3.24)-(3.25), we obtain

$$
\begin{align*}
& \left|A_{L}\left(\widetilde{\eta}_{2}\right)-A_{L}\left(\left.\beta_{x,\langle\tau\rangle}\right|_{[-a(n)+\widetilde{\tau}, \tilde{\tau})}\right)\right| \\
= & \left\lvert\, F_{-a(n)+\widetilde{\tau}, \widetilde{\tau}(p, x)-F_{-a(n)+\widetilde{\tau}, \widetilde{\tau}}\left(\beta_{x,\langle\tau\rangle}(-a(n)+\widetilde{\tau}), x\right) \mid}^{\leq} D_{\text {Lip }} C_{4} \mathrm{e}^{-\mu \frac{n}{3}} .\right.
\end{align*}
$$

Define a curve $\eta_{2}:\left[\frac{n}{3}+d_{1}, \frac{n}{3}+d_{1}+a(n)\right] \rightarrow M$ by $\eta_{2}(\varsigma)=\widetilde{\eta}_{2}\left(\varsigma-\frac{n}{3}-a(n)-d_{1}+\widetilde{\tau}\right)$. Then $A_{L}\left(\eta_{2}\right)=A_{L}\left(\widetilde{\eta}_{2}\right)$.

Consider the curve $\eta:[0, \tau+n] \rightarrow M$ connecting y and x defined by

$$
\eta(\sigma)= \begin{cases}\eta_{1}(\sigma), & \sigma \in\left[0, \frac{n}{3}+d_{1}\right] \tag{3.27}\\ \eta_{2}(\sigma), & \sigma \in\left[\frac{n}{3}+d_{1}, \tau+n\right] .\end{cases}
$$

Now it remains to show that the curve defined by (3.27) is just the one we need. For $n \in \mathbb{N}$ large enough, from (3.15) we get

$$
\begin{align*}
u_{0}(\eta(0))+A_{L}(\eta)-\bar{u}(x,\langle\tau\rangle) & =u_{0}(\eta(0))+A_{L}(\eta)-u_{0}(y)-h_{0,0}(y, p)-h_{0,\langle\tau\rangle}(p, x) \\
& =A_{L}\left(\eta_{1}\right)+A_{L}\left(\eta_{2}\right)-h_{0,0}(y, p)-h_{0,\langle\tau\rangle}(p, x) \tag{3.28}
\end{align*}
$$

In view of (3.28), (3.23) and (3.26), we have

$$
\begin{align*}
u_{0}(\eta(0))+A_{L}(\eta)-\bar{u}(x,\langle\tau\rangle) \leq & A_{L}\left(\left.\omega_{y, 0}\right|_{\left.\tilde{o}, \frac{n}{3}+\widetilde{o}+d_{1}\right]}\right)+A_{L}\left(\left.\beta_{x,\langle\tau\rangle}\right|_{[-a(n)+\tilde{\tau}, \tilde{\tau}]}\right) \\
& +2 D_{\mathrm{Lip}} C_{4} \mathrm{e}^{-\mu \frac{n}{3}}-h_{0,0}(y, p)-h_{0,\langle\tau\rangle}(p, x) . \tag{3.29}
\end{align*}
$$

From (3.29) and (3.17)-(3.18), we have

$$
\begin{aligned}
& u_{0}(\eta(0))+A_{L}(\eta)-\bar{u}(x,\langle\tau\rangle) \\
\leq & -h_{0,0}\left(\omega_{y, 0}\left(\frac{n}{3}+\widetilde{o}+d_{1}\right), p\right)-h_{0,0}\left(p, \beta_{x,\langle\tau\rangle}(-a(n)+\widetilde{\tau})\right)+2 D_{\text {Lip }} C_{4} \mathrm{e}^{-\mu \frac{n}{3}} \\
\leq & 2\left(C_{\operatorname{Lip}}+D_{\operatorname{Lip}}\right) C_{4} \mathrm{e}^{-\mu \frac{n}{3}},
\end{aligned}
$$

where the last inequality follows from $h_{0,0}(p, p)=0,(3.21)$ and (3.24). Let

$$
C_{5}=2\left(C_{\mathrm{Lip}}+D_{\mathrm{Lip}}\right) C_{4}
$$

Note that C_{5} and μ are independent of $(x, \tau) \in M \times[0,1], u_{0} \in C(M, \mathbb{R})$ and $n \in \mathbb{N}$, which means that (3.16) holds.

Thus, for $n \in \mathbb{N}$ large enough, we have

$$
T_{n+\tau} u_{0}(x)-\bar{u}(x,\langle\tau\rangle) \leq C_{5} \mathrm{e}^{-\mu \frac{n}{3}}, \quad \forall(x, \tau) \in M \times[0,1]
$$

Hence, there exists a constant $C_{6}>0$ such that

$$
\begin{equation*}
T_{n+\tau} u_{0}(x)-\bar{u}(x,\langle\tau\rangle) \leq C_{6} \mathrm{e}^{-\mu \frac{n}{3}}, \quad \forall n \in \mathbb{N}, \forall(x, \tau) \in M \times[0,1] \tag{3.30}
\end{equation*}
$$

where the constant C_{6} depends on u_{0}.
Let $\rho_{2}=\frac{1}{3} \mu, K=\max \left\{C_{3}, C_{6}\right\}$ and $\rho=\min \left\{\rho_{1}, \rho_{2}\right\}$. Then from (3.14) and (3.30), we have

$$
\left\|T_{n+\tau} u_{0}(x)-\bar{u}(x,\langle\tau\rangle)\right\|_{\infty} \leq K \mathrm{e}^{-\rho n}, \quad \forall n \in \mathbb{N}
$$

The proof is now complete.

Acknowledgements The author would like to thank the referees for their helpful suggestions which help to make the paper more readable.

References

[1] Barreira, L. and Valls, C., Hölder Grobman-Hartman linearization, Discrete Contin. Dyn. Syst., 18, 2007, 187-197.
[2] Bernard, P., Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble), 52, 2002, 1533-1568.
[3] Contreras, G., Iturriaga, R. and Sánchez-Morgado, H., Weak solutions of the Hamilton-Jacobi equation for time periodic Lagrangians, preprint.
[4] Fathi, A., Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., 324, 1997, 1043-1046.
[5] Fathi, A., Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 325, 1997, 649-652.
[6] Fathi, A., Orbites hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326, 1998, 1213-1216.
[7] Fathi, A., Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327, 1998, 267-270.
[8] Iturriaga, R. and Sánchez-Morgado, H., Hyperbolicity and exponential convergence of the Lax-Oleinik semigroup, J. Differential Equations, 246, 2009, 1744-1753.
[9] Lions, P., Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, Pitman Publishing, London, 1982.
[10] Mañé, R., On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5, 1992, 623-638.
[11] Mañé, R., Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9, 1996, 273-310.
[12] Mañé, R., Lagrangian flows: The dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat., 28, 1997, 141-153.
[13] Mather, J., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207, 1991, 169-207.
[14] Mather, J., Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43, 1993, 13491386.
[15] Sánchez-Morgado, H., Hyperbolicity and exponential long-time convergence for space-time periodic Hamilton-Jacobi equations, Proc. Amer. Math. Soc., 143, 2015, 731-740.
[16] Wang, K. and Yan, J., The rate of convergence of the Lax-Oleinik semigroup-degenerate fixed point case, Sci. China Math., 54, 2011, 545-554.
[17] Wang, K. and Yan, J., A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems, Commun. Math. Phys., 309, 2012, 663-691.
[18] Wang, K. and Yan, J., The rate of convergence of the new Lax-Oleinik type operator for time-periodic positive definite Lagrangian systems, Nonlinearity, 25, 2012, 2039-2057.

[^0]: Manuscript received November 11, 2015. Revised February 28, 2016.
 ${ }^{1}$ School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
 E-mail: kzwang@sjtu.edu.cn
 *This work was supported by the National Natural Science Foundation of China (No. 11371167).

