
Chin. Ann. Math. Ser. B

40(2), 2019, 273–284
DOI: 10.1007/s11401-019-0132-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2019

Waring-Goldbach Problem: One Square and

Nine Biquadrates∗
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1 Introduction

Let s and k be natural numbers and k ≥ 3. The Diophantine equation

N = x2 + yk1 + yk2 + · · ·+ yks (1.1)

belongs to the small stock of variants of Waring’s problem that have been studied by various

writers since the early days of the Hardy-Littlewood method. A heuristical application of that

method, based on a major arc analysis only, suggests that the number Rk,s(N) of solutions to

(1.1) in natural numbers x, y1, · · · , ys satisfies the asymptotic relation

Rk,s(N) =
Γ
(3

2

)

Γ
(

1 +
1

k

)s

Γ
(1

2
+

s

k

)
Sk,s(N)N

s
k
− 1

2 (1 + o(1)), (1.2)

provided that s > 1
2k. Here the singular series is defined by

Sk,s(N) =

∞
∑

q=1

q−s−1

q
∑

a=1
(a,q)=1

q
∑

x=1

e
(ax2

q

)(

q
∑

y=1

e
(ayk

q

))s

e
(

− aN

q

)

.

The first analysis of the problem was made by Stanley [9] in 1930. Following the pattern

laid down by Hardy and Littlewood [3–4] in their classic series “Partitio Numerorum”, she

established the asymptotic formula (1.2) for s ≥ s1(k) where

s1(3) = 7, s1(4) = 14, s1(5) = 28, s1(k) = 2k−2
(1

2
k − 1

)

+O(k), k > 5.
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Later, Sinnadurai [8] verified (1.2) for R3,6(N), and Hooley [6] gave a different proof for this

result. Brüdern and Kawada [2] gave a proof of (1.2) for R5,17(N) and Rk,s(N), when k ≥ 6

for s ≥ 7 · 2k−4 + 3.

When k = 4, Brüdern [1] proved that every sufficiently large integer can be represented as

the sum of one square and nine biquadrates, but he did not get the asymptotic formula for the

number of representations.

In view of Brüdern’s result, it is reasonable to expect that for every sufficiently large even

integer N satisfying one of the congruence conditions N ≡ 10, 58, 130, or 178 (mod 240), the

equation

N = p2 + p41 + p42 + · · ·+ p49 (1.3)

is solvable, where and below, the letter p, with or without subscript, always denotes a prime.

The congruence conditions are necessary here, because for prime p > 5, we have

p4 ≡ 1 (mod 240)

and

p2 ≡ 1 or 49 or 121 or 169 (mod 240).

Motivated by [7], the Hardy-Littlewood method enables us to obtain the following result.

Theorem 1.1 Every sufficiently large even integer N satisfying one of the congruence

conditions N ≡ 10, 58, 130, or 178 (mod 240) may be represented as the sum of one square and

nine fourth powers of prime numbers.

2 Notation and Some Lemmas

As usual, ϕ(n) stands for the Euler function and τ(n) for divisor function. The letter

ε denotes positive constant which is arbitrarily small. Suppose that x is a sufficiently large

positive number. Consider an integer n with n ≡ 7 (mod 240), x < n ≤ 2x, and write

P =
1

2
x

1
4 .

We put

λ1 = λ2 = 1, λ3 =
13

16
, λ4 =

(13

16

)2

,

λ5 =
(13

16

)2 91

111
, λ6 = λ7 =

(13

16

)2 78

111

and

Pj = Pλj , 1 ≤ j ≤ 7.
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Let r(n) denote the number of representations of n in the form

n = p41 + p42 + · · ·+ p47

with

Pj < pj ≤ 2Pj , 1 ≤ j ≤ 7.

We define the exponential sum

gj(α) =
∑

Pj<p≤2Pj

e(αp4)

and

S∗(q, a) =
q

∑

n=1
(n,a)=1

e
(an4

q

)

, uj(β) =

∫ 2Pj

Pj

e(βt4)

log t
dt, 1 ≤ j ≤ 7.

We have

r(n) =

∫ 1

0

(

7
∏

j=1

gj(α)
)

e(−αn)dα. (2.1)

Let L = (logP )B, where B is a sufficiently large positive constant which will be determined

later and

M(q, a) =
(a

q
− P

1
4

qP 4
,
a

q
+

P
1
4

qP 4

]

, M =
⋃

1≤q≤P
1
4

q
⋃

a=1
(a,q)=1

M(q, a),

m = (0, 1] \M.

We define the multiplicative function ω(q) by taking

ω(p4u+v) =

{

4p−u− 1
2 , when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and 2 ≤ v ≤ 4.

Note that

q−
1
2 ≤ ω(q) ≪ q−

1
4 .

Lemma 2.1 For (q, a) = 1, we have

(i) S∗(q, a) ≪ q
1
2+ε.

In particular, for (p, a) = 1 we have

(ii) |S∗(p, a)| ≤ ((k, p− 1)− 1)p
1
2 + 1,

(iii) S∗(pl, a) = 0 for l ≥ γ(p),

where

γ(p) =

{

θ + 2, if pθ‖k, p 6= 2 or p = 2, θ = 0,

θ + 3, if pθ‖k, p = 2, θ > 0.
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Proof For (ii), see [11, Lemma 4.3]. For (i), see Chapter VI, Problem 14 in [12]. For (iii),

see [5, Lemma 8.3].

Lemma 2.2 We have

∫

M

Ψ(α)3|g6(α)|2dα ≪ Q2P−4,

where

Ψ(α) =
q4εω(q)

1 + P 4|α− a
q
| for α ∈ M(q, a) ⊆ M.

Proof See [7, Lemma 2.5].

Lemma 2.3 For α ∈ M(q, a), 1 ≤ q ≤ P 2

2 , (a, q) = 1, we have

∑

P<p≤2P

e(αp4) ≪ P 1− 1
32+ε +

qεω(q)
1
2P (logP )4

(

1 + P 4|α− a

q
|
)

1
2

.

Proof See [7, Lemma 3.3].

Lemma 2.4 We have

∫ 1

0

∣

∣

∣

7
∏

j=2

gj(α)
∣

∣

∣

2

dα ≪ P ε

7
∏

j=2

Pj .

Proof See [7, Lemma 4.3].

Lemma 2.5 For 1 ≤ i ≤ 7, we have

∫ 1

0

∣

∣

∣
gi(α)

7
∏

j=2

gj(α)
∣

∣

∣

2

dα ≪ P 2
i

(

7
∏

j=2

Pj

)2

P−4(logP )2.

Proof See [7, Lemma 4.4].

3 Auxiliary Estimates

We introduce v(x) to denote the set of integers n ≡ 7 (mod 240) with x < n ≤ 2x such that

|r(n) −S(n)J(n)| >
(

7
∏

j=1

Pj

)

P−4(logP )−8, (3.1)

where

S(n) =

∞
∑

q=1

q
∑

a=1
(a,q)=1

(S∗(q, a))7

ϕ7(q)
e
(

− a

q
n
)

and

J(n) =

∫ ∞

−∞

(

7
∏

j=1

uj(β)
)

e(−βn)dβ.
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Lemma 3.1 (i) The singular series S(n) is convergent and S(n) > 0.

(ii) The singular integral

J(n) ≍
(

7
∏

j=1

Pj

)

P−4(logP )−7.

Proof Let L(q, n) denote the number of solutions of the congruence

u4
1 + u4

2 + · · ·+ u4
7 ≡ n (mod q), 1 ≤ uj ≤ q, (uj , q) = 1.

Then we have

pL(p, n) =

p
∑

a=1

S∗(p, a)7e
(

− a

p
n
)

= (p− 1)7 + Ep,

where

Ep =

p−1
∑

a=1

S∗(p, a)e
(

− a

p
n
)

.

By Lemma 4.3 in [11] and Lemma 2.1 (ii), we have

|Ep| ≤ (p− 1)(3
√
p+ 1)7.

It is easy to see that

|Ep| < (p− 1)7 for p ≥ 29.

For p = 2, 3, 5, · · · , 23, we can verify by hand that L(p, n) > 0. Hence we have L(p, n) > 0 for

every prime.

Let

A(q, n) =

q
∑

a=1
(a,q)=1

(S∗(q, a))7

ϕ7(q)
e
(

− a

q
n
)

.

Note the fact that A(q, n) is multiplicative in q and by Lemma 2.1(iii), we have

S(n) =
(

1 +

4
∑

i=1

A(2i, n)
)

∏

p≥3

(1 +A(p, n)). (3.2)

By Lemma 2.1(ii), for p ≥ 1000, we have

|A(p, n)| ≤ (p− 1)(3
√
p+ 1)7

(p− 1)7
≤ 1000

p2

and

∏

p≥1000

(1 +A(p, n)) ≥
∏

p≥1000

(

1− 1000

p2

)

> c > 0. (3.3)
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It is easy to verify that

1 +

4
∑

i=1

A(2i, n) =
L(16, n)

ϕ7(16)
(3.4)

and

1 +A(p, n) =
L(p, n)

(p− 1)7
for p 6= 2. (3.5)

Now by (3.2)–(3.5), we have S(n) > 0. In view of Lemma 2.1(i), we obtain

S(n) ≪
∞
∑

q=1

q
q

7
2+ε

ϕ7(q)
≪ 1.

The proof of (i) is completed.

By change of variable, we get

uj(β) =

∫ (2Pj)
4

P 4
j

x− 3
4 e(βx)

log x
dx.

From Fourier integral formula, we have

J(n) =

∫

D

(x1x2x3 · · ·x7)
− 3

4

(logn)(log x2)(log x3) · · · (log x7)
dx2dx3 · · · dx7,

where x1 = n−x2−x3−· · ·−x7, and where the regionD is the set of points (x2, x3, · · · , x7) ∈ R
n

such that

P 4
j ≤ xj ≤ (2Pj)

4, 1 ≤ j ≤ 7.

Let D0 be the set of points (x2, x3, · · · , x7) ∈ R
n such that

P 4
j < xj ≤ 2P 4

j , 2 ≤ j ≤ 7.

It is easy to see that D0 ⊂ D. Consequently, we have

J(n) ≫ (P 4
2P

4
3 · · ·P 4

7 )
− 3

4 (logP )−7

∫

D0

dx2dx3 · · · dx7

≫
(

7
∏

j=1

Pj

)

P−4(logP )−7. (3.6)

By [10, Lemma 4.2], we have

uj(β) =

∫ 2Pj

Pj

e(βt4)

log t
dt ≪ Pj

(1 + |β|P 4
j ) logP

, 1 ≤ j ≤ 7. (3.7)

Hence we obtain

J(n) ≪
(

7
∏

j=1

Pj

)

(logP )−7

∫ ∞

0

7
∏

j=1

1

1 + Pjβ
dβ

≪
(

7
∏

j=1

Pj

)

P−4(logP )−7. (3.8)

In view of (3.6) and (3.8), (ii) is proved.
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Lemma 3.2 Let V = card(v(x)). For any A > 0, we have

V ≪ x(log x)−A.

Proof Define

M0(q, a) =
(a

q
− L

P 4
,
a

q
+

L

P 4

]

, M0 =
⋃

1≤q≤L

q
⋃

a=1
(a,q)=1

M0(q, a),

m0 = (0, 1] \M0.

By (2.1), we have

r(n) =

∫

M0

(

7
∏

j=1

gj(α)
)

e(−αn)dα+

∫

m0

(

7
∏

j=1

gj(α)
)

e(−αn)dα

:= M(n) + E(n). (3.9)

As an application of the Siegal-Walfisz theorem and summation by parts, for α ∈ M0(q, a) ⊆
M0, we have

gj(α) =
S∗(q, a)

ϕ(q)
uj

(

α− a

q

)

+O(PjL
−5), 1 ≤ j ≤ 7. (3.10)

By (3.10), we have

M(n) =
∑

q≤L

q
∑

a=1
(a,q)=1

(S∗(q, a))7

ϕ(q)7
e
(

− a

q
n
)

∫ L

P4

− L

P4

(

7
∏

j=1

uj(β)
)

e(−βn)dβ +O
((

7
∏

j=1

Pj

)

P−4L−1
)

.

(3.11)

Write

S(Q,n) =
∑

q≤Q

q
∑

a=1
(a,q)=1

(S∗(q, a))7

ϕ7(q)
e
(

− a

q
n
)

and

J(Q,n) =

∫
Q

P4

− Q

P4

(

7
∏

j=1

u(β)
)

e(−βn)dβ.

From Lemma 2.1(i), we get

|S(n)−S(L, n)| ≪
∑

q>L

q
q

7
2+ε

ϕ7(q)
≪ 1

L
. (3.12)

In view of (3.7), we have

|J(n)− J(L, n)| ≪
∫

|β|> L

P4

7
∏

j=1

Pj

(1 + |β|P 4
j ) logP

dβ

≪
(

7
∏

j=1

Pj

)

P−4L−1. (3.13)
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From (3.11)–(3.13) and Lemma 3.1, we have

M(n) = S(n)J(n) +O
((

7
∏

j=1

Pj

)

P−4L−1
)

. (3.14)

By (3.1), (3.9) and (3.14), for n ∈ v(x) we have

|E(n)| >
(

7
∏

j=1

Pj

)

P−4(log x)−8

and

∑

n∈v(x)

|E(n)| > V ·
(

7
∏

j=1

Pj

)

P−4(log x)−8. (3.15)

On the other hand, by Cauchy-Schwarz inequality, we obtain

∑

n∈v(x)

|E(n)| =
∑

n∈v(x)

ηnE(n) =

∫

m0

(

7
∏

j=1

gj(α)
)

∑

n∈v(x)

ηne(−αn)dα

≪
(

∫

m0

∣

∣

∣

7
∏

j=1

gj(α)
∣

∣

∣

2

dα
)

1
2
(

∫ 1

0

∣

∣

∣

∑

n∈v(x)

ηne(−αn)
∣

∣

∣

2

dα
)

1
2

≪ V
1
2

(

∫

m0

∣

∣

∣

7
∏

j=1

gj(α)
∣

∣

∣

2

dα
)

1
2

, (3.16)

where |η(n)| = 1.

From (3.15)–(3.16), we conclude that

V ≪ P 8(log x)2
(

7
∏

j=1

Pj

)−2
∫

m0

∣

∣

∣

7
∏

j=1

gj(α)
∣

∣

∣

2

dα. (3.17)

Write

T =

∫

m0

∣

∣

∣

7
∏

j=1

gj(α)
∣

∣

∣

2

dα.

By Lemma 2.3, for α = a
q
+ β ∈ m, we have

g1(α) ≪ P 1− 1
32+ε +

qεω(q)
1
2P (logP )4

(1 + P 4|α− a
q
|) 1

2

≪ P 1− 1
32+ε +

q−
1
8+εP 1+ε

(1 + P 4|α− a
q
|) 1

8

≪ P 1− 1
32+ε, (3.18)
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and for α ∈ M ∩m0, we have

g1(α) ≪ P 1− 1
32+ε +

qεω(q)
1
2P (logP )4

(

1 + P 4
∣

∣

∣
α− a

q

∣

∣

∣

)
1
2

≪ P 1− 1
32+ε +Ψ(α)

1
4

q−
1
16+ε

(

1 + P 4
∣

∣

∣
α− a

q

∣

∣

∣

)
1
4

≪ P 1− 1
32+ε +Ψ(α)

1
4P (logP )4L− 1

18 . (3.19)

We have

T =
(

∫

m0
⋂

m

+

∫

m0
⋂

M

)∣

∣

∣

7
∏

j=1

gj(α)
∣

∣

∣

2

dα

= T1 +T2, (3.20)

As a consequence of (3.18)–(3.19), we get

T1 ≪ (P 1− 1
32+ε)2

∫ 1

0

∣

∣

∣

7
∏

j=2

gj(α)
∣

∣

∣

2

dα (3.21)

and

T2 ≪ P 2(logP )8L− 1
9

∫

m0
⋂

M

Ψ(α)
1
2

∣

∣

∣

7
∏

j=2

gj(α)
∣

∣

∣

2

dα. (3.22)

By Cauchy-Schwarz inequality and g6(α) = g7(α), we have

∫

m0

⋂
M

Ψ(α)
1
2

∣

∣

∣

7
∏

j=2

gj(α)
∣

∣

∣

2

dα

=

∫

m0

⋂
M

(Ψ(α)
1
2 |g7(α)|

1
3 )

6
∏

j=2

(

|gj(α)|
7
∏

i=2

|gi(α)|
)

1
3

dα

≪
(

∫

M

Ψ(α)3|g6(α)|2dα
)

1
6

6
∏

j=2

(

∫ 1

0

∣

∣

∣
gj(α)

7
∏

i=2

gi(α)
∣

∣

∣

2

dα
)

1
6

. (3.23)

By (3.21) and Lemma 2.4, we get

T1 ≪ P 2− 1
16+3ε

7
∏

j=2

Pj . (3.24)

From (3.22)–(3.23), Lemmas 2.2 and 2.4–2.5, we have

T2 ≪
(

7
∏

j=1

Pj

)2

P−4(logP )10L− 1
9 . (3.25)
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Therefore by (3.17), (3.20) and (3.24)–(3.25), we have

T ≪
(

7
∏

j=1

Pj

)2

P−4(logP )10L− 1
9

and

V ≪ P 8(log x)2
(

7
∏

j=1

Pj

)−2( 7
∏

j=1

Pj

)2

P−4(logP )10L− 1
8

≪ P 4(logP )12L− 1
9 .

Take B = 9(A+ 12) and Lemma 3.2 is proved.

Let s(n) be the number of representations of n (x < n ≤ 2x) as the sum of a square and

two biquadrates of prime numbers. Let k(x; l) denote the number of integers n ≡ l (mod 240)

(x < n ≤ 2x, l ∈ {3, 51, 123, 171}) such that s(n) > 0. Here our aim is to find a lower bound

for k(x; l).

Lemma 3.3 There is an absolute constant C > 0 such that

k(x; l) ≫ x

(log x)C
,

where l ∈ {3, 51, 123, 171}.

Proof By Cauchy-Schwarz inequality, we have

(

∑

x<n≤2x
n≡l (mod240)

s(n)
)2

≤ k(x; l)
∑

x<n≤2x
n≡l (mod240)

s2(n). (3.26)

By noting (l − 2, 240) = 1 and Dirichlet Theorem of prime numbers, we have

∑

x<n≤2x
n≡l (mod240)

s(n) ≥
∑

x<p2
1+p4

2+p4
3≤2x

p1≡
√
l−2 (mod240)

1 ≫ x(log x)−3. (3.27)

It follows from (3.26)–(3.27) that

k(x; l) ≫ x2(log x)−6
(

∑

x<n≤2x
n≡l (mod240)

s2(n)
)−1

≫ x2(log x)−6
(

∑

x<n≤2x

s2(n)
)−1

. (3.28)

Write

H(x) =
∑

x<n≤2x

s2(n).

Then H(x) is equal to the number of solutions of equation

x < p21 + p42 + p43 = p24 + p45 + p46 ≤ 2x. (3.29)
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Write

H(x) = H1(x) + 2H2(x), (3.30)

where H1(x) is the contribution to H(x) of those solutions of (3.29) for which p1 = p4 and

H2(x) is the contribution for which p1 > p4.

By [5, Theorem 4], we have

H1(x) ≪ x
1
2

∫ 1

0

∣

∣

∣

∑

1≤n≤4P

e(αn4)
∣

∣

∣

4

dα ≪ x(log x)C1 , (3.31)

where C1 is a positive constant.

Let f(n) denote the number of representations of n as the form

n = x4
1 + x4

2 − x4
3 − x4

4

with xj ≤ (4P )
1
4 (1 ≤ j ≤ 4). From [5, Theorem 3], we have

H2(x) ≤
∑

1≤n≤x

τ(n)f(n) ≪ x(log x)C2 , (3.32)

where C2 is a positive constant.

Take C = max {C1, C2}+ 6. Lemma 3.3 follows from (3.28) and (3.30)–(3.32).

4 Proof of Theorem 1.1

TakeA = 2C in Lemma 3.2, where C is the constant in Lemma 3.3. Let h ∈ {10, 58, 130, 178},
h ≡ N (mod 240) and

A(h) =
{

n | n = N − p21 − p42 − p43, p21 ≡ h− 9 (mod 240), p21 + p42 + p43 ≤ N

2

}

.

For n ∈ A(h)
(

N
2 < n ≤ N

)

, we have n ≡ 7 (mod 240), N − n ≡ h − 7 (mod 240) and

s(N − n) > 0. Hence

k
(N

2
, h− 7

)

= card(A(h)).

By Lemma 3.3, we have

card(A(h)) ≫ N(logN)−C . (4.1)

Then by Lemma 3.2, we get

∑

n∈A(h)
n satisfies (3.1)

1 ≪ N(logN)−2C . (4.2)

Upon comparison of (4.1)–(4.2), we know that every sufficiently large integer N satisfying the

congruence condition N ≡ h (mod 240), h ∈ {10, 58, 130, 178} may be represented as the sum

of one square and nine fourth powers of prime numbers. The theorem is proved.
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[2] Brüdern, J. and Kawada, K., The asymptotic formula in Waring’s problem for one square and seventeen
fifth powers, Monatshefte fr Mathematik, 162(4), 2011, 385–407.

[3] Hardy, G. H. and Littlewood, J. E., Some problems of “Partitio Numerorum”, I, a new solution to Warings
problem, Göttinger Nachrichten, 1920, 33–54, https://eudml.org/doc/59073.

[4] Hardy, G. H. and Littlewood, J. E., Some problems of “Partitio Numerorum”, VI, further researches in
Warings problem, Math. Z., 23, 1925, 1–37.

[5] Hua, L. K., Additive Theory of Prime Numbers, 13, Amer. Math. Soc., Providence, RI, 1965.

[6] Hooley, C., On a new approach to various problems of Waring’s type, Recent Progress in Analytic Number
Theory, Academic Press, London, New York, 1981.

[7] Kawada, K. and Wooley, T. D., On the Waring-Goldbach problem for fourth and fifth powers, Proceedings
of the London Mathematical Society, 83(1), 2001, 1–50.

[8] Sinnadurai, J. St.-C. L., Representation of integers as sums of six cubes and one square, Q. J. Math. Oxf.

Ser., 16(2), 1965, 289–296.

[9] Stanley, G. K., The representation of a number as the sum of one square and a number of k-th powers,
Proc. Lond. Math. Soc., 31(2), 1930, 512–553.

[10] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.

[11] Vaughan, R. C., The Hardy-Littlewood method, 2nd ed., Cambridge University Press, Cambridge, 1997.

[12] Vinogradov, I. M., Elements of Number Theory, Dover Publications, New York, 1954.


