On the Discrete Criteria and Jørgensen Inequalities for ${ m SL}(m, \overline{{ m F}}((t)))^*$

Jinghua YANG¹

Abstract In this paper, the author gives the discrete criteria and Jørgensen inequalities of subgroups for the special linear group on $\overline{F}((t))$ in two and higher dimensions.

Keywords Möbius maps, Discrete criteria, Jørgensen inequalities 2000 MR Subject Classification 51B10, 32P05, 37P05, 40A05

1 Introduction

Let F(t) be a local field with nontrivial non-archimedean value, where F is a finite field with p elements and p is a prime number. We denote the completion of algebraic closure of F(t) by $\overline{F}((t))$. In this paper, we study the discrete criteria and Jørgensen's inequalities for a subgroup of the special linear group $SL(m, \overline{F}((t)))$.

It is an important topic to study Möbius maps in non-archimedean spaces (see [1–2, 4–5, 7– 8]) especially the discrete criteria and Jørgensen inequalities for subgroups of Lie groups. In [2], Kato discussed the discrete criteria of groups of projective general linear group PGL(2, \mathbb{C}_p). In [1], Armitage and Parker studied the Jørgensen inequality for discrete subgroups of SL(2, \mathbb{Q}_p), and of SL(2, F(t)). In [6], Qiu, Yang and Yin gave the discrete criteria of SL(m, \mathbb{C}_p). Furthermore, the development of studying the moduli space of rational maps and the Kleinian group by arithmetic method arises our interest in studying the group SL($m, \overline{F}((t))$). Hence, we concern about the discrete criteria and Jørgensen inequalities for SL($m, \overline{F}((t))$).

The function field is different from the *p*-adic number field. The main difficulties that we should face are to estimate the distance between the primitive roots of unit and the unit, and show that there exists a finite number of extensions of degree $d \leq n$ for some given positive integer *n*. The character of the residue field of $\overline{F}((t))$ is positive. We state our main theorem.

Theorem 1.1 Let G be a subgroup of $SL(m, \overline{F}((t)))$ with no parabolic element. Then the group G is discrete if and only if any cyclic subgroup of G is discrete.

Theorem 1.2 Let \mathbb{K} be a finite extension of F(t). If a discrete subgroup G of $SL(2,\mathbb{K})$ contains elliptic elements of finite order only, then G is a finite group.

Manuscript received March 15, 2016. Revised January 12, 2017.

¹Department of Mathematics, Shanghai University, Shanghai 200444, China.

E-mail: davidyoung@amss.ac.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 11301510, 11671092).

Jørgensen's inequality is a necessary condition for the discreteness of subgroups of $SL(2, \mathbb{C})$, which has been widely applied in many aspects such as the algebraic and geometric convergence of subgroups of $SL(2, \mathbb{C})$ and the estimation of the volume of hyperbolic manifolds. It has been generalized by many authors in various cases, and also plays an important role in the *p*-adic analytic space. In [1], Armitage and Parker gave a version of Jørgensen's inequality of discrete subgroups for SL(2, F(t)). In this paper, we partially improve their results and generalize those to $SL(m, \overline{F}((t)))$.

Theorem 1.3 Let $A \neq -I$ be an element of $SL(2, \overline{F}((t)))$. Let B be any element in $SL(2, \overline{F}((t)))$ such that B neither fixes nor interchanges the fixed points of A. If $G = \langle A, B \rangle$ is discrete with no parabolic elements, then $\min\{|\operatorname{tr}^2(A) - 4|, |\operatorname{tr}[A, B] - 2|\} \geq 1$.

Theorem 1.4 If a subgroup G of $SL(m, \overline{F}((t)))$ is discrete with no parabolic elements, then for each $g \in G \setminus \{I\}, ||g - I|| \ge 1$.

2 Some Facts in $\overline{\mathbf{F}}((t))$

Let $p \ge 2$ be a prime number, and F(t) be the function field of the non-archimedean value, and $\overline{F}((t))$ be the completion of the algebraic closure of F(t), namely $\overline{F}((t)) = \bigcup_{n\ge 1} \overline{F}((t^{\frac{1}{n}}))$. We denote the valuation group of $\overline{F}((t))$ by $|\overline{F}((t))^*|$, the integer ring by $\mathcal{O}_p = \{z \mid |z| \le 1\}$, and the maximal ideal by $\mathcal{M} = \{z \mid |z| < 1\}$. The absolute value satisfies the strong triangle inequality

$$|z - y| \le \max\{|z|, |y|\}$$

for $x, y \in \overline{F}((t))$. If x, y and z are points of $\overline{F}((t))$ with |x - y| < |x - z|, then |x - z| = |y - z|.

Given $a \in \overline{F}((t))$ and r > 0, the open and closed disks of center a and radius r are defined by

$$D(a,r)^{-} = \{z \in \overline{\mathbf{F}}((t)) \mid |z-a| < r\},\$$

$$D(a,r) = \{z \in \overline{\mathbf{F}}((t)) \mid |z-a| \le r\}.$$

However, by the strong triangle inequality, topologically $D(a,r)^-$ and D(a,r) are closed and open, and every point in disk $D(a,r)^-$ is the center. This denotes that if $x \in D(a,r)^-$, then $D(a,r)^- = D(x,r)^-$ (resp. D(a,r) = D(x,r)). If two disks D_1 and D_2 in $\overline{F}((t))$ have non-empty intersection, then $D_1 \subset D_2$, or $D_2 \subset D_1$. For a set $E \subset \overline{F}((t))$, denote diam $(E) = \sup_{z,w \in E} |z-w|$ the diameter of E in the non-archimedean metric. Especially, diam(D(a,r)) = r.

Let $\mathbb{P}^1(\overline{F}((t)))$ be the projective space over $\overline{F}((t))$ which can be viewed as $\mathbb{P}^1(\overline{F}((t))) = \overline{F}((t)) \cup \{\infty\}$. The chordal distance on $\mathbb{P}^1(\overline{F}((t)))$ can be defined by

$$\rho_v(z, w) = \frac{|z - w|}{\max\{1, |z|\} \max\{1, |w|\}}$$

for $z, w \in \overline{\mathbf{F}}((t))$,

$$\rho_v(z, w) = \frac{1}{\max\{1, |w|\}}$$

On the Discrete Criteria and Jørgensen Inequalities for $SL(m, \overline{F}((t)))$

for $w \in \overline{F}((t))$ and $z = \infty$, and

 $\rho_v(z,w) = 0$

for $z = w = \infty$.

By the definition of the chordal distance and the strong triangle inequality, it is easy to show that if $|z| \leq 1$, $|w| \leq 1$, then $\rho_v(z, w) = |z-w|$, and if |z| > 1, $|w| \leq 1$, then $\rho_v(z, w) = \frac{|z-w|}{|z|} = 1$, and if |z| > 1, |w| > 1, then $\rho_v(z, w) = \frac{|z-w|}{|z||w|} = |\frac{1}{z} - \frac{1}{w}|$.

Lemma 2.1 The residue field $\mathcal{O}_p/\mathcal{M} \cong \overline{F}$.

Proof For any x in the finite extension of F(t), we can expand $x = \sum_{i \ge k} a_i t^{\frac{i}{s}}$, $k \in \mathbb{Z}$, and a_i in some finite extension of F. If |x| = 1, then $x = \sum_{i \ge 0} a_i t^{\frac{i}{s}}$. Then $x \equiv a_0 \mod \mathcal{M}$. If $x \in \overline{F}((t))$, then there exists a sequence $\{x_n\}$ convergent to x, where each x_n is in some finite extension of F(t). Without loss of generality, we can assume that $|x_n - x_m| < 1$ for any $n, m \ge 1$. Let $x_n = \sum_{i \ge k} a_{i,n} t^{\frac{i}{s}}$, $k \in \mathbb{Z}$ and $x_m = \sum_{i \ge k} a_{i,m} t^{\frac{i}{s}}$, $k \in \mathbb{Z}$. Thus $a_{0,n} = a_{0,m}$. This implies that $|x - a_{0,n}| < 1$, namely $x \equiv a_{0,n} \mod \mathcal{M}$.

Lemma 2.2 Let d be an positive integer, and ζ be the primitive d-th root of unity, then $|\zeta - 1| = 1$.

Proof By Lemma 2.1, $\zeta = a + u, a \in \overline{F}_p, |u| < 1$. Since

$$\zeta^d = a^d + \binom{d}{1}a^{d-1}u + \dots + \binom{d}{d}u^d = 1,$$

we have $a^d \equiv 1 \mod \mathcal{M}$. This implies that |a - 1| = 1.

Lemma 2.3 Let $x \in \overline{F}((t))$ with |x| = 1. Then the sequence $\{x^{p^n}\}$ has a convergent subsequence.

Proof If $x^d = 1$ for some positive integer d, then we draw the conclusion. If $x^d \neq 1$ for any positive integer d, let x = a + u, where $a \in \overline{F}$, |u| < 1. By the structure of the finite field, there exists a positive integer N such that $a^{p^N} = a$. Since the character of \overline{F} is p, we have $x^{p^{Nk}} = a^{p^{Nk}} + u^{p^{Nk}} = a + u^{p^{Nk}}$. Thus $|x^{p^{Nk}} - a| = |u|^{p^{Nk}}$ tends to 0, as $k \to \infty$.

Lemma 2.4 Let $g(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ be a polynomial in $\overline{F}((t))[z]$. Given a fixed r > 0, if coefficients of g(z) satisfy $|a_i| < r^{n-i}$, then all roots of the polynomial g(z) are in the closed disk D(0,r).

Proof If $\alpha \notin D(0,r)$, then $|a_i\alpha^i| < r^{n-i}|\alpha^i| < |\alpha^n|$. By the ultrametric property, $|g(\alpha)| = |\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0| = |\alpha^n| > 0$. Then all roots of the polynomial are in the closed disk D(0,r).

Lemma 2.5 Let

$$g_n(z) = z^m + \sum_{i=0}^{m-1} a_{in} z^i$$
(2.1)

be a sequence of polynomials in $\overline{F}((t))[z]$. If all coefficients a_{in} tend to zero as $n \to \infty$, where $0 \le i \le m-1$, then all roots of $g_n(z)$ tend to zero as $n \to \infty$.

Proof For any r > 0, we can find a sufficiently large positive integer N such that for any n > N, $|a_{in}| < r^{n-i}$, since a_{in} tends to zero as $n \to \infty$, where $0 \le i \le m - 1$. By Lemma 2.4, all roots of $g_n(z)$ are in the closed disk D(0, r). Since r > 0 is arbitrary, all roots of $g_n(z)$ tend to zero as $n \to \infty$.

3 Discrete Subgroups of $SL(m, \overline{F}((t)))$

Since the product of all eigenvalues of $g \in SL(m, \overline{F}((t)))$ is one, either the absolute value of each eigenvalue of g is one or there exists at least one eigenvalue whose absolute value is larger than 1. Thus each non-unit element $g \in SL(m, \overline{F}((t)))$ falls into the following three classes:

- (a) g is said to be parabolic if
- (1) the absolute value of any eigenvalue of g is 1, and
- (2) g can not be conjugated to a diagonal matrix.
- (b) g is said to be elliptic if
- (1) the absolute value of any eigenvalue of g is 1, and
- (2) g can be conjugated to a diagonal matrix.

(c) g is said to be loxodromic if there exists at least one eigenvalue of g whose absolute value is larger than 1.

For $g = (a_{ij})$ in the matrix ring $\mathcal{M}(m, \overline{\mathcal{F}}((t)))$, the norm of g is defined by $||g|| = \max_{\substack{1 \le i \le m, 1 \le j \le m \\ 1 \le i \le m, 1 \le j \le m \\ \{|a_{ij}|\}.$ Obviously, ||g|| = 0 implies that each $a_{ij} = 0$. It is easy to verify that $||\alpha g|| = |\alpha|||g||$, $||g + h|| \le \max\{||g||, ||h||\}$ and $||gh|| \le ||g|| ||h||$.

We say that a subgroup G of $SL(m, \overline{F}((t)))$ is discrete if there exists $\delta = \delta(G) > 0$ such that each element $g \in G \setminus \{I\}$ satisfies $||g - I|| > \delta$, where I denotes the identity.

Obviously, a subgroup G of $SL(m, \overline{F}((t)))$ is discrete if and only if any sequence consisting of distinct elements $g_n \in G$ is not a Cauchy sequence. Since $||h^{-1}g_nh - h^{-1}gh|| \leq ||h^{-1}|| ||g_n - g|| ||h||$, we have $||h^{-1}g_nh - h^{-1}gh|| \to 0$, when $g_n \to g$, as $n \to \infty$. This means that conjugation does not change the discreteness.

We show that if G is a discrete subgroup of $SL(m, \overline{F}((t)))$, then the elliptic element in G is of finite order.

Lemma 3.1 Let I denote the unit matrix and J denote a nilpotent matrix in $M(m, \overline{F}((t)))$. Let $\lambda \in \overline{F}((t))$ with $|\lambda| = 1$. If $f = \lambda I + J$, then the sequence $\langle f^{p^n} \rangle$ has a convergent subsequence. Especially, if $\lambda = 1$, then $\langle f^{p^n} \rangle$ is a periodic sequence.

Proof Since J is a nilpotent matrix, there exists a positive integer N such that $J^N = 0$. Thus for any positive integer k > N, we have

$$f^{k} = (\lambda I + J)^{k} = \lambda^{k} I + \binom{k}{1} \lambda^{k-1} J + \dots + \binom{k}{N} \lambda^{k-N} J^{N}.$$

Choose $k = p^{nm} > N$, then

$$f^{p^{nm}} = (\lambda I + J)^{p^{nm}} = \lambda^{p^{nm}} I.$$

By Lemma 2.3, $\{\lambda^{p^n}\}$ has a convergent subsequence. Therefore the sequence $\langle f^{p^n} \rangle$ has a convergent subsequence.

On the Discrete Criteria and Jørgensen Inequalities for $SL(m, \overline{F}((t)))$

Theorem 3.1 If the subgroup G of $SL(m, \overline{F}((t)))$ is discrete, then there is no elliptic element of infinite order in G.

Proof Suppose that g is an elliptic element of infinite order in $SL(m, \overline{F}((t)))$. We can assume that

$$g = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix},$$

where $\lambda_i \in \overline{F}((t))$ are eigenvalues of g with $|\lambda_i| = 1, 1 \le i \le m$.

Therefore $\lambda_i^s \neq \lambda_i^t$ for any positive integers s, t. By Lemma 2.3, the sequence $\{\lambda_i^{p^n}\}$ has the convergent subsequence. Thus $\{g^{p^n}\}$ is the sequence consisting of distinct elements and a convergent sequence. This contradicts the hypothesis. Thus there is no elliptic element of infinite order in G.

Lemma 3.2 If $g_n \in SL(m, \overline{F}((t))) \to I$, as $n \to \infty$, then all eigenvalues of g_n tend to 1, as $n \to \infty$.

Proof The eigenpolynomial $f_n(\lambda) = |\lambda I - g_n|$ tends to polynomial $(\lambda - 1)^m$, since g_n tends to *I*. By Lemma 2.5, all eigenvalues λ_n tend to 1.

Lemma 3.3 If there exists a positive number $\delta = \delta(G)$ such that for any $g \in G$, $\max\{|\lambda_1 - 1|, |\lambda_2 - 1|, \dots, |\lambda_m - 1|\} \ge \delta$, where $\lambda_1, \lambda_2, \dots, \lambda_m$ are eigenvalues of g, then G is discrete.

Proof If G is not discrete, then there exists a sequence $\{g_n\}$ tending to I, as $n \to \infty$. By Lemma 3.2, we know that eigenvalues $\lambda_{1,n}, \lambda_{2,n}, \dots, \lambda_{m,n}$ of g_n tend to 1 which implies that G is discrete.

Theorem 3.2 Let G be a subgroup of $SL(m, \overline{F}((t)))$ with no parabolic elements. Then G is discrete if and only if any cyclic subgroup of G is discrete.

Proof \Rightarrow It is obviously true.

 \Leftarrow By Theorem 3.1, we know that a subgroup G containing any elliptic element of infinite order is not discrete, which yields that there only exist loxodromic elements or elliptic elements of finite order.

If g is a loxodromic element, then let λ be the eigenvalue of g with $|\lambda| > 1$. By the ultrametric property, we have $|\lambda - 1| > 1$. If g is a elliptic element of the order n, namely $g^n = I$, where n is the smallest positive integer, then we can assume that g has the form

$$g = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix},$$

where λ_i is an eigenvalue of $g, 1 \leq i \leq m$.

Since $g^n = I$, namely each eigenvalue λ_i of g satisfies $\lambda_i^n = 1$, by Lemma 2.2, we know that $|\lambda - 1| = 1$. By Lemma 3.3, we can see that G is discrete.

Example 3.1 Let G be generated by elements $f_n = z + t^n$, $n \ge 0$. Then G is not discrete but any cyclic group of G is discrete.

Proof Obviously, $f_n = z + t^n \to z$, as $n \to \infty$. We see that G is not discrete. Each cyclic group is generated by element $z + \sum_{i\geq 0} a_i t^i$, $a_i \in F_p$. Since each element f_n is parabolic, we know that f_n is of finite order which implies that the cyclic group generated by $\langle f_n \rangle$ is discrete.

Lemma 3.4 The finite extension \mathbb{K} of degree n of F(t) is $K_n(t^{\frac{1}{m}})$, where K_n is a finite extension of F of degree $\leq n$, and $m \leq n$.

Proof Since K is a finite extension of F(t), we see that K is also a local field. We denote the integer ring, maximal ideal and residue field of K by $\mathcal{O}_{\mathbb{K}} = \{z \mid |z| \leq 1\}, \mathcal{M}_{\mathbb{K}} = \{z \mid |z| < 1\}$ and $F_{\mathbb{K}} = \mathcal{O}_{\mathbb{K}}/\mathcal{M}_{\mathbb{K}}$ respectively.

By the proof of Lemma 2.1, we see that $F_{\mathbb{K}}$ is congruent to some finite extension of F. We claim that $F_{\mathbb{K}}$ is some finite extension of F.

For any $x \in F_{\mathbb{K}}$, we can write x = a + u, $a \in \overline{F}$, |u| < 1. There exists a positive integer N such that $a^{p^N} = a$ and $x^{p^N} = x$. Hence $x^{p^{Nk}} = a^{p^{Nk}} + u^{p^{Nk}} = a + u^{p^{Nk}} = a + u$ which implies that u = 0. Hence $F_{\mathbb{K}} \subset \overline{F}$, namely $F_{\mathbb{K}}$ is some finite extension of F.

Since \mathbb{K} is a finite extension of F(t) of degree n, we see that $\mathcal{O}_{\mathbb{K}} = F_{\mathbb{K}}(\pi)$, where π is the uniformization element, and $|\pi| = |t|^{\frac{1}{m}}$. We claim that we can choose a uniformization element π as $t^{\frac{1}{n}}$.

Firstly, if we can expand $\pi = t^{\frac{1}{m}} + a_2 t^{\frac{2}{m}} + \cdots$, then $\pi - a_2 \pi^2 = t^{\frac{1}{m}} + u$, where $|u| \leq |t|^{\frac{3}{m}}$. We write $\pi_1 = \pi - a_2 \pi^2 = t^{\frac{1}{m}} + a_3 t^{\frac{3}{m}}$. Following this algorithm, let $\pi_2 = \pi_1 - a_3 \pi^3, \cdots, \pi_{k+1} = \pi_k - a_{k+2} \pi^{k+2}, \cdots$. This implies that $|\pi_{k+1} - t^{\frac{1}{m}}| < |t|^{\frac{k+3}{nm}}$. Letting $k \to \infty$, we see that $\pi_k \to t^{\frac{1}{m}}$, namely $t^{\frac{1}{m}} \in \mathbb{K}$.

If $\pi = t^{\frac{1}{m}} + u$, where $|u| \leq |t|^{\frac{2}{m}}$, *m* is prime to *p*, then there exists a positive integer *N* such that $m \mid p^N - 1$. We consider $\pi^{p^{Nk}} = (t^{\frac{p^{Nk}}{m}} + u^{p^{Nk}})$. Since $\left|\frac{u^{p^{Nk}}}{t^{\frac{p^{Nk}-1}}}\right| < |t|^{\frac{p^{Nk}-1}{m}}$, we see that $t^{\frac{1}{m}} + \frac{u^{p^{Nk}}}{t^{\frac{p^{Nk}-1}}} = \frac{x^{p^{Nk}}}{t^{(p^{Nk}-1)}} \in \mathcal{O}_{\mathbb{K}}$. This implies that $t^{\frac{1}{m}} + \frac{u^{p^{Nk}}}{t^{\frac{p^{Nk}-1}{m}}} \to t^{\frac{1}{m}}$, $k \to \infty$, $t^{\frac{1}{m}} \in \mathbb{K}$. If $\pi = \left(\sum_{i=1}^{p^{r-1}} t^{\frac{i}{p^{r}}}\right)u + at^{\frac{k}{p^{sm}}} + v$, where $u \in \mathcal{O}_{\mathbb{K}}, |v| < |t|^{\frac{k}{p^{sm}}}$, *m* is prime to *p*, we see that $x^{p^{r+s}} = \left(\sum_{i=1}^{p^{r-1}} t^{ip^{s}}\right)u + a^{p^{r+s}}t^{k(\frac{p^{r}}{m})} + v^{p^{r+s}}$. This yields that $t^{k(\frac{p^{r}}{m})} + v^{(p^{s+r})} \in \mathcal{O}_{\mathbb{K}}$. Furthermore,

by the proof above, we know that $t^{\frac{1}{m}} \in \mathcal{O}_{\mathbb{K}}$. This implies that $p \mid m$, since \mathbb{K} is discrete valued field. However, this is a contradiction.

Let $\pi = t^{\frac{1}{p^r m}} + u$, where *m* is prime to *p* with $|u| < |t|^{\frac{1}{p^r m}}$. Hence $\pi^{p^r} = t^{\frac{1}{m}} + u^{p^r}$. By the proof above, we know that $t^{\frac{1}{m}} \in \mathcal{M}_{\mathbb{K}}$. This implies that $p \mid m$, since \mathbb{K} is discrete valued field. However, this is also a contradiction.

In the end, we see that $\mathbb{K} = \mathcal{F}_{\mathbb{K}}(t^{\frac{1}{m}})$. Since $[\mathbb{K} : \mathcal{F}_p(t)] = n$, we see that $n = [\mathbb{K} : \mathcal{F}_p(t)] = m[\mathcal{F}_{\mathbb{K}} : \mathcal{F}_p]$ which yields $m \leq n$, $[\mathcal{F}_{\mathbb{K}} : \mathcal{F}_p] \leq n$.

Lemma 3.5 Given a positive integer n, there exists a finite number of extensions of degree $\leq n$.

Proof Following Lemma 3.4, it is obvious.

Lemma 3.6 There exist only finitely many primitive roots of unity in $K_m(t^{\frac{1}{n}})$, where K_m is a finite extension of F of degree m.

On the Discrete Criteria and Jørgensen Inequalities for $SL(m, \overline{F}((t)))$

Proof Let $\lambda = a + u \in$, |u| < 1, $a \in \overline{F}$ be a primitive root in $K_m(t^{\frac{1}{n}})$. If $\lambda^s = 1$, where s is a positive integer which is prime to p, then there exists a positive integer N such that $s \mid p^N - 1$ and $a^{p^N} = a$.

Hence

$$\lambda^{p^{N_{k}}} = (a+u)^{p^{N_{k}}} = a^{p^{N_{k}}} + u^{p^{N_{k}}} = a + u^{p^{N_{k}}} = \lambda = a + u.$$

Let $k \to \infty$, and then $u = u^{p^{Nk}} = 0$, since |u| < 1.

Lemma 3.7 If λ is the eigenvalue of the elliptic element g of finite order, then $\leq |\operatorname{tr}(g)-2| = 1$, where $\operatorname{tr}(g)$ denotes the trace of g.

Proof Let λ be the eigenvalue of the elliptic element g of finite order, namely λ is the primitive root of unity. By Lemma 2.2, $|\lambda - 1| = 1$. Since trace is invariant by conjugation, we have $\operatorname{tr}(g) = a + d = \lambda + \lambda^{-1}$ which implies that $|\operatorname{tr}(g) - 2| = |\lambda + \lambda^{-1} - 2| = \frac{|\lambda - 1|^2}{|\lambda|} = 1$.

If an eigenvalue of g is -1, then the other eigenvalue is also -1, since the determinant is 1. Thus g can be conjugated to the diagonal matrix -I, and thus $g = h(-I)h^{-1} = -hh^{-1} = -I$.

Theorem 3.3 Let \mathbb{K} be a finite extension of SL(2, F(t)). If a discrete subgroup G of $SL(2, \mathbb{K})$ contains elliptic elements of finite order only, then G is a finite group.

Proof Let $\widetilde{\mathbb{K}}$ be a finite extension of \mathbb{K} with $[\widetilde{\mathbb{K}} : \mathbb{K}] \leq 2$. Then $\widetilde{\mathbb{K}}_p$ is also a finite extension of $F_p(t)$. Since $F_p(t)$ is locally compact, we know that $\widetilde{\mathbb{K}}$ is locally compact. By Lemma 3.4, we see that $\widetilde{\mathbb{K}} \subset K_p(t^{\frac{1}{n}})$.

For some fixed element $g \in G \setminus \{I\}$, we can assume that there exists an element $h \in G$ which can not commutate with $g \neq \pm I$, namely $\lambda^2 \neq 1$. Thus g, h can be respectively conjugated to

$$\overline{g} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad \overline{h} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{K}(\lambda)).$$

Then the commutator

$$[\overline{g},\overline{h}] = \overline{g}\overline{h}\overline{g}^{-1}\overline{h}^{-1} = \begin{pmatrix} ad - bc\lambda^{-2} & -ab\lambda^2 + ab \\ cd - cd\lambda^{-2} & -bc\lambda^2 + ad \end{pmatrix}.$$

Therefore $\operatorname{tr}[\overline{g},\overline{h}] = 2ad - bc(\lambda^2 + \frac{1}{\lambda^2}) = 2 - bc[(\lambda + \frac{1}{\lambda})^2 - 4] = 2 - bc(\lambda - \frac{1}{\lambda})^2$. By Lemma 3.7, $|bc(\lambda - \frac{1}{\lambda})^2| = 1$. Since λ^2 is also a primitive root of unity and $\lambda^2 \neq 1$, we have $\frac{|\lambda^2 - 1|}{|\lambda|} = 1$. Therefore |bc| = 1.

Suppose that there exist infinitely many distinct elements h_n which can not commutate with g, and let h_n have the following form

$$h_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}.$$

Since $a_n d_n - b_n c_n = 1$ and $|b_n c_n| = 1$, we see that $a_n d_n$ is also bounded. We also have a_n, d_n are bounded, since $a_n + d_n$ is bounded.

Assuming that b_n, c_n are bounded. Then a_n, d_n, b_n, c_n are all bounded. Since $F_p(t)$ is locally compact, the sequence $\{a_n, d_n, b_n, c_n\}$ has convergent subsequences, Then h_n has the convergent subsequence, which contradicts the discreteness of G.

Suppose that $\{b_n\}$ or $\{c_n\}$ is unbounded. Without loss of generality, we suppose that $b_n \to \infty$, as $n \to \infty$. Since $|b_n c_n| = 1$, $c_n \to 0$, as $n \to \infty$. Consider the sequence $\{h_1 h_n\}$. Since

$$h_1h_n = \begin{pmatrix} a_1a_n + b_1c_n & a_1b_n + b_1d_n \\ a_nc_1 + d_1c_n & b_nc_1 + d_1d_n \end{pmatrix},$$

we have $\operatorname{tr}[h_1h_n] = a_1a_n + b_1c_n + b_nc_1 + d_1d_n$. Since b_1, c_1 are nonzero and a_n, d_n are bounded, it follows $a_1a_n + b_1c_n + b_nc_1 + d_1d_n \to \infty$, as $n \to \infty$. Therefore when n is sufficiently large, h_1h_n is a loxodromic element which contradicts the fact that G has elliptic elements only. Hence there do not exist infinitely many elements which can not commutate with g. Suppose that $h \in G$ can commutate with g. Then h and g can be conjugated to diagonal matrices simultaneously. Since eigenvalues of $h \in G$ are primitive roots of unity in $\widetilde{\mathbb{K}}$, by Lemma 3.4, there exist finitely many such h. Summing up, there are only finitely many elements in G.

But the result we proved above is not true for $\overline{F}((t))$, even for \overline{F} , since they are infinite extensions of F(t).

Example 3.2 The group $SL(2, \overline{F})$ is discrete.

Proof Since each |x - 1| = 1, for any $1 \neq x \in \overline{F}$, and the determinant of any element g is 1, we know that G is discrete.

4 Jørgensen's Inequality for $SL(m, \overline{F}((t)))$

In [1], Armitage and Parker gave a version of Jørgensen's inequality in the non-archimedean metric space, especially for SL(2, F(t)).

Theorem 4.1 (see [1, Theorem 4.2]) Let A be an element of SL(2, F(t)) conjugate to a diagonal matrix. Let B be any element of SL(2, F(t)) so that, when acting on $F(t) \cup \{\infty\}$ via Möbius transformations, B neither fixes nor interchanges the fixed points of A. If $G = \langle A, B \rangle$ is discrete, then $\max\{|\operatorname{tr}^2(A) - 4|, |\operatorname{tr}([A, B]) - 2|\} \ge 1$.

According to the results, the discrete subgroup does not contain any parabolic element which yields that a generator $A \in SL(2, \overline{F}((t)))$ can be conjugated to a diagonal matrix. If the subgroup G generated by -I and $B \in SL(2, \overline{F}((t)))$, then the group $G = \{(-1)^i B^j\}$ is very trivial. Hence we do not consider -I as the generator.

The Jørgensen's inequality is built for $SL(2, \overline{F}((t)))$.

Theorem 4.2 Let $A \neq -I$ be an element of $SL(2, \overline{F}((t)))$. Let B be any element in $SL(2, \overline{F}((t)))$ such that B neither fixes nor interchanges the fixed points of A. If $G = \langle A, B \rangle$ is discrete with no parabolic elements, then $\min\{|\operatorname{tr}^2(A) - 4|, |\operatorname{tr}[A, B] - 2|\} \geq 1$.

Proof If [A, B] = I, then $ABA^{-1}B^{-1} = I$. This implies that AB = BA, which means that B can fix or interchange the fixed point of A. This contradicts the hypothesis.

We assume that $[A, B] \neq I$. Let λ and $\frac{1}{\lambda}$ be eigenvalues of A. If A is a loxodromic element, we can assume that $|\lambda| > 1$. Hence $|\lambda - \frac{1}{\lambda}| = |\lambda| > 1$, and then $|\operatorname{tr}^2(A) - 4| = |(\lambda + \frac{1}{\lambda})^2 - 4| = |\lambda - \frac{1}{\lambda}|^2 = |\lambda| > 1$. If A is an elliptic element of finite order, then $|\lambda - 1| = 1$.

Let ζ and ζ^{-1} be the eigenvalues of the [A, B], and then $\zeta \neq 1$. If [A, B] is a loxodromic element, we can assume that $|\zeta| > 1$. Hence $|\zeta - \frac{1}{\zeta}| = |\zeta| > 1$ which implies that $|\text{tr}[A, B] - 2| = |(\zeta + \frac{1}{\zeta}) - 2| = \frac{|\zeta - 1|^2}{|\zeta|} = |\zeta| > 1$. If [A, B] is an elliptic element of finite order, then $|\zeta - 1| = 1$.

In [3], Martin discussed the group generated by finitely many elements, and estimated the maximum distance between the generator and the identity, and gave a version of Jørgensen's inequality for the real Möbius transform in higher dimensions.

Theorem 4.3 (see [3, Theorem 4.5]) Let f and g be Möbius transformations of S^n . If f and g together generate a discrete non-elementary group, then $\max\{||g^i f g^{-i} - I||: i = 0, 1, 2, \dots, n\} > 2 - \sqrt{3}$.

Lemma 4.1 If $g \in SL(m, \overline{F}((t)))$ and ||g - I|| < 1, then all eigenvalues of g are in $D(1, 1)^-$.

Proof Let $g = (b_{ij}) \in SL(m, \overline{F}((t)))$. Since ||g - I|| < 1, we have $|b_{ij} - \delta_{ij}| < 1$, where $\delta_{ij} = 1$, if i = j; otherwise $\delta_{ij} = 0$, if $i \neq j$.

Then eigenpolynomial

$$\begin{aligned} |\lambda I - g| &= \begin{vmatrix} \lambda - b_{11} & -b_{12} & \cdots & -b_{1m} \\ -b_{21} & \lambda - b_{22} & \cdots & -b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ \cdots & \cdots & -b_{m(m-1)} & \lambda - b_{mm} \end{vmatrix} \\ &= \begin{vmatrix} (\lambda - 1) + 1 - b_{11} & -b_{12} & \cdots & -b_{1m} \\ -b_{21} & (\lambda - 1) + 1 - b_{22} & \cdots & -b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ \cdots & \cdots & -b_{m(m-1)} & (\lambda - 1) + 1 - b_{mm} \end{vmatrix}. \end{aligned}$$

The eigenpolynomial can be expressed as $G(\lambda - 1) = (\lambda - 1)^m + a_{m-1}(\lambda - 1)^{m-1} + \dots + a_0$, where the coefficient a_i of eigenpolynomial $G(\lambda - 1)$ is a combination of the $c_{ij} = \delta_{ij} - b_{ij}$ by product or addition. By the ultrametric property, we have $|a_i| \leq \max\{|c_{ij}|\} < 1$. Since $|a_i|^{\frac{1}{m-i}} < 1$, there exists a positive number r satisfying 0 < r < 1 such that $|a_i| < r^{m-i}$. By Lemma 2.4, each eigenvalue of g is in $D(1, 1)^-$.

Theorem 4.4 If a subgroup G of $SL(m, \overline{F}((t)))$ is discrete with no parabolic elements, then for each $g \in G \setminus \{I\}, \|g - I\| \ge 1$.

Proof By Theorem 3.1, we know that each element in G is either a loxodromic element or an elliptic element of finite order. If g in G is a loxodromic element, then at least one eigenvalue λ whose absolute value is larger than 1. Hence $|\lambda - 1| = |\lambda| > 1$. If g is an elliptic element of finite order, then each eigenvalue λ satisfies $|\lambda - 1| = 1$.

Acknowledgement The author would like to thank the referees for the valuable suggestions and comments, which help to improve the paper a lot.

References

Armitage, J. V. and Parker, J. R., Jørgensens inequality for non-archimedean metric spaces, Geometry and Dynamics of Groups and Spaces, 265, 2018, 97–111.

- [2] Kato, F., Non-archimedean orbifolds covered by Mumford curves, Journal of Algebraic Geometry, 14, 2005, 1–34.
- [3] Martin, G. J., On discrete Mobius groups in all dimensions: A generalization of Jørgensen's inequality, Acta Math., 163, 1989, 253–289.
- [4] Qiu, W. Y., Wang, Y. F., Yang, J. H. and Yin, Y. C., On metric properties of limit sets of contractive analytic non-archimedean dynamical systems, J. Math. Anal. Appl., 414, 2014, 386–401.
- [5] Qiu, W. Y. and Yang, J. H., On limit sets of discontinuous subgroups of the Berkovich space, preprint.
- [6] Qiu, W. Y., Yang, J. H. and Yin, Y. C., The discrete subgroups and Jørgensens inequality for SL(m, C_p), Acta Math. Sin., English Series Mar., 29(3), 2013, 417–428.
- [7] Wang, Y. F. and Yang, J. H., The pointwise convergence of the p-adic Möbius maps, Sci. China Math., 57(1) 2014, 1–8.
- [8] Wang, Y. F. and Yang, J. H., On p-adic Möbius maps. arXiv: 1512.01305.