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Abstract The aim of this paper is to study the operator (ddc�)q ∧ T on some classes of
plurisubharmonic (psh) functions, which are not necessary bounded, where T is a positive
closed current of bidimension (q, q) on an open set Ω of Cn. The author introduces two
classes F

T
p (Ω) and E

T
p (Ω) and shows first that they belong to the domain of definition of

the operator (ddc�)q ∧ T . Then the author proves that all functions that belong to these
classes are CT -quasi-continuous and that the comparison principle is valid for them.
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1 Introduction

Let Ω be a bounded open set of Cn and denote by PSH(Ω) the set of plurisubharmonic

(psh) functions on Ω. The definition of the complex Monge-Ampère operator (ddc�)n on the

set of psh functions was studied by Bedford and Taylor in [1], they proved that this operator is

well defined on the set of locally bounded psh functions and they established the comparison

principle to study the Dirichlet problem on PSH(Ω) ∩ L∞(Ω). The problem of extending its

domain of definition has been treated by many other authors, in particular Cegrell introduced,

between 1998 and 2004 (see [2–4]), a general class E(Ω): The class of psh functions which

are locally equal to decreasing limits of bounded psh functions vanishing on ∂Ω with bounded

Monge-Ampère mass on Ω. He proved that the Monge-Ampère operator is well defined on E(Ω)

and that it is the largest domain of definition of (ddc�)n if it is required to be continuous under

decreasing sequences. The study of this class leads to many results such as the comparison

principle, the convergence in capacity and the solvability of the Dirichlet problem. This paper

continues the studies of plurisubharmonic functions and the complex Monge-Ampère operator

associated to a positive closed current T .

Throughout this paper, we denote by T a positive closed current of bidimension (q, q) on Ω

where 1 ≤ q ≤ n. The operator (ddc�)q ∧ T was studied by Dabbek and Elkhadhra [5] in the

case of bounded psh functions. We will extend here the domain of definition of this operator

to some classes of unbounded psh functions, and its different properties will be studied.
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In this paper we recall the classes FT (Ω) and ET (Ω) introduced by Hai and Dung in [7]

where they proved that Monge-Ampère operator (ddc�)q∧T is well defined. For such classes one

of the results in [7] was cited with incomplete proof, so we state it here and give a completed

proof (see Lemma 2.2).

In Section 2 we introduce the class ETp (Ω) and show that the Monge-Ampère operator

(ddc�)q ∧ T is well defined on this class. Then we give some properties of the classes ETp (Ω) and

FT (Ω).

In Section 3 we prove that every function in ETp (Ω) or in FT (Ω) is CT -quasi-continuous; it

means that it is continuous outside a subset of small CT -capacity. The main tool will be an

estimate of the growth of CT ({u < −s}). Indeed we prove that

CT ({u < −s}) = O
( 1

sp+q

) (
resp. CT ({u < −s}) = O

( 1

sq

))

for every u ∈ ETp (Ω) (resp. u ∈ FT (Ω)).

In Section 4, we give the main result of this article (see Theorem 4.1).

2 The Classes E
T
p
(Ω) and F

T
p
(Ω)

2.1 Preliminary results

Throughout this paper, Ω will be a hyperconvex domain of Cn, therefore it is open, bounded,

connected and there exists h ∈ PSH−(Ω) such that for all c < 0, the set {z ∈ Ω, h(z) < c} is

relatively compact in Ω where PSH−(Ω) is the set of negative psh functions. We introduce the

class ET0 (Ω) associated to T , slightly different from the class ET0 (Ω) introduced in [7], as follows:

ET0 (Ω) :=
{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω); lim

z→∂Ω∩Supp T
ϕ(z) = 0,

∫

Ω

(ddcϕ)q ∧ T < +∞
}
.

Using the same proof as in [7], one can easily prove that this class is a convex cone and that

for all ψ ∈ PSH−(Ω) and ϕ ∈ ET0 (Ω) the function max(ϕ, ψ) ∈ ET0 (Ω).

In this section we will introduce new energy classes ETp (Ω) and FT
p (Ω) similar to Cegrell’s

ones and we will prove that the Monge-Ampère operator is well defined on them.

Definition 2.1 For every real p ≥ 1 we define ETp (Ω) as the set

ETp (Ω) :=
{
ϕ ∈ PSH−(Ω); ∃ ET0 (Ω) ∋ ϕj ց ϕ, sup

j≥1

∫

Ω

(−ϕj)
p(ddcϕj)

q ∧ T < +∞
}
.

When the sequence (ϕj)j associated to ϕ can be chosen such that

sup
j≥1

∫

Ω

(ddcϕj)
q ∧ T < +∞,

we say that ϕ ∈ FT
p (Ω).

It’s easy to check that ET0 (Ω) ⊂ FT
p (Ω) ⊂ ETp (Ω) and that using Hölder’s inequality, one has

FT
p1
(Ω) ⊂ FT

p2
(Ω) for all p2 ≤ p1.

We recall the following result which will be useful to prove some properties of our classes.
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Theorem 2.1 (see [5]) Suppose that u, v ∈ ET0 (Ω). If p ≥ 1, then for every 0 ≤ s ≤ q one

has
∫

Ω

(−u)p(ddcu)s ∧ (ddcv)q−s ∧ T

≤ Ds,p

( ∫

Ω

(−u)p(ddcu)q ∧ T
) p+s

p+q
( ∫

Ω

(−v)p(ddcv)q ∧ T
) q−s

p+q

,

where Ds,1 = e(j+1)(q−j) and Ds,p = p
(p+s)(q−s)

p−1 , p > 1.

We prove firstly that these two classes inherit some properties of the energy class ET0 (Ω).

Theorem 2.2 The classes ETp (Ω) and FT
p (Ω) are convex cones.

Proof It suffices to prove that u+v ∈ ETp (Ω) for every u, v ∈ ETp (Ω). Let (uj)j and (vj)j be

two sequences that decrease to u and v respectively as in Definition 2.1. We want to estimate
∫

Ω

(−uj − vj)
p(ddc(uj + vj))

q ∧ T.

Thanks to Minkowsky inequality, it is enough to estimate the following terms:
∫

Ω

(−uj)
p(ddcuj)

s ∧ (ddcvj)
q−s ∧ T,

∫

Ω

(−vj)
p(ddcuj)

s ∧ (ddcvj)
q−s ∧ T

for all 0 < s < q. Using Theorem 2.1, we can estimate these two last terms by
∫

Ω

(−uj)
p(ddcuj)

q ∧ T and

∫

Ω

(−vj)
p(ddcvj)

q ∧ T.

As these sequences are uniformly bounded by the definition of ETp (Ω), the result follows.

Proposition 2.1 Let u ∈ ETp (Ω) (resp. FT
p (Ω)) and v ∈ PSH−(Ω). Then the function

w := max(u, v) is in ETp (Ω) (resp. in FT
p (Ω)).

Proof Let (uj)j be a sequence that decreases to u as in Definition 2.1 and take wj :=

max(uj , v). The sequence (wj) decreases to w. So it is enough to prove that

sup
j

∫

Ω

(−wj)
p(ddcwj)

q ∧ T < +∞.

Thanks to Theorem 2.1, one has
∫

Ω

(−wj)
p(ddcwj)

q ∧ T ≤

∫

Ω

(−uj)
p(ddcwj)

q ∧ T

≤ D0,p

(∫

Ω

(−uj)
p(ddcuj)

q ∧ T
) p

p+q
(∫

Ω

(−wj)
p(ddcwj)

q ∧ T
) q

p+q

.

Therefore ∫

Ω

(−wj)
p(ddcwj)

q ∧ T ≤ D
p+q
p

0,p

∫

Ω

(−uj)
p(ddcuj)

q ∧ T.

The right-hand side is uniformly bounded because u ∈ ETp (Ω) and the result follows.

The following theorem proves that the Monge-Ampère operator (ddc�)q ∧ T is well defined

on the new classes.
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Theorem 2.3 Let u ∈ ETp (Ω) and let (uj)j be a sequence of psh functions that decreases to

u as in Definition 2.1. Then the sequence ((ddcuj)
q∧T )j converges weakly to a positive measure

µ and this limit is independent of the choice of the sequence (uj)j. We set (ddcu)q ∧ T := µ.

Proof Let 0 ≤ χ ∈ D(Ω), δ = sup{u1(z); z ∈ Suppχ} and ε > 0. There exists a sequence

(rj)j such that 0 < rj < rj−1 and

rj < dist
({
uj <

δ

2

}
,Ωc

)
.

Let

urj(z) :=

∫

B

uj(z + rjξ)dV (ξ),

where dV is the normalized Lebesgue measure on the unit ball B. Then one has

∣∣∣
∫

Ω

χ(ddcurj)
q ∧ T − χ(ddcuj)

q ∧ T
∣∣∣ < ε.

The function urj is continuous, psh on {uj <
δ
2} and uj ≤ urj on Ω. Let ũj = max(urj +δ, 2uj).

Then the sequence (ũj)j decreases to a psh function ũ and ũj ∈ ET0 (Ω) by Proposition 2.1.

Furthermore, using the same technic of the previous proof, we obtain

sup
j≥1

∫

Ω

(−ũj)
p(ddcũj)

q ∧ T < +∞.

The proof of the theorem will be complete if we show that

lim
j→+∞

∫

Ω

χ(ddcũj)
q ∧ T

exists.

Let h be an exhaustion function in ET0 (Ω). Then

∫

Ω

(−ũ)p(ddch)q ∧ T = lim
j→+∞

∫

Ω

(−ũj)
p(ddch)q ∧ T

≤ D0,p sup
j≥1

(∫

Ω

(−ũj)
p(ddcũj)

q ∧ T
) p

p+q
(∫

Ω

(−h)p(ddch)q ∧ T
) q

p+q

< +∞.

Thanks to Dabbek-Elkhadhra [5], the sequence of measures (ddcmax(ũj ,−k))q ∧ T converges

weakly for every k. So it is enough to control

∣∣∣
∫
χ(ddcurj)

q ∧ T − χ(ddcmax(ũj ,−k))
q ∧ T

∣∣∣.

Since ũj is continuous near Suppχ, we have

∣∣∣
∫
χ(ddcuj)

q ∧ T − χ(ddcmax(ũj,−k))
q ∧ T

∣∣∣

=
∣∣∣
∫

{ũ≤−k}

χ(ddcũj)
q ∧ T +

∫

{ũ>−k}

χ(ddcũj)
q ∧ T

−

∫

{ũ≤−k}

χ(ddcmax(ũj ,−k))
q ∧ T −

∫

{ũ>−k}

χ(ddcmax(ũj ,−k))
q ∧ T

∣∣∣
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≤

∫

{ũ≤−k}

χ(ddcũj)
q ∧ T +

∫

{ũ≤−k}

χ(ddcmax(ũj ,−k))
q ∧ T

≤
supχ

kp

∫

{−ũ≥k}

kp[(ddcũj)
q ∧ T + (ddcmax(ũj ,−k))

q ∧ T ]

≤
supχ

kp

∫

Ω

(−ũ)p(ddcũj)
q ∧ T + ((−max(ũj ,−k))

pddcmax(ũj ,−k))
q ∧ T

≤ C
supχ

kp
sup
m≥1

∫

Ω

(−ũm)
p(ddcũm)

q ∧ T.

This completes the proof of the theorem.

Theorem 2.4 If u ∈ ET1 (Ω), then
∫

Ω

u(ddcu)q ∧ T > −∞.

Moreover, if vj ∈ PSH−(Ω) such that (vj)j decreases to u, then
∫

Ω

vj(dd
cvj)

q ∧ T converges to

∫

Ω

u(ddcu)q ∧ T.

Proof Since u ∈ ET1 (Ω), there exists a sequence (uj)j ⊂ ET0 such that

lim
j→+∞

uj = u, α := sup
j

∫
−uj(dd

cuj)
q ∧ T < +∞.

We then prove that

lim
j→+∞

∫

Ω

uj(dd
cuj)

q ∧ T =

∫

Ω

u(ddcu)q ∧ T.

For every k ≥ j and ε > 0, one has
∫

Ω

−uj(dd
cuj)

q ∧ T

≤

∫

Ω

−uj(dd
cuk)

q ∧ T

=

∫

{uj≥−ε}

−uj(dd
cuk)

q ∧ T +

∫

{uj<−ε}

−uj(dd
cuk)

q ∧ T

and
∫

{uj≥−ε}

−uj(dd
cuk)

q ∧ T

=

∫

{uj≥−ε}

−max(uj ,−ε)(dd
cuk)

q ∧ T

≤
(∫

Ω

−max(uj ,−ε)(dd
cmax(uj ,−ε))

q ∧ T
) 1

q+1
(∫

Ω

−uk(dd
cuk)

q ∧ T
) q

q+1

≤
(
ε

∫

Ω

(ddcuj)
q ∧ T

) 1
q+1

α
q

q+1 .

This goes to 0 when ε→ 0. By Theorem 2.3 we obtain

lim sup
k→+∞

∫

{uj<−ε}

−uj(dd
cuk)

q ∧ T ≤

∫

Ω

−uj(dd
cu)q ∧ T.
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Now since −uj is lower semi-continuous,

lim inf
k→+∞

∫

Ω

−uj(dd
cuk)

q ∧ T ≥

∫

Ω

−uj(dd
cu)q ∧ T.

Hence for all j,

lim
k→+∞

∫

Ω

uj(dd
cuk)

q ∧ T =

∫

Ω

uj(dd
cu)q ∧ T.

It follows that

lim
j→+∞

∫

Ω

uj(dd
cuj)

q ∧ T

≥ lim
j→+∞

lim
k→+∞

∫

Ω

uj(dd
cuk)

q ∧ T =

∫

Ω

u(ddcu)q ∧ T

≥ lim sup
k→+∞

∫

Ω

u(ddcuk)
q ∧ T = lim sup

k→+∞
lim

j→+∞

∫

Ω

uj(dd
cuk)

q ∧ T

≥ lim
j→+∞

∫

Ω

uj(dd
cuj)

q ∧ T.

Thus

lim
j→+∞

∫

Ω

uj(dd
cuj)

q ∧ T =

∫

Ω

u(ddcu)q ∧ T. (2.1)

As (vk)k decreases to u, we have vk ∈ ET1 (Ω). It follows that
∫

Ω

max(uj, vk)(dd
cmax(uj, vk))

q ∧ T ≥

∫

Ω

uj(dd
cuj)

q ∧ T ≥ −α. (2.2)

Moreover, (max(uj , vk))j∈N ⊂ ET0 (Ω) and decreases to vk so thanks to (2.1),

lim
j→+∞

∫

Ω

max(uj , vk)(dd
cmax(uj , vk))

q ∧ T =

∫

Ω

vk(dd
cvk)

q ∧ T. (2.3)

By tending j → +∞, (2.1)–(2.3) give
∫

Ω

vk(dd
cvk)

q ∧ T ≥

∫

Ω

u(ddcu)q ∧ T.

Thus

lim inf
k→+∞

∫

Ω

vk(dd
cvk)

q ∧ T ≥

∫

Ω

u(ddcu)q ∧ T. (2.4)

With the same reason, as (max(uj , vk))k∈N decreases to uj, we have
∫

Ω

uj(dd
cuj)

q ∧ T ≥ lim sup
k→+∞

∫

Ω

vk(dd
cvk)

q ∧ T.

Hence

lim sup
k→+∞

∫

Ω

vk(dd
cvk)

q ∧ T ≤

∫

Ω

u(ddcu)q ∧ T. (2.5)

The result follows from (2.4)–(2.5).

Remark 2.1 We notice that if u ∈ ET1 (Ω) and (uj)j is a decreasing sequence to u as in

Definition 2.1, then the sequence
( ∫

Ω uj(dd
cuj)

q ∧ T
)
j
decreases to

∫
Ω u(dd

cu)q ∧ T.
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2.2 Comparison theorems

We recall two classes ET (Ω) and FT (Ω) introduced in [7] where the authors proved that the

Monge-Ampère operator (ddc�)q ∧ T is well defined on them.

Definition 2.2 We say that u ∈ FT (Ω) if there exists a sequence (uj)j ⊂ ET0 (Ω) which

decreases to u such that

sup
j

∫

Ω

(ddcuj)
q ∧ T < +∞.

We said that u ∈ ET (Ω) if for all z ∈ Ω there exists a neighborhood ω of z and a function

v ∈ FT (Ω) such that u = v on ω.

As a consequence, for every p ≥ 1 one has FT
p (Ω) ⊂ FT (Ω) ⊂ ET (Ω), but there is no

relationship between ETp (Ω) and ET (Ω).

Lemma 2.1 Let u, v ∈ PSH(Ω) ∩L∞(Ω) and let U be an open subset of Ω such that u = v

near ∂U . Then ∫

U

(ddcu)q ∧ T =

∫

U

(ddcv)q ∧ T.

Proof Let uε and vε be the usual regularizations of u and v respectively. Choose U ′ ⊂⊂ U

such that u = v near ∂U ′. If ε > 0 is small enough, one has uε = vε near ∂U ′, and if we take

χ ∈ D(U ′) with χ = 1 near {uε 6= vε}, then ddcχ = 0 on {uε 6= vε}. So

∫

Ω

χ(ddcuε)
q ∧ T =

∫

Ω

uεdd
cχ ∧ (ddcuε)

q−1 ∧ T

=

∫

Ω

vεdd
cχ ∧ (ddcuε)

q−1 ∧ T

=

∫

Ω

χ(ddcvε)
q ∧ T.

Hence ∫

Ω

χ(ddcu)q ∧ T =

∫

Ω

χ(ddcv)q ∧ T.

The result follows.

Corollary 2.1 Let u, v ∈ FT (Ω). Assume that there exists an open subset U of Ω such

that u = v near ∂U . Then ∫

U

(ddcu)q ∧ T =

∫

U

(ddcv)q ∧ T.

Proof Let u, v ∈ FT (Ω) and w ∈ ET0 (Ω) such that w(z) 6= 0 for all z. Then uj :=

max(u, jw) and vj = max(v, jw) belong to ET0 (Ω) and they are equal on ∂U . The result follows

from the previous lemma.

Now we recall a result due to [7] and give a different proof.

Proposition 2.2 (see [7]) For u, v ∈ FT (Ω) such that u ≤ v on Ω, one has

∫

Ω

(ddcv)q ∧ T ≤

∫

Ω

(ddcu)q ∧ T.
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Proof Let (uj)j and (vj)j be the corresponding decreasing sequences to u and v respectively

as in Definition 2.2. Replace vj by max(uj , vj), we can assume that uj ≤ vj for all j ∈ N. For

h ∈ ET0 (Ω) and ε > 0 we have

∫

Ω

−h(ddcvj)
q ∧ T ≤

∫

Ω

−h(ddcuj)
q ∧ T

≤

∫

Ω

−h(ddcu)q ∧ T + lim sup
j→+∞

∫

{h>−ε}

−h(ddcuj)
q ∧ T

≤

∫

Ω

−h(ddcu)q ∧ T + ε lim sup
j→+∞

∫

Ω

(ddcuj)
q ∧ T.

By tending ε to 0 we obtain

∫

Ω

−h(ddcv)q ∧ T ≤

∫

Ω

−h(ddcu)q ∧ T.

The result follows by choosing h decreasing to −1.

Lemma 2.2 For all u ∈ FT (Ω), there exists a sequence (uj)j ⊂ ET0 (Ω)∩C(Ω) that decreases

to u.

We claim that this lemma was cited in [7, Theorem 5.1] with incomplete proof. In fact

the authors used a comparison theorem proved by Dabbek-Elkhadhra [5] only for bounded psh

functions in FT (Ω) where functions are not in general bounded.

Proof We refer to Cegrell [3, Theorem 2.1] for the construction of the sequence (uj)j . It

remains to show that ∫

Ω

(ddcuj)
q ∧ T < +∞.

As uj ≥ u then by Proposition 2.2 one has

∫

Ω

(ddcuj)
q ∧ T ≤

∫

Ω

(ddcu)q ∧ T < +∞.

3 CT -Quasi-continuity

Now we establish the quasi-continuity of psh functions belonging to FT (Ω) and ETp (Ω). We

need to recall some notions given in [5] (see also [9]) about the capacity associated to T which

is defined as

CT (K,Ω) = CT (K) = sup
{∫

K

(ddcv)q ∧ T, v ∈ PSH(Ω, [−1, 0])
}

for any compact subset K of Ω. If E is a subset of Ω, we define

CT (E,Ω) = sup{CT (K), K is a compact subset of E}.

We refer to [5, 9] for the properties of this capacity.

Definition 3.1 (1) A subset A of Ω is said to be T -pluripolar if CT (A,Ω) = 0.

(2) A psh function u is said to be quasi-continuous with respect to CT , if for every ε > 0,

there exists an open subset Oε such that CT (Oε,Ω) < ε and u is continuous on Ω \Oε.
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Proposition 3.1 Let u ∈ FT (Ω). Then for every s > 0 one has

sqCT ({u ≤ −s},Ω) ≤

∫

Ω

(ddcu)q ∧ T.

In particular, the set {u = −∞} is T -pluripolar.

Proof Let (uj)j ⊂ ET0 (Ω) be a decreasing sequence to u on Ω as in Definition 2.2. Take

s > 0, v ∈ PSH(Ω, [−1, 0]) and let K be a compact subset in {uj ≤ −s}. Thanks to the

comparison principle (for bounded psh functions), we have

∫

K

(ddcv)q ∧ T ≤

∫

{s−1uj<v}

(ddcv)q ∧ T ≤
1

sq

∫

{s−1uj<v}

(ddcuj)
q ∧ T

≤
1

sq

∫

Ω

(ddcuj)
q ∧ T.

It follows that

CT ({uj ≤ −s},Ω) ≤
1

sq

∫

Ω

(ddcuj)
q ∧ T.

By tending j to infinity, we obtain

CT ({u ≤ −s},Ω) ≤
1

sq

∫

Ω

(ddcu)q ∧ T.

Corollary 3.1 Every u ∈ FT (Ω) is CT -quasi-continuous.

Proof Let u ∈ FT (Ω) and ε > 0. Denote Bu(t) := {z ∈ Ω; u(z) < t}, t ≤ 0. By

Proposition 3.1, there exists sε ≥ 1 such that CT (Bu(−sε),Ω) <
ε
2 . The function uε :=

max(u,−sε) is bounded on Ω so thanks to Dabbek-Elkhadhra [5], there exists an open subset

O in Ω such that CT (O,Ω) <
ε
2 and uε is continuous on Ω \ O. The result follows by taking

Oε = O ∪Bu(−sε).

To study the CT -quasi-continuity on ETp (Ω), we will proceed as in the previous case.

Proposition 3.2 Let u ∈ ETp (Ω) and (uj)j ⊂ ET0 (Ω) decreases to u on Ω as in Definition

2.1. Then for every s > 0 one has

sp+qCT ({u ≤ −2s},Ω) ≤ sup
j≥1

∫

Ω

(−uj)
p(ddcuj)

q ∧ T.

In particular, the set {u = −∞} is T -pluripolar.

Proof Let s > 0, v ∈ PSH(Ω, [−1, 0]). Thanks to comparison principle (for bounded psh

functions), we have

∫

{uj≤−2s}

(ddcv)q ∧ T ≤

∫

{uj<−s+sv}

(ddcv)q ∧ T ≤
1

sq

∫

{s−1uj<−1+v}

(ddcuj)
q ∧ T

≤
1

sp+q

∫

Ω

(−uj)
p(ddcuj)

q ∧ T.

It follows that

CT ({uj ≤ −2s},Ω) ≤
1

sp+q
sup
m≥1

∫

Ω

(−um)p(ddcum)
q ∧ T.
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By tending j to infinity, we obtain

CT ({u ≤ −2s},Ω) ≤
1

sp+q
sup
m≥1

∫

Ω

(−um)
p(ddcum)q ∧ T.

By the same argument as in Corollary 3.1 we can easily deduce the following result.

Corollary 3.2 Every function in ETp (Ω) is CT -quasi-continuous.

Now we need a first version of the comparison principle where one of the functions will be

unbounded. This result was proved in [5] for bounded functions.

Theorem 3.1 Let u ∈ FT (Ω) and v ∈ PSH(Ω) ∩ L∞(Ω) such that

lim inf
z→∂Ω∩SuppT

[u(z)− v(z)] ≥ 0.

Then ∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u<v}

(ddcu)q ∧ T.

Proof Firstly we assume that u and v are continuous on a neighborhood W of SuppT .

Without loss of generality, we can assume that u < v on W and u = v on ∂W . Let vε :=

max(u, v − ε). Then one has vε = u on ∂W and

∫

{u<v}

(ddcvε)
q ∧ T =

∫

{u<v}

(ddcu)q ∧ T.

Since the family of measures (ddcvε)
q ∧ T converges weakly to (ddcu)q ∧ T as ε → 0, then we

obtain ∫

{u<v}

(ddcv)q ∧ T =

∫

{u<v}

(ddcu)q ∧ T.

Let us now treat the general case. Replace u by u + δ if necessary, we can assume that

lim inf(u − v) ≥ 2δ. So there exists an open subset O ⊂⊂ Ω such that u(z) ≥ v(z) + δ for

all z ∈ Ω \ O. Let (uk)k and (vj)j be two smooth sequences of psh functions which decrease

respectively to u and v on a neighborhood of O such that uk ≥ vj on ∂O ∩ SuppT for j ≥ k.

Using the previous argument we obtain

∫

{uk<vj}

(ddcvj)
q ∧ T =

∫

{uk<vj}

(ddcuk)
q ∧ T.

For ε > 0, there exists an open subset G of Ω such that CT (G,Ω) < ε and u, v are continuous

on Ω \ G. We can write v = ϕ + ψ where ϕ is continuous on Ω and ψ = 0 on Ω \ G. Take

U := {uk < ϕ} then ∫

U

(ddcv)q ∧ T ≤ lim
j→+∞

∫

U

(ddcvj)
q ∧ T.

Since U ∪G = {uk < v} ∪G, we have

∫

{uk<v}

(ddcv)q ∧ T

≤

∫

U

(ddcv)q ∧ T +

∫

G

(ddcv)q ∧ T
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≤ lim
j→+∞

∫

U

(ddcvj)
q ∧ T +

∫

G

(ddcv)q ∧ T

≤ lim
j→+∞

( ∫

{uk<vj}

(ddcvj)
q ∧ T +

∫

G

(ddcvj)
q ∧ T

)
+

∫

G

(ddcv)q ∧ T

≤ lim
j→+∞

∫

{uk<vj}

(ddcvj)
q ∧ T + 2ε‖v‖q∞

≤ lim
j→+∞

∫

{uk<vj}

(ddcuk)
q ∧ T + 2ε‖v‖q∞.

Now as {uk < vj} ↓ {uk ≤ v}, {uk < v} ↑ {u < v}, we have

∫

{u<v}

(ddcv)q ∧ T ≤ lim
k→+∞

∫

{uk≤v}

(ddcuk)
q ∧ T + 2ε‖v‖q∞.

The continuity of u and v on Ω \ G gives that {u ≤ v} \ G is a closed subset of Ω. It follows

that ∫

{u≤v}\G

(ddcu)q ∧ T ≥ lim
k→+∞

∫

{u≤v}\G

(ddcuk)
q ∧ T.

Thus
∫

{u≤v}

(ddcu)q ∧ T ≥

∫

{u≤v}\G

(ddcu)q ∧ T

≥ lim
k→+∞

∫

{u≤v}\G

(ddcuk)
q ∧ T

≥ lim
k→+∞

(∫

{uk<v}

(ddcuk)
q ∧ T −

∫

G

(ddcuk)
q ∧ T

)

≥ lim
k→+∞

∫

{uk<v}

(ddcuk)
q ∧ T − ε‖v‖q∞.

So ∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u≤v}

(ddcu)q ∧ T + 3ε‖v‖q∞.

By tending ε to 0, we obtain

∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u≤v}

(ddcu)q ∧ T.

As {u+ρ < v} ↑ {u < v} and {u+ρ ≤ v} ↑ {u < v} when ρց 0, the desired inequality follows

by replacing u by u+ ρ.

Recall that the Lelong-Demailly number of T with respect to a psh function ϕ is defined as

the limit ν(T, ϕ) := lim
t→−∞

ν(T, ϕ, t) where

ν(T, ϕ, t) =

∫

Bϕ(t)

T ∧ (ddcϕ)q, t < 0 .

The following result was proved in [6] but the author used Stokes formula where a regularity

condition on ϕ was required.
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Theorem 3.2 Let ϕ ∈ FT (Ω) such that eϕ is continuous on Ω. Then for every s, t > 0

one has

sqCT (Bϕ(−t− s),Ω) ≤ ν(T, ϕ,−t) ≤ (s+ t)qCT (Bϕ(−t),Ω). (3.1)

In particular,

ν(T, ϕ) =

∫

{ϕ=−∞}

T ∧ (ddcϕ)q = lim
t→+∞

tqCT (Bϕ(−t),Ω).

Proof Let t, s > 0 and v ∈ PSH(Ω, [−1, 0]). For ε > 0, we set vε = max
(
v, ϕ+t+ε

s

)
. Thanks

to Theorem 3.1 we have
∫

Bϕ(−t−s−ε)

T ∧ (ddcv)q =

∫

Bϕ(−t−s−ε)

T ∧ (ddcvε)
q

≤

∫

{ϕ<−t+sv−ε}

T ∧ (ddcvε)
q

≤
1

sq

∫

{ϕ<−t+sv−ε}

T ∧ (ddcϕ)q

≤
1

sq

∫

Bϕ(−t)

T ∧ (ddcϕ)q.

By passing to the supremum over all v ∈ PSH(Ω, [−1, 0]), we obtain the following estimate:

sqCT (Bϕ(−s− t− ε),Ω) ≤ ν(T, ϕ,−t).

By passing to the limit when ε → 0, the left inequality in (3.1) is obtained. However, for the

right inequality, we remark that the function ψ = max
(
ϕ
s+t ,−1

)
is psh and satisfies −1 ≤ ψ ≤ 0

on Ω. So by Corollary 2.1 and using the fact that ψ > −1 near ∂Bϕ(−t) we obtain

∫

Bϕ(−t)

T ∧ (ddcϕ)q = (s+ t)q
∫

Bϕ(−t)

T ∧ (ddcψ)q

≤ (s+ t)qCT (Bϕ(−t),Ω).

Thus the right inequality in (3.1) follows.

By the right inequality in (3.1), we have

ν(T, ϕ) = lim
t→+∞

ν(T, ϕ,−t) ≤ lim
t→+∞

(s+ t)q

tq
tqCT (Bϕ(−t),Ω) = lim

t→+∞
tqCT (Bϕ(−t),Ω).

If we take α > 1 and s = αt in the left inequality in (3.1), we obtain

ν(T, ϕ) = lim
t→+∞

ν(T, ϕ,−t) ≥ lim
t→+∞

αq

(1 + α)q
(1 + α)qtqCT (Bϕ(−(1 + α)t),Ω)

=
( α

1 + α

)q
lim

t→+∞
tqCT (Bϕ(−t),Ω).

The result follows by letting α → +∞.

Remark 3.1 By combining Proposition 3.2 and Theorem 3.2, it is easy to check that if

ϕ ∈ FT
p (Ω) such that eϕ is continuous on Ω then ν(T, ϕ) = 0.
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4 Main Result

The aim of this part is to prove the following main result.

Theorem 4.1 (Comparison Principle) Let u ∈ FT (Ω) and v ∈ ET (Ω). Then

∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u<v}∪{u=v=−∞}

(ddcu)q ∧ T.

Before presenting the proof, we give some corollaries.

4.1 Consequences of Theorem 4.1

Corollary 4.1 Let u, v ∈ FT
p (Ω) such that eu is continuous on Ω. Then

∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u<v}

(ddcu)q ∧ T.

Proof Thanks to the comparison principle, we have

∫

{u<v}

(ddcv)q ∧ T ≤

∫

{u<v}∪{u=v=−∞}

(ddcu)q ∧ T ≤

∫

{u<v}

(ddcu)q ∧ T + ν(T, u).

The result follows by the fact that ν(T, u) = 0 because u ∈ FT
p (Ω).

Corollary 4.2 Let u ∈ FT (Ω) and v ∈ FT
p (Ω) such that ev is continuous on Ω. We assume

that

(ddcu)q ∧ T ≤ (ddcv)q ∧ T.

Then CT ({u < v},Ω) = 0.

Proof Assume CT ({u < v},Ω) > 0. Then there exists ψ ∈ PSH(Ω, [0, 1]) such that

∫

{u<v}

(ddcψ)q ∧ T > 0.

For ε > 0 small enough, one has v + εψ ∈ FT (Ω) so thanks to the comparison principle,

∫

{u<v+εψ}

(ddc(v + εψ))q ∧ T ≤

∫

{u<v+εψ}∪{u=v=−∞}

(ddcu)q ∧ T

≤

∫

{u<v+εψ}∪{u=v=−∞}

(ddcv)q ∧ T

≤

∫

{u<v+εψ}

(ddcv)q ∧ T + ν(T, v).

Hence

εq
∫

{u<v}

(ddcψ)q ∧ T +

∫

{u<v+εψ}

(ddcv)q ∧ T ≤

∫

{u<v+εψ}

(ddcv)q ∧ T,

which is absurd.
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4.2 Proof of Theorem 4.1

To prove this main result, we shall use similar Xing’s inequalities (see [10–11] for more

details), generalized to ET (Ω). We start by recalling the following lemma.

Lemma 4.1 (see [7]) Let S be a positive closed current of bidimension (1, 1) on Ω and

u, v ∈ PSH(Ω) ∩ L∞(Ω). Assume that u ≤ v on Ω and

lim
z→∂Ω

[u(z)− v(z)] = 0.

Then one has ∫

Ω

(v − u)kddcw ∧ S ≤ k

∫

Ω

(1− w)(v − u)k−1ddcu ∧ S

for all k ≥ 1 and w ∈ PSH(Ω, [0, 1]).

Lemma 4.2 Let u, v ∈ PSH(Ω) ∩ L∞(Ω) such that u ≤ v on Ω and

lim
z→∂Ω

[u(z)− v(z)] = 0.

Then one has

1

q!

∫

Ω

(v − u)qddcw1 ∧ · · · ∧ ddcwq ∧ T +

∫

Ω

(r − w1)(dd
cv)q ∧ T ≤

∫

Ω

(r − w1)(dd
cu)q ∧ T

for every r ≥ 1 and w1, · · · , wq ∈ PSH(Ω, [0, 1]).

Proof Let K ⊂⊂ Ω and assume that u = v on Ω \K. Using Lemma 4.1 we obtain
∫

Ω

(v − u)qddcw1 ∧ · · · ∧ ddcwq ∧ T

≤ q

∫

Ω

(v − u)q−1ddcw1 ∧ · · · ∧ ddcwq−1 ∧ dd
cu ∧ T

...

≤ q!

∫

Ω

(v − u)ddcw1 ∧ (ddcu)q−1 ∧ T

≤ q!

∫

Ω

(w1 − r)ddc(v − u) ∧
( q−1∑

i=0

(ddcu)i ∧ (ddcv)q−i−1
)
∧ T

= q!

∫

Ω

(r − w1)dd
c(u − v) ∧

( q−1∑

i=0

(ddcu)i ∧ (ddcv)q−i−1
)
∧ T

= q!

∫

Ω

(r − w1)((dd
cu)q − (ddcv)q) ∧ T.

In the general case, for every ε > 0 we set vǫ = max(u, v − ε). Then vǫ ր v on Ω and satisfies

vǫ = u on Ω \K for some K ⊂⊂ Ω. Hence

1

q!

∫

Ω

(vε − u)qddcw1 ∧ · · · ∧ ddcwq ∧ T +

∫

Ω

(r − w1)(dd
cvε)

q ∧ T ≤

∫

Ω

(r − w1)(dd
cu)q ∧ T.

Since vε − u ր v − u, the family of measures (ddcvε)
q ∧ T converges weakly to (ddcv)q ∧ T as

ε ց 0 and the function r − w1 is lower semicontinuous. Then by letting ε ց 0, we obtain the

desired inequality.
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Proposition 4.1 Let r ≥ 1 and w ∈ PSH(Ω, [0, 1]).

(1) For every u, v ∈ FT (Ω) such that u ≤ v on Ω one has

1

q!

∫

Ω

(v − u)q(ddcw)q ∧ T +

∫

Ω

(r − w)(ddcv)q ∧ T ≤

∫

Ω

(r − w)(ddcu)q ∧ T. (4.1)

(2) Furthermore, (4.1) holds for u, v ∈ ET (Ω) such that u ≤ v on Ω and u = v on Ω \K for

some K ⊂⊂ Ω.

Proof (1) Let u, v ∈ FT (Ω) and um, vj ∈ ET0 (Ω) which decrease to u and v respectively

as in Definition 2.2. Replacing vj by max(uj , vj) we may assume that uj ≤ vj for j ≥ 1. By

Lemma 4.2 we have for m ≥ j ≥ 1,

1

q!

∫

Ω

(vj − um)q ∧ (ddcw)q ∧ T +

∫

Ω

(r − w)(ddcvj)
q ∧ T ≤

∫

Ω

(r − w)(ddcum)q ∧ T.

By approximating w by a sequence of continuous psh functions vanishing on ∂Ω (see [3]) and

using Proposition 2.2, we obtain that when m→ +∞,

1

q!

∫

Ω

(vj − u)q ∧ (ddcw)q ∧ T +

∫

Ω

(r − w)(ddcvj)
q ∧ T ≤

∫

Ω

(r − w)(ddcu)q ∧ T.

Since r − w is lower semi-continuous, we have

lim
j→∞

∫

Ω

(r − w)(ddcvj)
q ∧ T ≥

∫

Ω

(r − w)(ddcv)q ∧ T.

Hence by tending j → +∞, we obtain the result.

(2) Let G and W be open subsets of Ω such that K ⊂⊂ G ⊂⊂ W ⊂⊂ Ω. There exists

ṽ ∈ FT (Ω) such that ṽ ≥ v on Ω and ṽ = v on W . Let ũ be such that ũ = u on G and ũ = ṽ

either. Since u = v = ṽ on W \K, we have ũ ∈ PSH−(Ω). It follows that ũ ∈ FT (Ω), ũ ≤ ṽ

and ũ = u on W .

Using (1) we obtain

1

q!

∫

Ω

(ṽ − ũ)q ∧ (ddcw)q ∧ T +

∫

Ω

(r − w)(ddc ṽ)q ∧ T ≤

∫

Ω

(r − w)(ddcũ)q ∧ T.

As ṽ = ũ on Ω \G, we have

1

q!

∫

W

(ṽ − ũ)q ∧ (ddcw)q ∧ T +

∫

W

(r − w)(ddc ṽ)q ∧ T ≤

∫

W

(r − w)(ddcũ)q ∧ T.

Now since ũ = u, ṽ = v and u = v on Ω \K, we obtain

1

q!

∫

Ω

(v − u)q ∧ (ddcw)q ∧ T +

∫

Ω

(r − w)(ddcv)q ∧ T ≤

∫

Ω

(r − w)(ddcu)q ∧ T.

Remark 4.1 If we take w = 0 and r = 1 in Proposition 4.1, we obtain another proof of

Proposition 2.2.

The following inequality is a generalization of Theorem 4.1 in [8] since we shall prove it for

an arbitrary positive closed current T .
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Theorem 4.2 Let u,w1, · · · , wq−1 ∈ FT (Ω) and v ∈ PSH−(Ω). If we set S = ddcw1∧· · ·∧

ddcwq−1, then

ddcmax(u, v) ∧ T ∧ S|{u>v} = ddcu ∧ T ∧ S|{u>v}.

Proof We prove the theorem in two steps. First we assume that v ≡ a < 0. Thanks to

Lemma 2.2, there exist uj, wk,j ∈ ET0 (Ω) ∩ C(Ω) such that (uj)j decreases to u and (wk,j)j

decreases to wk for each 1 ≤ k ≤ q − 1. Since {uj > a} is open, one has

ddcmax(uj , a) ∧ T ∧ Sj|{uj>a}
= ddcuj ∧ T ∧ Sj|{uj>a}

,

where Sj = ddcw1,j ∧ · · · ∧ ddcwq−1,j . As {u > a} ⊂ {uj > a} we obtain

ddcmax(uj , a) ∧ T ∧ Sj|{u>a} = ddcuj ∧ T ∧ Sj|{u>a}.

It follows from [7] that

max(u − a, 0)ddcmax(uj , a) ∧ T ∧ Sj −→
j→+∞

max(u− a, 0)ddcmax(u, a) ∧ T ∧ S,

max(u− a, 0)ddcuj ∧ T ∧ Sj −→
j→+∞

max(u− a, 0)ddcu ∧ T ∧ S.

Hence

max(u− a, 0)[ddcmax(u, a) ∧ T ∧ S − ddcu ∧ T ∧ S] = 0.

So

ddcmax(u, a) ∧ T ∧ S = ddcu ∧ T ∧ S on {u > a}.

Now assume v ∈ PSH−(Ω). Since {u > v} =
⋃

a∈Q−

{u > a > v}, it suffices to show that

ddcmax(u, v) ∧ T ∧ S = ddcu ∧ T ∧ S on {u > a > v}

for all a ∈ Q−. As max(u, v) ∈ FT (Ω), by the first step, we have

ddcmax(u, v) ∧ T ∧ S|{max(u,v)>a} = ddcmax(max(u, v), a) ∧ T ∧ S|{max(u,v)>a}

= ddcmax(u, v, a) ∧ T ∧ S|{max(u,v)>a},

ddcu ∧ T ∧ S|{u>a} = ddcmax(u, a) ∧ T ∧ S|{v>a}.

The fact that max(u, v, a) = max(u, a) on the open set {a > v} gives

ddcmax(u, v, a) ∧ T ∧ S|{a>v} = ddcmax(u, a) ∧ T ∧ S|{a>v}.

As {u > a > v} is contained in {u > a}, in {max(u, v) > v} and in {a > v}, then by combining

the last equalities we obtain

ddcmax(u, v) ∧ T ∧ S|{u>a>v} = ddcmax(u, a) ∧ T ∧ S|{u>a>v}.

We can now prove an inequality analogous to Demailly’s one. Such inequality was proved

in [8] for the extremal case q = n.
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Proposition 4.2 (1) Let u, v ∈ FT (Ω) such that (ddcu)q ∧ T ({u = v = −∞}) = 0. Then

(ddcmax(u, v))q ∧ T ≥ 1l{u≥v}(dd
cu)q ∧ T + 1l{u<v}(dd

cv)q ∧ T.

(2) Let µ be a positive measure vanishing on all pluripolar sets of Ω and u, v ∈ ET (Ω) such

that (ddcu)q ∧ T ≥ µ, (ddcv)q ∧ T ≥ µ. Then (ddcmax(u, v))q ∧ T ≥ µ.

Proof (1) For each ǫ > 0, put Aǫ = {u = v − ǫ} \ {u = v = −∞}. Since Aǫ ∩ Aδ = ∅

for ǫ 6= δ, there exists ǫj ց 0 such that (ddcu)q ∧ T (Aǫj) = 0 for j ≥ 1. On the other hand,

since (ddcu)q ∧ T ({u = v = −∞}) = 0 we have (ddcu)q ∧ T ({u = v − ǫj}) = 0 for j ≥ 1. Using

Theorem 4.2 it follows that

(ddcmax(u, v − ǫj))
q ∧ (ddcw)q ∧ T

≥ (ddcmax(u, v − ǫj))
q ∧ T|{u>v−ǫj} + (ddcmax(u, v − ǫj))

q ∧ T|{u<v−ǫj}

= (ddcu)q ∧ T|{u>v−ǫj} + (ddcv)q ∧ T|{u<v−ǫj}

= 1l{u≥v−ǫj}(dd
cu)q ∧ T + 1l{u<v−ǫj}(dd

cv)q ∧ T

≥ 1l{u≥v}(dd
cu)q ∧ T + 1l{u<v−ǫj}(dd

cv)q ∧ T.

Letting j → +∞ and by Theorem 2.3, we get

(ddcmax(u, v))q ∧ T ≥ 1l{u≥v}(dd
cu)q ∧ T + 1l{u<v}(dd

cu)q ∧ T

because max(u, v − ǫj) ր max(u, v) and 1l{u<v−ǫj} ր 1l{u<v} as j → +∞.

(2) Argument is similar to that of (1).

Proposition 4.3 Let u ∈ FT (Ω), v ∈ ET (Ω). Then

1

q!

∫

{u<v}

(v − u)q ∧ (ddcw)q ∧ T +

∫

{u<v}

(r − w)(ddcv)q ∧ T

≤

∫

{u<v}∪{u=v=−∞}

(r − w)(ddcu)q ∧ T

for w ∈ PSH(Ω, [0, 1]) and all r ≥ 1.

Proof Let ε > 0 and set ṽ = max(u, v − ε). By (4.1) we have

1

q!

∫

Ω

(ṽ − u)q ∧ (ddcw)q ∧ T +

∫

Ω

(r − w)(ddc ṽ)q ∧ T

≤

∫

Ω

(r − w)(ddcu)q ∧ T.

Since {u < ṽ} = {u < v − ε}, thanks to Theorem 4.2, we haves

1

q!

∫

{u<v−ε}

(v − ε− u)q ∧ (ddcw)q ∧ T +

∫

{u≤v−ε}

(r − w)(ddcv)q ∧ T

≤

∫

{u≤v−ε}

(r − w)(ddcu)q ∧ T.

As {u ≤ v − ε} ⊂ {u < v} ∪ {u = v = −∞}, one has

1

q!

∫

{u<v−ε}

(v − ε− u)q ∧ (ddcw)q ∧ T +

∫

{u≤v−ε}

(r − w)(ddcv)q ∧ T
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≤

∫

{u≤v}∪{u=v=−∞}

(r − w)(ddcu)q ∧ T.

Letting ε→ 0 we obtain

1

q!

∫

{u<v}

(v − u)q ∧ (ddcw)q ∧ T +

∫

{u<v}

(r − w)(ddcv)q ∧ T

≤

∫

{u<v}∪{u=v=−∞}

(r − w)(ddcu)q ∧ T.

To conclude the proof of Theorem 4.1, it suffices to take w = 0 and r = 1 in the previous

proposition.
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