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Abstract

The space-fractional telegraph equation is analyzed and the Fourier transform of its funda-
mental solution is obtained and discussed.

A symmetric process with discontinuous trajectories, whose transition function satisfies the
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§1. Introduction

It is well known that Brownian motion B is the limit, in some sense, of the telegrapher’s
process T (see [3]).

The transition function pB(x, t) = pB of B is the fundamental solution of{
∂p
∂t = 1

2
∂2p
∂x2 , x ∈ R, t > 0,

p(x, 0) = δ(x),
(1.1)

while the transition function pT (x, t) = pT of T is the fundamental solution of
∂2p
∂t2 + 2λ∂p

∂t = c2 ∂2p
∂x2 , x ∈ R, t > 0,

p(x, 0) = δ(x),
pt(x, 0) = 0,

(1.2)

δ being the Dirac’s delta function.
It was discovered by Riesz[5] that the transition functions of symmetric stable processes

with characteristic functions

U(γ, t) = e−|γ|αt/2 (1.3)

of degree 0 < α ≤ 2 are solutions of the fractional diffusion equation
∂u
∂t = 1

2
∂αu
∂|x|α , x ∈ R, t > 0,

u(x, 0) = δ(x),
ut(x, 0) = 0,

(1.4)
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where the last condition must be considered only when 1 < α ≤ 2.
By ∂α

∂|x|α we mean the pseudo-differential operator defined as follows:

∂α

∂|x|α
= − 1

2 cos απ
2

[
Wα

+ +Wα
−
]
, (1.5)

where Wα
+ , W

α
− are the Weyl’s fractional derivatives (see [7, p. 109]){

(Wα
+f)(x) =

1
Γ(m−α)

dm

dxm

∫ x

−∞
f(t)dt

(x−t)α+1−m ,

(Wα
−f)(x) =

(−1)m

Γ(m−α)
dm

dxm

∫∞
x

f(t)dt
(t−x)α+1−m ,

(1.6)

with m− 1 < α < m, m ∈ N.
Heat and wave fractional equations have been considered by other authors (in the integral

form by Fujita[2] and by Schneider andWyss[9] or with fractional derivatives in both members
by Saichev and Zaslavsky[6]).

An extension of the operator (1.5) has been introduced by Feller[1] and the Fourier trans-
form of the solution of (1.4) has been proved to be, in this case, the characteristic function
of an asymmetric stable process (for a deep and complete analysis see [8]).

Our aim here is to study the solutions of the space-fractional telegraph equation, namely
∂2u
∂t2 + 2λ∂u

∂t = c2 ∂αu
∂|x|α , 0 < α < 2, α ̸= 1,

u(x, 0) = δ(x),
ut(x, 0) = 0,

(1.7)

where c, λ are non-negative constants.
The fundamental solution of (1.7) is the transition function of some type of process whose

characteristic function has the form

U(γ, t) =
e−λt

2

[(
1 +

λ√
λ2 − c2|γ|α

)
et
√

λ2−c2|γ|α

+
(
1− λ√

λ2 − c2|γ|α
)
e−t

√
λ2−c2|γ|α

]
, (1.8)

for 0 < α < 2, α ̸= 1.
It can be easily ascertained that, for α = 2, (1.8) coincides with the characteristic function

of the telegrapher’s process (see [4]). We note that in this case equation (1.7) coincides with

the classical telegraph equation (1.2) since, by definition, ∂α

∂|x|α = ∂2

∂x2 for α = 2 (see [1]).

Furthermore, as c, λ → ∞, (1.8) converges to the characteristic function (1.3) of the stable
process and the fractional telegraph equation (1.7) tends to the fractional heat equation (1.4)
(provided that c2/λ → 1).

In a certain sense the process governed by the fractional telegraph equation (1.7) (we
call it fractional telegraph process, FTP) is in the same position, with respect to symmetric
stable processes, as the classical telegrapher’s process with respect to Brownian motion.

We can present the interactions among the processes mentioned above in the following
table:

TELEGRAPH EQUATION =⇒ HEAT EQUATION

TELEGRAPHER’S PROCESS =⇒ BROWNIAN MOTION

FRACTIONAL TEL. EQ. =⇒ FRACTIONAL HEAT. EQ.
FRACTIONAL TEL. PROC. =⇒ SYMMETRIC STABLE PROC.

One of the basic results of this paper is the construction of a process (the FTP), whose
characteristic function coincides with (1.8). Since inverting the Fourier transform (1.8) is a
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task which overcomes our ability, we content ourselves in describing some qualitative features
of the FTP. Our approach to its construction is inspired by the following considerations.

The operator defined by formula (1.5) does not satisfy the semigroup property. In par-
ticular, we shall prove that

∂α

∂|x|α
= − ∂α/2

∂|x|α/2
∂α/2

∂|x|α/2
, 1 < α < 2. (1.9)

For this reason we can decompose the fractional equation (1.7) into the linear differential
system {

∂f
∂t = −ic ∂α/2f

∂|x|α/2 + λ(b− f),

∂b
∂t = ic ∂α/2b

∂|x|α/2 + λ(f − b).
(1.10)

In the study of the classical telegrapher’s process appears a system similar to (1.10) (see [3])
with the substantial difference that the space derivatives are here replaced by the operator
∂α/2

∂|x|α/2 defined by formula (1.5).

We shall see that the FTP (whose distribution is related to (1.10)) possesses discontinuous
trajectories. The distribution of the length of jumps (taking values in (0,∞)) is essentially
concentrated on small values and is also connected with the degree α of the operator (1.5).
The FTP differs substantially from the classical telegraph process in that it spreads instan-
taneously on the line and has discontinuous sample paths (these properties are shared by
the limiting stable process).

Another important difference with respect to the classical telegraph process is that it
develops on the imaginary axis and the role of the related Poisson process is to invert the
direction of values on the line.

§2. On the Solution of the Fractional Telegraph Equation

We consider the fractional telegraph equation
∂2u
∂t2 + 2λ∂u

∂t = c2 ∂αu
∂|x|α , 1 < α < 2,

u(x, 0) = δ(x),
ut(x, 0) = 0,

(2.1)

where ∂αu
∂|x|α is the Riesz fractional derivative (see [1]), to be understood as the inverse of the

Riesz potential

(Iαf)(x) =
1

2Γ(α) cos απ
2

∫ ∞

−∞
|x− t|α−1f(t)dt. (2.2)

The explicit representation of the Riesz fractional derivative is

∂αf

∂|x|α
= −I−αf = − 1

2 cos απ
2

[
Wα

+f +Wα
−f

]
, (2.3)

where {
(Wα

+f)(x) =
1

Γ(m−α)
dm

dxm

∫ x

−∞
f(t)dt

(x−t)α+1−m ,

(Wα
−f)(x) =

(−1)m

Γ(m−α)
dm

dxm

∫∞
x

f(t)dt
(t−x)α+1−m

(2.4)

(for m = ⌊α⌋+ 1) are the Weyl’s derivatives. These are related to the Weyl’s integrals{
(W−α

+ f)(x) = 1
Γ(α)

∫ x

−∞(x− t)α−1f(t)dt,

(W−α
− f)(x) = 1

Γ(α)

∫∞
x

(t− x)α−1f(t)dt,
(2.5)

by the following relationships

Wα
± = (±1)mDmW

−(m−α)
± , (2.6)
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where Dm is the usual m-th derivative.

The Fourier transform of the solution to problem (2.1) can be obtained explicitly and its
expression is presented in next theorem.

Theorem 2.1. The Fourier transform

U(γ, t) =

∫ +∞

−∞
eiγxu(x, t)dx (2.7)

of the solution to (2.1) is given by

U(γ, t) =
e−λt

2

[(
1 +

λ√
λ2 − c2|γ|α

)
et
√

λ2−c2|γ|α

+
(
1− λ√

λ2 − c2|γ|α
)
e−t

√
λ2−c2|γ|α

]
. (2.8)

Proof. In view of (2.3) and (2.6) we have∫ +∞

−∞
eiγx

∂α

∂|x|α
u(x, t)dx

=

∫ +∞

−∞
eiγx

{
− 1

2 cos απ
2

[
Wα

+ +Wα
−
]
u(x, t)

}
dx

= − 1

2 cos απ
2

∫ +∞

−∞
eiγx

[
D2W

−(2−α)
+ +D2W

−(2−α)
−

]
u(x, t)dx

= − (−iγ)2

2 cos απ
2

∫ +∞

−∞
eiγx

[
W

−(2−α)
+ +W

−(2−α)
−

]
u(x, t)dx. (2.9)

It is easy to realize that

W
−(2−α)
+ u(x, t) =

1

Γ(2− α)

∫ x

−∞
(x− y)1−αu(y, t)dy

=
1

Γ(2− α)

∫ +∞

−∞
(x− y)1−α1(−∞,x)(y)u(y, t)dy

=
1

Γ(2− α)

∫ +∞

−∞
(x− y)1−α1(0,∞)(x− y)u(y, t)dy.

(2.10a)

Analogously

W
−(2−α)
− u(x, t) =

1

Γ(2− α)

∫ +∞

x

(y − x)1−αu(y, t)dy

=
1

Γ(2− α)

∫ +∞

−∞
(y − x)1−α1(x,∞)(y)u(y, t)dy

=
1

Γ(2− α)

∫ +∞

−∞
(y − x)1−α1(0,∞)(y − x)u(y, t)dy.

(2.10b)
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Therefore ∫ +∞

−∞
eiγxW

−(2−α)
+ u(x, t)dx

=
1

Γ(2− α)

∫ +∞

−∞
eiγx

[ ∫ +∞

−∞
(x− y)1−α1(0,∞)(x− y)u(y, t)dy

]
dx

(x− y = w)

=
1

Γ(2− α)

∫ +∞

−∞
eiγyu(y, t)dy

∫ +∞

−∞
eiγww1−α1(0,∞)(w)dw

=
1

Γ(2− α)
U(γ, t)

∫ +∞

0

w1−αeiγwdw

(γw = iy)

=
1

Γ(2− α)
U(γ, t)

∫ +∞

0

( iy
γ

)1−α

e−y i

γ
dy

=
( i

γ

)2−α

U(γ, t) = (−iγ)−(2−α)U(γ, t). (2.11a)

In the same way we obtain∫ +∞

−∞
eiγxW

−(2−α)
− u(x, t)dx

=
1

Γ(2− α)

∫ +∞

−∞
eiγx

[ ∫ +∞

−∞
(y − x)1−α1(0,∞)(y − x)u(y, t)dy

]
dx

(y − x = w)

=
1

Γ(2− α)

∫ +∞

−∞
eiγzu(z, t)dz

∫ +∞

0

e−iγww1−αdw

(γw = −iy)

=
1

Γ(2− α)
U(γ, t)

∫ +∞

0

(
− iy

γ

)1−α

e−y 1

iγ
dy

= (iγ)−(2−α)U(γ, t). (2.11b)

All these calculations permit us to conclude that U(γ, t) solves the initial-value problem

∂2U

∂t2
+ 2λ

∂U

∂t
= − c2

2 cos απ
2

(−iγ)2
[
(−iγ)−(2−α) + (iγ)−(2−α)

]
= − c2

2 cos απ
2

[(−iγ)α + (iγ)α]

= − c2

2 cos απ
2

[
(|γ|eiπ

2 )α + (|γ|e−iπ
2 )α

]
= −c2|γ|α,

U(γ, 0) = 1,

Ut(γ, 0) = 0.

It is now a simple matter to obtain the characteristic function (2.8).
Remark 2.1. The characteristic function U = U(γ, t) can be written conveniently as
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follows:

U(γ, t) =
e−λt

2

{
λ
[et√λ2−c2|γ|α − e−t

√
λ2−c2|γ|α√

λ2 − c2|γ|α
]

+
∂

∂t

[et√λ2−c2|γ|α − e−t
√

λ2−c2|γ|α√
λ2 − c2|γ|α

]}
. (2.12)

The problem of finding the inverse Fourier transform

1

2π

∫ +∞

−∞
e−iγx

[et√λ2−c2|γ|α − e−t
√

λ2−c2|γ|α√
λ2 − c2|γ|α

]
dγ (2.13)

seems possible only for the special case where α = 2. In this case it is proved explicitly in
[4] that

1

2π

∫ +∞

−∞
e−iγx

[et√λ2−c2γ2 − e−t
√

λ2−c2γ2√
λ2 − c2γ2

]
dγ =

1

c
I0

(λ
c

√
c2t2 − x2

)
. (2.14)

Because of (2.14) and considering the representation (2.12) it is possible to write down the
distribution of the classical telegrapher’s process in all its components, that is,

pT (x, t) =
e−λt

2c

[
λI0

(λ
c

√
c2t2 − x2

)
+

∂

∂t
I0

(λ
c

√
c2t2 − x2

)]
+

e−λt

2
[δ(x− ct) + δ(x+ ct)] . (2.15)

Nothing similar is possible in the fractional case, for 1 < α < 2. However some qualitative
features of the process, whose characteristic function coincides with (2.8), can be obtained
by a completely different approach. Our idea is to construct a process whose distribution
u(x, t) = Pr {X(t) ∈ dx} is a solution of the fractional differential equation (2.1) and whose
related joint distributions, defined as

f(x, t)dx = Pr {X(t) ∈ dx,N(t) is even} ,
b(x, t)dx = Pr {X(t) ∈ dx,N(t) is odd} (2.16)

(X(t) being the current position of a randomly moving particle and N(t) the number of
events of a Poisson process), are solutions of the fractional differential system (1.10), into
which equation (2.1) can be split up.

The main difficulty is that the pseudo-differential operator (2.3) does not satisfy the
semigroup property (while the Riesz potential (2.2) does). In the next section we shall
examine this fact and obtain the announced differential system.

§3. Decomposing the Fractional Telegraph Equation

We want to show here that, for 1 < α < 2, the decomposition (1.9) is possible, where
the basic and substantial novelty lies in the sign appearing in it. This has far-reaching
implications, as the reader will realize.

Theorem 3.1. For 1 < α < 2 the following relationship holds:( ∂α

∂|x|α
f
)
(x) = − ∂α/2

∂|x|α/2
( ∂α/2

∂|x|α/2
f
)
(x) (3.1)

where f is a function vanishing at infinity as |x|α2 −1−ε, ε > 0.
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Proof. It is convenient to write ∂α/2

∂|x|α/2 as follows:

( ∂α/2

∂|x|α/2
f
)
(x)

= − 1

2 cos απ
4

[ 1

Γ(1− α
2 )

d

dx

∫ x

−∞

f(t)dt

(x− t)
α
2
− 1

Γ(1− α
2 )

d

dx

∫ ∞

x

f(t)dt

(t− x)
α
2

]
= − 1

2 cos απ
4 Γ(1− α

2 )

d

dx

∫ ∞

0

f(x− y)− f(x+ y)

y
α
2

dy

= C
d

dx

∫ ∞

0

f(x− y)− f(x+ y)

y
α
2

dy. (3.2)

We can write

∂α/2

∂|x|α/2
{ ∂α/2f

∂|x|α/2
}
(x)

= C
d

dx

∫ ∞

0

1

w
α
2

{ ∂α/2f

∂|u|α/2
(u)

∣∣∣u=x−w

− ∂α/2f

∂|u|α/2
(u)

∣∣∣u=x+w}
dw

= C2 d

dx

∫ ∞

0

1

w
α
2

{[ d

du

∫ ∞

0

f(u− y)− f(u+ y)

y
α
2

dy
]u=x−w

−
[ d

du

∫ ∞

0

f(u− y)− f(u+ y)

y
α
2

dy
]u=x+w}

dw

= C2 d

dx

∫ ∞

0

dw

w
α
2

∫ ∞

0

fx(x− w − y)− fx(x− w + y)− fx(x+ w − y) + fx(x+ w + y)

y
α
2

dy.
(3.3)

We concentrate now our attention on

I =

∫ ∞

0

dw

w
α
2

∫ ∞

0

fx(x− w − y) + fx(x+ w + y)

y
α
2

dy, (3.4)

which can be evaluated by performing the transformation w + y = v, w − y = u.

Therefore we have, after some successive substitutions,

I =
2α

2

∫ ∞

0

dv [fx(x− v) + fx(x+ v)]

∫ v

−v

du

(v2 − u2)α/2

= 2α−1

∫ ∞

0

dv

vα−1
[fx(x− v) + fx(x+ v)]

∫ 1

0

z
1
2−1(1− z)1−

α
2 −1dz

= 2α−1Γ(
1
2 )Γ(1−

α
2 )

Γ( 32 − α
2 )

∫ ∞

0

dv

vα−1
[fx(x− v) + fx(x+ v)] . (3.5)
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By means of the same transformation as above we have

J =

∫ ∞

0

dw

w
α
2

∫ ∞

0

fx(x− w + y) + fx(x+ w − y)

y
α
2

dy

=
2α

2

∫ ∞

0

dv

∫ v

−v

fx(x− u) + fx(x+ u)du

(v2 − u2)α/2

= 2α
∫ ∞

0

[fx(x− u) + fx(x+ u)] du

∫ ∞

u

dv

(v2 − u2)α/2

= 2α−1

∫ ∞

0

fx(x− u) + fx(x+ u)

uα−1
du

∫ 1

0

(1− w)−
1
2+

α
2 −1w1−α

2 −1dw

= 2α−1Γ(
α
2 − 1

2 )Γ(1−
α
2 )

Γ( 12 )

∫ ∞

0

du

uα−1
[fx(x− u) + fx(x+ u)] . (3.6)

Now, taking into account the reflection formula

Γ(z)Γ(1− z) =
π

sinπz
, z ̸= 0,±1,±2, · · ·

and the Euler’s duplication formula

Γ(z +
1

2
) = 21−2zΓ(

1

2
)
Γ(2z)

Γ(z)
, 2z ̸= 0,−1,−2, · · ·

we readily have

2α−1Γ(
1
2 )Γ(1−

α
2 )

Γ(32 − α
2 )

− 2α−1Γ(
α
2 − 1

2 )Γ(1−
α
2 )

Γ( 12 )

= 2α−1Γ(1− α

2
)
[Γ2( 12 )−

π
sin(α

2 − 1
2 )π

Γ( 12 )Γ(
3
2 − α

2 )

]
= 2α−1Γ(1− α

2
)
(
π +

π

cos απ
2

) 1

Γ(12 )

Γ(1− α
2 )

Γ( 12 )2
1−2(1−α/2)Γ(2− α)

=
Γ2(1− α

2 )

Γ(2− α)

1 + cos απ
2

cos απ
2

. (3.7)

Formula (3.3) can be written as

C2 d

dx
[I − J ]

=
1

22 cos2 απ
4 Γ2(1− α

2 )

Γ2(1− α
2 )

Γ(2− α)

1 + cos απ
2

cos απ
2

d

dx

∫ ∞

0

fx(x− u) + fx(x+ u)

uα−1
du

=
1

2 cos απ
2 Γ(2− α)

d2

dx2

∫ ∞

0

f(x− u) + f(x+ u)

uα−1
du

=
(
− ∂αf

∂|x|α
)
(x). (3.8)

In the last step we have considered the definition (2.3) for 1 < α < 2.
Remark 3.1. We note that, for arbitrary real values p and q, it is true that

∂p

∂|x|p
∂q

∂|x|q
̸= ∂p+q

∂|x|p+q

and a relationship as simple as that of Theorem 3.1 does not hold in general.
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For the case 0 < α < 1, by performing substantially the same calculations as above, we
have

∂α/2

∂|x|α/2
{ ∂α/2f

∂|x|α/2
}
(x)

=
1

4 cos2 απ
4 Γ(2− α)

d2

dx2

∫ ∞

0

f(x− u) + f(x+ u)

uα−1
du

̸= − 1

2 cos απ
2 Γ(1− α)

d

dx

∫ ∞

0

f(x− u)− f(x+ u)

uα
du

=
( ∂αf

∂|x|α
)
(x).

Remark 3.2. The fractional telegraph equation, in view of Theorem 3.1, can be written
as

∂2

∂t2
+ 2λ

∂

∂t
= c2

∂α

∂|x|α
= −c2

∂α/2

∂|x|α/2
∂α/2

∂|x|α/2

and thus

0 =
( ∂

∂t
− ic

∂α/2

∂|x|α/2
)( ∂

∂t
+ ic

∂α/2

∂|x|α/2
)
f + 2λ

∂f

∂t
. (3.9)

Assuming that ( ∂

∂t
+ ic

∂α/2

∂|x|α/2
)
f = λb− λf, (3.10)

from (1.9) we obtain ( ∂

∂t
− ic

∂α/2

∂|x|α/2
)
(λb− λf) + 2λ

∂f

∂t
= 0 (3.11)

and, replacing

ic
∂α/2

∂|x|α/2
f = λb− λf − ∂

∂t

into (3.11), we get ( ∂

∂t
− ic

∂α/2

∂|x|α/2
)
b = λf − λb. (3.12)

§4. A Process Related to the Fractional System

We consider in this section the one-dimensional motion of a particle which moves forward
and backward performing jumps of random amplitude Y , with Y > 0.

We first assume that during every time interval [t, t+∆t) a particle can either make a
jump in the positive direction (with probability 1/2) or a jump in the negative direction
(with the same probability).

We also assume that the distribution of Y is the following one:

p(y,∆t) =

{
α
2

∆t

y1+α
2

for (∆t)
2
α < y < ∞,

0 for y < (∆t)
2
α .

(4.1)

It is clear that (4.1) assigns higher probability to small-valued jump lengths.
For example,

Pr
{
(∆t)

2
α ≤ Y ≤ 2

2
α (∆t)

2
α

}
=

1

2
(4.2)



54 CHIN. ANN. MATH. Vol.24 Ser.B

and, for 1 < α < 2, the right end point of the interval in (4.2) is located in (2(∆t)
2
α , 4(∆t)

2
α ).

If we denote by N(t) the number of events of a homogeneous Poisson process of parameter
λ > 0 and by X = X(t), t > 0 the current position of the particle, our task here is to derive
the equations governing the following probabilities

f(x, t)dx = Pr {X(t) ∈ dx,N(t) is even} ,
b(x, t)dx = Pr {X(t) ∈ dx,N(t) is odd} . (4.3)

Theorem 4.1. The integro-differential system governing (4.3) is

∂f

∂t
=

1

2

α

2

∫ ∞

0

[f(x− y, t)− f(x, t)]
dy

y1+α/2

+
1

2

α

2

∫ ∞

0

[f(x+ y, t)− f(x, t)]
dy

y1+α/2
+ λ(b− f),

∂b

∂t
=

1

2

α

2

∫ ∞

0

[b(x− y, t)− b(x, t)]
dy

y1+α/2

+
1

2

α

2

∫ ∞

0

[b(x+ y, t)− b(x, t)]
dy

y1+α/2
+ λ(f − b).

(4.4)

Proof. We derive only the first equation since the other one follows in the same way. We
suppose, for the sake of definiteness, that we evaluate

f(x, t+∆t)dx = Pr {X(t+∆t) ∈ dx,N(t+∆t) is even} .
In the case where no Poisson event happens in the interval of time [t, t+∆t) and N(t) is
an even number, a point x can be reached, at time t + ∆t, if either a jump upward (with
probability 1/2) or a jump downward (with the same probability) occurs. Another case is
where the particle is located around x and a Poisson event happens during [t, t+∆t) when
the cumulative number N(t) was odd at time t. For the random movement occurring every
∆t instants we can therefore write

f(x, t+∆t) = (1− λ∆t)
{1

2

∫ ∞

(∆t)2/α
f(x− y, t)

α

2

∆t

y1+α/2
dy

+
1

2

∫ ∞

(∆t)2/α
f(x+ y, t)

α

2

∆t

y1+α/2
dy

}
+ λ∆tb+ o(∆t)

= (1− λ∆t){1
2

∫ ∞

(∆t)2/α
[f(x− y, t)− f(x, t)]

α

2

∆t

y1+α/2
dy

+
1

2

∫ ∞

(∆t)2/α
[f(x+ y, t)− f(x, t)]

α

2

∆t

y1+α/2
dy

+

∫ ∞

(∆t)2/α
f(x, t)

α

2

∆t

y1+α/2
dy}+ λ∆tb(x, t) + o(∆t)

=
1

2

α

2
∆t

{∫ ∞

(∆t)2/α
[f(x− y, t)− f(x, t)]

dy

y1+α/2

+

∫ ∞

(∆t)2/α
[f(x+ y, t)− f(x, t)]

dy

y1+α/2

}
+ (1− λ∆t)f(x, t) + λ∆tb(x, t) + o(∆t). (4.5)

Now expanding f(x, t+∆t), simplifying in both members and letting ∆t → 0 we obtain the
first equation in (4.4).

Remark 4.1. We recall the relationships between the right-handed and left-handed
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Marchaud’s and Weyl’s derivatives:

MD
α/2
+ f(x, t) =

α

2

1

Γ(1− α
2 )

∫ ∞

0

f(x, t)− f(x− y, t)

y1+α/2
dy

=
1

Γ(1− α
2 )

d

dx

∫ x

−∞

f(y, t)

(x− y)α/2
dy = W

α/2
+ f(x, t), (4.6a)

MD
α/2
− f(x, t) =

α

2

1

Γ(1− α
2 )

∫ ∞

0

f(x, t)− f(x+ y, t)

y1+α/2
dy

= − 1

Γ(1− α
2 )

d

dx

∫ ∞

x

f(y, t)

(y − x)α/2
dy = W

α/2
− f(x, t), (4.6b)

for 0 < α/2 < 1.
It is now transparent that the integrals appearing in (4.4) can be expressed in terms of

Marchaud’s derivatives and thus

α

4

∫ ∞

0

[f(x− y, t)− f(x, t)]
dy

y1+α/2
+

α

4

∫ ∞

0

[f(x+ y, t)− f(x, t)]
dy

y1+α/2

= −
Γ(1− α

2 )

2
[W

α/2
+ +W

α/2
− ]f(x, t)

= Γ(1− α

2
) cos

απ

4

∂α/2

∂|x|α/2
f(x, t) .

In conclusion the system (4.4) can be rewritten in the following manner{
∂f
∂t = Γ(1− α

2 ) cos
απ
4

∂α/2f
∂|x|α/2 + λ(b− f),

∂b
∂t = Γ(1− α

2 ) cos
απ
4

∂α/2b
∂|x|α/2 + λ(f − b).

(4.7)

Remark 4.2. Consider now the process

X ′(t) = − ic

Γ(1− α
2 ) cos

απ
4

(−1)N(t)X(t), (4.8)

where c > 0. Clearly X ′(t) takes values on the imaginary axis, but develops according to
the rules governing the evolution of X(t), t > 0. Furthermore, if N(t) is even,

x′ = − icx

Γ(1− α
2 ) cos

απ
4

and, if N(t) is odd,

x′ =
icx

Γ(1− α
2 ) cos

απ
4

,

so that, in terms of the coordinate x′, the system (4.7) can be rewritten as{
∂f
∂t = −ic ∂α/2f

∂|x′|α/2 + λ(b− f),

∂b
∂t = ic ∂α/2b

∂|x′|α/2 + λ(f − b).
(4.9)

In deriving (4.9) we have taken into account that Weyl’s derivative can be written down as
follows:

W
α/2
+ f(x, t) =

1

Γ(1− α
2 )

d

dx

∫ ∞

0

f(x− w, t)

wα/2
dw,

W
α/2
− f(x, t) =

1

Γ(1− α
2 )

d

dx

∫ ∞

0

f(x+ w, t)

wα/2
dw.
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Remark 4.3. We can show that the process whose transition function is the fundamental
solution of the fractional telegraph equation converges in the limit to the symmetric stable
process with characteristic function (1.3). Our idea is to consider the Laplace transform of
(2.8) and take the limit as c → ∞, λ → ∞, in such a way that c2/λ → 1 :∫ ∞

0

e−µtU(γ, t)dt =
1

2
[(µ+ λ+

√
λ2 − c2|γ|α)(λ+

√
λ2 − c2|γ|α)

+ (µ+ λ−
√
λ2 − c2|γ|α)(

√
λ2 − c2|γ|α − λ)]

· 1√
λ2 − c2|γ|α[(λ+ µ)2 − (λ2 − c2|γ|α)]

=
µ+ 2λ

µ2 + 2λµ+ c2|γ|α
. (4.10)

It is now a simple matter to observe that

lim
λ,c→∞,c2/λ→1

∫ ∞

0

e−µtU(γ, t)dt =
2

2µ+ |γ|α
=

∫ ∞

0

e−µte−|γ|αt/2dt.

This result corresponds to the fact that the fractional telegraph equation (1.2) converges,
as λ → ∞, c → ∞, to the fractional heat-wave equation appearing in (1.4).
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