On the Discrete Criteria and Jørgensen Inequalities for $\mathrm{SL}(m, \overline{\mathrm{~F}}((t)))^{*}$

Jinghua YANG ${ }^{1}$

Abstract

In this paper, the author gives the discrete criteria and Jørgensen inequalities of subgroups for the special linear group on $\overline{\mathrm{F}}((t))$ in two and higher dimensions.

Keywords Möbius maps, Discrete criteria, Jørgensen inequalities
2000 MR Subject Classification 51B10, 32P05, 37P05, 40A05

1 Introduction

Let $\mathrm{F}(t)$ be a local field with nontrivial non-archimedean value, where F is a finite field with p elements and p is a prime number. We denote the completion of algebraic closure of $\mathrm{F}(t)$ by $\overline{\mathrm{F}}((t))$. In this paper, we study the discrete criteria and Jørgensen's inequalities for a subgroup of the special linear group $\mathrm{SL}(m, \overline{\mathrm{~F}}((t)))$.

It is an important topic to study Möbius maps in non-archimedean spaces (see [1-2, 4-5, 78]) especially the discrete criteria and Jørgensen inequalities for subgroups of Lie groups. In [2], Kato discussed the discrete criteria of groups of projective general linear group $\operatorname{PGL}\left(2, \mathbb{C}_{p}\right)$. In [1], Armitage and Parker studied the Jørgensen inequality for discrete subgroups of $\operatorname{SL}\left(2, \mathbb{Q}_{p}\right)$, and of $\operatorname{SL}(2, \mathrm{~F}(t))$. In [6], Qiu, Yang and Yin gave the discrete criteria of $\operatorname{SL}\left(m, \mathbb{C}_{p}\right)$. Furthermore, the development of studying the moduli space of rational maps and the Kleinian group by arithmetic method arises our interest in studying the group $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$. Hence, we concern about the discrete criteria and Jørgensen inequalities for $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$.

The function field is different from the p-adic number field. The main difficulties that we should face are to estimate the distance between the primitive roots of unit and the unit, and show that there exists a finite number of extensions of degree $d \leq n$ for some given positive integer n. The character of the residue field of $\overline{\mathrm{F}}((t))$ is positive. We state our main theorem.

Theorem 1.1 Let G be a subgroup of $\mathrm{SL}(m, \overline{\mathrm{~F}}((t)))$ with no parabolic element. Then the group G is discrete if and only if any cyclic subgroup of G is discrete.

Theorem 1.2 Let \mathbb{K} be a finite extension of $\mathrm{F}(t)$. If a discrete subgroup G of $\operatorname{SL}(2, \mathbb{K})$ contains elliptic elements of finite order only, then G is a finite group.

[^0]Jørgensen's inequality is a necessary condition for the discreteness of subgroups of SL(2, $\mathbb{C})$, which has been widely applied in many aspects such as the algebraic and geometric convergence of subgroups of $\operatorname{SL}(2, \mathbb{C})$ and the estimation of the volume of hyperbolic manifolds. It has been generalized by many authors in various cases, and also plays an important role in the p-adic analytic space. In [1], Armitage and Parker gave a version of Jørgensen's inequality of discrete subgroups for $\operatorname{SL}(2, \mathrm{~F}(t))$. In this paper, we partially improve their results and generalize those to $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$.

Theorem 1.3 Let $A \neq-I$ be an element of $\operatorname{SL}(2, \overline{\mathrm{~F}}((t)))$. Let B be any element in $\mathrm{SL}(2, \overline{\mathrm{~F}}((t)))$ such that B neither fixes nor interchanges the fixed points of A. If $G=\langle A, B\rangle$ is discrete with no parabolic elements, then $\min \left\{\left|\operatorname{tr}^{2}(A)-4\right|,|\operatorname{tr}[A, B]-2|\right\} \geq 1$.

Theorem 1.4 If a subgroup G of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ is discrete with no parabolic elements, then for each $g \in G \backslash\{I\},\|g-I\| \geq 1$.

2 Some Facts in $\overline{\mathrm{F}}((t))$

Let $p \geq 2$ be a prime number, and $\mathrm{F}(t)$ be the function field of the non-archimedean value, and $\overline{\mathrm{F}}((t))$ be the completion of the algebraic closure of $\mathrm{F}(t)$, namely $\overline{\mathrm{F}}((t))=\bigcup_{n \geq 1} \overline{\mathrm{~F}}\left(\left(t^{\frac{1}{n}}\right)\right)$. We denote the valuation group of $\overline{\mathrm{F}}((t))$ by $\left|\overline{\mathrm{F}}((t))^{*}\right|$, the integer ring by $\mathcal{O}_{p}=\{z| | z \mid \leq 1\}$, and the maximal ideal by $\mathcal{M}=\{z| | z \mid<1\}$. The absolute value satisfies the strong triangle inequality

$$
|z-y| \leq \max \{|z|,|y|\}
$$

for $x, y \in \overline{\mathrm{~F}}((t))$. If x, y and z are points of $\overline{\mathrm{F}}((t))$ with $|x-y|<|x-z|$, then $|x-z|=|y-z|$.
Given $a \in \overline{\mathrm{~F}}((t))$ and $r>0$, the open and closed disks of center a and radius r are defined by

$$
\begin{aligned}
& D(a, r)^{-}=\{z \in \overline{\mathrm{~F}}((t))| | z-a \mid<r\} \\
& D(a, r)=\{z \in \overline{\mathrm{~F}}((t))| | z-a \mid \leq r\}
\end{aligned}
$$

However, by the strong triangle inequality, topologically $D(a, r)^{-}$and $D(a, r)$ are closed and open, and every point in disk $D(a, r)^{-}$is the center. This denotes that if $x \in D(a, r)^{-}$, then $D(a, r)^{-}=D(x, r)^{-}($resp. $D(a, r)=D(x, r))$. If two disks D_{1} and D_{2} in $\overline{\mathrm{F}}((t))$ have non-empty intersection, then $D_{1} \subset D_{2}$, or $D_{2} \subset D_{1}$. For a set $E \subset \overline{\mathrm{~F}}((t))$, denote $\operatorname{diam}(E)=\sup _{z, w \in E}|z-w|$ the diameter of E in the non-archimedean metric. Especially, $\operatorname{diam}(D(a, r))=r$.

Let $\mathbb{P}^{1}(\overline{\mathrm{~F}}((t)))$ be the projective space over $\overline{\mathrm{F}}((t))$ which can be viewed as $\mathbb{P}^{1}(\overline{\mathrm{~F}}((t)))=$ $\overline{\mathrm{F}}((t)) \cup\{\infty\}$. The chordal distance on $\mathbb{P}^{1}(\overline{\mathrm{~F}}((t)))$ can be defined by

$$
\rho_{v}(z, w)=\frac{|z-w|}{\max \{1,|z|\} \max \{1,|w|\}}
$$

for $z, w \in \overline{\mathrm{~F}}((t))$,

$$
\rho_{v}(z, w)=\frac{1}{\max \{1,|w|\}}
$$

for $w \in \overline{\mathrm{~F}}((t))$ and $z=\infty$, and

$$
\rho_{v}(z, w)=0
$$

for $z=w=\infty$.
By the definition of the chordal distance and the strong triangle inequality, it is easy to show that if $|z| \leq 1,|w| \leq 1$, then $\rho_{v}(z, w)=|z-w|$, and if $|z|>1,|w| \leq 1$, then $\rho_{v}(z, w)=\frac{|z-w|}{|z|}=1$, and if $|z|>1,|w|>1$, then $\rho_{v}(z, w)=\frac{|z-w|}{|z||w|}=\left|\frac{1}{z}-\frac{1}{w}\right|$.

Lemma 2.1 The residue field $\mathcal{O}_{p} / \mathcal{M} \cong \overline{\mathrm{F}}$.
Proof For any x in the finite extension of $\mathrm{F}(t)$, we can expand $x=\sum_{i \geq k} a_{i} t^{\frac{i}{s}}, k \in \mathbb{Z}$, and a_{i} in some finite extension of F . If $|x|=1$, then $x=\sum_{i \geq 0} a_{i} t^{\frac{i}{s}}$. Then $x \equiv a_{0} \bmod \mathcal{M}$. If $x \in \overline{\mathrm{~F}}((t))$, then there exists a sequence $\left\{x_{n}\right\}$ convergent to x, where each x_{n} is in some finite extension of $\mathrm{F}(t)$. Without loss of generality, we can assume that $\left|x_{n}-x_{m}\right|<1$ for any $n, m \geq 1$. Let $x_{n}=\sum_{i \geq k} a_{i, n} t^{\frac{i}{s}}, k \in \mathbb{Z}$ and $x_{m}=\sum_{i \geq k} a_{i, m} t^{\frac{i}{s}}, k \in \mathbb{Z}$. Thus $a_{0, n}=a_{0, m}$. This implies that $\left|x-a_{0, n}\right|<1$, namely $x \equiv a_{0, n} \bmod \mathcal{M}$.

Lemma 2.2 Let d be an positive integer, and ζ be the primitive d-th root of unity, then $|\zeta-1|=1$.

Proof By Lemma 2.1, $\zeta=a+u, a \in \bar{F}_{p},|u|<1$. Since

$$
\zeta^{d}=a^{d}+\binom{d}{1} a^{d-1} u+\cdots+\binom{d}{d} u^{d}=1,
$$

we have $a^{d} \equiv 1 \bmod \mathcal{M}$. This implies that $|a-1|=1$.
Lemma 2.3 Let $x \in \overline{\mathrm{~F}}((t))$ with $|x|=1$. Then the sequence $\left\{x^{p^{n}}\right\}$ has a convergent subsequence.

Proof If $x^{d}=1$ for some positive integer d, then we draw the conclusion. If $x^{d} \neq 1$ for any positive integer d, let $x=a+u$, where $a \in \overline{\mathrm{~F}},|u|<1$. By the structure of the finite field, there exists a positive integer N such that $a^{p^{N}}=a$. Since the character of $\overline{\mathrm{F}}$ is p, we have $x^{p^{N k}}=a^{p^{N k}}+u^{p^{N k}}=a+u^{p^{N k}}$. Thus $\left|x^{p^{N^{N k}}}-a\right|=|u|^{p^{N k}}$ tends to 0 , as $k \rightarrow \infty$.

Lemma 2.4 Let $g(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial in $\overline{\mathrm{F}}((t))[z]$. Given a fixed $r>0$, if coefficients of $g(z)$ satisfy $\left|a_{i}\right|<r^{n-i}$, then all roots of the polynomial $g(z)$ are in the closed disk $D(0, r)$.

Proof If $\alpha \notin D(0, r)$, then $\left|a_{i} \alpha^{i}\right|<r^{n-i}\left|\alpha^{i}\right|<\left|\alpha^{n}\right|$. By the ultrametric property, $|g(\alpha)|=$ $\left|\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{0}\right|=\left|\alpha^{n}\right|>0$. Then all roots of the polynomial are in the closed disk $D(0, r)$.

Lemma 2.5 Let

$$
\begin{equation*}
g_{n}(z)=z^{m}+\sum_{i=0}^{m-1} a_{i n} z^{i} \tag{2.1}
\end{equation*}
$$

be a sequence of polynomials in $\overline{\mathrm{F}}((t))[z]$. If all coefficients $a_{i n}$ tend to zero as $n \rightarrow \infty$, where $0 \leq i \leq m-1$, then all roots of $g_{n}(z)$ tend to zero as $n \rightarrow \infty$.

Proof For any $r>0$, we can find a sufficiently large positive integer N such that for any $n>N,\left|a_{i n}\right|<r^{n-i}$, since $a_{i n}$ tends to zero as $n \rightarrow \infty$, where $0 \leq i \leq m-1$. By Lemma 2.4, all roots of $g_{n}(z)$ are in the closed disk $D(0, r)$. Since $r>0$ is arbitrary, all roots of $g_{n}(z)$ tend to zero as $n \rightarrow \infty$.

3 Discrete Subgroups of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$

Since the product of all eigenvalues of $g \in \mathrm{SL}(m, \overline{\mathrm{~F}}((t)))$ is one, either the absolute value of each eigenvalue of g is one or there exists at least one eigenvalue whose absolute value is larger than 1. Thus each non-unit element $g \in \mathrm{SL}(m, \overline{\mathrm{~F}}((t)))$ falls into the following three classes:
(a) g is said to be parabolic if
(1) the absolute value of any eigenvalue of g is 1 , and
(2) g can not be conjugated to a diagonal matrix.
(b) g is said to be elliptic if
(1) the absolute value of any eigenvalue of g is 1 , and
(2) g can be conjugated to a diagonal matrix.
(c) g is said to be loxodromic if there exists at least one eigenvalue of g whose absolute value is larger than 1.

For $g=\left(a_{i j}\right)$ in the matrix ring $\mathrm{M}(m, \overline{\mathrm{~F}}((t)))$, the norm of g is defined by $\|g\|=\max _{1 \leq i \leq m, 1 \leq j \leq m}$ $\left\{\left|a_{i j}\right|\right\}$. Obviously, $\|g\|=0$ implies that each $a_{i j}=0$. It is easy to verify that $\|\alpha \bar{g}\|=|\alpha|\|\bar{g}\|$, $\|g+h\| \leq \max \{\|g\|,\|h\|\}$ and $\|g h\| \leq\|g\|\|h\|$.

We say that a subgroup G of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ is discrete if there exists $\delta=\delta(G)>0$ such that each element $g \in G \backslash\{I\}$ satisfies $\|g-I\|>\delta$, where I denotes the identity.

Obviously, a subgroup G of $\mathrm{SL}(m, \overline{\mathrm{~F}}((t)))$ is discrete if and only if any sequence consisting of distinct elements $g_{n} \in G$ is not a Cauchy sequence. Since $\left\|h^{-1} g_{n} h-h^{-1} g h\right\| \leq\left\|h^{-1}\right\| \| g_{n}-$ $g\|\|h\|$, we have $\| h^{-1} g_{n} h-h^{-1} g h \| \rightarrow 0$, when $g_{n} \rightarrow g$, as $n \rightarrow \infty$. This means that conjugation does not change the discreteness.

We show that if G is a discrete subgroup of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$, then the elliptic element in G is of finite order.

Lemma 3.1 Let I denote the unit matrix and J denote a nilpotent matrix in $\mathrm{M}(m, \overline{\mathrm{~F}}((t)))$. Let $\lambda \in \overline{\mathrm{F}}((t))$ with $|\lambda|=1$. If $f=\lambda I+J$, then the sequence $\left\langle f^{p^{n}}\right\rangle$ has a convergent subsequence. Especially, if $\lambda=1$, then $\left\langle f^{p^{n}}\right\rangle$ is a periodic sequence.

Proof Since J is a nilpotent matrix, there exists a positive integer N such that $J^{N}=0$. Thus for any positive integer $k>N$, we have

$$
f^{k}=(\lambda I+J)^{k}=\lambda^{k} I+\binom{k}{1} \lambda^{k-1} J+\cdots+\binom{k}{N} \lambda^{k-N} J^{N}
$$

Choose $k=p^{n m}>N$, then

$$
f^{p^{n m}}=(\lambda I+J)^{p^{n m}}=\lambda^{p^{n m}} I
$$

By Lemma 2.3, $\left\{\lambda^{p^{n}}\right\}$ has a convergent subsequence. Therefore the sequence $\left\langle f^{p^{n}}\right\rangle$ has a convergent subsequence.

Theorem 3.1 If the subgroup G of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ is discrete, then there is no elliptic element of infinite order in G.

Proof Suppose that g is an elliptic element of infinite order in $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$. We can assume that

$$
g=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right)
$$

where $\lambda_{i} \in \overline{\mathrm{~F}}((t))$ are eigenvalues of g with $\left|\lambda_{i}\right|=1,1 \leq i \leq m$.
Therefore $\lambda_{i}^{s} \neq \lambda_{i}^{t}$ for any positive integers s, t. By Lemma 2.3, the sequence $\left\{\lambda_{i}^{p^{n}}\right\}$ has the convergent subsequence. Thus $\left\{g^{p^{n}}\right\}$ is the sequence consisting of distinct elements and a convergent sequence. This contradicts the hypothesis. Thus there is no elliptic element of infinite order in G.

Lemma 3.2 If $g_{n} \in \mathrm{SL}(m, \overline{\mathrm{~F}}((t))) \rightarrow I$, as $n \rightarrow \infty$, then all eigenvalues of g_{n} tend to 1 , as $n \rightarrow \infty$.

Proof The eigenpolynomial $f_{n}(\lambda)=\left|\lambda I-g_{n}\right|$ tends to polynomial $(\lambda-1)^{m}$, since g_{n} tends to I. By Lemma 2.5, all eigenvalues λ_{n} tend to 1 .

Lemma 3.3 If there exists a positive number $\delta=\delta(G)$ such that for any $g \in G$, $\max \left\{\mid \lambda_{1}-\right.$ $1\left|,\left|\lambda_{2}-1\right|, \cdots,\left|\lambda_{m}-1\right|\right\} \geq \delta$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}$ are eigenvalues of g, then G is discrete.

Proof If G is not discrete, then there exists a sequence $\left\{g_{n}\right\}$ tending to I, as $n \rightarrow \infty$. By Lemma 3.2, we know that eigenvalues $\lambda_{1, n}, \lambda_{2, n}, \cdots, \lambda_{m, n}$ of g_{n} tend to 1 which implies that G is discrete.

Theorem 3.2 Let G be a subgroup of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ with no parabolic elements. Then G is discrete if and only if any cyclic subgroup of G is discrete.

Proof \Rightarrow It is obviously true.
\Leftarrow By Theorem 3.1, we know that a subgroup G containing any elliptic element of infinite order is not discrete, which yields that there only exist loxodromic elements or elliptic elements of finite order.

If g is a loxodromic element, then let λ be the eigenvalue of g with $|\lambda|>1$. By the ultrametric property, we have $|\lambda-1|>1$. If g is a elliptic element of the order n, namely $g^{n}=I$, where n is the smallest positive integer, then we can assume that g has the form

$$
g=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right)
$$

where λ_{i} is an eigenvalue of $g, 1 \leq i \leq m$.
Since $g^{n}=I$, namely each eigenvalue λ_{i} of g satisfies $\lambda_{i}^{n}=1$, by Lemma 2.2, we know that $|\lambda-1|=1$. By Lemma 3.3, we can see that G is discrete.

Example 3.1 Let G be generated by elements $f_{n}=z+t^{n}, n \geq 0$. Then G is not discrete but any cyclic group of G is discrete.

Proof Obviously, $f_{n}=z+t^{n} \rightarrow z$, as $n \rightarrow \infty$. We see that G is not discrete. Each cyclic group is generated by element $z+\sum_{i \geq 0} a_{i} t^{i}, a_{i} \in \mathrm{~F}_{p}$. Since each element f_{n} is parabolic, we know that f_{n} is of finite order which implies that the cyclic group generated by $\left\langle f_{n}\right\rangle$ is discrete.

Lemma 3.4 The finite extension \mathbb{K} of degree n of $\mathrm{F}(t)$ is $\mathrm{K}_{n}\left(t^{\frac{1}{m}}\right)$, where K_{n} is a finite extension of F of degree $\leq n$, and $m \leq n$.

Proof Since \mathbb{K} is a finite extension of $\mathrm{F}(t)$, we see that \mathbb{K} is also a local field. We denote the integer ring, maximal ideal and residue field of \mathbb{K} by $\mathcal{O}_{\mathbb{K}}=\{z| | z \mid \leq 1\}, \mathcal{M}_{\mathbb{K}}=\{z| | z \mid<1\}$ and $\mathrm{F}_{\mathbb{K}}=\mathcal{O}_{\mathbb{K}} / \mathcal{M}_{\mathbb{K}}$ respectively.

By the proof of Lemma 2.1, we see that $\mathrm{F}_{\mathbb{K}}$ is congruent to some finite extension of F . We claim that $\mathrm{F}_{\mathbb{K}}$ is some finite extension of F .

For any $x \in \mathrm{~F}_{\mathbb{K}}$, we can write $x=a+u, a \in \overline{\mathrm{~F}},|u|<1$. There exists a positive integer N such that $a^{p^{N}}=a$ and $x^{p^{N}}=x$. Hence $x^{p^{N k}}=a^{p^{N k}}+u^{p^{N k}}=a+u^{p^{N k}}=a+u$ which implies that $u=0$. Hence $\mathrm{F}_{\mathbb{K}} \subset \overline{\mathrm{F}}$, namely $\mathrm{F}_{\mathbb{K}}$ is some finite extension of F .

Since \mathbb{K} is a finite extension of $\mathrm{F}(t)$ of degree n, we see that $\mathcal{O}_{\mathbb{K}}=\mathrm{F}_{\mathbb{K}}(\pi)$, where π is the uniformization element, and $|\pi|=|t|^{\frac{1}{m}}$. We claim that we can choose a uniformization element π as $t^{\frac{1}{n}}$.

Firstly, if we can expand $\pi=t^{\frac{1}{m}}+a_{2} t^{\frac{2}{m}}+\cdots$, then $\pi-a_{2} \pi^{2}=t^{\frac{1}{m}}+u$, where $|u| \leq|t|^{\frac{3}{m}}$. We write $\pi_{1}=\pi-a_{2} \pi^{2}=t^{\frac{1}{m}}+a_{3} t^{\frac{3}{m}}$. Following this algorithm, let $\pi_{2}=\pi_{1}-a_{3} \pi^{3}, \cdots, \pi_{k+1}=$ $\pi_{k}-a_{k+2} \pi^{k+2}, \cdots$. This implies that $\left|\pi_{k+1}-t^{\frac{1}{m}}\right|<|t|^{\frac{k+3}{n m}}$. Letting $k \rightarrow \infty$, we see that $\pi_{k} \rightarrow t^{\frac{1}{m}}$, namely $t^{\frac{1}{m}} \in \mathbb{K}$.

If $\pi=t^{\frac{1}{m}}+u$, where $|u| \leq|t|^{\frac{2}{m}}, m$ is prime to p, then there exists a positive integer N such that $m \mid p^{N}-1$. We consider $\pi^{p^{N k}}=\left(t^{\frac{p^{N k}}{m}}+u^{p^{N k}}\right)$. Since $\left|\frac{u^{p^{N k}}}{t^{\frac{p^{N k-1}}{m}}}\right|<|t|^{\frac{p^{N k}-1}{m}}$, we see that

If $\pi=\left(\sum_{i=1}^{p^{r}-1} t^{\frac{i}{p^{r}}}\right) u+a t^{\frac{k}{p^{r} m}}+v$, where $u \in \mathcal{O}_{\mathbb{K}},|v|<|t|^{\frac{k}{p^{p_{m}}}}, m$ is prime to p, we see that $x^{p^{r+s}}=\left(\sum_{i=1}^{p^{r}-1} t^{i p^{s}}\right) u+a^{p^{r+s}} t^{k\left(\frac{p^{r}}{m}\right)}+v^{p^{r+s}}$. This yields that $t^{k\left(\frac{p^{r}}{m}\right)}+v^{\left(p^{s+r}\right)} \in \mathcal{O}_{\mathbb{K}}$. Furthermore, by the proof above, we know that $t^{\frac{1}{m}} \in \mathcal{O}_{\mathbb{K}}$. This implies that $p \mid m$, since \mathbb{K} is discrete valued field. However, this is a contradiction.

Let $\pi=t^{\frac{1}{p^{r m}}}+u$, where m is prime to p with $|u|<|t|^{\frac{1}{p^{r m}}}$. Hence $\pi^{p^{r}}=t^{\frac{1}{m}}+u^{p^{r}}$. By the proof above, we know that $t^{\frac{1}{m}} \in \mathcal{M}_{\mathbb{K}}$. This implies that $p \mid m$, since \mathbb{K} is discrete valued field. However, this is also a contradiction.

In the end, we see that $\mathbb{K}=\mathrm{F}_{\mathbb{K}}\left(t^{\frac{1}{m}}\right)$. Since $\left[\mathbb{K}: \mathrm{F}_{p}(t)\right]=n$, we see that $n=\left[\mathbb{K}: \mathrm{F}_{p}(t)\right]=$ $m\left[\mathrm{~F}_{\mathbb{K}}: \mathrm{F}_{p}\right]$ which yields $m \leq n,\left[\mathrm{~F}_{\mathbb{K}}: \mathrm{F}_{p}\right] \leq n$.

Lemma 3.5 Given a positive integer n, there exists a finite number of extensions of degree $\leq n$.

Proof Following Lemma 3.4, it is obvious.
Lemma 3.6 There exist only finitely many primitive roots of unity in $\mathrm{K}_{m}\left(t^{\frac{1}{n}}\right)$, where K_{m} is a finite extension of F of degree m.

Proof Let $\lambda=a+u \in,|u|<1, a \in \overline{\mathrm{~F}}$ be a primitive root in $\mathrm{K}_{m}\left(t^{\frac{1}{n}}\right)$. If $\lambda^{s}=1$, where s is a positive integer which is prime to p, then there exists a positive integer N such that $s \mid p^{N}-1$ and $a^{p^{N}}=a$.

Hence

$$
\lambda^{p^{N} k}=(a+u)^{p^{N} k}=a^{p^{N k}}+u^{p^{N k}}=a+u^{p^{N k}}=\lambda=a+u
$$

Let $k \rightarrow \infty$, and then $u=u^{p^{N k}}=0$, since $|u|<1$.
Lemma 3.7 If λ is the eigenvalue of the elliptic element g of finite order, then $\leq|\operatorname{tr}(g)-2|=$ 1, where $\operatorname{tr}(g)$ denotes the trace of g.

Proof Let λ be the eigenvalue of the elliptic element g of finite order, namely λ is the primitive root of unity. By Lemma $2.2,|\lambda-1|=1$. Since trace is invariant by conjugation, we have $\operatorname{tr}(g)=a+d=\lambda+\lambda^{-1}$ which implies that $|\operatorname{tr}(g)-2|=\left|\lambda+\lambda^{-1}-2\right|=\frac{|\lambda-1|^{2}}{|\lambda|}=1$.

If an eigenvalue of g is -1 , then the other eigenvalue is also -1 , since the determinant is 1 . Thus g can be conjugated to the diagonal matrix $-I$, and thus $g=h(-I) h^{-1}=-h h^{-1}=-I$.

Theorem 3.3 Let \mathbb{K} be a finite extension of $\mathrm{SL}(2, \mathrm{~F}(t))$. If a discrete subgroup G of $\mathrm{SL}(2, \mathbb{K})$ contains elliptic elements of finite order only, then G is a finite group.

Proof Let $\widetilde{\mathbb{K}}$ be a finite extension of \mathbb{K} with $[\widetilde{\mathbb{K}}: \mathbb{K}] \leq 2$. Then $\widetilde{\mathbb{K}}_{p}$ is also a finite extension of $\mathrm{F}_{p}(t)$. Since $\mathrm{F}_{p}(t)$ is locally compact, we know that $\widetilde{\mathbb{K}}$ is locally compact. By Lemma 3.4, we see that $\widetilde{\mathbb{K}} \subset \mathrm{K}_{p}\left(t^{\frac{1}{n}}\right)$.

For some fixed element $g \in G \backslash\{I\}$, we can assume that there exists an element $h \in G$ which can not commutate with $g \neq \pm I$, namely $\lambda^{2} \neq 1$. Thus g, h can be respectively conjugated to

$$
\bar{g}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad \bar{h}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{K}(\lambda))
$$

Then the commutator

$$
[\bar{g}, \bar{h}]=\bar{g} \bar{h} \bar{g}^{-1} \bar{h}^{-1}=\left(\begin{array}{ll}
a d-b c \lambda^{-2} & -a b \lambda^{2}+a b \\
c d-c d \lambda^{-2} & -b c \lambda^{2}+a d
\end{array}\right)
$$

Therefore $\operatorname{tr}[\bar{g}, \bar{h}]=2 a d-b c\left(\lambda^{2}+\frac{1}{\lambda^{2}}\right)=2-b c\left[\left(\lambda+\frac{1}{\lambda}\right)^{2}-4\right]=2-b c\left(\lambda-\frac{1}{\lambda}\right)^{2}$. By Lemma 3.7, $\left|b c\left(\lambda-\frac{1}{\lambda}\right)^{2}\right|=1$. Since λ^{2} is also a primitive root of unity and $\lambda^{2} \neq 1$, we have $\frac{\left|\lambda^{2}-1\right|}{|\lambda|}=1$. Therefore $|b c|=1$.

Suppose that there exist infinitely many distinct elements h_{n} which can not commutate with g, and let h_{n} have the following form

$$
h_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

Since $a_{n} d_{n}-b_{n} c_{n}=1$ and $\left|b_{n} c_{n}\right|=1$, we see that $a_{n} d_{n}$ is also bounded. We also have a_{n}, d_{n} are bounded, since $a_{n}+d_{n}$ is bounded.

Assuming that b_{n}, c_{n} are bounded. Then $a_{n}, d_{n}, b_{n}, c_{n}$ are all bounded. Since $\mathrm{F}_{p}(t)$ is locally compact, the sequence $\left\{a_{n}, d_{n}, b_{n}, c_{n}\right\}$ has convergent subsequences, Then h_{n} has the convergent subsequence, which contradicts the discreteness of G.

Suppose that $\left\{b_{n}\right\}$ or $\left\{c_{n}\right\}$ is unbounded. Without loss of generality, we suppose that $b_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Since $\left|b_{n} c_{n}\right|=1, c_{n} \rightarrow 0$, as $n \rightarrow \infty$. Consider the sequence $\left\{h_{1} h_{n}\right\}$. Since

$$
h_{1} h_{n}=\left(\begin{array}{ll}
a_{1} a_{n}+b_{1} c_{n} & a_{1} b_{n}+b_{1} d_{n} \\
a_{n} c_{1}+d_{1} c_{n} & b_{n} c_{1}+d_{1} d_{n}
\end{array}\right),
$$

we have $\operatorname{tr}\left[h_{1} h_{n}\right]=a_{1} a_{n}+b_{1} c_{n}+b_{n} c_{1}+d_{1} d_{n}$. Since b_{1}, c_{1} are nonzero and a_{n}, d_{n} are bounded, it follows $a_{1} a_{n}+b_{1} c_{n}+b_{n} c_{1}+d_{1} d_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Therefore when n is sufficiently large, $h_{1} h_{n}$ is a loxodromic element which contradicts the fact that G has elliptic elements only. Hence there do not exist infinitely many elements which can not commutate with g. Suppose that $h \in G$ can commutate with g. Then h and g can be conjugated to diagonal matrices simultaneously. Since eigenvalues of $h \in G$ are primitive roots of unity in $\widetilde{\mathbb{K}}$, by Lemma 3.4, there exist finitely many such h. Summing up, there are only finitely many elements in G.

But the result we proved above is not true for $\overline{\mathrm{F}}((t))$, even for $\overline{\mathrm{F}}$, since they are infinite extensions of $\mathrm{F}(t)$.

Example 3.2 The group $\operatorname{SL}(2, \overline{\mathrm{~F}})$ is discrete.
Proof Since each $|x-1|=1$, for any $1 \neq x \in \overline{\mathrm{~F}}$, and the determinant of any element g is 1, we know that G is discrete.

4 Jørgensen's Inequality for $\mathrm{SL}(\mathrm{m}, \overline{\mathrm{F}}((t)))$

In [1], Armitage and Parker gave a version of Jørgensen's inequality in the non-archimedean metric space, especially for $\operatorname{SL}(2, \mathrm{~F}(t))$.

Theorem 4.1 (see [1, Theorem 4.2]) Let A be an element of $\operatorname{SL}(2, \mathrm{~F}(t))$ conjugate to a diagonal matrix. Let B be any element of $\mathrm{SL}(2, \mathrm{~F}(t))$ so that, when acting on $\mathrm{F}(t) \cup\{\infty\}$ via Möbius transformations, B neither fixes nor interchanges the fixed points of A. If $G=\langle A, B\rangle$ is discrete, then $\max \left\{\left|\operatorname{tr}^{2}(A)-4\right|,|\operatorname{tr}([A, B])-2|\right\} \geq 1$.

According to the results, the discrete subgroup does not contain any parabolic element which yields that a generator $A \in \operatorname{SL}(2, \overline{\mathrm{~F}}((t)))$ can be conjugated to a diagonal matrix. If the subgroup G generated by $-I$ and $B \in \operatorname{SL}(2, \overline{\mathrm{~F}}((t)))$, then the group $G=\left\{(-1)^{i} B^{j}\right\}$ is very trivial. Hence we do not consider $-I$ as the generator.

The Jørgensen's inequality is built for $\mathrm{SL}(2, \overline{\mathrm{~F}}((t)))$.
Theorem 4.2 Let $A \neq-I$ be an element of $\operatorname{SL}(2, \overline{\mathrm{~F}}((t)))$. Let B be any element in $\mathrm{SL}(2, \overline{\mathrm{~F}}((t)))$ such that B neither fixes nor interchanges the fixed points of A. If $G=\langle A, B\rangle$ is discrete with no parabolic elements, then $\min \left\{\left|\operatorname{tr}^{2}(A)-4\right|,|\operatorname{tr}[A, B]-2|\right\} \geq 1$.

Proof If $[A, B]=I$, then $A B A^{-1} B^{-1}=I$. This implies that $A B=B A$, which means that B can fix or interchange the fixed point of A. This contradicts the hypothesis.

We assume that $[A, B] \neq I$. Let λ and $\frac{1}{\lambda}$ be eigenvalues of A. If A is a loxodromic element, we can assume that $|\lambda|>1$. Hence $\left|\lambda-\frac{1}{\lambda}\right|=|\lambda|>1$, and then $\left|\operatorname{tr}^{2}(A)-4\right|=\left|\left(\lambda+\frac{1}{\lambda}\right)^{2}-4\right|=$ $\left|\lambda-\frac{1}{\lambda}\right|^{2}=|\lambda|>1$. If A is an elliptic element of finite order, then $|\lambda-1|=1$.

Let ζ and ζ^{-1} be the eigenvalues of the $[A, B]$, and then $\zeta \neq 1$. If $[A, B]$ is a loxodromic element, we can assume that $|\zeta|>1$. Hence $\left|\zeta-\frac{1}{\zeta}\right|=|\zeta|>1$ which implies that $|\operatorname{tr}[A, B]-2|=$ $\left|\left(\zeta+\frac{1}{\zeta}\right)-2\right|=\frac{|\zeta-1|^{2}}{|\zeta|}=|\zeta|>1$. If $[A, B]$ is an elliptic element of finite order, then $|\zeta-1|=1$.

In [3], Martin discussed the group generated by finitely many elements, and estimated the maximum distance between the generator and the identity, and gave a version of Jørgensen's inequality for the real Möbius transform in higher dimensions.

Theorem 4.3 (see [3, Theorem 4.5]) Let f and g be Möbius transformations of S^{n}. If f and g together generate a discrete non-elementary group, then $\max \left\{\left\|g^{i} f g^{-i}-I\right\|: i=\right.$ $0,1,2, \cdots, n\}>2-\sqrt{3}$.

Lemma 4.1 If $g \in \operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ and $\|g-I\|<1$, then all eigenvalues of g are in $D(1,1)^{-}$.
Proof Let $g=\left(b_{i j}\right) \in \operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$. Since $\|g-I\|<1$, we have $\left|b_{i j}-\delta_{i j}\right|<1$, where $\delta_{i j}=1$, if $i=j$; otherwise $\delta_{i j}=0$, if $i \neq j$.

Then eigenpolynomial

$$
\begin{aligned}
|\lambda I-g| & =\left|\begin{array}{cccc}
\lambda-b_{11} & -b_{12} & \cdots & -b_{1 m} \\
-b_{21} & \lambda-b_{22} & \cdots & -b_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
\cdots & \cdots & -b_{m(m-1)} & \lambda-b_{m m}
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
(\lambda-1)+1-b_{11} & -b_{12} & \cdots & -b_{1 m} \\
-b_{21} & (\lambda-1)+1-b_{22} & \cdots & -b_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
\cdots & \cdots & -b_{m(m-1)} & (\lambda-1)+1-b_{m m}
\end{array}\right| .
\end{aligned}
$$

The eigenpolynomial can be expressed as $G(\lambda-1)=(\lambda-1)^{m}+a_{m-1}(\lambda-1)^{m-1}+\cdots+a_{0}$, where the coefficient a_{i} of eigenpolynomial $G(\lambda-1)$ is a combination of the $c_{i j}=\delta_{i j}-b_{i j}$ by product or addition. By the ultrametric property, we have $\left|a_{i}\right| \leq \max \left\{\left|c_{i j}\right|\right\}<1$. Since $\left|a_{i}\right|^{\frac{1}{m-i}}<1$, there exists a positive number r satisfying $0<r<1$ such that $\left|a_{i}\right|<r^{m-i}$. By Lemma 2.4, each eigenvalue of g is in $D(1,1)^{-}$.

Theorem 4.4 If a subgroup G of $\operatorname{SL}(m, \overline{\mathrm{~F}}((t)))$ is discrete with no parabolic elements, then for each $g \in G \backslash\{I\},\|g-I\| \geq 1$.

Proof By Theorem 3.1, we know that each element in G is either a loxodromic element or an elliptic element of finite order. If g in G is a loxodromic element, then at least one eigenvalue λ whose absolute value is larger than 1 . Hence $|\lambda-1|=|\lambda|>1$. If g is an elliptic element of finite order, then each eigenvalue λ satisfies $|\lambda-1|=1$.

Acknowledgement The author would like to thank the referees for the valuable suggestions and comments, which help to improve the paper a lot.

References

[1] Armitage, J. V. and Parker, J. R., Jørgensens inequality for non-archimedean metric spaces, Geometry and Dynamics of Groups and Spaces, 265, 2018, 97-111.
[2] Kato, F., Non-archimedean orbifolds covered by Mumford curves, Journal of Algebraic Geometry, 14, 2005, 1-34.
[3] Martin, G. J., On discrete Mobius groups in all dimensions: A generalization of Jørgensen's inequality, Acta Math., 163, 1989, 253-289.
[4] Qiu, W. Y., Wang, Y. F., Yang, J. H. and Yin, Y. C., On metric properties of limit sets of contractive analytic non-archimedean dynamical systems, J. Math. Anal. Appl., 414, 2014, 386-401.
[5] Qiu, W. Y. and Yang, J. H., On limit sets of discontinuous subgroups of the Berkovich space, preprint.
[6] Qiu, W. Y., Yang, J. H. and Yin, Y. C., The discrete subgroups and Jørgensens inequality for $\operatorname{SL}\left(m, \mathbb{C}_{p}\right)$, Acta Math. Sin., English Series Mar., 29(3), 2013, 417-428.
[7] Wang, Y. F. and Yang, J. H., The pointwise convergence of the p-adic Möbius maps, Sci. China Math., 57(1) 2014, 1-8.
[8] Wang, Y. F. and Yang, J. H., On p-adic Möbius maps. arXiv: 1512.01305.

[^0]: Manuscript received March 15, 2016. Revised January 12, 2017.
 ${ }^{1}$ Department of Mathematics, Shanghai University, Shanghai 200444, China.
 E-mail: davidyoung@amss.ac.cn
 *This work was supported by the National Natural Science Foundation of China (Nos. 11301510, 11671092).

