Degeneracy and Finiteness Theorems for Meromorphic Mappings in Several Complex Variables*

Si Duc QUANG ${ }^{1}$

Abstract

The author proves that there are at most two meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(n \geq 2)$ sharing $2 n+2$ hyperplanes in general position regardless of multiplicity, where all zeros with multiplicities more than certain values do not need to be counted. He also shows that if three meromorphic mappings f^{1}, f^{2}, f^{3} of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(n \geq 5)$ share $2 n+1$ hyperplanes in general position with truncated multiplicity, then the map $f^{1} \times f^{2} \times f^{3}$ is linearly degenerate.

Keywords Second main theorem, Uniqueness problem, Meromorphic mapping, Multiplicity
2000 MR Subject Classification 32H30, 32A22, 30D35

1 Introduction

In 1926, Nevanlinna [4] showed that two distinct nonconstant meromorphic functions f and g on the complex plane \mathbb{C} cannot have the same inverse images for five distinct values, and that g is a special type of linear fractional transformation of f if they have the same inverse images counted with multiplicities for four distinct values. These results are usually called the five values and the four values theorems of Nevanlinna. After that, many authors have extended and improved the results of Nevanlinna to the case of meromorphic mappings into complex projective spaces. These theorems are called uniqueness theorems or finiteness theorems. To state some of them, first of all we recall the following.

For a divisor ν on \mathbb{C}^{m}, which is regarded as a function with values in \mathbb{Z}, and for a positive integer k or $k=\infty$, we set

$$
\nu_{\leq k}(z)= \begin{cases}0, & \text { if } \nu(z)>k \\ \nu(z), & \text { if } \nu(z) \leq k\end{cases}
$$

Similarly, we define $\nu_{>k}(z)$. The zero divisor of a meromorphic φ will be denoted by ν_{φ}.
Let f be a nonconstant meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ with a reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$, and H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ given by $H=\left\{a_{0} \omega_{0}+\cdots+a_{n} \omega_{n}=0\right\}$, where $\left(a_{0}, \cdots, a_{n}\right) \neq(0, \cdots, 0)$. Set $(f, H)=\sum_{i=0}^{n} a_{i} f_{i}$. We see that $\nu_{(f, H)}$ does not depend on the choice of the reduced representation of f and the representation of H.

[^0]Let H_{1}, \cdots, H_{q} be q hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position and let k_{1}, \cdots, k_{q} be q positive integers or $+\infty$. Assume that f is linearly nondegenerate and satisfies

$$
\operatorname{dim}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z) \cdot \nu_{\left(f, H_{j}\right), \leq k_{j}}(z)>0\right\} \leq m-2, \quad 1 \leq i<j \leq q
$$

Let d be an integer. We consider the set $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{q}, d\right)$ of all meromorphic maps $g: \mathbb{C}^{m} \rightarrow$ $\mathbb{P}^{n}(\mathbb{C})$ satisfying the conditions:
(a) $\min \left(\nu_{\left(f, H_{i}\right), \leq k_{i}}, d\right)=\min \left(\nu_{\left(g, H_{i}\right), \leq k_{i}}, d\right), \quad 1 \leq j \leq q$,
(b) $f(z)=g(z)$ on $\bigcup_{i=1}^{q}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z)>0\right\}$.

If $k_{1}=\cdots=k_{q}=+\infty$, we will write $\mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, d\right)$ for $\mathcal{F}\left(f,\left\{H_{i}, \infty\right\}_{i=1}^{q}, d\right)$. We see that conditions (a) and (b) mean the sets of all intersecting points with multiplicity at most k_{i} (truncated to level d) of f and g with the hyperplane H_{i} are the same, and two mappings f and g are identify on these sets.

Denote by $\sharp S$ the cardinality of the set S. There have been many results on uniqueness problem for the case of $k_{1}=\cdots=k_{q}=+\infty$. Firstly, in 1983, Smiley [9] proved that $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)=1$ for $q=3 n+2$. In 2006, Thai and Quang [10] showed that the result of Smiley is still valid for $q=3 n+1$ and $n \geq 2$. In 2009, Dethloff and Tan [2] proved that this result still holds for $q=[2.75 n]$ with n big enough, and then Chen and Yan in [1] reduced the number q to $2 n+3$. After that, in 2011 Quang [6] improved these results to the case of $q=2 n+3$ and $k_{1}=\cdots=k_{q}>\frac{4 n^{3}+11 n^{2}+n-2}{3 n+2}$. As far as we known, there is still no uniqueness theorem for meromorphic mappings sharing less than $2 n+3$ hyperplanes regardless of multiplicities.

For the case $q=2 n+2$, in 2011 Yan and Chen [11] proved a degeneracy theorem as follows.
Theorem A If $q=2 n+2$, then the map $f^{1} \times f^{2} \times f^{3}$ of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C})$ is linearly degenerate for every three maps $f^{1}, f^{2}, f^{3} \in \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 2\right)$.

The first finiteness theorem for the case of meromorphic mappings sharing $2 n+2$ hyperplanes is given by Quang [7] in 2012 and its correction [8] as follows.

Theorem B If $n \geq 3$ and $q=2 n+2$, then $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right) \leq 2$.
We would also like to emphasize here that in the above two results, all intersecting points of the mappings and the hyperplanes are considered, i.e., $k_{i}=+\infty$ for all i. The techniques used in the proofs of Theorems A and B are based on the estimation of the counting function of the Cartan's auxiliary function. But they do not work for the case where $k_{i}<+\infty$. Our first purpose in this paper is to improve the above result by considering that case (including the case of $n=2$). Namely, we will prove the following.

Theorem 1.1 Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ $(n \geq 2)$. Let $H_{1}, \cdots, H_{2 n+2}$ be $2 n+2$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position and let k_{1}, \cdots, k_{n+2} be positive integers or $+\infty$. Assume that

$$
\operatorname{dim}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z) \cdot \nu_{\left(f, H_{j}\right), \leq k_{j}}(z)>0\right\} \leq m-2, \quad 1 \leq i<j \leq 2 n+2
$$

and

$$
\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}<\min \left\{\frac{n+1}{3 n^{2}+n}, \frac{5 n-9}{24 n+12}, \frac{n^{2}-1}{10 n^{2}+8 n}\right\}
$$

Then $\sharp \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right) \leq 2$.

In order to prove this theorem, we first prove that $f^{1} \wedge f^{2} \wedge f^{3}=0$ for every three maps f^{1}, f^{2}, f^{3} in $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$ if $\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}<\frac{n+1}{3 n^{2}+n}$ (see Lemma 3.2). And then, we improve the estimate of the counting function of the Cartan's auxiliary function (see Lemma 3.6).

The last purpose of this paper is to prove a degeneracy theorem for three mappings sharing $2 n+1$ hyperplanes. Namely, we will proved the following.

Theorem 1.2 Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ $(n \geq 5)$. Let $H_{1}, \cdots, H_{2 n+1}$ be $2 n+1$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position and let $k_{1}, \cdots, k_{2 n+1}$ be positive integers or $+\infty$ such that

$$
\operatorname{dim}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z) \cdot \nu_{\left(f, H_{j}\right), \leq k_{j}}(z)>0\right\} \leq m-2, \quad 1 \leq i<j \leq 2 n+2 .
$$

If there exists a positive integer p with $p \leq n$ and

$$
\sum_{i=1}^{2 n+1} \frac{1}{k_{i}+1}<\frac{n p-3 n-p}{4 n^{2}+3 n p-n}
$$

then the map $f^{1} \times f^{2} \times f^{3}$ of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C})$ is linearly degenerate for every three maps $f^{1}, f^{2}, f^{3} \in \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+1}, p\right)$.

2 Basic Notions in Nevanlinna Theory

In this paper, we will use the standard notation from Nevanlinna theory due to [6-8]. As usual, we denote by $N_{\varphi}^{[M]}(r), N_{\varphi, \leq k}^{[M]}(r)$ and $N_{\varphi,>k}^{[M]}(r)$ the counting functions of the divisors $\nu_{\varphi}, \nu_{\varphi, \leq k}$ and $\nu_{\varphi,>k}$ respectively, where φ is a meromorphic function on \mathbb{C}^{m}. For brevity we will omit the superscript ${ }^{[M]}$ if $M=\infty$.

For a set $S \subset \mathbb{C}^{m}$, we define the characteristic function of S by

$$
\chi_{S}(z)= \begin{cases}1, & \text { if } z \in S \\ 0, & \text { if } z \notin S\end{cases}
$$

If the closure \bar{S} of S is an analytic subset of \mathbb{C}^{m}, then we denote by $N(r, S)$ the counting function of the reduced divisor whose support is the union of all irreducible components of \bar{S} with codimension one.

For a meromorphic mapping f of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ and a hyperplane H in $\mathbb{P}^{n}(\mathbb{C})$ with $f\left(\mathbb{C}^{m}\right) \not \subset$ H, we denote by $T_{f}(r)$ the characteristic function of f and $m_{f, H}(r)$ the proximity function of f with respect to H (if $f\left(\mathbb{C}^{m}\right) \not \subset H$). The proximity function of a nonzero meromorphic function φ is defined by

$$
m(r, \varphi):=\int_{S(r)} \log \max (|\varphi|, 1) \sigma_{n}
$$

As usual, by the notation " $\mid P$ " we mean the assertion P holds for all $r \in[0, \infty)$ excluding a Borel subset E of the interval $[0, \infty)$ with $\int_{E} \mathrm{~d} r<\infty$.

The following results play essential roles in Nevanlinna theory (see [5]).
Theorem 2.1 (The First Main Theorem) Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping and H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$. Then

$$
N_{(f, H)}(r)+m_{f, H}(r)=T_{f}(r), \quad r>1 .
$$

Theorem 2.2 (The Second Main Theorem) Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping and let H_{1}, \cdots, H_{q} be hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$. Then

$$
\|(q-n-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}^{[n]}(r)+o\left(T_{f}(r)\right)
$$

For meromorphic functions F, G, H on \mathbb{C}^{m} and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \in \mathbb{Z}_{+}^{m}$, we define the Cartan's auxiliary function as follows:

$$
\Phi^{\alpha}(F, G, H):=F \cdot G \cdot H \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{F} & \frac{1}{G} & \frac{1}{H} \\
\mathcal{D}^{\alpha}\left(\frac{1}{F}\right) & \mathcal{D}^{\alpha}\left(\frac{1}{G}\right) & \mathcal{D}^{\alpha}\left(\frac{1}{H}\right)
\end{array}\right|
$$

Lemma 2.1 (see [3, Proposition 3.4]) If $\Phi^{\alpha}(F, G, H)=0$ and $\Phi^{\alpha}\left(\frac{1}{F}, \frac{1}{G}, \frac{1}{H}\right)=0$ for all α with $|\alpha| \leq 1$, then one of the following assertions holds:
(i) $F=G, G=H$ or $H=F$,
(ii) $\frac{F}{G}, \frac{G}{H}$ and $\frac{H}{F}$ are all constants.

Lemma 2.2 Let f^{1}, f^{2}, f^{3} be three maps in $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{q}, 1\right)$. Assume that f^{i} has a representation $f^{i}=\left(f_{0}^{i}: \cdots: f_{n}^{i}\right), 1 \leq i \leq 3$. Suppose that there exist $s, t, l \in\{1, \cdots, q\}$ such that

$$
P:=\operatorname{det}\left(\begin{array}{ccc}
\left(f^{1}, H_{s}\right) & \left(f^{1}, H_{t}\right) & \left(f^{1}, H_{l}\right) \\
\left(f^{2}, H_{s}\right) & \left(f^{2}, H_{t}\right) & \left(f^{2}, H_{l}\right) \\
\left(f^{3}, H_{s}\right) & \left(f^{3}, H_{t}\right) & \left(f^{3}, H_{l}\right)
\end{array}\right) \not \equiv 0 .
$$

Then we have

$$
T(r) \geq \sum_{i=s, t, l}\left(N\left(r, \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)),
$$

where $T(r)=\sum_{u=1}^{3} T_{f^{u}}(r)$.
Proof Denote by S the closure of the set

$$
\bigcup_{1 \leq u \leq 3} I\left(f^{u}\right) \cup \bigcup_{1 \leq i<j \leq 2 n+2}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z) \cdot \nu_{\left(f, H_{j}\right), \leq k_{j}}(z)>0\right\} .
$$

Then S is an analytic subset of codimension at least two of \mathbb{C}^{m}.
For $z \notin S$, we consider the following two cases.
Case $1 z$ is a zero of $\left(f, H_{i}\right)$ with multiplicity at most k_{i}, where $i \in\{s, t, l\}$. For instance, we suppose that $i=s$. We set

$$
m=\min \left\{\nu_{\left(f^{1}, H_{s}\right), \leq k_{s}}(z), \nu_{\left(f^{2}, H_{s}\right), \leq k_{s}}(z), \nu_{\left(f^{3}, H_{s}\right), \leq k_{s}}(z)\right\} .
$$

Then there exists a neighborhood U of z and a holomorphic function h defined on U such that $\operatorname{Zero}(h)=U \cap \operatorname{Zero}\left(f, H_{s}\right)$ and $d h$ has no zero on $\operatorname{Zero}(h)$. Then the functions $\varphi_{u}=\frac{\left(f^{u}, H_{s}\right)}{h^{m}}(1 \leq$ $u \leq 3$) are holomorphic in a neighborhood of z. On the other hand, since $f^{1}=f^{2}=f^{3}$ on $\operatorname{Supp} \nu_{\left(f, H_{s}\right), \leq k_{s}}$, we have

$$
P_{u v}:=\left(f^{u}, H_{t}\right)\left(f^{v}, H_{l}\right)-\left(f^{u}, H_{l}\right)\left(f^{v}, H_{t}\right)=0 \quad \text { on } \operatorname{Supp} \nu_{\left(f, H_{s}\right), \leq k_{s}}, \quad 1 \leq u<v \leq 3 .
$$

Therefore, there exist holomorphic functions $\psi_{u v}$ on a neighborhood of z such that $P_{u v}=h \psi_{u v}$. Then we have

$$
P=h^{m+1}\left(\varphi_{1} \psi_{23}-\varphi_{2} \psi_{13}+\varphi_{3} \psi_{12}\right)
$$

on a neighborhood of z. This yields that

$$
\nu_{P}(z) \geq m+1=\sum_{i=s, t, l}\left(\min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}(z)\right\}-\nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)\right)+2 \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z) .
$$

Case $2 z$ is a zero point of $\left(f, H_{i}\right)$ with multiplicity at most k_{i}, where $i \notin\{s, t, l\}$. There exists an index v such that $\left(f^{1}, H_{v}\right)(z) \neq 0$. Since $f^{1}(z)=f^{2}(z)=f^{3}(z)$, we have that $\left(f^{u}, H_{v}\right)(z) \neq 0(1 \leq u \leq 3)$ and

$$
\begin{aligned}
P & =\prod_{u=1}^{3}\left(f^{u}, H_{v}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
\frac{\left(f^{1}, H_{s}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{1}, H_{t}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{1}, H_{l}\right)}{\left(f^{1}, H_{v}\right)} \\
\frac{\left(f^{2}, H_{s}\right)}{\left(f^{2}, H_{v}\right)} & \frac{\left(f^{2}, H_{t}\right)}{\left(f^{2}, H_{v}\right)} & \frac{\left(f^{2}, H_{l}\right)}{\left(f^{2}, H_{v}\right)} \\
\frac{\left(f^{3}, H_{s}\right)}{\left(f^{3}, H_{v}\right)} & \frac{\left(f^{3}, H_{t}\right)}{\left(f^{3}, H_{v}\right)} & \frac{\left(f^{3}, H_{l}\right)}{\left(f_{3}, H_{v}\right)}
\end{array}\right) \\
& =\prod_{u=1}^{3}\left(f^{u}, H_{v}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
\frac{\left(f^{1}, H_{s}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{1}, H_{t}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{1}, H_{l}\right)}{\left(f^{1}, H_{v}\right)} \\
\frac{\left(f^{2}, H_{s}\right)}{\left(f^{2}, H_{v}\right)}-\frac{\left(f^{1}, H_{s}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{2}, H_{t}\right)}{\left(f^{2}, H_{v}\right)}-\frac{\left(f^{1}, H_{t}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{2}, H_{l}\right)}{\left(f^{2}, H_{v}\right)}-\frac{\left(f^{1}, H_{l}\right)}{\left(f^{1}, H_{v}\right)} \\
\frac{\left(f^{3}, H_{s}\right)}{\left(f^{3}, H_{v}\right)}-\frac{\left(f^{1}, H_{s}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{3}, H_{t}\right)}{\left(f^{3}, H_{v}\right)}-\frac{\left(f^{1}, H_{t}\right)}{\left(f^{1}, H_{v}\right)} & \frac{\left(f^{3}, H_{l}\right)}{\left(f^{3}, H_{v}\right)}-\frac{\left(f^{1}, H_{l}\right)}{\left(f^{1}, H_{v}\right)}
\end{array}\right)
\end{aligned}
$$

vanishes at z with multiplicity at least two. Therefore, we have

$$
\nu_{P}(z) \geq 2=\sum_{i=s, t, l}\left(\min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}(z)\right\}-\nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)\right)+2 \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z) .
$$

Thus, from the above two cases we have

$$
\nu_{P}(z) \geq \sum_{i=s, t, l}\left(\min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}(z)\right\}-\nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)\right)+2 \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)
$$

for all z outside the analytic set S. Integrating both sides of the above inequality, we get

$$
N_{P}(r) \geq \sum_{i=s, t, l}\left(N\left(r, \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)) .
$$

By Jensen's formula and the definition of the characteristic function we have

$$
\begin{aligned}
N_{P}(r) & =\int_{S(r)} \log |P| \sigma_{m}+O(1) \\
& \leq \sum_{u=1}^{3} \int_{S(r)} \log \left\|f^{u}\right\| \sigma_{m}+O(1)=T(r)+o(T(r)) .
\end{aligned}
$$

Thus, we have

$$
T(r) \geq \sum_{i=s, t, l}\left(N\left(r, \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)) .
$$

The lemma is proved.

3 Proof of Main Theorems

Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$. Let $H_{1}, \cdots, H_{2 n+2}$ be $2 n+2$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position and let $k_{i} \geq n(1 \leq i \leq 2 n+2)$ be positive integers or $+\infty$ with

$$
\operatorname{dim}\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z) \cdot \nu_{\left(f, H_{j}\right), \leq k_{j}}(z)>0\right\} \leq m-2, \quad 1 \leq i<j \leq 2 n+2
$$

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 3.1 If $\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}<\frac{1}{n}$, then every mapping $g \in \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$ is linearly nondegenerate and

$$
\| T_{g}(r)=O\left(T_{f}(r)\right) \quad \text { and } \quad \| T_{f}(r)=O\left(T_{g}(r)\right)
$$

Proof Suppose that there exists a hyperplane H satisfying $g\left(\mathbb{C}^{m}\right) \subset H$. We assume that f and g have reduce representations $f=\left(f_{0}: \cdots: f_{n}\right)$ and $g=\left(g_{0}: \cdots: g_{n}\right)$, respectively. Assume that $H=\left\{\left(\omega_{0}: \cdots: \omega_{n}\right) \mid \sum_{i=0}^{n} a_{i} \omega_{i}=0\right\}$. Since f is linearly nondegenerate, $(f, H) \not \equiv 0$. On the other hand, $(f, H)(z)=(g, H)(z)=0$ for all $z \in \bigcup_{i=1}^{2 n+2}\left\{\nu_{\left(f, H_{i}\right), \leq k_{i}}\right\}$, hence

$$
N_{(f, H)}(r) \geq \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)
$$

It yields that

$$
\begin{aligned}
\| T_{f}(r) & \geq N_{(f, H)}(r) \geq \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)=\sum_{i=1}^{2 n+2}\left(N_{\left(f, H_{i}\right)}^{[1]}(r)-N_{\left(f, H_{i}\right),>k_{i}}^{[1]}(r)\right) \\
& \geq \sum_{i=1}^{2 n+2} \frac{1}{n} N_{\left(f, H_{i}\right)}^{[n]}(r)-\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} T_{f}(r) \geq\left(\frac{n+1}{n}-\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}\right) T_{f}(r)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} \geq \frac{1}{n}
$$

This is a contradiction. Hence $g\left(\mathbb{C}^{m}\right)$ cannot be contained in any hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$. Therefore g is linearly nondegenerate.

Also by the Second Main Theorem (see Theorem 2.2), we have

$$
\begin{aligned}
\|(n+1) T_{g}(r) & \leq \sum_{i=1}^{2 n+2} N_{\left(g, H_{i}\right)}^{[n]}(r)+o\left(T_{g}(r)\right) \leq \sum_{i=1}^{2 n+2} n N_{\left(g, H_{i}\right)}^{[1]}(r)+o\left(T_{g}(r)\right) \\
& =\sum_{i=1}^{2 n+2} n\left(N_{\left(g, H_{i}\right), \leq k_{i}}^{[1]}(r)+N_{\left(g, H_{i}\right),>k_{i}}^{[1]}(r)\right)+o\left(T_{g}(r)\right) \\
& \leq \sum_{i=1}^{2 n+2} n\left(N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+\frac{1}{k_{i}+1} T_{g}(r)\right)+o\left(T_{g}(r)\right) \\
& \leq \sum_{i=1}^{2 n+2} n\left(T_{f}(r)+\frac{1}{k_{i}+1} T_{g}(r)\right)+o\left(T_{f}(r)+T_{g}(r)\right) .
\end{aligned}
$$

Thus

$$
\left(n+1-\sum_{i=1}^{2 n+2} \frac{n}{k_{i}+1}\right) T_{g}(r) \leq n(2 n+2) T_{f}(r)+o\left(T_{f}(r)+T_{g}(r)\right)
$$

We note that

$$
n+1-\sum_{i=1}^{2 n+2} \frac{n}{k_{i}+1}>n>0
$$

Hence $\| T_{g}(r)=O\left(T_{f}(r)\right)$. Similarly, we get $\| T_{f}(r)=O\left(T_{g}(r)\right)$.
Lemma 3.2 Assume that $n \geq 2$ and

$$
\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}<\frac{n+1}{n(3 n+1)}
$$

Then for three maps $f^{1}, f^{2}, f^{3} \in \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$ we have $f^{1} \wedge f^{2} \wedge f^{3}=0$.
Proof By Lemma 3.1, we have that f^{s} is linearly nondegenerate and $\| T_{f^{s}}(r)=O\left(T_{f}(r)\right)$ and $\| T_{f}(r)=O\left(T_{f}(r)\right)$ for all $s=1,2,3$.

Suppose that $f^{1} \wedge f^{2} \wedge f^{3} \not \equiv 0$. For each $1 \leq i \leq 2 n+2$, we set

$$
N_{i}(r)=\sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)-(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) .
$$

Here, we note that for positive integers a, b, c we have $(\min \{a, b, c\}-1) \geq \min \{a, n\}+$ $\min \{a, n\}+\min \{a, n\}-2 n-1$. Then

$$
\min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}(z)\right\}-\nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z) \geq \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-(2 n+1) \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)
$$

for all $z \in \operatorname{Supp} \nu_{\left(f, H_{i}\right), \leq k_{i}}$. This yields that

$$
\begin{aligned}
& N\left(r, \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}(z)\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
\geq & \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)-(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)=N_{i}(r) .
\end{aligned}
$$

We denote by \mathcal{I} the set of all permutations of the $(2 n+2)$-tuple $(1, \cdots, 2 n+2)$, i.e.,

$$
\mathcal{I}=\left\{I=\left(i_{1}, \cdots, i_{2 n+2}\right):\left\{i_{1}, \cdots, i_{2 n+2}\right\}=\{1, \cdots, 2 n+2\}\right\} .
$$

For each $I=\left(i_{1}, \cdots, i_{2 n+2}\right) \in \mathcal{I}$ we define a subset E_{I} of $[1,+\infty)$ as

$$
E_{I}=\left\{r \geq 1: N_{i_{1}}(r) \geq \cdots \geq N_{i_{2 n+2}}(r)\right\} .
$$

It is clear that $\bigcup_{I \in \mathcal{I}} E_{I}=[1,+\infty)$. Therefore, there exists an element of \mathcal{I}, for instance it is $I_{0}=(1,2, \cdots, 2 n+2)$, satisfying

$$
\int_{E_{I_{0}}} \mathrm{~d} r=+\infty .
$$

Then, we have $N_{1}(r) \geq N_{2}(r) \geq \cdots \geq N_{2 n+2}(r)$ for all $r \in E_{I_{0}}$.

We consider \mathcal{M}^{3} as a vector space over the field \mathcal{M}. For each $i=1, \cdots, 2 n+2$, we set

$$
V_{i}=\left(\left(f^{1}, H_{i}\right),\left(f^{2}, H_{i}\right),\left(f^{3}, H_{i}\right)\right) \in \mathcal{M}^{3} .
$$

We put

$$
s=\min \left\{i: V_{1} \wedge V_{i} \not \equiv 0\right\}
$$

Since $f^{1} \wedge f^{2} \wedge f^{3} \not \equiv 0$, we have $1<s<n+1$. Also again by $f^{1} \wedge f^{2} \wedge f^{3} \not \equiv 0$, there exists an index $t \in\{s+1, \cdots, n+1\}$ such that $V_{1} \wedge V_{s} \wedge V_{t} \not \equiv 0$. This means that

$$
P:=\operatorname{det}\left(V_{1}, V_{s}, V_{t}\right) \not \equiv 0 .
$$

Set $T(r)=\sum_{u=1}^{3} T_{f^{u}}(r)$. By Lemma 2.2, for $r \in E_{I_{0}}$ we have

$$
\begin{aligned}
T(r) & \geq \sum_{i=1, s, t}\left(N\left(r, \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)) \\
& \geq N_{1}(r)+N_{s}(r)+2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)) \\
& \geq \frac{1}{n+1} \sum_{i=1}^{2 n+2} N_{i}(r)+2 \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r)) \\
& =\frac{1}{n+1} \sum_{i=1}^{2 n+2}\left(\sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-(2 n+1) N_{\left(f, H_{i}\right)}^{[1]}(z)\right)+2 \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
& =\frac{1}{n+1} \sum_{i=1}^{2 n+2} \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)+\frac{1}{3(n+1)} \sum_{i=1}^{2 n+2} \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
& \geq\left(1+\frac{1}{3 n}\right) \frac{1}{n+1} \sum_{i=1}^{2 n+2} \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r) \\
& \geq\left(1+\frac{1}{3 n}\right) \frac{1}{n+1} \sum_{i=1}^{2 n+2} \sum_{u=1}^{3}\left(N_{\left(f^{u}, H_{i}\right)}^{[n]}(r)-N_{\left(f f^{u}, H_{i}\right),>k_{i}}^{[n]}(r)\right) \\
& \geq\left(1+\frac{1}{3 n}\right) \frac{1}{n+1} \sum_{u=1}^{3}\left(n+1-\sum_{i=1}^{2 n+2} \frac{n}{k_{i}+1}\right) T_{f u}(r)+o(T(r)) \\
& =\left(1+\frac{1}{3 n}-\frac{3 n+1}{3(n+1)} \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}\right) T(r)+o(T(r)) .
\end{aligned}
$$

Letting $r \rightarrow+\infty\left(r \in E_{I_{0}}\right)$, we get

$$
1 \geq 1+\frac{1}{3 n}-\frac{3 n+1}{3(n+1)} \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}, \quad \text { i.e., } \quad \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} \geq \frac{n+1}{n(3 n+1)}
$$

This is a contradiction.
Hence, $f^{1} \wedge f^{2} \wedge f^{3} \equiv 0$. The lemma is proved.
Now for three mappings $f^{1}, f^{2}, f^{3} \in \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$, we define

- $F_{k}^{i j}=\frac{\left(f^{k}, H_{i}\right)}{\left(f^{k}, H_{j}\right)}(0 \leq k \leq 2,1 \leq i, j \leq 2 n+2)$,
- $V_{i}=\left(\left(f^{1}, H_{i}\right),\left(f^{2}, H_{i}\right),\left(f^{3}, H_{i}\right)\right) \in \mathcal{M}_{m}^{3}$,
- $T_{i}=\left\{z ; \nu_{\left(f, H_{i}\right), \leq k_{i}}(z)>0\right\}, S_{i}=\bigcup_{u=1}^{3}\left\{z ; \nu_{\left(f_{u}, H_{i}\right),>k_{i}}(z)>0\right\}$,
- $R_{i}=\bigcap_{u=1}^{3}\left\{z ; \nu_{\left(f_{u}, H_{i}\right),>k_{i}}(z)>0\right\}$,
- $\nu_{i}=\left\{z ; k_{i}^{u=1} \geq \nu_{\left(f^{u}, H_{i}\right)}(z) \geq \nu_{\left(f^{v}, H_{i}\right)}(z)=\nu_{\left(f^{t}, H_{i}\right)}(z)\right.$ for a permutation (u, v, t) of $(1,2,3)$.

We write $V_{i} \cong V_{j}$ if $V_{i} \wedge V_{j} \equiv 0$, otherwise we write $V_{i} \not \approx V_{j}$. For $V_{i} \not \approx V_{j}$, we wirte $V_{i} \sim V_{j}$ if there exist $1 \leq u<v \leq 3$ such that $F_{u}^{i j}=F_{v}^{i j}$, otherwise we write $V_{i} \nsim V_{j}$.

Lemma 3.3 With the assumption of Theorem 1.1, let h and g be two elements of the family $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$. If there exists a constant λ and two indices i, j such that

$$
\frac{\left(h, H_{i}\right)}{\left(h, H_{j}\right)}=\lambda \frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)},
$$

then $\lambda=1$.
Proof By Lemma 3.1, we see that h and g are linearly nondegenerate and have the characteristic functions of the same order with the characteristic function of f. Set $H=$ $\frac{\left(h, H_{i}\right)}{\left(h, H_{j}\right)}$ and $G=\frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)}$ and

$$
S_{t}^{\prime}=\left\{z ; \nu_{\left(h, H_{t}\right),>k_{t}}(z)>0\right\} \cup\left\{z ; \nu_{\left(g, H_{t}\right),>k_{t}}(z)>0\right\}, \quad 1 \leq t \leq 2 n+2 .
$$

Then $H=\lambda G$. Supposing that $\lambda \neq 1$, since $H=G$ on the set $\bigcup_{t \neq i, j} T_{t} \backslash\left(S_{i}^{\prime} \cup S_{j}^{\prime}\right)$, we have $\bigcup_{t \neq i, j} T_{t} \subset S_{i}^{\prime} \cup S_{j}^{\prime}$. Thus

$$
\begin{aligned}
0 & \geq \sum_{t \neq i, j} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)-\left(N\left(r, S_{i}^{\prime}\right)+N\left(r, S_{j}^{\prime}\right)\right) \\
& \geq \frac{1}{2} \sum_{t \neq i, j}\left(N_{\left(h, H_{t}\right), \leq k_{t}}^{[1]}(r)+N_{\left(g, H_{t}\right), \leq k_{t}}^{[1]}(r)\right)-\left(N\left(r, S_{i}^{\prime}\right)+N\left(r, S_{j}^{\prime}\right)\right) \\
& \geq \frac{1}{2 n} \sum_{t \neq i, j}\left(N_{\left(h, H_{t}\right)}^{[n]}(r)+N_{\left(g, H_{t}\right)}^{[n]}(r)\right)-\sum_{t=1}^{2 n+2}\left(N_{\left(h, H_{t}\right),>k_{t}}^{[1]}(r)+N_{\left(g, H_{t}\right),>k_{t}}^{[1]}(r)\right) \\
& \geq \frac{n-1}{2 n}\left(T_{h}(r)+T_{g}(r)\right)-\sum_{t=1}^{2 n+2} \frac{1}{k_{t}+1}\left(T_{h}(r)+T_{g}(r)\right)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
\frac{n-1}{2 n} \leq \sum_{t=1}^{2 n+2} \frac{1}{k_{t}+1}
$$

This is a contradiction. Therefore $\lambda=1$. The lemma is proved.
Lemma 3.4 Let f^{1}, f^{2}, f^{3} be three elements of $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$, where $k_{i}(1 \leq i \leq$ $2 n+2)$ are positive integers or $+\infty$. Suppose that $f^{1} \wedge f^{2} \wedge f^{3} \equiv 0$ and $V_{i} \sim V_{j}$ for some distinct indices i and j. Then f^{1}, f^{2}, f^{2} are not distinct.

Proof Suppose that f^{1}, f^{2}, f^{2} are distinct. Since $V_{i} \sim V_{j}$, we may suppose that $F_{1}^{i j}=$ $F_{2}^{i j} \neq F_{3}^{i j}$. Since $f^{1} \wedge f^{2} \wedge f^{3} \equiv 0$ and $f^{1} \neq f^{2}$, there exists a meromorphic function α such that

$$
F_{3}^{t j}=\alpha F_{1}^{t j}+(1-\alpha) F_{2}^{t j}, \quad 1 \leq t \leq 2 n+2
$$

This implies that $F_{3}^{i j}=F_{1}^{i j}=F_{2}^{i j}$. This is a contradiction. Hence f^{1}, f^{2}, f^{3} are not distinct. The lemma is proved.

Lemma 3.5 With the assumption of Theorem 1.1, let f^{1}, f^{2}, f^{3} be three maps in $\mathcal{F}\left(f,\left\{H_{i}\right.\right.$, $\left.\left.k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$. Suppose that f^{1}, f^{2}, f^{3} are distinct and there are two indices $i, j \in\{1,2, \cdots, 2 n+$ $2\}(i \neq j)$ such that $V_{i} \neq V_{j}$ and

$$
\Phi_{i j}^{\alpha}:=\Phi^{\alpha}\left(F_{1}^{i j}, F_{2}^{i j}, F_{3}^{i j}\right) \equiv 0
$$

for every $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \in \mathbb{Z}_{+}^{m}$ with $|\alpha|=1$. Then for every $t \in\{1, \cdots, 2 n+2\} \backslash\{i\}$, the following assertions hold:
(i) $\Phi_{i t}^{\alpha} \equiv 0$ for all $|\alpha| \leq 1$,
(ii) if $V_{i} \not \neq V_{t}$, then $F_{1}^{t i}, F_{2}^{t i}, F_{3}^{t i}$ are distinct and

$$
\begin{aligned}
N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) & \geq \sum_{s \neq i, t} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)-2\left(N\left(r, S_{i}\right)+N\left(r, S_{t}\right)\right) \\
& \geq \sum_{s \neq i, t} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)-2 \sum_{u=1}^{3} \sum_{s=i, t} N_{\left(f^{u}, H_{s}\right),>k_{s}}(r)
\end{aligned}
$$

Proof By $V_{i} \not \neq V_{j}$, we may assume that $F_{2}^{j i}-F_{1}^{j i} \neq 0$.
(a) For all $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha|=1$, we have $\Phi_{i j}^{\alpha}=0$, and hence

$$
\begin{aligned}
\mathcal{D}^{\alpha}\left(\frac{F_{3}^{j i}-F_{1}^{j i}}{F_{2}^{j i}-F_{1}^{j i}}\right) & =\frac{1}{\left(F_{2}^{j i}-F_{1}^{j i}\right)^{2}} \cdot\left(\left(F_{2}^{j i}-F_{1}^{j i}\right) \cdot \mathcal{D}^{\alpha}\left(F_{3}^{j i}-F_{1}^{j i}\right)-\left(F_{3}^{j i}-F_{1}^{j i}\right) \cdot \mathcal{D}^{\alpha}\left(F_{2}^{j i}-F_{1}^{j i}\right)\right) \\
& =\frac{1}{\left(F_{2}^{j i}-F_{1}^{j i}\right)^{2}} \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
F_{1}^{j i} & F_{2}^{j i} & F_{3}^{j i} \\
\mathcal{D}^{\alpha}\left(F_{1}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{2}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{3}^{j i}\right)
\end{array}\right|=0 .
\end{aligned}
$$

Since the above equality holds for all $|\alpha|=1$, then there exists a constant $c \in \mathbb{C}$ such that

$$
\frac{F_{3}^{j i}-F_{1}^{j i}}{F_{2}^{j i}-F_{1}^{j i}}=c
$$

By Lemma 3.2, we have $f^{1} \wedge f^{2} \wedge f^{3}=0$. Then for each index $t \in\{1, \cdots, 2 n+2\} \backslash\{i, j\}$, we have

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{ccc}
\left(f_{1}, H_{i}\right) & \left(f_{1}, H_{j}\right) & \left(f_{1}, H_{t}\right) \\
\left(f_{2}, H_{i}\right) & \left(f_{2}, H_{j}\right) & \left(f_{2}, H_{t}\right) \\
\left(f_{3}, H_{i}\right) & \left(f_{3}, H_{j}\right) & \left(f_{3}, H_{t}\right)
\end{array}\right) \\
& =\prod_{u=1}^{3}\left(f^{u}, H_{i}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
1 & F_{1}^{j i} & F_{1}^{t i} \\
1 & F_{2}^{j i} & F_{2}^{t i} \\
1 & F_{3}^{j i} & F_{3}^{t i}
\end{array}\right) \\
& =\prod_{u=1}^{3}\left(f^{u}, H_{i}\right) \cdot \operatorname{det}\left(\begin{array}{cc}
F_{2}^{j i}-F_{1}^{j i} & F_{2}^{t i}-F_{1}^{t i} \\
F_{3}^{j i}-F_{1}^{j i} & F_{3}^{t i}-F_{1}^{t i}
\end{array}\right) .
\end{aligned}
$$

Thus

$$
\left(F_{2}^{j i}-F_{1}^{j i}\right) \cdot\left(F_{3}^{t i}-F_{1}^{t i}\right)=\left(F_{3}^{j i}-F_{1}^{j i}\right) \cdot\left(F_{2}^{t i}-F_{1}^{t i}\right)
$$

If $F_{2}^{t i}-F_{1}^{t i}=0$, then $F_{3}^{t i}-F_{1}^{t i}=0$, and hence $\Phi_{i t}^{\alpha}=0$ for all $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha|<1$. Otherwise, we have

$$
\frac{F_{3}^{t i}-F_{1}^{t i}}{F_{2}^{t i}-F_{1}^{t i}}=\frac{F_{3}^{j i}-F_{1}^{j i}}{F_{2}^{j i}-F_{1}^{j i}}=c .
$$

This also implies that

$$
\begin{aligned}
\Phi_{i t}^{\alpha} & =F_{1}^{i t} \cdot F_{2}^{i t} \cdot F_{3}^{i t} \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
F_{1}^{t i} & F_{2}^{t i} & F_{3}^{t i} \\
\mathcal{D}^{\alpha}\left(F_{1}^{t i}\right) & \mathcal{D}^{\alpha}\left(F_{2}^{t i}\right) & \mathcal{D}^{\alpha}\left(F_{3}^{t i}\right)
\end{array}\right| \\
& =F_{1}^{i t} \cdot F_{2}^{i t} \cdot F_{3}^{i t} \cdot\left|\begin{array}{cc}
F_{2}^{t i}-F_{1}^{t i} & F_{3}^{t i}-F_{1}^{t i} \\
\mathcal{D}^{\alpha}\left(F_{2}^{t i}-F_{1}^{t i}\right) & \mathcal{D}^{\alpha}\left(F_{3}^{t i}-F_{1}^{t i}\right)
\end{array}\right| \\
& =F_{1}^{i t} \cdot F_{2}^{i t} \cdot F_{3}^{i t} \cdot\left|\begin{array}{cc}
F_{2}^{t i}-F_{1}^{t i} & c\left(F_{2}^{t i}-F_{1}^{t i}\right) \\
\mathcal{D}^{\alpha}\left(F_{2}^{t i}-F_{1}^{t i}\right) & c \mathcal{D}^{\alpha}\left(F_{2}^{t i}-F_{1}^{t i}\right)
\end{array}\right|=0 .
\end{aligned}
$$

Then one always has $\Phi_{i t}^{\alpha}=0$ for all $t \in\{1, \cdots, 2 n+2\} \backslash\{i\}$. The first assertion is proved.
(b) We suppose that $V_{i} \neq V_{t}$. From the above part, we have

$$
c F_{2}^{s i}+(1-c) F_{1}^{s i}=F_{3}^{s i}, \quad s \neq i .
$$

By the supposition that f^{1}, f^{2}, f^{3} are distinct, we have $c \notin\{0,1\}$. This implies that $F_{1}^{t i}, F_{2}^{t i}, F_{3}^{t i}$ are distinct.

We see that the second inequality is clear, then we prove the remain first inequality. We consider the meromorphic mapping F^{t} of \mathbb{C}^{m} into $\mathbb{P}^{1}(\mathbb{C})$ with a reduced representation

$$
F^{t}=\left(F_{1}^{t i} h_{t}: F_{2}^{t i} h_{t}\right)
$$

where h_{t} is a meromorphic function on \mathbb{C}^{m}. We see that

$$
\begin{aligned}
T_{F^{t}}(r) & =T\left(r, \frac{F_{1}^{t i}}{F_{2}^{t i}}\right) \leq T\left(r, F_{1}^{t i}\right)+T\left(r, \frac{1}{F_{2}^{t i}}\right)+O(1) \\
& \leq T\left(r, F_{1}^{t i}\right)+T\left(r, F_{2}^{t i}\right)+O(1) \leq T_{f^{1}}(r)+T_{f^{2}}(r)+O(1)=O\left(T_{f}(r)\right)
\end{aligned}
$$

For a point $z \notin I\left(F^{t}\right) \cup S_{i} \cup S_{t}$ which is a zero of some functions $F_{u}^{t i} h_{t}(1 \leq u \leq 3)$, z must be either zero of $\left(f, H_{i}\right)$ with multiplicity at most k_{i} or zero of $\left(f, H_{t}\right)$ with multiplicity at most k_{t}, and hence

$$
\sum_{u=1}^{3} \nu_{F_{u}^{t i} h_{t}}^{[1]}(z)=1 \leq \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)+\nu_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(z) .
$$

This implies that

$$
\sum_{u=1}^{3} \nu_{F_{u}^{t_{i} h_{t}}}^{[1]}(z) \leq \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)+\nu_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(z)+\chi_{S_{i}}(z)+\chi_{S_{t}}(z)
$$

outside an analytic subset of codimension two. By integrating both sides of this inequality, we get

$$
\begin{equation*}
\sum_{u=1}^{3} N_{F_{u}^{t_{i}^{i} h_{t}}}^{[1]}(r) \leq N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)+N\left(r, S_{i}\right)+N\left(r, S_{t}\right) \tag{3.1}
\end{equation*}
$$

By the second main theorem, we also have

$$
\begin{equation*}
\| T_{F^{t}}(r) \leq \sum_{u=1}^{3} N_{F_{u}^{t i} h_{t}}^{[1]}(r)+o(T(r)) \tag{3.2}
\end{equation*}
$$

On the other hand, applying the first main theorem to the map F^{t} and the hyperplane $\left\{w_{0}-w_{1}=0\right\}$ in $\mathbb{P}^{1}(\mathbb{C})$, we have

$$
\begin{equation*}
T_{F^{t}}(r) \geq N_{\left(F_{1}^{t i}-F_{2}^{t i}\right) h_{t}}(r) \geq \sum_{\substack{v=1 \\ v \neq i, t}}^{2 n+2} N_{\left(f, H_{v}\right), \leq k_{v}}^{[1]}(r)-N\left(r, S_{i}\right)-N\left(r, S_{t}\right) . \tag{3.3}
\end{equation*}
$$

Therefore, from (3.1)-(3.3) we have

$$
\| N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) \geq \sum_{\substack{v=1 \\ v \neq i, t}}^{2 n+2} N_{\left(f, H_{v}\right), \leq k_{v}}^{[1]}(r)-N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)-2\left(N\left(r, S_{i}\right)+N\left(r, S_{t}\right)\right)+o(T(r))
$$

The second assertion of the lemma is proved.
Lemma 3.6 With the assumption of Theorem 1.1, let f^{1}, f^{2}, f^{3} be three meromorphic mappings in $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$. Assume that there exist $i, j \in\{1,2, \cdots, 2 n+2\}(i \neq j)$ and $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha|=1$ such that $\Phi_{i j}^{\alpha} \not \equiv 0$. Then we have

$$
\begin{aligned}
T(r) \geq & \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\sum_{k=1}^{3} N_{\left(f^{k}, H_{j}\right), \leq k_{j}}^{[n]}(r)+2 \sum_{\substack{t=1 \\
t \neq i, j}}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
& -(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-(n+1) N_{\left(f, H_{j}\right), \leq k_{j}}^{[1]}(r)+N\left(r, \nu_{j}\right) \\
& -N\left(r, S_{i}\right)-N\left(r, S_{j}\right)-(2 n-2) N\left(r, R_{i}\right)-(n-1) N\left(r, R_{j}\right)+o(T(r)) \\
\geq & \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\sum_{k=1}^{3} N_{\left(f^{k}, H_{j}\right), \leq k_{j}}^{[n]}(r)+2 \sum_{\substack{t=1 \\
t \neq i, j}}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
& -(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-(n+1) N_{\left(f, H_{j}\right), \leq k_{j}}^{[1]}(r)+N\left(r, \nu_{j}\right) \\
& -\sum_{u=1}^{3}\left(\left(1+\frac{n-1}{3}\right) N_{\left(f^{u}, H_{j}\right),>k_{j}}^{[1]}+\left(1+\frac{2 n-2}{3}\right) N_{\left(f f_{u}, H_{i}\right),>k_{i}}^{[1]}(r)\right)+o(T(r)) .
\end{aligned}
$$

Proof The second inequality is clear. We remain to prove the first inequality. We have

$$
\begin{align*}
\Phi_{i j}^{\alpha}= & F_{1}^{i j} \cdot F_{2}^{i j} \cdot F_{3}^{i j} \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
F_{1}^{j i} & F_{2}^{j i} & F_{3}^{j i} \\
\mathcal{D}^{\alpha}\left(F_{1}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{2}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{3}^{j i}\right)
\end{array}\right| \\
= & \left|\begin{array}{ccc}
F_{1}^{i j} & F_{2}^{i j} & F_{3}^{i j} \\
1 & 1 & 1 \\
F_{1}^{i j} \mathcal{D}^{\alpha}\left(F_{2}^{j i}\right) & F_{2}^{i j} \mathcal{D}^{\alpha}\left(F_{2}^{j i}\right) & F_{3}^{i j} \mathcal{D}^{\alpha}\left(F_{3}^{j i}\right)
\end{array}\right| \\
= & F_{1}^{i j}\left(\frac{\mathcal{D}^{\alpha}\left(F_{3}^{j i}\right)}{F_{3}^{j i}}-\frac{\mathcal{D}^{\alpha}\left(F_{2}^{j i}\right)}{\left.F_{2}^{j i}\right)+F_{2}^{i j}\left(\frac{\mathcal{D}^{\alpha}\left(F_{1}^{j i}\right)}{F_{1}^{j i}}-\frac{\mathcal{D}^{\alpha}\left(F_{3}^{j i}\right)}{F_{3}^{j i}}\right)}\right. \\
& +F_{3}^{i j}\left(\frac{\mathcal{D}^{\alpha}\left(F_{2}^{j i}\right)}{F_{2}^{j i}}-\frac{\mathcal{D}^{\alpha}\left(F_{1}^{j i}\right)}{F_{1}^{j i}}\right) . \tag{3.4}
\end{align*}
$$

By the Logarithmic Derivative Lemma, it follows that

$$
m\left(r, \Phi_{i j}^{\alpha}\right) \leq \sum_{u=1}^{3} m\left(r, F_{u}^{i j}\right)+2 \sum_{u=1}^{3} m\left(\frac{\mathcal{D}^{\alpha}\left(F_{u}^{j i}\right)}{F_{v}^{j i}}\right)+O(1) \leq \sum_{u=1}^{3} m\left(r, F_{u}^{i j}\right)+o\left(T_{f}(r)\right) .
$$

Therefore, we have

$$
\begin{aligned}
T(r) & \geq \sum_{u=1}^{3} T\left(r, F_{u}^{i j}\right)=\sum_{u=1}^{3}\left(m\left(r, F_{u}^{i j}\right)+N_{\frac{1}{F_{u}^{i j}}}(r)\right)=m\left(r, \Phi_{i j}^{\alpha}\right)+\sum_{u=1}^{3} N_{\frac{1}{F_{u}^{i j}}}(r)+o(T(r)) \\
& \geq T\left(r, \Phi_{i j}^{\alpha}\right)-N_{\frac{1}{\Phi_{i j}^{\alpha}}}+\sum_{u=1}^{3} N_{\frac{1}{F_{u}^{i j}}}(r)+o(T(r)) \\
& \geq N_{\Phi_{i j}^{\alpha}}(r)-N_{\frac{1}{\Phi_{i j}^{\alpha}}}+\sum_{u=1}^{3} N_{\frac{1}{F_{u}^{i j}}}(r)+o(T(r))=N\left(r, \nu_{\Phi_{i j}^{\alpha}}\right)+\sum_{u=1}^{3} N_{\frac{1}{F_{u}^{i j}}}(r)+o(T(r)) .
\end{aligned}
$$

Then, in order to prove the lemma, it is sufficient for us to prove

$$
\begin{align*}
N\left(r, \nu_{\Phi_{i j}^{\alpha}}^{\alpha}\right) \geq & \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\sum_{k=1}^{3} N_{\left(f^{k}, H_{j}\right), \leq k_{j}}^{[n]}(r)+2 \sum_{\substack{t=1 \\
t \neq i, j}}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
& -(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-(n+1) N_{\left(f, H_{j}\right), \leq k_{j}}^{[1]}(r)-\sum_{u=1}^{3} N_{\frac{1}{F_{u}^{i j}}}(r)+N\left(r, \nu_{j}\right) \\
& -N\left(r, S_{i}\right)-N\left(r, S_{j}\right)-(2 n-2) N\left(r, R_{i}\right)-(n-1) N\left(r, R_{j}\right)+o(T(r)) . \tag{3.5}
\end{align*}
$$

Denote by S the set of all singularities of $f^{-1}\left(H_{t}\right)(1 \leq t \leq q)$. Then S is an analytic subset of codimension at least two in \mathbb{C}^{m}. We set

$$
I=S \cup \bigcup_{s \neq t}\left\{z ; \nu_{\left(f, H_{s}\right), \leq k_{s}}(z) \cdot \nu_{\left(f, H_{t}\right), \leq k_{t}}(z)>0\right\} .
$$

Then I is also an analytic subset of codimension at least two in \mathbb{C}^{m}.
In order to prove the inequality (3.5), it is sufficient for us to show that the inequality

$$
\begin{align*}
& P: \stackrel{\text { Def }}{=} \\
& \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}+\sum_{u=1}^{3} \nu_{\left(f^{k}, H_{j}\right), \leq k_{j}}^{[n]}+2 \sum_{\substack{t=1 \\
t \neq i, j}}^{2 n+2} \chi_{T_{t}}-(2 n+1) \chi_{T_{i}}-(n+1) \chi_{T_{j}} \tag{3.6}\\
&-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}+\chi_{\nu_{j}}-\chi_{S_{i}}-\chi_{S_{j}}-2(n-1) \chi_{R_{i}}-(n-1) \chi_{R_{j}} \leq \nu_{\Phi_{i j}^{\alpha}}
\end{align*}
$$

holds outside the set I.
Indeed, for $z \notin I$, we distinguish the following cases.
Case $1 z \in T_{t} \backslash S_{i} \cup S_{j}(t \neq i, j)$. We see that $P(z)=2$. We write $\Phi_{i j}^{\alpha}$ in the form

$$
\Phi_{i j}^{\alpha}=F_{1}^{i j} \cdot F_{2}^{i j} \cdot F_{3}^{i j} \times\left|\begin{array}{cc}
\left(F_{1}^{j i}-F_{2}^{j i}\right) & \left(F_{1}^{j i}-F_{3}^{j i}\right) \\
\mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{2}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{3}^{j i}\right)
\end{array}\right|
$$

Then by the assumption that f^{1}, f^{2}, f^{3} coincide on T_{t}, we have $F_{1}^{j i}=F_{2}^{j i}=F_{3}^{j i}$ on $T_{t} \backslash S_{i}$. The property of the wronskian implies that $\nu_{\Phi_{i j}^{\alpha}}(z) \geq 2=P(z)$.

Case $2 z \in T_{t} \cap\left(S_{i} \cup S_{j}\right)(t \neq i, j)$. We note that $z \notin T_{i} \cup T_{j}$. Therefore, since $f^{1}(z)=$ $f^{2}(z)=f^{3}(z)$, if $z \in S_{i}$ (resp. $\left.z \in S_{j}\right)$ then z is a common zero of $\left(f^{1}, H_{i}\right),\left(f^{2}, H_{i}\right),\left(f^{3}, H_{i}\right)$ with multiplicity more than k_{i}, i.e., $z \in R_{i}$ (resp. $z \in R_{j}$).

Firstly, we suppose that $z \in S_{i}$, and hence $z \in R_{i}$. Then we have

$$
P(z) \leq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+2-1-2(n-1) \leq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-1 .
$$

From (3.4) we see that

$$
\nu_{\Phi_{i j}^{\alpha}}(z) \geq \min \left\{\nu_{F_{1}^{i j}}(z)-1, \nu_{F_{2}^{i j}}(z)-1, \nu_{F_{3}^{i j}}(z)-1\right\} \geq P(z) .
$$

Now, if $z \notin S_{i}$ then $z \in S_{j}$ and $z \in R_{j}$. In this case we note that z will be zero of all $\left(f^{u}, H_{j}\right), 1 \leq u \leq 3$, with multiplicity more than k_{j}, but not be zero of any $\left(f^{u}, H_{i}\right), 1 \leq u \leq 3$. Therefore

$$
P(z) \leq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z) \leq \min \left\{\nu_{F_{1}^{i j}}(z), \nu_{F_{2}^{i j}}(z), \nu_{F_{3}^{i j}}(z)\right\}-2\left(k_{j}+1\right) .
$$

Similarly as above, we have

$$
\nu_{\Phi_{i j}^{\alpha}}(z) \geq \min \left\{\nu_{F_{1}^{i j}}(z)-1, \nu_{F_{2}^{i j}}(z)-1, \nu_{F_{3}^{i j}}(z)-1\right\} \geq P(z)
$$

Case $3 z \in T_{i} \backslash S_{j}$. We have

$$
P(z)=\sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-(2 n+1) \leq \min _{1 \leq u \leq 3}\left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)\right\}-1 .
$$

We may assume that $\nu_{\left(f^{1}, H_{i}\right)}(z) \leq \nu_{\left(f^{2}, H_{i}\right)}(z) \leq \nu_{\left(f^{3}, H_{i}\right)}(z)$. We write

$$
\Phi_{i j}^{\alpha}=F_{1}^{i j}\left[F_{2}^{i j}\left(F_{1}^{j i}-F_{2}^{j i}\right) F_{3}^{i j} \mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{3}^{j i}\right)-F_{3}^{i j}\left(F_{1}^{j i}-F_{3}^{j i}\right) F_{2}^{i j} \mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{2}^{j i}\right)\right] .
$$

It is easy to see that $F_{2}^{i j}\left(F_{1}^{j i}-F_{2}^{j i}\right), F_{3}^{i j}\left(F_{1}^{j i}-F_{3}^{j i}\right)$ are holomorphic on a neighborhood of z, and

$$
\begin{gathered}
\nu_{F_{3}^{i j} \mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{3}^{j i}\right)}(z) \leq 1, \\
\nu_{F_{2}^{i j} \mathcal{D}^{\alpha}\left(F_{1}^{j i}-F_{2}^{j i}\right)}^{\infty}(z) \leq 1 .
\end{gathered}
$$

Therefore, it implies that

$$
\nu_{\Phi_{i j}^{\alpha}}(z) \geq \nu_{\left(f^{1}, H_{i}\right), \leq k_{i}}^{[n]}(z)-1 \geq P(z) .
$$

Case $4 z \in T_{i} \cap S_{j}$. The assumption that f^{1}, f^{2}, f^{3} coincide on T_{i} yields that $z \in R_{j}$. We have

$$
P(z) \leq \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-(2 n+1)-n \leq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-1 .
$$

Thus

$$
\nu_{\Phi_{i j}^{\alpha}}(z) \geq \min \left\{\nu_{F_{1}^{i j}}(z)-1, \nu_{F_{2}^{i j}}(z)-1, \nu_{F_{3}^{i j}}(z)-1\right\} \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-1 \geq P(z) .
$$

Case $5 z \in T_{j}$. We may assume that

$$
\nu_{F_{1}^{j i}}(z)=d_{1} \geq \nu_{F_{2}^{j i}}(z)=d_{2} \geq \nu_{F_{3}^{j i}}(z)=d_{3} .
$$

Choose a holomorphic function h on \mathbb{C}^{m} with the multiplicity of zero at z equal to 1 such that $F_{u}^{j i}=h^{d_{u}} \varphi_{u}(1 \leq u \leq 3)$, where φ_{u} are meromorphic on \mathbb{C}^{m} and holomorphic on a neighborhood of z. Then

$$
\begin{aligned}
\Phi_{i j}^{\alpha} & =F_{1}^{i j} \cdot F_{2}^{i j} \cdot F_{3}^{i j} \cdot\left|\begin{array}{cc}
F_{2}^{j i}-F_{1}^{j i} & F_{3}^{j i}-F_{1}^{j i} \\
\mathcal{D}^{\alpha}\left(F_{2}^{j i}-F_{1}^{j i}\right) & \mathcal{D}^{\alpha}\left(F_{3}^{j i}-F_{1}^{j i}\right)
\end{array}\right| \\
& =F_{1}^{i j} \cdot F_{2}^{i j} \cdot F_{3}^{i j} \cdot h^{d_{2}+d_{3}} \cdot\left|\begin{array}{cc}
\varphi_{2}-h^{d_{1}-d_{2}} \varphi_{1} & \varphi_{3}-h^{d_{1}-d_{3}} \varphi_{1} \\
\frac{\mathcal{D}^{\alpha}\left(h^{d_{2}-d_{3}} \varphi_{2}-h^{d_{1}-d_{3}} \varphi_{1}\right)}{h^{d_{2}-d_{3}}} & \mathcal{D}^{\alpha}\left(\varphi_{3}-h^{d_{1}-d_{3}} \varphi_{1}\right)
\end{array}\right|
\end{aligned}
$$

This yields that

$$
\nu_{\Phi_{i j}^{\alpha}}(z) \geq \sum_{u=1}^{3} \nu_{F_{u}^{i j}}(z)+d_{2}+d_{3}-\max \left\{0, \min \left\{1, d_{2}-d_{3}\right\}\right\} .
$$

If $z \notin S_{i}$, then $P(z)=-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\sum_{u=1}^{3} \min \left\{n, d_{u}\right\}-(n+1)+\chi_{\nu_{j}}$, and hence

$$
\begin{aligned}
\nu_{\Phi_{i j}^{\alpha}}(z) & \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{0}(z)+d_{2}+d_{3}-1+\chi_{\nu_{j}} \\
& \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+d_{2}+d_{3}-1+\chi_{\nu_{j}} \geq P(z) .
\end{aligned}
$$

Otherwise, if $z \in S_{i}$ then $z \in R_{i}$, and hence

$$
P(z) \leq \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{j}\right), \leq k_{j}}^{[n]}-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-3 n+\chi_{\nu_{j}} \leq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\chi_{\nu_{j}}
$$

and

$$
\begin{aligned}
\nu_{\Phi_{i j}^{\alpha}}(z) & \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{0}(z)+d_{2}+d_{3}-1+\chi_{\nu_{j}} \\
& =-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\max \left\{0,-d_{1}\right\}+\max \left\{d_{2}, 0\right\}+\max \left\{d_{3}, 0\right\}-1+\chi_{\nu_{j}} \geq P(z) .
\end{aligned}
$$

Case $6 z \in\left(S_{i} \cup S_{j}\right) \backslash\left(\bigcup_{t=1}^{2 n+2} T_{t}\right)$. Similarly as Case 5, we have

$$
\begin{aligned}
\nu_{\Phi_{i j}^{\alpha}}(z) & \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)+\max \left\{0,-d_{1}\right\}+\max \left\{d_{2}, 0\right\}+\max \left\{d_{3}, 0\right\}-1 \\
& \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-1 \geq-\sum_{u=1}^{3} \nu_{F_{u}^{i j}}^{\infty}(z)-\chi_{S_{i}}-\chi_{S_{j}} \geq P(z)
\end{aligned}
$$

From the above six cases, the inequality (3.6) holds. The lemma is proved.

Proof of Theorem 1.1 Suppose that there exist three distinct meromorphic mappings f^{1}, f^{2}, f^{3} in $\mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right)$. By Lemma 3.2, we have $f^{1} \wedge f^{2} \wedge f^{3} \equiv 0$. Without loss of generality, we may assume that

$$
\underbrace{V_{1} \cong \ldots \cong V_{l_{1}}}_{\text {group } 1} \not \neq \underbrace{V_{l_{1}+1} \cong \ldots \cong V_{l_{2}}}_{\text {group } 2} \not \equiv \underbrace{V_{l_{2}+1} \cong \ldots \cong V_{l_{3}}}_{\text {group } 3} \not \approx \cdots \not \approx \underbrace{V_{l_{s-1}} \cong \ldots \cong V_{l_{s}}}_{\text {group } s},
$$

where $l_{s}=2 n+2$.
Denote by P the set of all $i \in\{1, \cdots, 2 n+2\}$ satisfying that there exist $j \in\{1, \cdots, 2 n+$ $2\} \backslash\{i\}$ such that $V_{i} \not \neq V_{j}$ and $\Phi_{i j}^{\alpha} \equiv 0$ for all $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha| \leq 1$. We consider the following three cases.

Case $1 \sharp P \geq 2$. Then P contains two elements i, j. Then we have $\Phi_{i j}^{\alpha}=\Phi_{j i}^{\alpha}=0$ for all $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha| \leq 1$. By Lemma 2.1, there exist two functions, for instance they are $F_{1}^{i j}$ and $F_{i j}^{2}$, and a constant λ such that $F_{1}^{i j}=\lambda F_{2}^{i j}$. This yields that $F_{1}^{i j}=F_{2}^{i j}$ (by Lemma 3.3). Then by Lemma 3.5(ii), we easily see that $V_{i} \cong V_{j}$, i.e., V_{i} and V_{j} belong to the same group in the above partition.

Without loss of generality, we may assume that $i=1$ and $j=2$. Since f^{1}, f^{2}, f^{3} are supposed to be distinct, the number of each group in the above partition is less than $n+1$. Hence we have $V_{1} \cong V_{2} \not \approx V_{t}$ for all $t \in\{n+1, \cdots, 2 n+2\}$. By Lemma 3.5(ii), we have

$$
\begin{aligned}
& N_{\left(f, H_{1}\right), \leq k_{1}}^{[1]}(r)+N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \geq \sum_{s \neq 1, t} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-2 \sum_{u=1}^{3} \sum_{s=1, t} N_{\left(f^{u}, H_{s}\right),>k_{s}}^{[1]}(r), \\
& N_{\left(f, H_{2}\right), \leq k_{2}}^{[1]}(r)+N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \geq \sum_{s \neq 2, t} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-2 \sum_{u=1}^{3} \sum_{s=2, t} N_{\left(f^{u}, H_{s}\right),>k_{s}}^{[1]}(r) .
\end{aligned}
$$

Summing up both sides of the above two inequalities, we get

$$
\begin{aligned}
2 N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \geq & 2 \sum_{s \neq 1,2, t} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-2 \sum_{u=1}^{3}\left(N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r)\right. \\
& \left.+N_{\left(f^{u}, H_{2}\right),>k_{2}}^{[1]}(r)+2 N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r)\right) .
\end{aligned}
$$

After summing-up both sides of the above inequalities over all $t \in\{n+1, \cdots, 2 n+2\}$, we easily obtain

$$
\begin{aligned}
& \sum_{u=1}^{3}\left((n+2)\left(N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r)+N_{\left(f^{u}, H_{2}\right),>k_{2}}^{[1]}(r)\right)+2 \sum_{t=n+1}^{2 n+2} N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r)\right) \\
\geq & (n+2) \sum_{t=3}^{n} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)+n \sum_{t=n+1}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
\geq & n \sum_{t=3}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \geq \frac{n}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f_{u}, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
\geq & \frac{n}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f_{u}, H_{t}\right)}^{[1]}(r)-\frac{n}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r) \\
\geq & \frac{1}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f_{u}, H_{t}\right)}^{[n]}(r)-\frac{n}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r)
\end{aligned}
$$

$$
\geq \frac{n-1}{3} T(r)-\frac{n}{3} \sum_{u=1}^{3} \sum_{t=3}^{2 n+2} N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r)+o(T(r))
$$

Therefore, we have

$$
\begin{aligned}
\frac{n-1}{3} T(r) & \leq(n+2) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{t}\right),>k_{t}}^{[1]}(r) \leq(n+2) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} \frac{1}{k_{t}+1} N_{\left(f^{u}, H_{t}\right),>k_{t}}(r) \\
& \leq(n+2) \sum_{t=1}^{2 n+2} \frac{1}{k_{t}+1} T(r) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
\frac{n-1}{3(n+2)} \leq \sum_{t=1}^{2 n+2} \frac{1}{k_{t}+1}
$$

This is a contradiction.
Case $2 \sharp P=1$. We assume that $P=\{1\}$. We easily see that $V_{1} \neq V_{i}$ for all $i=2, \cdots$, $2 n+2$ (otherwise $i \in P$, this contradicts $\sharp P=1$). Then by Lemma 3.5(ii), we have

$$
N_{\left(f, H_{1}\right), \leq k_{1}}^{[1]}(r) \geq \sum_{s \neq 1, i} N_{\left(f, H_{s}\right), \leq k_{s}}^{[1]}(r)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-2 \sum_{u=1}^{3} \sum_{s=1, i} N_{\left(f^{u}, H_{s}\right),>k_{s}}^{[1]}(r)+o(T(r))
$$

Summing up both sides of the above inequality over all $i=2, \cdots, 2 n+2$, we get

$$
\begin{align*}
(2 n+1) N_{\left(f, H_{1}\right), \leq k_{1}}^{[1]}(r) \geq & (2 n-1) \sum_{i=2}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-2 \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r) \\
& -2(2 n+1) \sum_{u=1}^{3} N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r)+o(T(r)) \tag{3.7}
\end{align*}
$$

We also see that $i \notin P$ for all $2 \leq i \leq 2 n+2$. Set

$$
\sigma(i)= \begin{cases}i+n, & \text { if } i \leq n+2 \\ i-n, & \text { if } n+2<i \leq 2 n+2\end{cases}
$$

Then i and $\sigma(i)$ belong to two distinct groups, i.e., $V_{i} \neq V_{\sigma(i)}$ for all $i \in\{2, \cdots, 2 n+2\}$, and hence $\Phi_{i \sigma(i)}^{\alpha} \not \equiv 0$ for some $\alpha \in \mathbb{Z}_{+}^{m}$ with $|\alpha| \leq 1$. By Lemma 3.6 we have

$$
\begin{aligned}
T(r) \geq & \sum_{u=1}^{3} \sum_{t=i, \sigma(i)} N_{\left(f^{u}, H_{t}\right), \leq k_{t}}^{[n]}(r)-(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-(n+1) N_{\left(f, H_{\sigma(i)}\right), \leq k_{\sigma(i)}}^{[1]}(r) \\
& +2 \sum_{\substack{t=1 \\
t \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)-\sum_{u=1}^{3}\left(\frac{2 n+1}{3} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)+\frac{n+2}{3} N_{\left(f^{u}, H_{\sigma(i)}\right),>k_{\sigma(i)}}^{[1]}\right) \\
& +o(T(r)) .
\end{aligned}
$$

Summing up both sides of the above inequalities over all $i \in\{2, \cdots, 2 n+2\}$, we get

$$
(2 n+1) T(r) \geq 2 \sum_{i=2}^{2 n+2} \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+(n-4) \sum_{i=2}^{2 n+2} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)
$$

$$
\begin{aligned}
& +2(2 n+1) N_{\left(f, H_{1}\right), \leq k_{1}}^{[1]}(r)-(n+1) \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}+o(T(r)) \\
\geq & 2 \sum_{i=2}^{2 n+2} \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\frac{5 n-6}{3} \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
& -(8 n+4) \sum_{u=1}^{3} N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r)-(n+5) \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}+o(T(r)) \\
\geq & \frac{11 n-6}{3 n} \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r) \\
& -(8 n+4) \sum_{u=1}^{3} N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r)-(n+5) \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}+o(T(r)) \\
\geq & \frac{11 n-6}{3 n} \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right)}^{[n]}(r)-(8 n+4) \sum_{u=1}^{3} N_{\left(f^{u}, H_{1}\right),>k_{1}}^{[1]}(r) \\
& -\frac{14 n+9}{3} \sum_{u=1}^{3} \sum_{i=2}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}+o(T(r)) \\
\geq & \frac{11 n-6}{3} T(r)-(8 n+4) \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} T(r)+o(T(r)) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get $\frac{5 n-9}{24 n+12} \leq \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}$. This is a contradiction.
Case $3 P=\emptyset$. Then for all $i \neq j$, by Lemma 3.6 we have

$$
\begin{aligned}
T(r) \geq & \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\sum_{k=1}^{3} N_{\left(f^{k}, H_{j}\right), \leq k_{j}}^{[n]}(r)+2 \sum_{\substack{t=1 \\
t \neq i, j}}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
& -(2 n+1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-(n+1) N_{\left(f, H_{j}\right), \leq k_{j}}^{[1]}(r)+N\left(r, \nu_{j}\right) \\
& -\sum_{u=1}^{3}\left(\left(1+\frac{n-1}{3}\right) N_{\left(f^{u}, H_{j}\right),>k_{j}}^{[1]}(r)+\left(1+\frac{2 n-2}{3}\right) N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)\right)+o(T(r)) .
\end{aligned}
$$

Summing up both sides of the above inequalities over all pairs (i, j), we get

$$
\begin{align*}
(2 n+2) T(r) \geq & 2 \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{t}\right), \leq k_{t}}^{[n]}(r)+(n-2) \sum_{t=1}^{2 n+2} N_{\left(f, H_{t}\right), \leq k_{t}}^{[1]}(r)+\sum_{t=1}^{2 n+2} N\left(r, \nu_{t}\right) \\
& -(n+1) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)+o(T(r)) . \tag{3.8}
\end{align*}
$$

On the other hand, by Lemma 3.4, we see that $V_{j} \nsim V_{l}$ for all $j \neq l$. Hence, we have

$$
P_{s t}^{j l}: \stackrel{\text { Def }}{=}\left(f^{s}, H_{j}\right)\left(f^{t}, H_{l}\right)-\left(f^{t}, H_{j}\right)\left(f^{s}, H_{l}\right) \not \equiv 0, \quad s \neq t, j \neq l .
$$

Claim 3.1 With $i \neq j \neq l \neq i$ for every $z \in T_{i}$, we have

$$
\sum_{1 \leq s<t \leq 3} \nu_{P_{s t}^{j j}}(z) \geq 4 \chi_{T_{i}}(z)-\chi_{\nu_{i}}(z) .
$$

Indeed, for $z \in T_{i} \backslash \nu_{i}$, we may assume that $\nu_{\left(f^{1}, H_{i}\right)}(z)<\nu_{\left(f^{2}, H_{i}\right)}(z) \leq \nu_{\left(f^{3}, H_{i}\right)}(z)$. Since $f^{1} \wedge f^{2} \wedge f^{3} \equiv 0$, we have $\operatorname{det}\left(V_{i}, V_{j}, V_{l}\right) \equiv 0$, and hence

$$
\left(f^{1}, H_{i}\right) P_{23}^{j l}=\left(f^{2}, H_{i}\right) P_{13}^{j l}-\left(f^{3}, H_{i}\right) P_{12}^{j l} .
$$

This yields that

$$
\nu_{P_{23}^{j 3}}(z) \geq 2
$$

and hence $\sum_{1 \leq s<t \leq 3} \nu_{P_{s t}^{j l}}(z) \geq 4=4 \chi_{T_{i}}(z)-\chi_{\nu_{i}}(z)$.
Now, for $z \in \nu_{i}$, we have $\sum_{1 \leq s<t \leq 3} \nu_{P_{s t}^{j l}}(z) \geq 3=4 \chi_{T_{i}}(z)-\chi_{\nu_{i}}(z)$. Hence, the claim is proved.
On the other hand, with $i=j$ or $i=l$, for every $z \in\left\{\nu_{\left(f, H_{i}\right), \leq k_{i}}(z)>0\right\}$ we see that

$$
\begin{aligned}
\nu_{P_{s t}^{j l}}(z) & \geq \min \left\{\nu_{\left(f^{s}, H_{i}\right), \leq k_{i}}(z), \nu_{\left(f^{t}, H_{i}\right), \leq k_{i}}(z)\right\} \\
& \geq \nu_{\left(f^{s}, H_{i}\right), \leq k_{i}}^{[n]}(z)+\nu_{\left(f^{t}, H_{i}\right), \leq k_{i}}^{[z]}-n \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z),
\end{aligned}
$$

and hence

$$
\sum_{1 \leq s<t \leq 3} \nu_{P_{s t}^{j j}}(z) \geq 2 \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-3 n \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z) .
$$

Combining this inequality and the above claim, we have

$$
\sum_{1 \leq s<t \leq 3} \nu_{P_{s t}^{j l}}(z) \geq \sum_{i=j, l}\left(2 \sum_{u=1}^{3} \nu_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(z)-3 n \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)\right)+\sum_{i \neq j, l}\left(4 \nu_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(z)-\chi_{\nu_{i}}(z)\right) .
$$

This yields that

$$
\begin{align*}
\sum_{1 \leq s<t \leq 3} N_{P_{s t}^{j l}}(z) \geq & \sum_{i=j, l}\left(2 \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)-3 n N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right) \\
& +\sum_{i \neq j, l}\left(4 N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-N\left(r, \nu_{i}\right)\right) . \tag{3.9}
\end{align*}
$$

On the other hand, by Jensen formula, we easily see that

$$
N_{P_{s t}^{j l}}(z) \leq T_{f^{s}}(r)+T_{f^{t}}(r)+o(T(r)), \quad 1 \leq s<t \leq 3 .
$$

Then the inequality (3.9) implies that

$$
2 T(r) \geq \sum_{i=j, l}\left(2 \sum_{u=1}^{3} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)-3 n N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+\sum_{i \neq j, l}\left(4 N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)-N\left(r, \nu_{i}\right)\right) .
$$

Summing up both sides of the above inequalities over all pair (j, l), we obtain

$$
\begin{aligned}
2 T(r) \geq & \frac{2}{n+1} \sum_{u=1}^{3} \sum_{i=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\frac{n}{3 \times(n+1)} \sum_{u=1}^{3} \sum_{i=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
& -\frac{n}{n+1} \sum_{i=1}^{2 n+2} N\left(r, \nu_{i}\right)+o(T(r)) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{i=1}^{2 n+2} N\left(r, \nu_{i}\right) \geq & \frac{2}{n} \sum_{u=1}^{3} \sum_{i=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[n]}(r)+\frac{1}{3} \sum_{u=1}^{3} \sum_{i=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
& -\frac{2(n+1)}{n} T(r)+o(T(r)) .
\end{aligned}
$$

Using this estimate, from (3.8) we have

$$
\begin{aligned}
(2 n+2) T(r) \geq & \left(2+\frac{2}{n}\right) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{t}\right), \leq k_{t}}^{[n]}(r)+\frac{n-1}{3} \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f_{u}, H_{t}\right), \leq k_{t}}^{[1]}(r) \\
& -\frac{2(n+1)}{n} T(r)-(n+1) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)+o(T(r)) \\
\geq & \left(2+\frac{2}{n}+\frac{n-1}{3 n}\right) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{t}\right), \leq k_{t}}^{[n]}(r)-\frac{2(n+1)}{n} T(r) \\
& -(n+1) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)+o(T(r)) \\
\geq & \left(2+\frac{2}{n}+\frac{n-1}{3 n}\right) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{t}\right)}^{[n]}(r)-\frac{2(n+1)}{n} T(r) \\
& -\left(3 n+3+\frac{n-1}{3}\right) \sum_{u=1}^{3} \sum_{t=1}^{2 n+2} N_{\left(f^{u}, H_{i}\right),>k_{i}}^{[1]}(r)+o(T(r)) \\
\geq & \left(2+\frac{2}{n}+\frac{n-1}{3 n}\right)(n+1) T(r)-\frac{2(n+1)}{n} T(r) \\
& -\left(3 n+3+\frac{n-1}{3}\right) \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} T(r)+o(T(r)) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
2 n+2 \geq\left(2+\frac{2}{n}+\frac{n-1}{3 n}\right)(n+1)-\frac{2(n+1)}{n}-\left(3 n+3+\frac{n-1}{3}\right) \sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1}
$$

Thus $\sum_{i=1}^{2 n+2} \frac{1}{k_{i}+1} \geq \frac{n^{2}-1}{10 n^{2}+8 n}$. This is a contradiction.
Hence the supposition is impossible. Therefore, $\sharp \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+2}, 1\right) \leq 2$. We complete the proof of the theorem.

Proof of Theorem 1.2 Let $f^{1}, f^{2}, f^{3} \in \mathcal{F}\left(f,\left\{H_{i}, k_{i}\right\}_{i=1}^{2 n+1}, p\right)$. Suppose that $f^{1} \times f^{2} \times f^{3}$: $\mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C})$ is linearly nondegenerate, where $\mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{P}^{n}(\mathbb{C})$ is embedded into $\mathbb{P}^{(n+1)^{3}-1}(\mathbb{C})$ by Segre embedding. Then for every s, t, l we have

$$
P:=\operatorname{det}\left(\left(f^{i}, H_{s}\right),\left(f^{i}, H_{t}\right),\left(f^{i}, H_{l}\right) ; 1 \leq i \leq 3\right) \not \equiv 0
$$

By Lemma 2.2 we have

$$
T(r) \geq \sum_{i=s, t, l}\left(N\left(r, \min \left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}} ; 1 \leq u \leq 3\right\}\right)-N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)
$$

$$
+2 \sum_{i=1}^{2 n+1} N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)+o(T(r))
$$

where $T(r)=\sum_{u=1}^{3} T_{f^{u}}(r)$. Summing up both sides of the above inequality over all (s, t, l), we obtain

$$
\begin{align*}
T(r) \geq & \frac{1}{2 n+1} \sum_{i=1}^{2 n+1}\left(3 N\left(r, \min \left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}} ; 1 \leq u \leq 3\right\}\right)\right. \\
& \left.+(4 n-1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r)\right)+o(T(r)) \tag{3.10}
\end{align*}
$$

Now, for positive integers a, b, c with $\min \{a, p\}=\min \{b, p\}=\min \{c, p\}$, we will show that

$$
\begin{equation*}
3 \min \{a, b, c\}+(4 n-1) \geq \frac{4 n-1+3 p}{2 n+p}(\min \{a, n\}+\min \{b, n\}+\min \{c, n\}) \tag{3.11}
\end{equation*}
$$

Indeed, by replacing a, b, c by $\min \{a, n\}, \min \{b, n\}, \min \{c, n\}$ respectively, without loss of generality we may suppose that $n \geq a \geq b \geq c$. If $c \geq p$, we have

$$
\begin{aligned}
& 3 \min \{a, b, c\}+(4 n-1)-\frac{4 n-1+3 p}{2 n+p}(\min \{a, n\}+\min \{b, n\}+\min \{c, n\}) \\
\geq & 3 c+(4 n-1)-\frac{4 n-1+3 p}{2 n+p}(2 n+c)=\frac{(2 n+1)(c-p)}{2 n+p} \geq 0
\end{aligned}
$$

Otherwise, if $c<p$ then $a=b=c$, and hence

$$
\begin{aligned}
& 3 \min \{a, b, c\}+(4 n-1)-\frac{4 n-1+3 p}{2 n+p}(\min \{a, n\}+\min \{b, n\}+\min \{c, n\}) \\
= & 3 c+(4 n-1)-3 c \frac{4 n-1+3 p}{2 n+p}=\frac{(4 n-1)(2 n+p-3 c)+6 c(n-p)}{2 n+p} \geq 0
\end{aligned}
$$

Hence the inequality (3.11) holds.
From (3.11), we have

$$
\begin{aligned}
& 3 N\left(r, \min \left\{\nu_{\left(f^{u}, H_{i}\right), \leq k_{i}} ; 1 \leq u \leq 3\right\}\right)+(4 n-1) N_{\left(f, H_{i}\right), \leq k_{i}}^{[1]}(r) \\
\geq & \frac{4 n-1+3 p}{2 n+p} \sum_{u=1}^{3} N_{\left(f, H_{i}\right), \leq k_{i}}^{[n]}(r), \quad 1 \leq i \leq 2 n+1
\end{aligned}
$$

Therefore, the inequality (3.10) implies that

$$
\begin{aligned}
T(r) & \geq \frac{1}{2 n+1} \sum_{i=1}^{2 n+1} \frac{4 n-1+3 p}{2 n+p} \sum_{u=1}^{3} N_{\left(f, H_{i}\right), \leq k_{i}}^{[n]}(r)+o(T(r)) \\
& \geq \frac{4 n-1+3 p}{(2 n+1)(2 n+p)} \sum_{i=1}^{2 n+1} \sum_{u=1}^{3}\left(N_{\left(f, H_{i}\right)}^{[n]}(r)-N_{\left(f, H_{i}\right),>k_{i}}^{[n]}(r)\right)+o(T(r)) \\
& \geq \frac{4 n-1+3 p}{(2 n+1)(2 n+p)}\left(n-\sum_{i=1}^{2 n+1} \frac{n}{k_{i}+1}\right) T(r)+o(T(r))
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
1 \geq \frac{4 n-1+3 p}{(2 n+1)(2 n+p)}\left(n-\sum_{i=1}^{2 n+1} \frac{n}{k_{i}+1}\right)
$$

i.e.,

$$
\sum_{i=1}^{2 n+1} \frac{1}{k_{i}+1} \geq \frac{n p-3 n-p}{4 n^{2}+3 n p-n}
$$

This is a contradiction.
Hence, the map $f^{1} \times f^{2} \times f^{3}$ is linearly degenerate. The theorem is proved.

References

[1] Chen, Z. and Yan, Q., Uniqueness theorem of meromorphic mappings into $\mathbb{P}^{n}(\mathbb{C})$ sharing $2 N+3$ hyperplanes regardless of multiplicities, Internat. J. Math., 20, 2009, 717-726.
[2] Dethloff, G. and Tan, T. V., Uniqueness theorems for meromorphic mappings with few hyperplanes, Bull. Sci. Math., 133, 2009, 501-514.
[3] Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J., 152, 1998, 131-152.
[4] Nevanlinna, R., Einige eideutigkeitssätze in der theorie der meromorphen funktionen, Acta. Math., 48, 1926, 367-391.
[5] Noguchi, J. and Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr., 80, Amer. Math. Soc., Providence, RI, 1990.
[6] Quang, S. D., Unicity of meromorphic mappings sharing few hyperplanes, Ann. Polon. Math., 102(3), 2011, 255-270.
[7] Quang, S. D., A finiteness theorem for meromorphic mappings sharing few hyperplanes, Kodai Math. J., 102(35), 2012, 463-484.
[8] Quang, S. D. and Quynh, L. N., Algebraic dependences of meromorphic mappings sharing few hyperplanes counting truncated multiplicities, Kodai Math. J., 38, 2015, 97-118
[9] Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math., 25, 1983, 149-154.
[10] Thai, D. D. and Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Int. J. Math., 17(10), 2006, 1223-1257.
[11] Yan., Q and Chen, Z., Degeneracy theorem for meromorphic mappings with truncated multiplicity, Acta Math. Scientia, 31B, 2011, 549-560.

[^0]: Manuscript received December 4, 2015. Revised January 4, 2017.
 ${ }^{1}$ Department of Mathematics, Hanoi National University of Education, 136-Xuan Thuy, Cau Giay, Hanoi, Vienam; Thang Long Institute of Mathematics and Applied Sciences, Nghiem Xuan Yem, Hoang Mai, Ha Noi, Vietnam. E-mail: quangsd@hnue.edu.vn
 *This work was supported by the Vietnam National Foundation for Science and Technology Development (No. 101.04-2018.01).

