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Abstract Let M4 be a closed minimal hypersurface in S
5 with constant nonnegative

scalar curvature. Denote by f3 the sum of the cubes of all principal curvatures, by g the

number of distinct principal curvatures. It is proved that if both f3 and g are constant,

then M4 is isoparametric. Moreover, the authors give all possible values for squared length

of the second fundamental form of M4. This result provides another piece of supporting

evidence to the Chern conjecture.
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1 Introduction

More than 40 years ago, Chern [6–7] proposed the following problem in several places.

Problem 1.1 Let Mn be a closed minimal submanifold in S
n+m with the second funda-

mental form of constant length. Denote by An the set of all the possible values for the squared

length of the second fundamental form of Mn. Is An a discrete set ?

The affirmative hand of this question is usually called the Chern conjecture.

Denote by B the second fundamental form of Mn and let S := |B|2. Using the Gauss

equations, one can easily deduce that

S = n(n− 1)−R

with R denoting the scalar curvature of Mn. It means that S is in fact an intrinsic geometric

quantity, and the Chern conjecture is equivalent to claiming that the scalar curvature R has

gap phenomena for closed minimal submanifolds in Euclidean spheres.

Up to now, it is far from a complete solution of this problem, even in the case that M is

a hypersurface (see [15, Problem 105]). Moreover, because all known examples of closed min-

imal hypersurfaces in S
n+1 with constant scalar curvature are all isoparametric hypersurfaces

(the definition of isoparametric hypersurfaces will be introduced in Section 2), mathematicians
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turned the hypersurface case of Chern conjecture into the following new formulation (see [12,

14]).

Conjecture 1.1 Let Mn be a closed minimal hypersurface in S
n+1 with constant scalar

curvature. Then M is an isoparametric hypersurface.

When n = 2, this conjecture is trivial. For the case that n = 3, Chang [4–5] gave a

positive answer to the Chern conjecture. More precisely, it was shown that any closed minimal

hypersurface M3 in S
4 with constant scalar curvature has to be isoparametric, and A3 =

{0, 3, 6}.
For n ≥ 4, the Chern conjecture remains open, although some partial results exist for low

dimensions and with additional conditions for the curvature functions, such as the following

theorem.

Theorem 1.1 (see [8]) Let M4 be a closed minimal Willmore hypersurface in S
5 with

constant nonnegative scalar curvature. Then M4 is isoparametric.

Theorem 1.2 (see [11]) Let M6 ⊂ S
7 be a closed hypersurface with H = f3 = f5 ≡ 0,

constant f4 and R ≥ 0. Then M6 is isoparametric.

Here and in the sequel

fk :=

n∑

i=1

λki

with λ1, · · · , λn being the principal curvatures of M .

Note that in Theorem 1.1, the Willmore condition is equal to saying that f3 ≡ 0. It is

natural to ask whether this conclusion holds when f3 ≡ 0 is replaced by a weaker condition

that f3 ≡ const. In this paper, we give a partial positive answer to the above question and

obtain the main theorem as follows.

Theorem 1.3 Let M4 be a closed minimal hypersurface in S
5 with constant nonnegative

scalar curvature. If f3 and the number g of distinct principal curvatures of M4 are constant,

then M4 is isoparametric.

Finally, in conjunction with the theory of isoparametric hypersurfaces in Euclidean spheres,

we arrive at a classification result (see Theorem 3.1), which gave a piece of supporting evidence

to the Chern conjecture.

2 Isoparametric Minimal Hypersurfaces in S
5

Let Mn be an immersed hypersurface in S
n+1. If Mn has constant principal curvatures,

then Mn is said to be an isoparametric hypersurface. Each isoparametric hypersurface is an

open subset of a level set of a so-called isoparametric function f . More precisely, there exists a

smooth function f : Sn+1 → R and c ∈ R, such that |∇f |2 and ∆f are both smooth functions

of f (∇ and ∆ are respectively the gradient operator and Laplace-Beltrami operator on S
n+1),

and f(p) = c for each p ∈ M . Conversely, given an isoparametric function f , the level sets

of f consist of a smooth family of isoparametric hypersurfaces and 2 minimal submanifolds of

higher codimension (called focal submanifolds).
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The following theorem reveals some important geometric properties of isoparametric mini-

mal hypersurfaces in Euclidean spheres (see [1–2, 9–10]).

Theorem 2.1 Let f : Sn+1 → R be an isoparametric function. Then there exists a unique

c0 ∈ R, such that M := {x ∈ S
n+1 : f(x) = c0} is an isoparametric minimal hypersurface. Let

g be the number of distinct principal curvatures of M , λ1 > · · · > λg be the distinct principal

curvatures, whose multiplicities are m1, · · · ,mg, respectively, and the denotation of S and R is

the same as above. Then

(1) g = 1, 2, 3, 4 or 6.

(2) If g = 1, then M has to be the totally geodesic great subsphere.

(3) If g = 2, then M has to be a Clifford hypersurface, i.e.,

M =Mr,s := S
r
(√ r

n

)
× S

s
(√ s

n

)
,

where 1 ≤ r < s ≤ n and r + s = n.

(4) If g = 3, then m1 = m2 = m3 = 2r (r = 0, 1, 2 or 3).

(5) There exists θ0 ∈
(
0, π

g

)
, such that

λk = cot
( (k − 1)π

g
+ θ0

)
, k = 1, · · · , g,

mk = mk+2 (k mod g).

(6) R ≥ 0 and S = (g − 1)n.

Cartan [3] constructed an example of minimal hypersurface in S
5 as follows.

Example 2.1 Denote

F :=
( 3∑

i

(x2i − x2i+3)
)2

+ 4
( 3∑

i

xixi+3

)2

.

For a number t with 0 < t < π
4
, we denote by M4(t) a hypersurface in S5 defined by the

equation

F (x) = cos2(2t), x = (x1, · · · , x6) ∈ S
5.

A straightforward calculation shows that f := F |S5 is an isoparametric function and M4(π
8
)

is a minimal isoparametric hypersurface with 4 distinct principal curvatures, which is usually

called the Cartan minimal hypersurface.

Takagi [13] proved that M4(π
8
), up to congruence, is the unique isoparmetric hypersurface

in S
5 with 4 distinct principal curvatures. In conjunction with Theorem 2.1, we obtain the

following result.

Proposition 2.1 Let M4 be an isoparametric minimal hypersurface in S
5. Then M4, up

to a congruence, is either an equator S3, a Clifford hypersurface
(
S
1
(
1

2

)
×S

3
(√

3

2

)
or S

2
(√

2

2

)
×

S
3
(√

2

2

))
or then Cartan minimal hypersurface M4(π

8
), and S = 0, 4 or 12.
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3 Proof of the Main Theorem

Let M4 be an immersed hypersurface in S
5. If ν is a local unit normal vector field along

M , then there exists a pointwise symmetric bilinear form h on TpM , such that

B = hν.

If {ω1, ω2, ω3, ω4} is a smooth orthonormal coframe field, then h can be written as

h = hijωi ⊗ ωj .

The covariant derivative ∇h with components hijk is given by

∑

k

hijkωk = dhij +
∑

k

hkjωik +
∑

k

hikωjk. (3.1)

Here {ωij} is the connection forms of M4 with respect to {ω1, ω2, ω3, ω4}, which satisfy the

following structure equations:

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklωk ∧ ωl

(3.2)

with Rijkl denoting the coefficients of the Riemannian curvature tensor on M4.

In this section, we shall give a proof of the main theorem in Section 1.

Proof of Theorem 1.3 We shall consider this problem case by case, according to the

value of g, i.e., the number of distinct principal curvatures.

Case I g = 1.

In this case, all the principal curvatures are equal to 0 and hence M4 is totally geodesic.

Case II g = 2.

Let λ and µ be distinct pricipal curvatures of M4 with multiplicities m1 = k, m2 = 4− k,

respectively. We need to show that λ, µ are indeed constant functions.

Since λ 6= µ, from

m1λ+m2µ = 0,

m1λ
2 +m2µ

2 = S,
(3.3)

we can solve m1, m2 in terms of λ, µ and S, in other words, m1,m2 can be seen as continuous

functions of λ, µ and S. In conjunction with the fact that m1,m2 take values in Z, both m1,

m2 are constant, so does k. Again from (3.3), we have

λ =

√
k(4− k)S

2k
, µ = −

√
kS

2
√
4− k

, (3.4)

or

λ = −
√
k(4− k)S

2k
, µ =

√
kS

2
√
4− k

. (3.5)
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Thus λ and µ are both constant and M4 is an isoparametric hypersurface.

Case III g = 3.

Let λ, µ, σ be distinct principal curvatures of M4, with multiplicities p, q, r, respectively.

Then




p+ q + r = 4,

pλ+ qµ+ rσ = 0,

pλ2 + qµ2 + rσ2 = S,

pλ3 + qµ3 + rσ3 = f3.

(3.6)

As in Case II, one can show that p, q, r are all constant integer-valued functions. Differentiating

both sides of (3.6) gives





pdλ+ qdµ+ rdσ = 0,

pλdλ+ qµdµ+ rσdσ = 0,

pλ2dλ+ qµ2dµ+ rσ2dσ =
1

3
df3 = 0.

(3.7)

It follows that

pdλ

σ − µ
=

qdµ

λ− σ
=

rdσ

µ− λ
=

df3
3D

= 0, (3.8)

where D := (σ−µ)(σ −λ)(µ− λ). Hence λ, µ and σ are all constant and M4 is isoparametric.

(In fact, Theorem 2.1 shows that there exists no isoparametric minimal hypersurface in S
5 with

g = 3, so this case cannot occur.)

Case IV g = 4.

Let λ1 < λ2 < λ3 < λ4 be distinct principal curvatures of M4. We say that a coframe field

(U, ω) is admissible (see [11]) if

(1) U is an open subset of M4,

(2) ω := {ω1, ω2, ω3, ω4} is a smooth orthonormal coframe field on U ,

(3) ω1 ∧ ω2 ∧ ω3 ∧ ω4 is the volume form of M4,

(4) h =
∑
i

λiωi ⊗ ωi.

Denote by F := {e1, e2, e3, e4} the dual frame field of ω. Then it is easily-seen that, (U, ω)

is admissible if and only if ei is a unit principal vector associated to λi for each 1 ≤ i ≤ 4,

and {e1, e2, e3, e4} is an oriented basis associated to the orientation ofM4. Therefore, for every

p ∈M , there exists an admissible coframe field (U, ω), such that p ∈ U .

Now we introduce a 3-form on M4: For every admissible coframe field (U, ω), set

ψ :=
∑

1≤i<j≤4

(∗(ωi ∧ ωj)) ∧ ωij , (3.9)

where ∗ is the Hodge star operator. If (U, ω) and (Ũ , ω̃) are both admissible coframe fields with

W := U ∩ Ũ 6= ∅, then on W , ω̃i = αiωi for each 1 ≤ i ≤ 4, where αi = 1 or −1 and
4∏

i=1

αi = 1.

Denote by {ω̃ij} the connection form with respect to (Ũ , ω̃). Then ω̃ij = αiαjωij and hence

(∗(ω̃i ∧ ω̃j)) ∧ ω̃ij = (∗(ωi ∧ ωj)) ∧ ωij
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holds for any i < j. Therefore ψ is well-defined on M4.

Now we compute the exterior differential of the form ψ. Due to the definition of the Hodge

star operator, ψ can be written as

ψ = ω1 ∧ ω2 ∧ ω34 + ω2 ∧ ω3 ∧ ω14 + ω3 ∧ ω1 ∧ ω24

+ ω1 ∧ ω4 ∧ ω23 + ω2 ∧ ω4 ∧ ω31 + ω3 ∧ ω4 ∧ ω12. (3.10)

Substituting hij = λiδij into (3.1), we have

ωij =
1

λj − λi

∑

k

hijkωk, ∀i 6= j. (3.11)

Combining (3.11) and (3.2) yields

dω1 = −(ω12 ∧ ω2 + ω13 ∧ ω3 + ω14 ∧ ω4)

= (· · · ) ∧ ω2 −
1

λ3 − λ1
(h131ω1 + h134ω4) ∧ ω3

− 1

λ4 − λ1
(h141ω1 + h143ω3) ∧ ω4.

Hence

dω1 ∧ ω2 ∧ ω34

= −
[ h113h443

(λ3 − λ1)(λ3 − λ4)
+

h114h334

(λ4 − λ1)(λ4 − λ3)
+

h2134
(λ3 − λ1)(λ4 − λ1)

]
∗ 1, (3.12)

where we have used Codazzi equations. A similar calculation shows

ω1 ∧ dω2 ∧ ω34

=
[ h223h443

(λ3 − λ2)(λ3 − λ4)
+

h224h334

(λ4 − λ2)(λ4 − λ3)
+

h2234
(λ3 − λ2)(λ4 − λ2)

]
∗ 1. (3.13)

By the structure equations,

dω34 = −ω31 ∧ ω32 ∧24 +
1

2

∑

k,l

R34klωk ∧ ωl

=
[ h331h441

(λ3 − λ1)(λ4 − λ1)
+

h332h442

(λ3 − λ2)(λ4 − λ2)
− h2134

(λ3 − λ1)(λ4 − λ1)

− h2234
(λ3 − λ2)(λ4 − λ2)

+R3434

]
ω3 ∧ ω4 + (· · · ) ∧ ω1 + (· · · ) ∧ ω2. (3.14)

Combining (3.12)–(3.14) gives

d(ω1 ∧ ω2 ∧ ω34) = dω1 ∧ ω2 ∧ ω34 − ω1 ∧ dω2 ∧ ω34 + ω1 ∧ ω2 ∧ dω34

=
[ h331h441

(λ3 − λ1)(λ4 − λ1)
+

h332h442

(λ3 − λ2)(λ4 − λ2)
− h113h443

(λ3 − λ1)(λ3 − λ4)

− h114h334

(λ4 − λ1)(λ4 − λ3)
− h223h443

(λ3 − λ2)(λ3 − λ4)
+

h224h334

(λ4 − λ2)(λ4 − λ3)

− 2h2134
(λ3 − λ1)(λ4 − λ1)

− 2h2234
(λ3 − λ2)(λ4 − λ2)

+R3434

]
∗ 1. (3.15)
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Similarly, one can compute the exterior differential of each term of (3.10); taking the sum of

these equations, we arrive at

dψ =
(1
2
R−

4∑

l=1

Il

)
∗ 1, (3.16)

where

Il =
∑

l 6=i<j 6=l

hiilhjjl

(λl − λi)(λl − λj)
, ∀l = 1, 2, 3, 4. (3.17)

Taking the exterior differential of






∑

i

hii = 0,

∑

i,j

h2ij = S = const.,

∑

i,j,k

hijhjkhki = f3 = const.

(3.18)

implies that




∑

i

hiik = 0,

∑

i

λihiik = 0,

∑

i

λ2i hiik = 0

(3.19)

holds for each 1 ≤ k ≤ 4. Especially, letting k := 1 gives





h111 + h221 + h331 + h441 = 0,

λ1h111 + λ2h221 + λ3h331 + λ4h441 = 0,

λ21h111 + λ22h221 + λ23h331 + λ24h441 = 0.

(3.20)

Since λ1, λ2, λ3 and λ4 are distinct at every point, we can express hii1, i = 2, 3, 4, in terms of

h111:

hii1 = −

∏
j 6=i,1

(λj − λ1)

∏
j 6=i,1

(λj − λi)
h111, ∀i = 2, 3, 4. (3.21)

Let K := deth be the Gauss-Kronecker curvature of M4 and denote

dK =
∑

i

Kiωi.

Then

K1 =

4∑

i=1

(
hii1

∏

j 6=i

λj

)
= −(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)h111 (3.22)
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and hence

hii1 =
K1∏

j 6=i

(λj − λi)
. (3.23)

In a similar way, we have

hiil =
Kl∏

j 6=i

(λj − λi)
, ∀i, l = 1, 2, 3, 4. (3.24)

Substituting (3.24) into (3.17), we deduce that

Il = K2
l

∑

l 6=i<j 6=l

1

(λl − λi)(λl − λj)
∏
m 6=i

(λm − λi)
∏

m 6=j

(λm − λj)
. (3.25)

More precisely,

I1 = K2
1

∑

16=i<j 6=1

1

(λ1 − λi)(λ1 − λj)
∏
m 6=i

(λm − λi)
∏
l 6=j

(λl − λj)

= K2
1

[ 1

(λ1 − λ2)(λ1 − λ3)
∏

m 6=2

(λm − λ2)
∏
l 6=3

(λl − λ3)

+
1

(λ1 − λ2)(λ1 − λ4)
∏

m 6=2

(λm − λ2)
∏
l 6=3

(λl − λ4)

+
1

(λ1 − λ3)(λ1 − λ4)
∏

m 6=3

(λm − λ3)
∏
l 6=4

(λl − λ4)

]

= −K
2
1

D2
[(λ4 − λ3)(λ4 − λ2)(λ4 − λ1)

2 + (λ3 − λ4)(λ3 − λ2)(λ3 − λ1)
2

+ (λ2 − λ4)(λ2 − λ3)(λ2 − λ1)
2], (3.26)

where D :=
∏

1≤i<j≤4

(λj − λi). Similarly, one computes

I2 = −K
2
2

D2
[(λ4 − λ3)(λ4 − λ2)

2(λ4 − λ1) + (λ3 − λ4)(λ3 − λ2)
2(λ3 − λ1)

+ (λ1 − λ4)(λ1 − λ3)(λ1 − λ2)
2)], (3.27)

I3 = −K
2
3

D2
[(λ4 − λ3)

2(λ4 − λ2)(λ4 − λ1) + (λ2 − λ4)(λ2 − λ3)
2(λ2 − λ1)

+ (λ1 − λ4)(λ1 − λ3)
2(λ1 − λ2)] (3.28)

and

I4 = −K
2
4

D2
[(λ3 − λ4)

2(λ3 − λ2)(λ3 − λ1) + (λ2 − λ4)
2(λ2 − λ3)(λ2 − λ1)

+ (λ1 − λ4)
2(λ1 − λ3)(λ1 − λ2)]. (3.29)

Observing that λ1 < λ2 < λ3 < λ4, we can derive estimates as follows:

I1 = −K
2
1

D2
[(λ4 − λ3)(λ4 − λ2)(λ4 − λ1)

2 + (λ3 − λ4)(λ3 − λ2)(λ3 − λ1)
2
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+ (λ2 − λ4)(λ2 − λ3)(λ2 − λ1)
2]

≤ −K
2
1

D2
[(λ4 − λ3)(λ3 − λ2)(λ4 − λ1)

2 + (λ3 − λ4)(λ3 − λ2)(λ3 − λ1)
2

+ (λ2 − λ4)(λ2 − λ3)(λ2 − λ1)
2]

= −K
2
1

D2
[(λ4 − λ3)(λ3 − λ2)(λ4 − λ3)(λ4 + λ3 − 2λ1)

+ (λ2 − λ4)(λ2 − λ3)(λ2 − λ1)
2]

≤ 0, (3.30)

I2 = −K
2
2

D2
[(λ4 − λ3)(λ4 − λ2)

2(λ4 − λ1) + (λ3 − λ4)(λ3 − λ2)
2(λ3 − λ1)

+ (λ1 − λ4)(λ1 − λ3)(λ1 − λ2)
2)]

≤ −K
2
2

D2
[(λ4 − λ3)(λ4 − λ2)

2(λ4 − λ1) + (λ3 − λ4)(λ3 − λ2)
2(λ4 − λ1)

+ (λ1 − λ4)(λ1 − λ3)(λ1 − λ2)
2)]

= −K
2
2

D2
[(λ4 − λ3)(λ4 − λ1)(λ4 − λ3)(λ4 + λ3 − 2λ2)

+ (λ1 − λ4)(λ1 − λ3)(λ1 − λ2)
2)]

≤ 0. (3.31)

In the same way, I3 ≤ 0, I4 ≤ 0.

Note that M4 is closed. Integrating both sides of (3.16) on M4 and then using Stokes’s

theorem gives

0 =

∫

M4

dψ =
1

2

∫

M4

R ∗ 1dψ −
∫

M4

∑

k

Ik ∗ 1dψ. (3.32)

Since R ≥ 0 and Ik ≤ 0 for k = 1, 2, 3, 4, it follows that R = 0 and Ik = 0, k = 1, 2, 3, 4. From

(3.25), dK = 0, so
4∏

i=1

λi = K = const. In conjunction with
∑
i

λi = 0,
∑
i

λ2i = S = const. and
∑
i

λ3i = f3 = const., one can easily deduce that λi (1 ≤ i ≤ 4) are all constant on M . Thus M4

is an isoparametric hypersurface.

Combining Theorem 1.3 and Proposition 2.1 yields a classification theorem as follows.

Theorem 3.1 Let M4 be a closed minimal hypersurface in S
5 with constant nonnegative

scalar curvature. If f3 and the number g of distinct principal curvatures of M4 are constant,

then M4, up to a congruence, is either an equator S3, a Clifford hypersurface
(
S
1
(
1

2

)
× S

3
(√

3

2

)

or S
2
(√

2

2

)
× S

3
(√

2

2

))
or then Cartan minimal hypersurface M4(π

8
). Let S denote the squared

length of the second fundamental form of M4. Then S = 0, 4 or 12.
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