An Intrinsic Rigidity Theorem for Closed Minimal Hypersurfaces in \mathbb{S}^{5} with Constant Nonnegative Scalar Curvature*

Bing TANG ${ }^{1}$ Ling YANG 1

Abstract

Let M^{4} be a closed minimal hypersurface in \mathbb{S}^{5} with constant nonnegative scalar curvature. Denote by f_{3} the sum of the cubes of all principal curvatures, by g the number of distinct principal curvatures. It is proved that if both f_{3} and g are constant, then M^{4} is isoparametric. Moreover, the authors give all possible values for squared length of the second fundamental form of M^{4}. This result provides another piece of supporting evidence to the Chern conjecture.

Keywords Chern conjecture, Isoparametric hypersurfaces, Scalar curvature, Minimal hypersurfaces in spheres
2000 MR Subject Classification 53B25, 53C40

1 Introduction

More than 40 years ago, Chern [6-7] proposed the following problem in several places.
Problem 1.1 Let M^{n} be a closed minimal submanifold in \mathbb{S}^{n+m} with the second fundamental form of constant length. Denote by \mathcal{A}_{n} the set of all the possible values for the squared length of the second fundamental form of M^{n}. Is \mathcal{A}_{n} a discrete set?

The affirmative hand of this question is usually called the Chern conjecture.
Denote by B the second fundamental form of M^{n} and let $S:=|B|^{2}$. Using the Gauss equations, one can easily deduce that

$$
S=n(n-1)-R
$$

with R denoting the scalar curvature of M^{n}. It means that S is in fact an intrinsic geometric quantity, and the Chern conjecture is equivalent to claiming that the scalar curvature R has gap phenomena for closed minimal submanifolds in Euclidean spheres.

Up to now, it is far from a complete solution of this problem, even in the case that M is a hypersurface (see [15, Problem 105]). Moreover, because all known examples of closed minimal hypersurfaces in \mathbb{S}^{n+1} with constant scalar curvature are all isoparametric hypersurfaces (the definition of isoparametric hypersurfaces will be introduced in Section 2), mathematicians

[^0]turned the hypersurface case of Chern conjecture into the following new formulation (see [12, 14]).

Conjecture 1.1 Let M^{n} be a closed minimal hypersurface in \mathbb{S}^{n+1} with constant scalar curvature. Then M is an isoparametric hypersurface.

When $n=2$, this conjecture is trivial. For the case that $n=3$, Chang [4-5] gave a positive answer to the Chern conjecture. More precisely, it was shown that any closed minimal hypersurface M^{3} in \mathbb{S}^{4} with constant scalar curvature has to be isoparametric, and $\mathcal{A}_{3}=$ $\{0,3,6\}$.

For $n \geq 4$, the Chern conjecture remains open, although some partial results exist for low dimensions and with additional conditions for the curvature functions, such as the following theorem.

Theorem 1.1 (see [8]) Let M^{4} be a closed minimal Willmore hypersurface in \mathbb{S}^{5} with constant nonnegative scalar curvature. Then M^{4} is isoparametric.

Theorem 1.2 (see [11]) Let $M^{6} \subset \mathbb{S}^{7}$ be a closed hypersurface with $H=f_{3}=f_{5} \equiv 0$, constant f_{4} and $R \geq 0$. Then M^{6} is isoparametric.

Here and in the sequel

$$
f_{k}:=\sum_{i=1}^{n} \lambda_{i}^{k}
$$

with $\lambda_{1}, \cdots, \lambda_{n}$ being the principal curvatures of M.
Note that in Theorem 1.1, the Willmore condition is equal to saying that $f_{3} \equiv 0$. It is natural to ask whether this conclusion holds when $f_{3} \equiv 0$ is replaced by a weaker condition that $f_{3} \equiv$ const. In this paper, we give a partial positive answer to the above question and obtain the main theorem as follows.

Theorem 1.3 Let M^{4} be a closed minimal hypersurface in \mathbb{S}^{5} with constant nonnegative scalar curvature. If f_{3} and the number g of distinct principal curvatures of M^{4} are constant, then M^{4} is isoparametric.

Finally, in conjunction with the theory of isoparametric hypersurfaces in Euclidean spheres, we arrive at a classification result (see Theorem 3.1), which gave a piece of supporting evidence to the Chern conjecture.

2 Isoparametric Minimal Hypersurfaces in \mathbb{S}^{5}

Let M^{n} be an immersed hypersurface in \mathbb{S}^{n+1}. If M^{n} has constant principal curvatures, then M^{n} is said to be an isoparametric hypersurface. Each isoparametric hypersurface is an open subset of a level set of a so-called isoparametric function f. More precisely, there exists a smooth function $f: \mathbb{S}^{n+1} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$, such that $|\bar{\nabla} f|^{2}$ and $\bar{\Delta} f$ are both smooth functions of $f\left(\bar{\nabla}\right.$ and $\bar{\Delta}$ are respectively the gradient operator and Laplace-Beltrami operator on $\left.\mathbb{S}^{n+1}\right)$, and $f(p)=c$ for each $p \in M$. Conversely, given an isoparametric function f, the level sets of f consist of a smooth family of isoparametric hypersurfaces and 2 minimal submanifolds of higher codimension (called focal submanifolds).

The following theorem reveals some important geometric properties of isoparametric minimal hypersurfaces in Euclidean spheres (see [1-2, 9-10]).

Theorem 2.1 Let $f: \mathbb{S}^{n+1} \rightarrow \mathbb{R}$ be an isoparametric function. Then there exists a unique $c_{0} \in \mathbb{R}$, such that $M:=\left\{x \in \mathbb{S}^{n+1}: f(x)=c_{0}\right\}$ is an isoparametric minimal hypersurface. Let g be the number of distinct principal curvatures of $M, \lambda_{1}>\cdots>\lambda_{g}$ be the distinct principal curvatures, whose multiplicities are m_{1}, \cdots, m_{g}, respectively, and the denotation of S and R is the same as above. Then
(1) $g=1,2,3,4$ or 6 .
(2) If $g=1$, then M has to be the totally geodesic great subsphere.
(3) If $g=2$, then M has to be a Clifford hypersurface, i.e.,

$$
M=M_{r, s}:=\mathbb{S}^{r}\left(\sqrt{\frac{r}{n}}\right) \times \mathbb{S}^{s}\left(\sqrt{\frac{s}{n}}\right)
$$

where $1 \leq r<s \leq n$ and $r+s=n$.
(4) If $g=3$, then $m_{1}=m_{2}=m_{3}=2^{r}(r=0,1,2$ or 3$)$.
(5) There exists $\theta_{0} \in\left(0, \frac{\pi}{g}\right)$, such that

$$
\begin{aligned}
& \lambda_{k}=\cot \left(\frac{(k-1) \pi}{g}+\theta_{0}\right), \quad k=1, \cdots, g \\
& m_{k}=m_{k+2} \quad(k \bmod g)
\end{aligned}
$$

(6) $R \geq 0$ and $S=(g-1) n$.

Cartan [3] constructed an example of minimal hypersurface in \mathbb{S}^{5} as follows.
Example 2.1 Denote

$$
F:=\left(\sum_{i}^{3}\left(x_{i}^{2}-x_{i+3}^{2}\right)\right)^{2}+4\left(\sum_{i}^{3} x_{i} x_{i+3}\right)^{2}
$$

For a number t with $0<t<\frac{\pi}{4}$, we denote by $M^{4}(t)$ a hypersurface in S^{5} defined by the equation

$$
F(x)=\cos ^{2}(2 t), \quad x=\left(x_{1}, \cdots, x_{6}\right) \in \mathbb{S}^{5}
$$

A straightforward calculation shows that $f:=\left.F\right|_{\mathbb{S}^{5}}$ is an isoparametric function and $M^{4}\left(\frac{\pi}{8}\right)$ is a minimal isoparametric hypersurface with 4 distinct principal curvatures, which is usually called the Cartan minimal hypersurface.

Takagi [13] proved that $M^{4}\left(\frac{\pi}{8}\right)$, up to congruence, is the unique isoparmetric hypersurface in \mathbb{S}^{5} with 4 distinct principal curvatures. In conjunction with Theorem 2.1, we obtain the following result.

Proposition 2.1 Let M^{4} be an isoparametric minimal hypersurface in \mathbb{S}^{5}. Then M^{4}, up to a congruence, is either an equator S^{3}, a Clifford hypersurface $\left(\mathbb{S}^{1}\left(\frac{1}{2}\right) \times \mathbb{S}^{3}\left(\frac{\sqrt{3}}{2}\right)\right.$ or $\mathbb{S}^{2}\left(\frac{\sqrt{2}}{2}\right) \times$ $\left.\mathbb{S}^{3}\left(\frac{\sqrt{2}}{2}\right)\right)$ or then Cartan minimal hypersurface $M^{4}\left(\frac{\pi}{8}\right)$, and $S=0,4$ or 12 .

3 Proof of the Main Theorem

Let M^{4} be an immersed hypersurface in \mathbb{S}^{5}. If ν is a local unit normal vector field along M, then there exists a pointwise symmetric bilinear form h on $T_{p} M$, such that

$$
B=h \nu
$$

If $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ is a smooth orthonormal coframe field, then h can be written as

$$
h=h_{i j} \omega_{i} \otimes \omega_{j} .
$$

The covariant derivative ∇h with components $h_{i j k}$ is given by

$$
\begin{equation*}
\sum_{k} h_{i j k} \omega_{k}=\mathrm{d} h_{i j}+\sum_{k} h_{k j} \omega_{i k}+\sum_{k} h_{i k} \omega_{j k} . \tag{3.1}
\end{equation*}
$$

Here $\left\{\omega_{i j}\right\}$ is the connection forms of M^{4} with respect to $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, which satisfy the following structure equations:

$$
\begin{align*}
\mathrm{d} \omega_{i} & =-\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \\
\mathrm{~d} \omega_{i j} & =-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{3.2}
\end{align*}
$$

with $R_{i j k l}$ denoting the coefficients of the Riemannian curvature tensor on M^{4}.
In this section, we shall give a proof of the main theorem in Section 1.
Proof of Theorem 1.3 We shall consider this problem case by case, according to the value of g, i.e., the number of distinct principal curvatures.

Case I $g=1$.
In this case, all the principal curvatures are equal to 0 and hence M^{4} is totally geodesic.
Case II $g=2$.
Let λ and μ be distinct pricipal curvatures of M^{4} with multiplicities $m_{1}=k, m_{2}=4-k$, respectively. We need to show that λ, μ are indeed constant functions.

Since $\lambda \neq \mu$, from

$$
\begin{align*}
m_{1} \lambda+m_{2} \mu & =0, \\
m_{1} \lambda^{2}+m_{2} \mu^{2} & =S \tag{3.3}
\end{align*}
$$

we can solve m_{1}, m_{2} in terms of λ, μ and S, in other words, m_{1}, m_{2} can be seen as continuous functions of λ, μ and S. In conjunction with the fact that m_{1}, m_{2} take values in \mathbb{Z}, both m_{1}, m_{2} are constant, so does k. Again from (3.3), we have

$$
\begin{equation*}
\lambda=\frac{\sqrt{k(4-k) S}}{2 k}, \quad \mu=-\frac{\sqrt{k S}}{2 \sqrt{4-k}} \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda=-\frac{\sqrt{k(4-k) S}}{2 k}, \quad \mu=\frac{\sqrt{k S}}{2 \sqrt{4-k}} . \tag{3.5}
\end{equation*}
$$

Thus λ and μ are both constant and M^{4} is an isoparametric hypersurface.

Case III $g=3$.

Let λ, μ, σ be distinct principal curvatures of M^{4}, with multiplicities p, q, r, respectively. Then

$$
\left\{\begin{array}{l}
p+q+r=4, \tag{3.6}\\
p \lambda+q \mu+r \sigma=0 \\
p \lambda^{2}+q \mu^{2}+r \sigma^{2}=S \\
p \lambda^{3}+q \mu^{3}+r \sigma^{3}=f_{3}
\end{array}\right.
$$

As in Case II, one can show that p, q, r are all constant integer-valued functions. Differentiating both sides of (3.6) gives

$$
\left\{\begin{array}{l}
p \mathrm{~d} \lambda+q \mathrm{~d} \mu+r \mathrm{~d} \sigma=0 \tag{3.7}\\
p \lambda \mathrm{~d} \lambda+q \mu \mathrm{~d} \mu+r \sigma \mathrm{~d} \sigma=0 \\
p \lambda^{2} \mathrm{~d} \lambda+q \mu^{2} \mathrm{~d} \mu+r \sigma^{2} \mathrm{~d} \sigma=\frac{1}{3} \mathrm{~d} f_{3}=0
\end{array}\right.
$$

It follows that

$$
\begin{equation*}
\frac{p \mathrm{~d} \lambda}{\sigma-\mu}=\frac{q \mathrm{~d} \mu}{\lambda-\sigma}=\frac{r \mathrm{~d} \sigma}{\mu-\lambda}=\frac{\mathrm{d} f_{3}}{3 D}=0 \tag{3.8}
\end{equation*}
$$

where $D:=(\sigma-\mu)(\sigma-\lambda)(\mu-\lambda)$. Hence λ, μ and σ are all constant and M^{4} is isoparametric. (In fact, Theorem 2.1 shows that there exists no isoparametric minimal hypersurface in \mathbb{S}^{5} with $g=3$, so this case cannot occur.)

Case IV $g=4$.
Let $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$ be distinct principal curvatures of M^{4}. We say that a coframe field (U, ω) is admissible (see [11]) if
(1) U is an open subset of M^{4},
(2) $\omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ is a smooth orthonormal coframe field on U,
(3) $\omega_{1} \wedge \omega_{2} \wedge \omega_{3} \wedge \omega_{4}$ is the volume form of M^{4},
(4) $h=\sum_{i} \lambda_{i} \omega_{i} \otimes \omega_{i}$.

Denote by $F:=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ the dual frame field of ω. Then it is easily-seen that, (U, ω) is admissible if and only if e_{i} is a unit principal vector associated to λ_{i} for each $1 \leq i \leq 4$, and $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is an oriented basis associated to the orientation of M^{4}. Therefore, for every $p \in M$, there exists an admissible coframe field (U, ω), such that $p \in U$.

Now we introduce a 3 -form on M^{4} : For every admissible coframe field (U, ω), set

$$
\begin{equation*}
\psi:=\sum_{1 \leq i<j \leq 4}\left(*\left(\omega_{i} \wedge \omega_{j}\right)\right) \wedge \omega_{i j}, \tag{3.9}
\end{equation*}
$$

where $*$ is the Hodge star operator. If (U, ω) and $(\widetilde{U}, \widetilde{\omega})$ are both admissible coframe fields with $W:=U \cap \widetilde{U} \neq \emptyset$, then on $W, \widetilde{\omega}_{i}=\alpha_{i} \omega_{i}$ for each $1 \leq i \leq 4$, where $\alpha_{i}=1$ or -1 and $\prod_{i=1}^{4} \alpha_{i}=1$. Denote by $\left\{\widetilde{\omega}_{i j}\right\}$ the connection form with respect to $(\widetilde{U}, \widetilde{\omega})$. Then $\widetilde{\omega}_{i j}=\alpha_{i} \alpha_{j} \omega_{i j}$ and hence

$$
\left(*\left(\widetilde{\omega}_{i} \wedge \widetilde{\omega}_{j}\right)\right) \wedge \widetilde{\omega}_{i j}=\left(*\left(\omega_{i} \wedge \omega_{j}\right)\right) \wedge \omega_{i j}
$$

holds for any $i<j$. Therefore ψ is well-defined on M^{4}.
Now we compute the exterior differential of the form ψ. Due to the definition of the Hodge star operator, ψ can be written as

$$
\begin{align*}
\psi= & \omega_{1} \wedge \omega_{2} \wedge \omega_{34}+\omega_{2} \wedge \omega_{3} \wedge \omega_{14}+\omega_{3} \wedge \omega_{1} \wedge \omega_{24} \\
& +\omega_{1} \wedge \omega_{4} \wedge \omega_{23}+\omega_{2} \wedge \omega_{4} \wedge \omega_{31}+\omega_{3} \wedge \omega_{4} \wedge \omega_{12} . \tag{3.10}
\end{align*}
$$

Substituting $h_{i j}=\lambda_{i} \delta_{i j}$ into (3.1), we have

$$
\begin{equation*}
\omega_{i j}=\frac{1}{\lambda_{j}-\lambda_{i}} \sum_{k} h_{i j k} \omega_{k}, \quad \forall i \neq j . \tag{3.11}
\end{equation*}
$$

Combining (3.11) and (3.2) yields

$$
\begin{aligned}
\mathrm{d} \omega_{1}= & -\left(\omega_{12} \wedge \omega_{2}+\omega_{13} \wedge \omega_{3}+\omega_{14} \wedge \omega_{4}\right) \\
= & (\cdots) \wedge \omega_{2}-\frac{1}{\lambda_{3}-\lambda_{1}}\left(h_{131} \omega_{1}+h_{134} \omega_{4}\right) \wedge \omega_{3} \\
& -\frac{1}{\lambda_{4}-\lambda_{1}}\left(h_{141} \omega_{1}+h_{143} \omega_{3}\right) \wedge \omega_{4} .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \mathrm{d} \omega_{1} \wedge \omega_{2} \wedge \omega_{34} \\
= & -\left[\frac{h_{113} h_{443}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{4}\right)}+\frac{h_{114} h_{334}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{3}\right)}+\frac{h_{134}^{2}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)}\right] * 1, \tag{3.12}
\end{align*}
$$

where we have used Codazzi equations. A similar calculation shows

$$
\begin{align*}
& \omega_{1} \wedge \mathrm{~d} \omega_{2} \wedge \omega_{34} \\
= & {\left[\frac{h_{223} h_{443}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}+\frac{h_{224} h_{334}}{\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}+\frac{h_{234}^{2}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{2}\right)}\right] * 1 } \tag{3.13}
\end{align*}
$$

By the structure equations,

$$
\begin{align*}
\mathrm{d} \omega_{34}= & -\omega_{31} \wedge \omega_{32} \wedge_{24}+\frac{1}{2} \sum_{k, l} R_{34 k l} \omega_{k} \wedge \omega_{l} \\
= & {\left[\frac{h_{331} h_{441}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)}+\frac{h_{332} h_{442}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{2}\right)}-\frac{h_{134}^{2}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)}\right.} \\
& \left.-\frac{h_{234}^{2}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{2}\right)}+R_{3434}\right] \omega_{3} \wedge \omega_{4}+(\cdots) \wedge \omega_{1}+(\cdots) \wedge \omega_{2} . \tag{3.14}
\end{align*}
$$

Combining (3.12)-(3.14) gives

$$
\begin{align*}
& \mathrm{d}\left(\omega_{1} \wedge \omega_{2} \wedge \omega_{34}\right)=\mathrm{d} \omega_{1} \wedge \omega_{2} \wedge \omega_{34}-\omega_{1} \wedge \mathrm{~d} \omega_{2} \wedge \omega_{34}+\omega_{1} \wedge \omega_{2} \wedge \mathrm{~d} \omega_{34} \\
= & {\left[\frac{h_{331} h_{441}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)}+\frac{h_{332} h_{442}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{2}\right)}-\frac{h_{113} h_{443}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{4}\right)}\right.} \\
& -\frac{h_{114} h_{334}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{3}\right)}-\frac{h_{223} h_{443}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}+\frac{h_{224} h_{334}}{\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)} \\
& \left.-\frac{2 h_{134}^{2}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)}-\frac{2 h_{234}^{2}}{\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{2}\right)}+R_{3434}\right] * 1 . \tag{3.15}
\end{align*}
$$

Similarly, one can compute the exterior differential of each term of (3.10); taking the sum of these equations, we arrive at

$$
\begin{equation*}
\mathrm{d} \psi=\left(\frac{1}{2} R-\sum_{l=1}^{4} \mathrm{I}_{l}\right) * 1, \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{I}_{l}=\sum_{l \neq i<j \neq l} \frac{h_{i i l} h_{j j l}}{\left(\lambda_{l}-\lambda_{i}\right)\left(\lambda_{l}-\lambda_{j}\right)}, \quad \forall l=1,2,3,4 . \tag{3.17}
\end{equation*}
$$

Taking the exterior differential of

$$
\left\{\begin{array}{l}
\sum_{i} h_{i i}=0, \tag{3.18}\\
\sum_{i, j} h_{i j}^{2}=S=\text { const. } \\
\sum_{i, j, k} h_{i j} h_{j k} h_{k i}=f_{3}=\text { const. }
\end{array}\right.
$$

implies that

$$
\left\{\begin{array}{l}
\sum_{i} h_{i i k}=0, \tag{3.19}\\
\sum_{i} \lambda_{i} h_{i i k}=0, \\
\sum_{i} \lambda_{i}^{2} h_{i i k}=0
\end{array}\right.
$$

holds for each $1 \leq k \leq 4$. Especially, letting $k:=1$ gives

$$
\left\{\begin{array}{l}
h_{111}+h_{221}+h_{331}+h_{441}=0, \tag{3.20}\\
\lambda_{1} h_{111}+\lambda_{2} h_{221}+\lambda_{3} h_{331}+\lambda_{4} h_{441}=0, \\
\lambda_{1}^{2} h_{111}+\lambda_{2}^{2} h_{221}+\lambda_{3}^{2} h_{331}+\lambda_{4}^{2} h_{441}=0 .
\end{array}\right.
$$

Since $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} are distinct at every point, we can express $h_{i i 1}, i=2,3,4$, in terms of h_{111} :

$$
\begin{equation*}
h_{i i 1}=-\frac{\prod_{j \neq i, 1}\left(\lambda_{j}-\lambda_{1}\right)}{\prod_{j \neq i, 1}\left(\lambda_{j}-\lambda_{i}\right)} h_{111}, \quad \forall i=2,3,4 . \tag{3.21}
\end{equation*}
$$

Let $K:=\operatorname{det} h$ be the Gauss-Kronecker curvature of M^{4} and denote

$$
\mathrm{d} K=\sum_{i} K_{i} \omega_{i} .
$$

Then

$$
\begin{equation*}
K_{1}=\sum_{i=1}^{4}\left(h_{i i 1} \prod_{j \neq i} \lambda_{j}\right)=-\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right) h_{111} \tag{3.22}
\end{equation*}
$$

and hence

$$
\begin{equation*}
h_{i i 1}=\frac{K_{1}}{\prod_{j \neq i}\left(\lambda_{j}-\lambda_{i}\right)} . \tag{3.23}
\end{equation*}
$$

In a similar way, we have

$$
\begin{equation*}
h_{i i l}=\frac{K_{l}}{\prod_{j \neq i}\left(\lambda_{j}-\lambda_{i}\right)}, \quad \forall i, l=1,2,3,4 . \tag{3.24}
\end{equation*}
$$

Substituting (3.24) into (3.17), we deduce that

$$
\begin{equation*}
\mathrm{I}_{l}=K_{l}^{2} \sum_{l \neq i<j \neq l} \frac{1}{\left(\lambda_{l}-\lambda_{i}\right)\left(\lambda_{l}-\lambda_{j}\right) \prod_{m \neq i}\left(\lambda_{m}-\lambda_{i}\right) \prod_{m \neq j}\left(\lambda_{m}-\lambda_{j}\right)} . \tag{3.25}
\end{equation*}
$$

More precisely,

$$
\begin{align*}
\mathrm{I}_{1}= & K_{1}^{2} \sum_{1 \neq i<j \neq 1} \frac{1}{\left(\lambda_{1}-\lambda_{i}\right)\left(\lambda_{1}-\lambda_{j}\right) \prod_{m \neq i}\left(\lambda_{m}-\lambda_{i}\right) \prod_{l \neq j}\left(\lambda_{l}-\lambda_{j}\right)} \\
= & K_{1}^{2}\left[\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) \prod_{m \neq 2}\left(\lambda_{m}-\lambda_{2}\right) \prod_{l \neq 3}\left(\lambda_{l}-\lambda_{3}\right)}\right. \\
& +\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{4}\right) \prod_{m \neq 2}\left(\lambda_{m}-\lambda_{2}\right) \prod_{l \neq 3}\left(\lambda_{l}-\lambda_{4}\right)} \\
& \left.+\frac{1}{\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right) \prod_{m \neq 3}\left(\lambda_{m}-\lambda_{3}\right) \prod_{l \neq 4}\left(\lambda_{l}-\lambda_{4}\right)}\right] \\
= & -\frac{K_{1}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{1}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right)^{2}\right. \\
& \left.+\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)^{2}\right] \tag{3.26}
\end{align*}
$$

where $D:=\prod_{1 \leq i<j \leq 4}\left(\lambda_{j}-\lambda_{i}\right)$. Similarly, one computes

$$
\begin{align*}
\mathrm{I}_{2}= & -\frac{K_{2}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{2}\right)^{2}\left(\lambda_{4}-\lambda_{1}\right)+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)^{2}\left(\lambda_{3}-\lambda_{1}\right)\right. \\
& \left.\left.+\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2}\right)\right], \tag{3.27}\\
\mathrm{I}_{3}= & -\frac{K_{3}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)^{2}\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{1}\right)+\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)^{2}\left(\lambda_{2}-\lambda_{1}\right)\right. \\
& \left.+\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{1}-\lambda_{3}\right)^{2}\left(\lambda_{1}-\lambda_{2}\right)\right] \tag{3.28}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{I}_{4}= & -\frac{K_{4}^{2}}{D^{2}}\left[\left(\lambda_{3}-\lambda_{4}\right)^{2}\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right)+\left(\lambda_{2}-\lambda_{4}\right)^{2}\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)\right. \\
& \left.+\left(\lambda_{1}-\lambda_{4}\right)^{2}\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)\right] . \tag{3.29}
\end{align*}
$$

Observing that $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$, we can derive estimates as follows:

$$
\mathrm{I}_{1}=-\frac{K_{1}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{1}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right)^{2}\right.
$$

$$
\begin{align*}
& \left.+\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)^{2}\right] \\
\leq & -\frac{K_{1}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{1}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right)^{2}\right. \\
& \left.+\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)^{2}\right] \\
= & -\frac{K_{1}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}+\lambda_{3}-2 \lambda_{1}\right)\right. \\
& \left.+\left(\lambda_{2}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)^{2}\right] \\
\leq & 0, \tag{3.30}\\
\mathrm{I}_{2}= & -\frac{K_{2}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{2}\right)^{2}\left(\lambda_{4}-\lambda_{1}\right)+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)^{2}\left(\lambda_{3}-\lambda_{1}\right)\right. \\
& \left.\left.+\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2}\right)\right] \\
\leq & -\frac{K_{2}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{2}\right)^{2}\left(\lambda_{4}-\lambda_{1}\right)+\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{3}-\lambda_{2}\right)^{2}\left(\lambda_{4}-\lambda_{1}\right)\right. \\
& \left.\left.+\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2}\right)\right] \\
= & -\frac{K_{2}^{2}}{D^{2}}\left[\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{4}+\lambda_{3}-2 \lambda_{2}\right)\right. \\
& \left.\left.+\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2}\right)\right] \\
\leq & 0 . \tag{3.31}
\end{align*}
$$

In the same way, $\mathrm{I}_{3} \leq 0, \mathrm{I}_{4} \leq 0$.
Note that M^{4} is closed. Integrating both sides of (3.16) on M^{4} and then using Stokes's theorem gives

$$
\begin{equation*}
0=\int_{M^{4}} \mathrm{~d} \psi=\frac{1}{2} \int_{M^{4}} R * 1 \mathrm{~d} \psi-\int_{M^{4}} \sum_{k} \mathrm{I}_{k} * 1 \mathrm{~d} \psi \tag{3.32}
\end{equation*}
$$

Since $R \geq 0$ and $\mathrm{I}_{k} \leq 0$ for $k=1,2,3,4$, it follows that $R=0$ and $\mathrm{I}_{k}=0, k=1,2,3,4$. From (3.25), $\mathrm{d} K=0$, so $\prod_{i=1}^{4} \lambda_{i}=K=$ const. In conjunction with $\sum_{i} \lambda_{i}=0, \sum_{i} \lambda_{i}^{2}=S=$ const. and $\sum_{i} \lambda_{i}^{3}=f_{3}=$ const., one can easily deduce that $\lambda_{i}(1 \leq i \leq 4)$ are all constant on M. Thus M^{4} is an isoparametric hypersurface.

Combining Theorem 1.3 and Proposition 2.1 yields a classification theorem as follows.
Theorem 3.1 Let M^{4} be a closed minimal hypersurface in \mathbb{S}^{5} with constant nonnegative scalar curvature. If f_{3} and the number g of distinct principal curvatures of M^{4} are constant, then M^{4}, up to a congruence, is either an equator S^{3}, a Clifford hypersurface $\left(\mathbb{S}^{1}\left(\frac{1}{2}\right) \times \mathbb{S}^{3}\left(\frac{\sqrt{3}}{2}\right)\right.$ or $\mathbb{S}^{2}\left(\frac{\sqrt{2}}{2}\right) \times \mathbb{S}^{3}\left(\frac{\sqrt{2}}{2}\right)$) or then Cartan minimal hypersurface $M^{4}\left(\frac{\pi}{8}\right)$. Let S denote the squared length of the second fundamental form of M^{4}. Then $S=0,4$ or 12 .

Acknowledgement The first author would like to thank his supervisor Professor Ling Yang for his constant encouragement and help.

References

[1] Cartan, E., Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pur. Appl., 17(1), 1938, 177-191.
[2] Cartan, E., Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., 45(1), 1939, 335-367.
[3] Cartan, E., Sur des familles d'hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Revista Univ. Tucuman, Serie A, 1, 1940, 5-22.
[4] Chang, S., A closed hypersurface with constant scalar and constant mean curvature in \mathbb{S}^{4} is isoparametric, Comm. Anal. Geom., 1(1), 1993, 71-100.
[5] Chang, S., On minimal hypersurfaces with constant scalar curvatures in \mathbb{S}^{4}, J. Diff. Geom., 37(3), 1993, 523-534.
[6] Chern, S. S., Minimal submanifolds in a Riemannian manifold, University of Kansas, Lawrence, 1968.
[7] Chern, S. S., Do Carmo, M. and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, 1968), Springer-Verlag, New York, 1970, 59-75.
[8] Lusala, T., Scherfner, M. and Souse Jr, LAM., Closed minimal Willimore hypersurfaces of $\mathbb{S}^{5}(1)$ with constant scalar curvature, Asian J. Math., 9(1), 2005, 65-78.
[9] Münzner, H. F., Isoparametrische hyperflächen in sphären I, Math. Ann., 251(1), 1980, 57-71.
[10] Münzner, H. F., Isoparametrische hyperflächen in sphären II, Math. Ann., 256(2), 1981, $215-232$.
[11] Scherfner, M., Vrancken, L. and Weiß, S., On closed minimal hypersurfaces with constant scalar curvature in \mathbb{S}^{7}, Geom. Dedic., 161(1), 2012, 409-416.
[12] Scherfner, M. and Weiß, S., Towards a proof of the Chern conjecture for isoparametric hypersurfaces in spheres, Proc. 33, Süddeutsches Kolloquium über Differentialgeometrie, Tech. Univ. Wien, Vienna, 2008.
[13] Takagi, R., A class of hypersurfaces with constant principal curvatures in a sphere, J. Diff. Geom., 11(2), 1976, 225-233.
[14] Verstraelen, L., Sectional curvature of minimal submanifolds, Proc. Workshop on Diff. Geom., Univ. Southampton, 1986, 48-62.
[15] Yau, S. T., Problem section in the seminar on differential geometry, Ann. Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982, 669-706.

[^0]: Manuscript received September 5, 2015. Revised September 14, 2016.
 ${ }^{1}$ School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
 E-mail: btang12@fudan.edu.cn yanglingfd@fudan.edu.cn
 *This work was supported by the National Natural Science Foundation of China (Nos.11471078, 11622103).

