Weighted Compact Commutator of Bilinear Fourier Multiplier Operator*

Guoen HU^{1}

Abstract

Let T_{σ} be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb{Z}}\left\|\sigma_{\kappa}\right\|_{W^{s}\left(\mathbb{R}^{2 n}\right)}<\infty$ for some $s \in(n, 2 n]$. In this paper, it is proved that the commutator generated by T_{σ} and $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$ functions is a compact operator from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$ for appropriate indices $p_{1}, p_{2}, p \in(1, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ and weights w_{1}, w_{2} such that $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{p} / \vec{t}}\left(\mathbb{R}^{2 n}\right)$.

Keywords Bilinear Fourier multiplier, Commutator, Bi(sub)linear maximal operator, Compact operator
2000 MR Subject Classification 42B15, 47B07, 42B25

1 Introduction

As it is well known, the study of bilinear Fourier multiplier operator was origined by Coifman and Meyer. Let $\sigma \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$. Define the bilinear Fourier multiplier operator T_{σ} by

$$
\begin{equation*}
T_{\sigma}\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} \exp \left(2 \pi \mathrm{i} x\left(\xi_{1}+\xi_{2}\right)\right) \sigma\left(\xi_{1}, \xi_{2}\right) \mathcal{F} f_{1}\left(\xi_{1}\right) \mathcal{F} f_{2}\left(\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \tag{1.1}
\end{equation*}
$$

for $f_{1}, f_{2} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, where and in the following, $\mathcal{F} f$ denotes the Fourier transform of f. Coifman and Meyer [6] proved that if $\sigma \in C^{s}\left(\mathbb{R}^{2 n} \backslash\{0\}\right)$ satisfies

$$
\begin{equation*}
\left|\partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}} \sigma\left(\xi_{1}, \xi_{2}\right)\right| \leq C_{\alpha_{1}, \alpha_{2}}\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{-\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right)} \tag{1.2}
\end{equation*}
$$

for all $\left|\alpha_{1}\right|+\left|\alpha_{2}\right| \leq s$ with $s \geq 4 n+1$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p_{1}, p_{2}, p<\infty$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. For the case of $s \geq 2 n+1$, Kenig-Stein [18] and Grafakos-Torres [12] improved Coifman and Meyer's multiplier theorem to the indices $\frac{1}{2} \leq p \leq 1$ by the multilinear Calderón-Zygmund operator theory. In the last several years, considerable attention has been paid to the behavior on function spaces for T_{σ} when the multiplier satisfies certain Sobolev regularity condition. A significant progress in this area was obtained by Tomita. Let $\Phi \in \mathscr{S}\left(\mathbb{R}^{2 n}\right)$ satisfy

$$
\left\{\begin{array}{l}
\operatorname{supp} \Phi \subset\left\{\left(\xi_{1}, \xi_{2}\right): \frac{1}{2} \leq\left|\xi_{1}\right|+\left|\xi_{2}\right| \leq 2\right\} ; \tag{1.3}\\
\sum_{\kappa \in \mathbb{Z}} \Phi\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right)=1 \text { for all }\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2 n} \backslash\{0\} .
\end{array}\right.
$$

[^0]For $\kappa \in \mathbb{Z}$, set

$$
\begin{equation*}
\sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\Phi\left(\xi_{1}, \xi_{2}\right) \sigma\left(2^{\kappa} \xi_{1}, 2^{\kappa} \xi_{2}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\left\|\sigma_{\kappa}\right\|_{W^{s}\left(\mathbb{R}^{2 n}\right)}=\left(\int_{\mathbb{R}^{2 n}}\left(1+\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}\right)^{s}\left|\mathcal{F} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2}\right)^{\frac{1}{2}} .
$$

Tomita [21] proved that if σ satisfies the Sobolev regularity that

$$
\begin{equation*}
\sup _{\kappa \in \mathbb{Z}}\left\|\sigma_{\kappa}\right\|_{W^{s}\left(\mathbb{R}^{2 n}\right)}<\infty \tag{1.5}
\end{equation*}
$$

for some $s \in(n, 2 n]$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ provided that $p_{1}, p_{2} \in(1, \infty)$ and $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Grafakos and Si [11] considered the mapping properties from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for T_{σ} when σ satisfies (1.5) and $p_{1}, p_{2} \in\left(\frac{2 n}{s}, \infty\right)$, then T is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Miyachi and Tomita [20] considered the problem to find minimal smoothness condition for bilinear Fourier multiplier. Let

$$
\left\|\sigma_{\kappa}\right\|_{W^{s_{1}, s_{2}}\left(\mathbb{R}^{2 n}\right)}=\left(\int_{\mathbb{R}^{2 n}}\left\langle\xi_{1}\right\rangle^{2 s_{1}}\left\langle\xi_{2}\right\rangle^{2 s_{2}}\left|\mathcal{F} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2}\right)^{\frac{1}{2}}
$$

where $\left\langle\xi_{k}\right\rangle:=\left(1+\left|\xi_{k}\right|^{2}\right)^{\frac{1}{2}}$. Miyachi and Tomita [20] proved that if

$$
\begin{equation*}
\sup _{\kappa \in \mathbb{Z}}\left\|\sigma_{\kappa}\right\|_{W^{s_{1}, s_{2}}\left(\mathbb{R}^{2 n}\right)}<\infty \tag{1.6}
\end{equation*}
$$

for some $s_{1}, s_{2} \in\left(\frac{n}{2}, n\right]$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for any $p_{1}, p_{2} \in(1, \infty)$ and $p \geq \frac{2}{3}$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Moreover, they also gave minimal smoothness condition for which T_{σ} is bounded from $H^{p_{1}}\left(\mathbb{R}^{n}\right) \times H^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$.

The weighted estimates for the operator T_{σ} are also of great interest. As it is well known, when σ satisfies (1.2) for some $s \geq 2 n+1$, then T_{σ} is a standard bilinear Calderón-Zygmund operator, and then by the weighted estimates with multiple weights for bilinear CalderónZygmund operators, which was established by Lerner et al. [19], we know that for any $p_{1}, p_{2} \in$ $[1, \infty)$ and $p \in(0, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and weights w_{1}, w_{2} such that $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{p}}\left(\mathbb{R}^{2 n}\right)$ (for the definition of $A_{\vec{p}}\left(\mathbb{R}^{2 n}\right)$, see Definition 1.1 below),

$$
\left\|T_{\sigma}\left(f_{1}, f_{2}\right)\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)} \lesssim \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)}
$$

where and in the following, for indices p_{1}, p_{2}, we set $\vec{p}=\left(p_{1}, p_{2}\right)$ and $p \in(0, \infty)$ such that $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. By developing the ideas used in [19], Bui and Duong [4] established the weighted estimates with multiple weights for T_{σ} when σ satisfies (1.2) for some $s \in(n, 2 n]$. To consider the weighted estimates for T_{σ} when σ satisfies (1.5), Jiao [17] introduced the following class of multiple weights.

Definition 1.1 Let $m \geq 1$ be an integer, w_{1}, \cdots, w_{m} be weights, $p_{1}, \cdots, p_{m}, p \in(0, \infty)$ with $\frac{1}{p}=\sum_{k=1}^{m} \frac{1}{p_{k}}, r_{k} \in\left(0, p_{k}\right](1 \leq k \leq m)$ and $\vec{r}=\left(r_{1}, \cdots, r_{m}\right)$. Set $\vec{w}=\left(w_{1}, \cdots, w_{m}\right)$,
$\vec{p}=\left(p_{1}, \cdots, p_{m}\right)$ and $\nu_{\vec{w}}=\prod_{k=1}^{m} w_{k}^{\frac{p}{p_{k}}}$. We say that $\vec{w} \in A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{m n}\right)$ if

$$
\sup _{B \subset \mathbb{R}^{n}}\left(\frac{1}{|B|} \int_{B} \nu_{\vec{w}}(x) \mathrm{d} x\right)^{\frac{1}{p}} \prod_{k=1}^{m}\left(\frac{1}{|B|} \int_{B} w_{k}^{-\frac{1}{p_{k}} r_{k_{k}}-1}(x) \mathrm{d} x\right)^{\frac{1}{r_{k}}-\frac{1}{p_{k}}}<\infty,
$$

where and in the following, when $p_{k}=r_{k},\left(\frac{1}{|B|} \int_{B} w_{k}^{-\frac{1}{p_{k}}-1}(x) \mathrm{d} x\right)^{\frac{1}{r_{k}}-\frac{1}{p_{k}}}$ is understood as $\left(\inf _{x \in B} w_{k}\right)^{-\frac{1}{p_{k}}}$.

When $r_{1}=\cdots=r_{m}=1, A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{m n}\right)$ is just the weight class $A_{\vec{P}}\left(\mathbb{R}^{m n}\right)$ introduced by Lerner et al. [19]. By some kernel estimates of the operator T_{σ}, Jiao proved that for $t_{1}, t_{2} \in[1,2)$ such that $\frac{1}{t_{1}}+\frac{1}{t_{2}}=\frac{s}{n}, p_{k} \in\left(t_{k}, \infty\right)$ with $k=1,2$, and w_{1}, w_{2} such that $\vec{w} \in A_{\vec{p} / \vec{t}}\left(\mathbb{R}^{2 n}\right)$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$. For the weighted estimates with A_{p} weights when σ satisfies the regularity (1.6) (see $[8,15]$), here and in the following, for $p \in[1, \infty), A_{p}\left(\mathbb{R}^{n}\right)$ denotes the weight function class Muckenhoupt, and $A_{\infty}\left(\mathbb{R}^{n}\right)=\bigcup_{p \geq 1} A_{p}\left(\mathbb{R}^{n}\right)$.

The commutator of the multiplier operator T_{σ} has been considered by many authors. Let T_{σ} be the multiplier operator defined by (1.1), $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $\vec{b}=\left(b_{1}, b_{2}\right)$. Define the commutator of \vec{b} and T_{σ} by

$$
\begin{equation*}
T_{\sigma, \vec{b}}\left(f_{1}, f_{2}\right)(x)=\sum_{k=1}^{2}\left[b_{k}, T_{\sigma}\right]_{k}\left(f_{1}, f_{2}\right)(x) \tag{1.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(x)=b_{1}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x)-T_{\sigma}\left(b_{1} f_{1}, f_{2}\right)(x) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[b_{2}, T_{\sigma}\right]_{2}\left(f_{1}, f_{2}\right)(x)=b_{2}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x)-T_{\sigma}\left(f_{1}, b_{2} f_{2}\right)(x) \tag{1.9}
\end{equation*}
$$

Bui and Duong [4] established the weighted estimates with multiple weights for $T_{\sigma, \vec{b}}$ when σ satisfies (1.2) for $s \in(n, 2 n]$. Hu and Yi [16] considered the behavior on $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ for $T_{\sigma, \vec{b}}$ when σ satisfies (1.6) for $s_{1}, s_{2} \in\left(\frac{n}{2}, n\right]$, and showed that $T_{\sigma, \vec{b}}$ enjoys the same $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times$ $L^{p_{2}}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ mapping properties as that of the operator T_{σ}. Fairly recently, Hu [14] considered the compactness of $T_{\sigma, \vec{b}}$, and proved that if $b_{1}, b_{2} \in \operatorname{CMO}\left(\mathbb{R}^{n}\right), \sigma$ satisfies (1.6) for some $s_{1}, s_{2} \in\left(\frac{n}{2}, n\right]$, then for $p_{k} \in\left(n / s_{k}, \infty\right)(k=1,2)$ and $p \in[1, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}, T_{\sigma, \vec{b}}$ is a compact operator from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$, where and in the following, $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$ denotes the closure of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ in the $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ topology, which coincide with the space of functions of vanishing mean oscillation (see [3, 7] for details). Zhou and Li [22] considered the weighted compactness with A_{p} weights for $T_{\sigma, \vec{b}}$. By combining the ideas used in [2, 14], Zhou and Li showed that if $b_{1}, b_{2} \in \operatorname{CMO}\left(\mathbb{R}^{n}\right)$ and σ satisfies (1.6) for some $s_{1}, s_{2} \in\left(\frac{n}{2}, n\right]$, then for $p_{k} \in\left(n / s_{k}, \infty\right)(k=1,2), p \in[1, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and $w_{k} \in A_{p_{k} s_{k} / n}\left(\mathbb{R}^{n}\right), T_{\sigma, \vec{b}}$ is a compact operator from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$.

The main purpose of this paper is to consider the weighted compactness of $T_{\sigma, \vec{b}}$ with multiple weights. We will show that if σ satisfies (1.5) and $b_{1}, b_{2} \in \operatorname{CMO}\left(\mathbb{R}^{n}\right)$, then for appropriate
indices $p_{1}, p_{2}, p \in(1, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and weights w_{1}, w_{2} such that $\vec{w}=\left(w_{1}, w_{2}\right) \in$ $A_{\vec{p} / t}\left(\mathbb{R}^{2 n}\right), T_{\sigma, \vec{b}}$ is compact from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$. Our main result in this paper can be stated as follows.

Theorem 1.1 Let σ be a multiplier satisfying (1.5) for some $s \in(n, 2 n]$ and T_{σ} be the operator defined by (1.1). Let $t_{1}, t_{2} \in[1,2)$ such that $\frac{1}{t_{1}}+\frac{1}{t_{2}}=\frac{s}{n}, b_{1}, b_{2} \in \operatorname{CMO}\left(\mathbb{R}^{n}\right)$. Then for $p_{k} \in\left(t_{k}, \infty\right)$ with $k=1,2, p \in(1, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and weights w_{1}, w_{2} such that $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{p} / t}\left(\mathbb{R}^{2 n}\right)$ and $\nu_{\vec{w}} \in A_{p}\left(\mathbb{R}^{n}\right)$, the commutator $T_{\sigma, \vec{b}}$ is a compact operators from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{w}\right)$.

Remark 1.1 It is well known that, the class $A_{\vec{P}}\left(\mathbb{R}^{2 n}\right)$ with $\vec{P}=\left(p_{1}, p_{2}\right)$ is really large than the weight class $\prod_{k=1}^{2} A_{p_{k}}\left(\mathbb{R}^{n}\right)$, and the weighted estimates with multiple weights $A_{\vec{P}}\left(\mathbb{R}^{2 n}\right)$ are more interesting and more refined than the weighted estimates with $A_{p_{1}}\left(\mathbb{R}^{n}\right) \times A_{p_{2}}\left(\mathbb{R}^{n}\right)$ for the bilinear Calderón-Zygmund operators (see [19]). To prove Theorem 1.1, we will employ the idea used in $[2,14]$. However, the idea that controlling $T_{\sigma, \bar{b}}\left(f_{1}, f_{2}\right)$ by $\prod_{k=1}^{2} M_{n / s_{k}} f$ which was used in $[14,22]$ (even if the function $\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)$ with $\vec{r}=\left(\frac{n}{s_{1}}, \frac{n}{s_{2}}\right)$ introduced by [17]) does not work. To overcome this difficulty, we establish some new estimates for the kernel of T_{σ}, and introduce a new subtle bi(sub)linear maximal operator to control $T_{\sigma, \vec{b}}$.

Throughout the article, C always denotes a positive constant that may vary from line to line but remains independent of the main variables. We use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leq C B$. For any set $E \subset \mathbb{R}^{n}, \chi_{E}$ denotes its characteristic function. We use $B(x, R)$ to denote a ball centered at x with radius R and $C(x, R)=B(x, R) \backslash B\left(x, \frac{R}{2}\right)$. For a ball $B \subset \mathbb{R}^{n}$ and $\lambda>0$, we use λB to denote the ball concentric with B whose radius is λ times of B 's. For any $\gamma \in[1, \infty]$, we use γ^{\prime} to denote the dual exponent of γ, namely, $\frac{1}{\gamma}+\frac{1}{\gamma^{\prime}}=1$. For a locally integrable function $f, M f$ denotes the Hardy-Littlewood maximal function of f, and for $\tau \in(0, \infty)$,

$$
M_{\tau} f(x)=\left(M\left(|f|^{\tau}\right)(x)\right)^{\frac{1}{\tau}} .
$$

Let M^{\sharp} be the Fefferman-Stein sharp maximal operator. For $\epsilon>0, M_{\epsilon}^{\sharp}$ denotes the operator defined by

$$
M_{\epsilon}^{\sharp} f(x)=\left(M^{\sharp}\left(|f|^{\epsilon}\right)(x)\right)^{\frac{1}{\epsilon}} .
$$

2 A New Maximal Operator

To control the multilinear Calderón-Zygmund operators via the Fefferman-Stein sharp maximal operator, Lerner et al. [19] introduced the bi(sub)linear maximal operator \mathcal{M} by

$$
\mathcal{M}\left(f_{1}, f_{2}\right)(x)=\sup _{B \ni x} \prod_{k=1}^{2} \frac{1}{|B|} \int_{B}\left|f_{k}\left(y_{k}\right)\right| \mathrm{d} y_{k} .
$$

For $r_{1}, r_{2} \in(0, \infty)$, Jiao [17] generalized the operator \mathcal{M}, defined the maximal operator $\mathcal{M}_{\vec{r}}$ by

$$
\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)=\sup _{B \ni x} \prod_{k=1}^{2}\left(\frac{1}{|B|} \int_{B}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}}
$$

and established the weighted norm inequalities with multiple weights $A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{2 n}\right)$ for $\mathcal{M}_{\vec{r}}$. Let $\delta \in \mathbb{R}$ and $r_{1}, r_{2} \in[1, \infty)$. Define the $\operatorname{bi}($ sub $)$ linear maximal operators $\mathcal{M}_{\vec{r}, \delta}^{(1)}$ and $\mathcal{M}_{\vec{r}, \delta}^{(2)}$ by

$$
\begin{aligned}
\mathcal{M}_{\vec{r}, \delta}^{(1)}\left(f_{1}, f_{2}\right)(x)= & \sup _{B \ni x} \sum_{j=1}^{\infty} 2^{j \delta} 2^{-\frac{j n}{r_{1}}}\left(\frac{1}{|B|} \int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \\
& \times\left(\frac{1}{\left|2^{j} B\right|} \int_{2^{j} B}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{M}_{\vec{r}, \delta}^{(2)}\left(f_{1}, f_{2}\right)(x)= & \sup _{B \ni x} \sum_{j=1}^{\infty} 2^{j \delta} 2^{-\frac{j n}{r_{2}}}\left(\frac{1}{|B|} \int_{B}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
& \times\left(\frac{1}{\left|2^{j} B\right|} \int_{2^{j} B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}
\end{aligned}
$$

respectively. It is obvious that for any $\delta<0, x \in \mathbb{R}^{n}$ and $k=1,2$,

$$
\mathcal{M}_{\vec{r}, \delta}^{(k)}\left(f_{1}, f_{2}\right)(x) \lesssim \mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)
$$

For the case of $\delta=0$ and $r_{1}=r_{2}=1$, these operators were introduced by Grafakos et al. in [9]. Although we do not know if the operator $\mathcal{M}_{\vec{r}}$ can be applied to prove Theorem 1.1, as the operator \mathcal{M} do in the proof of the weighted compactness of the commutator of multilinear Calderón-Zygmund operators (see [2]), we will see that the operator $\mathcal{M}_{\vec{r}, \delta}^{(k)}(k=1,2)$ are suitable replacement of $\mathcal{M}_{\vec{r}}$ in our argument.

As it is well known, for a weight $w \in A_{\infty}\left(\mathbb{R}^{n}\right)$, there exists a positive constant θ, such that for any ball $B \subset \mathbb{R}^{n}$ and any measurable set $E \subset B$,

$$
\begin{equation*}
\frac{w(E)}{w(B)} \lesssim\left(\frac{|E|}{|B|}\right)^{\theta} \tag{2.1}
\end{equation*}
$$

For a fixed $\theta \in(0,1)$, set

$$
R_{\theta}=\left\{w \in A_{\infty}\left(\mathbb{R}^{n}\right): w \text { satisfies }(2.1)\right\} .
$$

Our result concerning the operators $\mathcal{M}_{\vec{r}, \delta}^{(k)}$ can be stated as follows.
Theorem 2.1 Let $r_{1}, r_{2} \in(0, \infty)$ and $\delta \in \mathbb{R}, p_{1} \in\left[r_{1}, \infty\right)$ and $p_{2} \in\left[r_{2}, \infty\right), \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Let w_{1}, w_{2} be weights such that $\vec{w} \in A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{2 n}\right)$ and $\nu_{\vec{w}} \in R_{\theta}$ for some θ such that $\delta<$ $n \theta \min \left\{\frac{1}{p_{1}}, \frac{1}{p_{2}}\right\}$. Then both of the operators $\mathcal{M}_{\vec{r}, \delta}^{(1)}, \mathcal{M}_{\vec{r}, \delta}^{(2)}$ are bounded from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times$ $L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p, \infty}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$. Moreover, if $p_{k} \in\left(r_{k}, \infty\right)$ with $k=1,2$, then these operators are bounded from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$.

To prove Theorem 2.1, we need the following characterization of $A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{2 n}\right)$, which was proved in [17].

Lemma 2.1 Let w_{1}, w_{2} be weights, $p_{1}, p_{2}, p \in(0, \infty)$ with $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}, r_{k} \in\left(0, p_{k}\right](k=$ $1,2)$. Then the following conditions are equivalent:
(i) $\vec{w} \in A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{2 n}\right)$;
(ii) $\nu_{\vec{w}} \in A_{p / r}\left(\mathbb{R}^{n}\right)$, and for $k=1,2, w_{k}^{-\frac{1}{p_{k}-1}} \in A_{p_{k} r_{k} / r\left(p_{k}-r_{k}\right)}\left(\mathbb{R}^{n}\right)$ if $r_{k} \neq p_{k}$ or $w_{k}^{\frac{r}{p_{k}}} \in$ $A_{1}\left(\mathbb{R}^{n}\right)$ if $r_{k}=p_{k}$, here $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$.

Proof of Theorem 2.1 We first consider the case of $p_{k} \in\left(r_{k}, \infty\right)$ with $k=1,2$. Since the argument for $\mathcal{M}_{\vec{r}, \delta}^{(1)}$ and $\mathcal{M}_{\vec{r}, \delta}^{(2)}$ are very similar, we only consider the operator $\mathcal{M}_{\vec{r}, \delta}^{(1)}$. We will employ the ideas used in [9]. Let $M_{\nu_{\vec{w}}}^{c}$ be the centered maximal operator defined by

$$
M_{\nu_{\vec{w}}}^{c} f(x)=\sup _{B: \text { ball centered at } x} \frac{1}{\nu_{\vec{w}}(B)} \int_{B}|f(y)| \nu_{\vec{w}}(y) \mathrm{d} y
$$

As it was pointed out in [9], it suffices to prove that for some $q_{1}, q_{2} \in(0,1)$,

$$
\begin{equation*}
\mathcal{M}_{\vec{r}, \delta}^{(1)}\left(f_{1}, f_{2}\right)(x) \lesssim \prod_{k=1}^{2}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)^{q_{k}}\right)(x)\right\}^{\frac{1}{q_{k} p_{k}}} \tag{2.2}
\end{equation*}
$$

For each fixed k, we know by Lemma 2.1 that $w_{k}^{-\frac{1}{p_{k}-1}} \in A_{p_{k} r_{k} / r\left(p_{k}-r_{k}\right)}\left(\mathbb{R}^{n}\right)$, and so there exists a positive constant $\sigma_{k}>1$ such that for any ball B,

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} w_{k}^{-\frac{\sigma_{k}}{p_{k}} r_{k}}(y) \mathrm{d} y\right)^{\frac{1}{\sigma_{k}}} \lesssim \frac{1}{|B|} \int_{B} w_{k}^{-\frac{1}{\frac{p_{k}}{r_{k}}-1}}(y) \mathrm{d} y \tag{2.3}
\end{equation*}
$$

For $k=1,2$, let

$$
q_{k}=\frac{p r_{k}}{p r_{k}+r\left(p_{k}-r_{k}\right)\left(1-\frac{1}{\sigma_{k}}\right)}, \quad \gamma_{k}=\frac{r\left(p_{k} q_{k}-r_{k}\right)}{r_{k}(p-r)\left(1-q_{k}\right)}
$$

It is obvious that $\frac{p_{k} q_{k}}{r_{k}}>1, \gamma_{k}>1$, and

$$
\begin{align*}
& \frac{q_{k} \gamma_{k}^{\prime}}{p_{k} q_{k}-r_{k}}=\frac{q_{k} r}{r\left(p_{k} q_{k}-r_{k}\right)-r_{k}(p-r)\left(1-q_{k}\right)} \tag{2.4}\\
& \frac{q_{k}\left(p_{k}-r_{k}\right)}{\left(p_{k} q_{k}-r_{k}\right)-r_{k}\left(\frac{p}{r}-1\right)\left(1-q_{k}\right)}=\sigma_{k} \tag{2.5}
\end{align*}
$$

An application of the Hölder inequality gives that

$$
\begin{align*}
\left(\int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \lesssim & \left(\int_{B}\left|f_{1}(y)\right|^{q_{1} p_{1}} w_{1}^{q_{1}}(y) \nu_{\vec{w}}^{1-q_{1}}(y) \mathrm{d} y\right)^{\frac{1}{q_{1} p_{1}}} \\
& \times\left(\int_{B}\left(w_{1}^{q_{1}}(y) \nu_{\vec{w}}^{1-q_{1}}(y)\right)^{-\frac{1}{\frac{p_{1} q_{1}}{r_{1}}-1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}-\frac{1}{q_{1} p_{1}}} \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{B}\left(w_{1}^{q_{1}}(y) \nu_{\vec{w}}^{1-q_{1}}(y)\right)^{-\frac{1}{\frac{p_{1} q_{1}}{r_{1}}-1}} \mathrm{~d} y \leq\left(\int_{B} w_{1}^{-\frac{q_{1} \gamma_{1}^{\prime}}{\frac{p_{1} q_{1}}{r_{1}}-1}}(y) \mathrm{d} y\right)^{\frac{1}{\gamma_{1}^{\prime}}}\left(\int_{B} \nu_{\vec{w}}^{-\frac{1}{p_{r}-1}}(y) \mathrm{d} y\right)^{\frac{1}{\gamma_{1}}} \tag{2.7}
\end{equation*}
$$

On the other hand, we have by the inequalities (2.3)-(2.5) that

$$
\begin{align*}
\int_{B} w_{1}^{-\frac{q_{1} \gamma_{1}^{\prime}}{\frac{p_{1} q_{1}}{r_{1}}-1}}(y) \mathrm{d} y & =\int_{B} w_{1}^{-\frac{1}{\frac{p_{1}}{r_{1}-1} \frac{q_{1}\left(p_{1}-r_{1}\right)}{\left(p_{1} q_{1}-r_{1}\right)-r_{1}\left(\frac{1}{r}-1\right)\left(1-q_{1}\right)}}}(y) \mathrm{d} y \\
& \lesssim|B|^{1-\frac{q_{1} \gamma_{1}^{\prime}\left(p_{1}-r_{1}\right)}{p_{1} q_{1}-r_{1}}}\left(\int_{B} w_{1}^{-\frac{1}{\frac{1}{p_{1}}-1}}(y) \mathrm{d} y\right)^{\frac{q_{1} \gamma_{1}^{\prime}\left(p_{1}-r_{1}\right)}{p_{1} q_{1}-r_{1}}} . \tag{2.8}
\end{align*}
$$

Note that

$$
\frac{1}{\gamma_{1}}\left(\frac{1}{r_{1}}-\frac{1}{q_{1} p_{1}}\right)+\left(1-\frac{q_{1} \gamma_{1}^{\prime}\left(p_{1}-r_{1}\right)}{p_{1} q_{1}-r_{1}}\right) \frac{1}{\gamma_{1}^{\prime}}\left(\frac{1}{r_{1}}-\frac{1}{p_{1} q_{1}}\right)=\frac{1}{p_{1}}-\frac{1}{p_{1} q_{1}} .
$$

Combining the inequalities (2.6)-(2.8) then yields

$$
\begin{aligned}
\left(\int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \lesssim & \left(\int_{B}\left|f_{1}(y)\right|^{p_{1} q_{1}} w_{1}^{q_{1}}(y) \nu_{\vec{w}}^{1-q_{1}}(y) \mathrm{d} y\right)^{\frac{1}{p_{1} q_{1}}} \\
& \times\left(\frac{1}{|B|} \int_{B} w_{1}^{-\frac{1}{p_{1}}-1}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}} \\
& \times|B|^{\frac{1}{r_{1}}-\frac{1}{p_{1} q_{1}}}\left(\frac{1}{|B|} \int_{B} \nu_{\vec{w}}^{-\frac{1}{p_{1}-1}}(y) \mathrm{d} y\right)^{\frac{1}{\gamma_{1}}\left(\frac{1}{r_{1}}-\frac{1}{q_{1} p_{1}}\right)} .
\end{aligned}
$$

Recall that $\nu_{\vec{w}} \in A_{p / r}\left(\mathbb{R}^{n}\right)$. Thus for each ball B,

$$
\begin{aligned}
\left(\int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \lesssim & \left(\frac{1}{\nu_{\vec{w}}(B)} \int_{B}\left|f_{1}(y)\right|^{p_{1} q_{1}} w_{1}^{q_{1}}(y) \nu_{\vec{w}}^{1-q_{1}}(y) \mathrm{d} y\right)^{\frac{1}{p_{1} q_{1}}} \\
& \times\left(\frac{\nu_{\vec{w}}(B)}{|B|}\right)^{\frac{1}{p_{1}}}|B|^{\frac{1}{r_{1}}}\left(\frac{1}{|B|} \int_{B}^{-\frac{1}{p_{1}} w_{1}^{r_{1}}-1}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
\left(\int_{2^{j} B}\left|f_{2}(y)\right|^{r_{2}} \mathrm{~d} y\right)^{\frac{1}{r_{2}}} \lesssim & \left(\frac{1}{\nu_{\vec{w}}\left(2^{j} B\right)} \int_{2^{j} B}\left|f_{2}(z)\right|^{p_{2} q_{2}} w_{2}^{q_{2}}(z) \nu_{\vec{w}}^{1-q_{2}}(z) \mathrm{d} z\right)^{\frac{1}{p_{2} q_{2}}} \\
& \times\left(\nu_{\vec{w}}\left(2^{j} B\right)\right)^{\frac{1}{p_{2}}}\left(\int_{2^{j} B} w_{2}^{-\frac{1}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}}
\end{aligned}
$$

Therefore, for each fixed $x \in \mathbb{R}^{n}$ and ball B containing x,

$$
\begin{aligned}
& \sum_{j=1}^{\infty} 2^{\delta j} 2^{-\frac{j n}{r_{1}}}\left(\frac{1}{|B|} \int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\frac{1}{\left|2^{j} B\right|} \int_{2^{j} B}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
\lesssim & \prod_{k=1}^{2}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)^{q_{k}}\right)(x)\right\}^{\frac{1}{q_{k} p_{k}}}\left(\frac{\nu_{\vec{w}}(B)}{|B|}\right)^{\frac{1}{p_{1}}} \\
& \times \sum_{j=1}^{\infty} 2^{\delta j} 2^{-\frac{j n}{p_{1}}}\left(\frac{\nu_{\vec{w}}\left(2^{j} B\right)}{\left|2^{j} B\right|}\right)^{\frac{1}{p_{2}}} \prod_{k=1}^{2}\left(\frac{1}{\left|2^{j} B\right|} \int_{2^{j} B} w_{k}^{-\frac{1}{p_{k}} r_{k}}\left(y_{k}\right) \mathrm{d} y_{k}\right)^{\frac{1}{r_{k}}-\frac{1}{p_{k}}} .
\end{aligned}
$$

This, along with the fact that $\vec{w} \in A_{\vec{p} / \vec{r}}\left(\mathbb{R}^{2 n}\right)$ and the fact that $\frac{\nu_{\vec{w}}(B)}{\nu_{\vec{w}}\left(2^{j} B\right)} \lesssim 2^{-j n \theta}$, leads to that

$$
\begin{aligned}
& \sum_{j=1}^{\infty} 2^{\delta j} 2^{-\frac{j n}{r_{1}}}\left(\frac{1}{|B|} \int_{B}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\frac{1}{\left|2^{j} B\right|} \int_{2^{j} B}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
\lesssim & \prod_{k=1}^{2}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)^{q_{k}}\right)(x)\right\}^{\frac{1}{q_{k} p_{k}}}\left(\frac{\nu_{\vec{w}}(B)}{|B|}\right)^{\frac{1}{p_{1}}} \times \sum_{j=1}^{\infty} 2^{\delta j} 2^{-\frac{j n}{p_{1}}}\left(\frac{\nu_{\vec{w}}\left(2^{j} B\right)}{\left|2^{j} B\right|}\right)^{-\frac{1}{p_{1}}} \\
\lesssim & \prod_{k=1}^{2}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)^{q_{k}}\right)(x)\right\}^{\frac{1}{q_{k} p_{k}}}
\end{aligned}
$$

since $\delta<\frac{n \theta}{p_{1}}$. This establishes (2.2).
For the case of $p_{k}=r_{k}$ with $k=1,2$, the proof is similar to the case of $p_{k} \in\left(r_{k}, \infty\right)$ and is more simple. In fact, for each $x \in \mathbb{R}^{n}$ and ball $B \subset \mathbb{R}^{n}$ containing x, as in the proof of (2.2), we can verify that for $k=1,2$,

$$
\begin{aligned}
\left(\int_{B}\left|f_{k}(y)\right|^{r_{k}} \mathrm{~d} y\right)^{\frac{1}{r_{k}}} \lesssim & \left(\frac{\nu_{\vec{w}}(B)}{|B|}\right)^{\frac{1}{p_{k}}}|B|^{\frac{1}{r_{k}}}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)\right)(x)\right\}^{\frac{1}{p_{k}}} \\
& \times\left(\frac{1}{|B|} \int_{B} w_{k}^{-\frac{1}{p_{k}}-1}\left(y_{k}\right) \mathrm{d} y_{k}\right)^{\frac{1}{r_{k}}-\frac{1}{p_{k}}}
\end{aligned}
$$

which implies that

$$
\mathcal{M}_{\vec{r}, \delta}^{(1)}\left(f_{1}, f_{2}\right)(x) \lesssim \prod_{k=1}^{2}\left\{M_{\nu_{\vec{w}}}^{c}\left(\left(\frac{\left|f_{k}\right|^{p_{k}} w_{k}}{\nu_{\vec{w}}}\right)\right)(x)\right\}^{\frac{1}{p_{k}}}
$$

and then shows that $\mathcal{M}_{\vec{r}, \delta}^{(1)}\left(f_{1}, f_{2}\right)$ is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p, \infty}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$.

3 Proof of Theorem 1.1

Let $\sigma \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and $\Phi \in \mathscr{S}\left(\mathbb{R}^{2 n}\right)$ satisfy (1.3). For $\kappa \in \mathbb{Z}$, define

$$
\tilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\Phi\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right) \sigma\left(\xi_{1}, \xi_{2}\right)
$$

Then $\tilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\sigma_{\kappa}\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right)$ and

$$
\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=2^{2 \kappa n} \mathcal{F}^{-1} \sigma_{\kappa}\left(2^{\kappa} \xi_{1}, 2^{\kappa} \xi_{2}\right)
$$

where $\mathcal{F}^{-1} f$ denotes the inverse Fourier transform of f. For a positive integer N, let

$$
\sigma^{N}\left(\xi_{1}, \xi_{2}\right)=\sum_{|\kappa| \leq N} \tilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right), \quad K^{N}\left(x ; y_{1}, y_{2}\right)=\mathcal{F}^{-1} \sigma^{N}\left(x-y_{1}, x-y_{2}\right)
$$

For an integer k with $1 \leq k \leq m$ and $x, y_{1}, y_{2}, x^{\prime} \in \mathbb{R}^{n}$, let

$$
W^{N}\left(x, x^{\prime} ; y_{1}, y_{2}\right)=K^{N}\left(x ; y_{1}, y_{2}\right)-K^{N}\left(x^{\prime} ; y_{1}, y_{2}\right)
$$

Lemma 3.1 Let $q_{1}, q_{2} \in[2, \infty)$, and $s_{1}, s_{2} \geq 0$. Then

$$
\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\mathcal{F}^{-1} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{q_{1}}\left\langle\xi_{1}\right\rangle^{s_{1}} \mathrm{~d} \xi_{1}\right)^{\frac{q_{2}}{q_{1}}}\left\langle\xi_{2}\right\rangle^{s_{2}} \mathrm{~d} \xi_{2}\right)^{\frac{1}{q_{2}}} \lesssim\left\|\sigma_{\kappa}\right\|_{W^{\frac{s_{1}}{q_{1}}, \frac{s_{2}}{q_{2}}}\left(\mathbb{R}^{2 n}\right)}
$$

For the proof of Lemma 3.1, see Appendix A in [8].
Lemma 3.2 Let σ be a bilinear multiplier satisfying (1.5) for some $s \in[0, \infty), r_{1}, r_{2} \in(1,2]$ and $\gamma \in(0, s]$. Then for every $x \in \mathbb{R}^{n}$ and $R>0$,

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{R \leq\left|x-y_{1}\right|<2 R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}\left(\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right) \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\left|x-y_{2}\right| \geq R} \int_{\left|x-y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) . \tag{3.2}
\end{align*}
$$

Furthermore, if $\gamma \in(0, s]$ and $-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}+1>0$, then

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\left|x-y_{1}\right|<R}\left|x-y_{1}\right|\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} R\left(\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right) . \tag{3.3}
\end{align*}
$$

Proof By the Hölder inequality and Lemma 3.1, we have that for each $l \in \mathbb{Z}$,

$$
\begin{align*}
& \int_{\left|x-y_{2}\right|<2^{l-1} R} \int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} 2^{l} R\right)^{-\gamma}\left(\int _ { | x - y _ { 2 } | < 2 ^ { l - 1 } R } \left(\int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{1}^{\prime}}\right.\right. \\
& \left.\left.\times\left\langle 2^{\kappa}\left(x-y_{1}\right)\right\rangle^{\gamma r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}^{\prime}}} \mathrm{d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}} \prod_{k=1}^{2}\left(\int_{B\left(x, 2^{l} R\right)}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}} \\
\lesssim & 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)}\left(2^{l} R\right)^{-\gamma} \prod_{k=1}^{2}\left(\int_{B\left(x, 2^{l} R\right)}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}} \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{C\left(x, 2^{j} 2^{l-1} R\right)} \int_{B\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{j} 2^{\kappa} 2^{l} R\right)^{-\gamma}\left(\int_{C\left(x, 2^{j} 2^{l-1} R\right)}\left(\int_{B\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}(x-y, x-z)\right|^{r_{1}^{\prime}} \mathrm{d} y\right)^{\frac{r_{2}^{\prime}}{r_{1}}}\right. \\
& \left.\times\left\langle 2^{\kappa}(x-z)\right\rangle^{\gamma r_{2}^{\prime}} \mathrm{d} z\right)^{\frac{1}{r_{2}^{\prime}}}\left(\int_{B\left(x, 2^{l} R\right)}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\int_{B\left(x, 2^{l} 2^{j} R\right)} \mid f_{2}(z)^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
\lesssim & \left(2^{j+\kappa+l} R\right)^{-\gamma} 2^{\kappa\left(\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)}\left(\int_{B\left(x, 2^{l} R\right)}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \\
& \times\left(\int_{B\left(x, 2^{l} 2^{j} R\right)}\left|f_{2}(w)\right|^{r_{2}} \mathrm{~d} w\right)^{\frac{1}{r_{2}}} \tag{3.5}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} 2^{l} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}\left(\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right), \tag{3.6}
\end{align*}
$$

which gives (3.1) directly. We can also obtain from (3.5) (with $l=0$) that

$$
\begin{aligned}
& \int_{\left|x-y_{2}\right| \geq R} \int_{\left|x-y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} R^{-\gamma} \sum_{j=0}^{\infty} 2^{-j \gamma}\left(\int_{B(x, R)}\left|f_{1}(z)\right|^{r_{1}} \mathrm{~d} z\right)^{\frac{1}{r_{1}}} \times\left(\int_{B\left(x, 2^{j} R\right)}\left|f_{2}(w)\right|^{r_{2}} \mathrm{~d} w\right)^{\frac{1}{r_{2}}} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) .
\end{aligned}
$$

Finally, (3.6) implies that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{\left|x-y_{1}\right|<R}\left|x-y_{1}\right|\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\leq & \sum_{l=-\infty}^{-1} 2^{l} R \int_{\mathbb{R}^{n}} \int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} R\left(\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right),
\end{aligned}
$$

since $-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}+1>0$. This completes the proof of Lemma 3.2.
Remark 3.1 Let σ be a bilinear multiplier satisfying (1.5) for some $s \in[0, \infty), r_{1}, r_{2} \in(1,2]$ and $\gamma \in(0, s]$. As in the proof of (3.2), we can verify that, for each $R>0$ and $x, y \in \mathbb{R}$ with $|x-y|<R$,

$$
\begin{align*}
& \int_{\left|y-y_{2}\right| \geq R} \int_{\left|y-y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(y-y_{1}, y-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(2^{\kappa} R\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) . \tag{3.7}
\end{align*}
$$

Lemma 3.3 Let σ be a bilinear multiplier satisfying (1.5) for some $s \in[0, \infty), r_{1}, r_{2} \in(1,2]$ and $\gamma \in(0, s]$. For $R>0$ and $x \in \mathbb{R}^{n}$ with $|x|>4 R$, set

$$
V_{\kappa, 0}^{R}(x)=\int_{\left|y_{2}\right| \leq|x|} \int_{\left|y_{1}\right| \leq R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

and

$$
V_{\kappa, l}^{R}(x)=\int_{2^{l-1}|x|<\left|y_{2}\right| \leq 2^{l}|x|} \int_{\left|y_{1}\right| \leq R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

for positive integer l. Then for any weights w_{1}, w_{2} and $p_{k} \in\left(r_{k}, \infty\right)$ with $k=1,2$,

$$
\begin{aligned}
V_{\kappa, 0}^{R}(x) \lesssim & |x|^{-\gamma} 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{\left.L^{p_{k}\left(\mathbb{R}^{n}\right.}, w_{k}\right)} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{p_{1}}{r_{1}-1}}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B(0,|x|)} w_{2}^{-\frac{1}{p_{2}} r_{2}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}}
\end{aligned}
$$

and

$$
\begin{aligned}
V_{\kappa, l}^{R}(x) \lesssim & \left(2^{l}|x|\right)^{-\gamma} 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}, w_{k}\right)}} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}}-1}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,2^{l}|x|\right)} w_{2}^{-\frac{1}{p_{2}}{ }^{\frac{p_{2}}{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}} .
\end{aligned}
$$

Proof Note that when $\left|y_{1}\right| \leq R$ and $|x|>2 R,\left|x-y_{1}\right| \geq \frac{|x|}{2}$. As in the proof of Lemma 3.2 , we obtain by Lemma 3.1 and the Hölder inequality,

$$
\begin{aligned}
V_{\kappa, 0}^{R}(x) \lesssim & \left(\int_{\left|y_{2}\right| \leq|x|}\left(\int_{\left|x-y_{1}\right| \geq \frac{|x|}{2}}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}} \\
& \times\left(\int_{B(0, R)}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\int_{B(0,|x|)}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
\lesssim & \left(2^{\kappa}|x|\right)^{-\gamma} 2^{\kappa\left(\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)}\left(\int_{B(0, R)}\left|f_{1}\left(y_{1}\right)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}} \times\left(\int_{B(0,|x|)}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
\lesssim & |x|^{-\gamma} 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}, w_{k}\right)}} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{p_{1}}{\frac{1}{r_{1}}-1}}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B(0,|x|)} w_{\left.2^{-\frac{1}{r_{2}}}{ }^{\frac{p_{2}-1}{1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}}} .\right.
\end{aligned}
$$

Similarly, for $l \geq 1$, we have that

$$
\begin{aligned}
V_{\kappa, l}^{R}(x) \lesssim & \left(\int_{C\left(0,2^{l}|x|\right)}\left(\int_{\left|y_{1}\right| \leq R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} \\
& \times\left(\int_{B(0, R)}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\int_{B(0,|x|)}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
& \lesssim\left|2^{l} x\right|^{-\gamma} 2^{\kappa\left(-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}, w_{k}\right)}} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}} r_{1}-1}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,\left|2^{l} x\right|\right)} w_{2}^{-\frac{1}{p_{2}} r_{2}-1}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}} .
\end{aligned}
$$

This completes the proof of Lemma 3.3.
Lemma 3.4 Let σ be a multiplier which satisfies (1.5), $r_{1}, r_{2} \in(1,2]$ such that $s \in\left(\frac{n}{r_{1}}+\right.$ $\left.\frac{n}{r_{2}}, \frac{n}{r_{1}}+\frac{n}{r_{2}}+1\right)$. Then for each $R>0, x, x^{\prime} \in \mathbb{R}^{n}$ with $\left|x-x^{\prime}\right|<\frac{R}{4}$, nonnegative integers j_{1}, j_{2} with $j^{*}=\max \left\{j_{1}, j_{2}\right\} \geq 2$,

$$
\left(\int_{S_{j_{2}}(B(x, R))}\left(\int_{S_{j_{1}}(B(x, R))}\left|W^{N}\left(x, x^{\prime} ; y_{1}, y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} \lesssim \frac{\left|x-x^{\prime}\right|^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}}}{\left|2^{j^{*}} B\right|^{\frac{s}{n}}} .
$$

Proof We employ some estimates in [17]. Without loss of generality, we may assume that $j^{*}=j_{1}$. For $l \in \mathbb{Z}$, set

$$
W_{l}\left(x, x^{\prime} ; y_{1}, y_{2}\right)=\mathcal{F}^{-1} \widetilde{\sigma}_{l}\left(x-y_{1}, x-y_{2}\right)-\mathcal{F}^{-1} \widetilde{\sigma}_{l}\left(x^{\prime}-y_{1}, x^{\prime}-y_{2}\right)
$$

and

$$
J_{l ; j_{1} j_{2}}=\left(\int_{S_{j_{2}}(B(x, R))}\left(\int_{S_{j_{1}}(B(x, R))}\left|W_{l}\left(x, x^{\prime} ; y_{1}, y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}^{\prime}}} \mathrm{d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}}
$$

It was pointed out in [17] that

$$
J_{l ; j_{1}, j_{2}} \lesssim\left(2^{j_{1}} R\right)^{-s} 2^{-l\left(s-\frac{n}{r_{1}}-\frac{n}{r_{2}}\right)} .
$$

On the other hand, by the proof of the inequality (3.6) in [17], we know that

$$
J_{l ; j_{1}, j_{2}} \lesssim 2^{l}\left|x-x^{\prime}\right|\left(2^{j_{1}} R\right)^{-s} 2^{-l\left(s-\frac{n}{r_{1}}-\frac{n}{r_{2}}\right)} .
$$

Therefore,

$$
\begin{aligned}
& \left(\int_{S_{j_{2}}(B(x, R))}\left(\int_{S_{j_{1}}(B(x, R))}\left|W^{N}\left(x, x^{\prime} ; y_{1}, y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{1}^{\prime}}{r_{1}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}} \\
\lesssim & \sum_{l: 2^{l}\left|x-x^{\prime}\right|<1} J_{l ; j_{1}, j_{2}}+\sum_{l: 2^{l}\left|x-x^{\prime}\right| \geq 1} J_{l ; j_{1}, j_{2}} \lesssim \frac{\left|x-x^{\prime}\right|^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}}}{\left|2^{j^{*}} B\right|^{\frac{s}{n}}} .
\end{aligned}
$$

This completes the proof of Lemma 3.4.
Lemma 3.5 Let σ be a multiplier which satisfies (1.5) for some $s \in(n, 2 n], t_{1}, t_{2} \in[1,2)$ such that $\frac{1}{t_{1}}+\frac{1}{t_{2}}=\frac{s}{n}$. Let $p_{k} \in\left(t_{k}, \infty\right)$ for $k=1,2$ and w_{1}, w_{2} be weights such that $\vec{w} \in$ $A_{\vec{p} / t}\left(\mathbb{R}^{2 n}\right)$. Then for $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$,

$$
\left\|T_{\sigma, \vec{b}}\left(f_{1}, f_{2}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)} \lesssim \sum_{j=1}^{2}\left\|b_{j}\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)} .
$$

Proof The proof here is fairly standard (see [4, 17]). For each fixed positive integer N, let $T_{\sigma, N}$ be the bilinear operator with kernel K^{N} in the sense that

$$
\begin{equation*}
T_{\sigma, N}\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{3.8}
\end{equation*}
$$

Let $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right),\left[b_{1}, T_{\sigma, N}\right]_{1}$ and $\left[b_{2}, T_{\sigma, N}\right]_{2}$ be the commutator of $T_{\sigma, N}$ as in (1.8) and (1.9) respectively. As in the proof of Theorem 3.1 in [17], we can prove that if $r_{1}, r_{2} \in(1,2]$ such that $\frac{s}{n}>\frac{1}{r_{1}}+\frac{1}{r_{2}}$, then for $\epsilon \in(0, t)$ with $\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$,

$$
M_{\epsilon}^{\sharp}\left(\left[b_{k}, T_{\sigma, N}\right]_{k}\left(f_{1}, f_{2}\right)\right)(x) \lesssim\left\|b_{k}\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}\left(\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)+M_{t}\left(T_{\sigma, N}\left(f_{1}, f_{2}\right)\right)(x)\right) .
$$

Now let $p_{k} \in\left(t_{k}, \infty\right)$, w_{1}, w_{2} be weights such that $\vec{w} \in A_{\vec{p} / t}\left(\mathbb{R}^{2 n}\right)$. We can choose $\delta \in(0,1)$ which is close to 1 , such that $\vec{w} \in A_{\delta \vec{p} / t}\left(\mathbb{R}^{2 n}\right)$ and $r_{k}=\frac{t_{k}}{\delta}<p_{k}$ for $k=1,2$. Recall that by Lemma 2.2, $\vec{w} \in A_{\vec{p} / t}\left(\mathbb{R}^{2 n}\right)$ implies that $\nu_{\vec{w}} \in A_{p / t}\left(\mathbb{R}^{n}\right)$. It then follows that for $k=1,2$,

$$
\begin{aligned}
\left\|\left[b_{k}, T_{\sigma, N}\right]_{k}\left(f_{1}, f_{2}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)} \lesssim & \left\|b_{k}\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}\left(\left\|M_{t}\left(T_{\sigma, N}\left(f_{1}, f_{2}\right)\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)}\right. \\
& \left.+\left\|\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)}\right) \\
\lesssim & \left\|b_{k}\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)},
\end{aligned}
$$

if $b_{1}, b_{2} \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Note that for $b_{1}, b_{2} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $f_{1}, f_{2} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$,

$$
\lim _{N \rightarrow \infty}\left[b_{k}, T_{\sigma, N}\right]_{k}\left(f_{1}, f_{2}\right)(x)=\left[b_{k}, T_{\sigma}\right]_{k}\left(f_{1}, f_{2}\right)(x)
$$

holds for almost everywhere $x \in \mathbb{R}^{n}$. Thus, by the Fatou lemma, for $k=1,2, b_{1}, b_{2} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $f_{1}, f_{2} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\left[b_{k}, T_{\sigma}\right]_{k}\left(f_{1}, f_{2}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)} \lesssim\left\|b_{k}\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)}
$$

This, via a standard argument leads to our desired conclusion.
For a positive integer N, let $\mathscr{T}_{\sigma, N}$ be the operator defined by

$$
\mathscr{T}_{\sigma, N}\left(f_{1}, f_{2}\right)(x)=\sup _{\epsilon>0}\left|\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}\right| .
$$

Lemma 3.6 Let σ be a multiplier which satisfies (1.5) for some $s \in(n, 2 n], r_{1}, r_{2} \in(1,2]$ such that $s \in\left(\frac{n}{r_{1}}+\frac{n}{r_{2}}, \frac{n}{r_{1}}+\frac{n}{r_{2}}+1\right)$. Then for any $\gamma<\frac{n}{r_{1}}+\frac{n}{r_{2}}, \tau \in(0, \min \{1, r\})$ with $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$, and $x \in \mathbb{R}^{n}$,

$$
\mathscr{T}_{\sigma, N}\left(f_{1}, f_{2}\right)(x) \lesssim M_{\tau}\left(T_{\sigma, N}\left(f_{1}, f_{2}\right)\right)(x)+\sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) .
$$

Proof We employ the ideas used in [9, 13]. For each fixed $\epsilon>0$, let

$$
T_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x)=\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

and

$$
\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(y, x)=\int_{\min _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon} K^{N}\left(y ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} .
$$

For functions f_{1} and f_{2}, let

$$
f_{k}^{1}\left(y_{k}\right)=f_{k}\left(y_{k}\right) \chi_{B(x, \epsilon)}\left(y_{k}\right), \quad f_{k}^{2}\left(y_{k}\right)=f_{k}\left(y_{k}\right) \chi_{\mathbb{R}^{n} \backslash B(x, \epsilon)}\left(y_{k}\right), \quad k=1,2
$$

A trivial computation shows that for $y \in B\left(x, \frac{\epsilon}{2}\right)$,

$$
\begin{align*}
\left|\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x, x)\right| \leq & \left|\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x, x)-\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(y, x)\right| \\
& +\left|\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(y, x)\right| \\
\lesssim & \int_{\min _{1 \leq \leq \leq 2}\left|x-y_{k}\right|>\epsilon}\left|W^{N}\left(x, y ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& +\left|T_{\sigma, N}\left(f_{1}, f_{2}\right)(y)-T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right| \\
& +\left|T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{2}\right)(y)\right|+\left|T_{\sigma, N}\left(f_{1}^{2}, f_{2}^{1}\right)(y)\right| . \tag{3.9}
\end{align*}
$$

We obtain from Lemma 3.5 that

$$
\begin{align*}
& \int_{\min _{1 \leq 2}\left|x-y_{k}\right|>\epsilon}\left|W^{N}\left(x, y ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \sum_{j_{1}=1}^{\infty} \sum_{j_{2}=1}^{\infty}\left(\int_{S_{j_{2}}(B(x, \epsilon))}\left(\int_{S_{j_{1}}(B(x, \epsilon))}\left|W^{N}\left(x, y ; y_{1}, y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}^{\prime}}} \mathrm{d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}} \\
& \times \prod_{k=1}^{2}\left(\int_{S_{j_{k}}(B(x, \epsilon))}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}} \\
\lesssim & \mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x) . \tag{3.10}
\end{align*}
$$

On the other hand, it follows from (3.7) that for $y \in B\left(x, \frac{\epsilon}{2}\right)$,

$$
\begin{align*}
& \left|T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{2}\right)(y)\right|+\left|T_{\sigma, N}\left(f_{1}^{2}, f_{2}^{1}\right)(y)\right| \\
\lesssim & \sum_{|\kappa| \leq N: 2^{\kappa} \epsilon>1}\left(2^{\kappa} \epsilon\right)^{-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \sum_{k=1}^{2} \mathcal{M}_{\vec{r},-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) \\
& +\sum_{|\kappa| \leq N: 2^{\kappa} \epsilon \leq 1}\left(2^{\kappa} \epsilon\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) \\
\lesssim & \sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x), \tag{3.11}
\end{align*}
$$

where in the last inequality, we have invoked the estimate

$$
\mathcal{M}_{\vec{r},-s+\frac{n}{r_{1}+\frac{n}{r_{2}}}}^{(k)}\left(f_{1}, f_{2}\right)(x) \lesssim \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x)
$$

since $-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}<-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}$. Similarly, we have that

$$
\begin{align*}
& \left|T_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x)-\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x, x)\right| \\
\lesssim & \int_{\substack{1 \leq \max \leq 2 \\
\text { min } \\
1 \leq k \leq 2 \\
\left|x-y_{k}\right|>\epsilon-y_{k} \mid<\epsilon}}\left|K^{N}\left(x ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) . \tag{3.12}
\end{align*}
$$

Combining the estimates (3.9)-(3.12) then leads to that for $y \in B\left(x, \frac{\epsilon}{2}\right)$,

$$
\begin{aligned}
\left|T_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x)\right| & \lesssim\left|\widetilde{T}_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x, x)\right|+\sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) \\
& \lesssim\left|T_{\sigma, N}\left(f_{1}, f_{2}\right)(y)\right|+\left|T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|+\sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) .
\end{aligned}
$$

Recall that $T_{\sigma, N}$ is bounded from $L^{r_{1}}\left(\mathbb{R}^{n}\right) \times L^{r_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{r, \infty}\left(\mathbb{R}^{n}\right)$ (see [8, 17]). Applying the argument in the proof of the Kolmogorov inequality (see also [9, 13]), tells us that for
$\tau \in(0, \min \{1, r\})$,

$$
\begin{aligned}
& \left(\frac{1}{\left|B\left(x, \frac{\epsilon}{2}\right)\right|} \int_{B\left(x, \frac{\epsilon}{2}\right)}\left|T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|^{\tau} \mathrm{d} y\right)^{\frac{1}{\tau}} \\
\lesssim & \prod_{k=1}^{2}\left(\frac{1}{|B(x, \epsilon)|} \int_{B(x, \epsilon)}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}}
\end{aligned}
$$

Therefore, for each $x \in \mathbb{R}^{n}$ and $\epsilon>0$,

$$
\begin{aligned}
\left|T_{\sigma, N ; \epsilon}\left(f_{1}, f_{2}\right)(x)\right| \lesssim & \left(\frac{1}{\left|B\left(x, \frac{\epsilon}{2}\right)\right|} \int_{B\left(x, \frac{\epsilon}{2}\right)}\left|T_{\sigma, N}\left(f_{1}, f_{2}\right)(y)\right|^{\tau} \mathrm{d} y\right)^{\frac{1}{\tau}} \\
& +\left(\frac{1}{\left|B\left(x, \frac{\epsilon}{2}\right)\right|} \int_{B\left(x, \frac{\epsilon}{2}\right)}\left|T_{\sigma, N}\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|^{\tau} \mathrm{d} y\right)^{\frac{1}{\tau}} \\
& +\sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x) \\
\lesssim & M_{\tau}\left(T_{\sigma, N}\left(f_{1}, f_{2}\right)\right)(x)+\sum_{k=1}^{2} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(k)}\left(f_{1}, f_{2}\right)(x)
\end{aligned}
$$

which gives us the desired conclusion.
Let φ be a non-negative function in $C_{0}^{\infty}\left(\mathbb{R}^{3 n}\right)$, which satisfies that $\operatorname{supp} \varphi \subset\left\{\left(x, y_{1}, y_{2}\right)\right.$: $\left.\max \left\{|x|,\left|y_{1}\right|,\left|y_{2}\right|\right\}<1\right\}, \int_{\mathbb{R}^{3 n}} \varphi(u) \mathrm{d} u=1$. For $\beta>0$, let $\chi^{\beta}=\chi^{\beta}\left(x, y_{1}, y_{2}\right)$ be the characteristic function of the set $\left\{\left(x, y_{1}, y_{2}\right): \max _{k=1,2}\left|x-y_{k}\right| \geq 3 \frac{\beta}{2}\right\}$, and let

$$
\psi^{\beta}\left(x ; y_{1}, y_{2}\right)=\varphi_{\beta} * \chi^{\beta}\left(x ; y_{2}, y_{2}\right)
$$

where $\varphi_{\beta}\left(x, y_{1}, y_{2}\right)=\left(\frac{\beta}{4}\right)^{-3 n} \varphi\left(\frac{4 x}{\beta}, \frac{4 y_{1}}{\beta}, \frac{4 y_{2}}{\beta}\right)$. As it was pointed out in [2], $\psi^{\beta} \in C^{\infty}\left(\mathbb{R}^{3 n}\right)$, $\left\|\psi^{\beta}\right\|_{L^{\infty}} \leq 1, \operatorname{supp} \psi^{\beta} \subset\left\{\left(x ; y_{1}, y_{2}\right): \max _{k=1,2}\left|x-y_{k}\right| \geq \beta\right\}$, and $\psi^{\beta}\left(x, y_{1}, y_{2}\right)=1$ if $\max _{k=1,2}\left|x-y_{k}\right| \geq$ 2β. For a fixed $N \in \mathbb{N}$, let $T_{\sigma, N}^{\beta}$ be the bilinear operator defined by

$$
\begin{equation*}
T_{\sigma, N}^{\beta}\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} \psi^{\beta}(x ; y, z) K^{N}(x ; y, z) f_{1}(y) f_{2}(z) \mathrm{d} y \mathrm{~d} z \tag{3.13}
\end{equation*}
$$

As usual, for $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, let $\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1},\left[b_{2}, T_{\sigma, N}^{\beta}\right]_{2}$ be the commutators of $T_{\sigma, N}^{\beta}$ as in (1.8)-(1.9).

Lemma 3.7 Let σ be a multiplier satisfying (1.5) for some $s \in(n, 2 n], T_{\sigma, N}$ and $T_{\sigma, N}^{\beta}$ be the operators defined by (3.8) and (3.13) respectively. Let $r_{1}, r_{2} \in(1,2]$ such that $s \in$ $\left(\frac{n}{r_{1}}+\frac{n}{r_{2}}, \frac{n}{r_{1}}+\frac{n}{r_{2}}+1\right)$. Then for any $\gamma<\frac{n}{r_{1}}+\frac{n}{r_{2}}$,

$$
\begin{equation*}
\left|\left[b_{j}, T_{\sigma, N}\right]_{j}\left(f_{1}, f_{2}\right)(x)-\left[b_{j}, T_{\sigma, N}^{\beta}\right]_{j}\left(f_{1}, f_{2}\right)(x)\right| \lesssim \beta \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(j)}\left(f_{1}, f_{2}\right)(x) \tag{3.14}
\end{equation*}
$$

Proof Without loss of generality, we assume that $\left\|\nabla b_{j}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}=1$. We deduce from

Lemma 3.2 that

$$
\begin{aligned}
& \left|\left[b_{j}, T_{\sigma, N}\right]_{j}\left(f_{1}, f_{2}\right)(x)-\left[b_{j}, T_{\sigma, N}^{\beta}\right]_{j}\left(f_{1}, f_{2}\right)(x)\right| \\
\lesssim & \sum_{\kappa \in \mathbb{Z}} \int_{\max _{k=1,2}\left|x-y_{k}\right| \leq 2 \beta}\left|x-y_{j}\right|\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \beta \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} \beta>1}\left(2^{\kappa} \beta\right)^{-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}}\left(\mathcal{M}_{\vec{r},-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(j)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right) \\
& +\beta \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} \beta \leq 1}\left(2^{\kappa} \beta\right)^{-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}\left(\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(j)}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r}}\left(f_{1}, f_{2}\right)(x)\right) \\
\lesssim & \beta \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(j)}\left(f_{1}, f_{2}\right)(x) .
\end{aligned}
$$

This completes the proof of Lemma 3.7.
Lemma 3.8 Let $r \in(1, \infty)$, $w \in A_{r}\left(\mathbb{R}^{n}\right), \mathcal{K} \subset L^{r}\left(\mathbb{R}^{n}, w\right)$. Suppose that
(i) \mathcal{K} is bounded in $L^{r}\left(\mathbb{R}^{n}, w\right)$;
(ii) $\lim _{A \rightarrow \infty} \int_{|x|>A}|f(x)|^{r} w(x) \mathrm{d} x=0$, uniformly for $f \in \mathcal{K}$;
(iii) $\|f(\cdot)-f(\cdot+t)\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \rightarrow 0$ uniformly for $f \in \mathcal{K}$ as $|t| \rightarrow 0$.

Then \mathcal{K} is precompact in $L^{r}\left(\mathbb{R}^{n}, w\right)$.
This lemma was given in [5].
Proof of Theorem 1.1 We will employ some ideas from [2]. By Lemma 3.5, it suffices to prove that when $b_{1}, b_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, the conclusion in Theorem 1.1 is true for $T_{\sigma, \vec{b}}$. We only consider $\left[b_{1}, T_{\sigma}\right]_{1}$ for simplicity. Without loss of generality, we assume that $\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+$ $\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}=1$.

Let $t_{1}, t_{2} \in(1,2]$ such that $\frac{s}{n}=\frac{1}{t_{1}}+\frac{1}{t_{2}}, p_{k} \in\left(t_{k}, \infty\right)$ with $k=1,2, w_{1}, w_{2}$ be weights such that $\vec{w} \in A_{\vec{p} / \vec{t}}\left(\mathbb{R}^{2 n}\right)$. Recalling that $\nu_{\vec{w}} \in A_{\infty}\left(\mathbb{R}^{n}\right)$, we know that $\nu_{\vec{w}} \in R_{\theta}$ for some $\theta \in(0,1)$. Also, by Corollary 2.1 in [17], we can choose $\delta \in(0,1)$ which is close to 1 , such that $\vec{w} \in A_{\delta \vec{p} / t}\left(\mathbb{R}^{2 n}\right)$ and

$$
\frac{s}{n}<\frac{\delta}{t_{1}}+\frac{\delta}{t_{2}}+1, \quad p_{k}>\frac{t_{k}}{\delta} \quad(k=1,2)
$$

Let $\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$ and $r_{k}=\frac{t_{k}}{\delta}$ with $k=1,2$. We claim that for each $\beta \in(0,1)$ and $\epsilon>0$,
(a) there exists a constant $A=A(\epsilon)$ which is independent of N, f_{1} and f_{2}, such that

$$
\begin{equation*}
\left(\int_{|x|>A}\left|\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(x)\right|^{p} \nu_{\vec{w}}(x) \mathrm{d} x\right)^{\frac{1}{p}} \lesssim \epsilon \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}, w_{k}\right)}} \tag{3.15}
\end{equation*}
$$

(b) there exists a constant $\rho=\rho_{\epsilon}$ which is independent of N, f_{1} and f_{2}, such that for all $u \in \mathbb{R}^{n}$ with $0<|u|<\rho$,

$$
\begin{align*}
& \left\|\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(\cdot+u)-\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(\cdot)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\bar{w}}\right)} \\
\lesssim & \epsilon \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)} . \tag{3.16}
\end{align*}
$$

If we can prove this, it then follows from the Fatou lemma that both (3.15) and (3.16) are true with $f_{1}, f_{2} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ and $T_{\sigma, N}^{\beta}$ is replaced by T_{σ}^{β}, here T_{σ}^{β} is defined by

$$
T_{\sigma}^{\beta}\left(f_{1}, f_{2}\right)(x)=\sum_{\kappa \in \mathbb{Z}} \int_{\mathbb{R}^{n}} \psi^{\beta}(x ; y, z) \mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}(x ; y, z) f_{1}(y) f_{2}(z) \mathrm{d} y \mathrm{~d} z
$$

Since $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)$, we then know that (3.15) and (3.16) are true when $T_{\sigma, N}^{\beta}$ is replaced by T_{σ}^{β}. This, via Lemma 3.8, tells us that $\left[b_{1}, T_{\sigma}^{\beta}\right]_{1}$ is compact from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times$ $L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$. On the other hand, (3.14) together with the Fatou lemma and a familiar density argument, leads to that

$$
\left\|\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)-\left[b_{1}, T_{\sigma}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)} \lesssim \beta \prod_{k=1}^{2}\|f\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)}
$$

Therefore, $\left[b_{1}, T_{\sigma}\right]_{1}$ is compact from $L^{p_{1}}\left(\mathbb{R}^{n}, w_{1}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}, w_{2}\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu_{\vec{w}}\right)$.
We first prove the conclusion (a). Let $R>0$ be large enough such that $\operatorname{supp} b_{1} \subset B(0, R)$. For every fixed $x \in \mathbb{R}^{n}$ with $|x|>2 R$, set

$$
\mathrm{U}_{N, 0}^{R}(x)=\int_{\left|y_{2}\right| \leq|x|} \int_{\left|y_{1}\right| \leq R}\left|K^{N}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

and

$$
\mathrm{U}_{N, l}^{R}(x)=\int_{2^{l-1}|x|<\left|y_{2}\right| \leq 2^{l}|x|} \int_{\left|y_{1}\right| \leq R}\left|K^{N}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} .
$$

We deduce from Lemma 3.3 that for integers $N>0$ and $l \geq 0$,

$$
\begin{aligned}
& \mathrm{U}_{N, l}^{R}(x) \lesssim \\
& \kappa: 2^{\kappa} R \geq 1 \\
& V_{\kappa, l}^{R}(x)+\sum_{\kappa: 2^{\kappa} R \leq 1} V_{\kappa, l}^{R}(x) \\
& \lesssim\left(\left(2^{l}|x|\right)^{-s} R^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}}+\left(2^{l}|x|\right)^{-\gamma} R^{\gamma-\frac{n}{r_{1}}-\frac{n}{r_{2}}}\right) \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}}-1}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}-\frac{1}{p_{1}}}}\left(\int_{B\left(0,2^{l}|x|\right)} w_{2}^{-\frac{1}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{r_{2}}},
\end{aligned}
$$

if we choose $\gamma<\frac{n}{r_{1}}+\frac{n}{r_{2}}$. Let $A>4 R$. Recall that $p>1$. It then follows directly that

$$
\begin{aligned}
& \left(\int_{2^{j-1} A<|x| \leq 2^{j} A}\left|\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(x)\right|^{p} \nu_{\vec{w}}(x) \mathrm{d} x\right)^{\frac{1}{p}} \\
\lesssim & \sum_{l=0}^{\infty}\left(\int_{2^{j-1} A<|x| \leq 2^{j} A}\left|\mathrm{U}_{N, l}^{R}(x)\right|^{p} \nu_{\vec{w}}(x) \mathrm{d} x\right)^{\frac{1}{p}} \\
\lesssim & \sum_{l=0}^{\infty}\left(\int_{B\left(0,2^{j} A\right)} \nu_{\vec{w}}(y) \mathrm{d} y\right)^{\frac{1}{p}}\left(2^{j+l} A\right)^{-s} R^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}, w_{k}\right)}} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}}{ }^{\frac{p_{1}}{1}-1}}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,2^{l+j} A\right)} w_{2}^{-\frac{1}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}-\frac{1}{p_{2}}}} \\
& +\sum_{l=0}^{\infty}\left(\int_{B\left(0,2^{j} A\right)} \nu_{\vec{w}}(y) \mathrm{d} y\right)^{\frac{1}{p}}\left(2^{j+l} A\right)^{-\gamma} R^{\gamma-\frac{n}{r_{1}}-\frac{n}{r_{2}}} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{\frac{p_{1}}{r_{1}-1}}}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,2^{l+j} A\right)} w_{2}^{-\frac{p_{2}}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}-\frac{1}{p_{2}}}} .
\end{aligned}
$$

It is easy to verify that

$$
\begin{aligned}
& \sum_{l=0}^{\infty}\left(\int_{B\left(0,2^{j} A\right)} \nu_{w}(y) \mathrm{d} y\right)^{\frac{1}{p}}\left(2^{j+l} A\right)^{-s} R^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}} \\
& \times\left(\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}} r_{1}}(y) \mathrm{d} y\right)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,2^{l+j} A\right)} w_{2}^{-\frac{1}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}} \\
\lesssim & R^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}} \sum_{l=0}^{\infty}\left(2^{l+j} A\right)^{-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}} \\
\lesssim & \left(\frac{R}{A}\right)^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}} 2^{j\left(-s+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)} .
\end{aligned}
$$

On the other hand, noting that $w_{1}^{-\frac{1}{\frac{p_{1}}{r_{1}}-1}} \in A_{\infty}\left(\mathbb{R}^{n}\right)$, there exists a constant $\zeta \in\left(0, \frac{1}{r_{1}}+\frac{1}{r_{2}}\right)$ such that

$$
\int_{B(0, R)} w_{1}^{-\frac{1}{p_{1}-1}}\left(y_{1}\right) \mathrm{d} y_{1} \lesssim\left(2^{-(j+l)} R A^{-1}\right)^{n \zeta} \int_{B\left(0,2^{j+l} A\right)} w_{1}^{-\frac{1}{p_{1}}{ }^{\frac{p_{1}-1}{r_{1}}}}\left(y_{1}\right) \mathrm{d} y_{1}
$$

which, in turn, implies that

$$
\begin{aligned}
& \sum_{l=0}^{\infty}\left(\int_{B\left(0,2^{j} A\right)} \nu_{\vec{w}}(y) \mathrm{d} y\right)^{\frac{1}{p}}\left(2^{j+l} A\right)^{-\gamma} R^{\gamma-\frac{n}{r_{1}}-\frac{n}{r_{2}}} \\
& \times\left(\int_{B(0, R)} w_{1}-\frac{1}{p_{1}-1}\right. \\
r_{1}-1 & y) \mathrm{d} y)^{\frac{1}{r_{1}}-\frac{1}{p_{1}}}\left(\int_{B\left(0,2^{l+j} A\right)} w_{2}^{-\frac{1}{p_{2}-1}}(z) \mathrm{d} z\right)^{\frac{1}{r_{2}}-\frac{1}{p_{2}}} \\
\lesssim & \left(\frac{R}{A}\right)^{\gamma+n \zeta-\frac{n}{r_{1}}-\frac{n}{r_{2}}} 2^{j\left(-\gamma-n \zeta+\frac{n}{r_{1}}+\frac{n}{r_{2}}\right)},
\end{aligned}
$$

if we choose

$$
\gamma \in\left(-n \zeta+\frac{n}{r_{1}}+\frac{n}{r_{2}}, \frac{n}{r_{1}}+\frac{n}{r_{2}}\right) .
$$

Thus, for $b_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have that for some constant $\eta>0$,

$$
\left(\int_{|x|>A}\left|\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(x)\right|^{p} \nu_{\vec{w}}(x) \mathrm{d} x\right)^{\frac{1}{p}} \lesssim\left(\frac{R}{A}\right)^{\eta} \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}, w_{k}\right)}
$$

This leads to the conclusion (a).
We turn our attention to conclusion (b). Let

$$
\gamma \in\left(0, \frac{n}{r_{1}}+\frac{n}{r_{2}}\right) .
$$

Set

$$
W^{N, \beta}\left(x+u, x ; y_{1}, y_{2}\right)=K^{N, \beta}\left(x+u ; y_{1}, y_{2}\right)-K^{N, \beta}\left(x ; y_{1}, y_{2}\right),
$$

and set

$$
\begin{aligned}
& \mathrm{J}_{1}^{\beta}\left(f_{1}, f_{2}\right)(x)=\left(b_{1}(x)-b_{1}(x+u)\right) \int_{\mathbb{R}^{2 n}} K^{N, \beta}(x ; y, z) f_{1}(y) f_{2}(z) \mathrm{d} y \mathrm{~d} z, \\
& \mathrm{~J}_{2}^{\beta}\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} W^{N, \beta}(x+u, x ; y, z)\left(b_{1}(y)-b_{1}(x+u)\right) f_{1}(y) f_{2}(z) \mathrm{d} y \mathrm{~d} z .
\end{aligned}
$$

As in the proof of Lemma 3.7, we obtain by Lemma 3.2 that

$$
\begin{aligned}
& \mid \int_{\mathbb{R}^{2 n}} K^{N, \beta}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& -\int_{\max _{k=1,2}\left|x-y_{k}\right| \geq 2 \beta} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \mid \\
\lesssim & \int_{\beta \leq \max _{k=1,2}\left|x-y_{k}\right| \leq 2 \beta}\left|K^{N}\left(x ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left|J_{1}^{\beta}\left(f_{1}, f_{2}\right)(x)\right| \lesssim|u|\left(\mathscr{T}_{\sigma, N}\left(f_{1}, f_{2}\right)(x)+\mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x)\right) . \tag{3.17}
\end{equation*}
$$

Note that $\left|\psi^{\beta}\left(x+u ; y_{1} ; y_{2}\right)-\psi^{\beta}\left(x ; y_{1}, y_{2}\right)\right| \lesssim \frac{|u|}{\beta}$, and

$$
\begin{aligned}
\left|W^{N, \beta}\left(x+u, x ; y_{1}, y_{2}\right)\right| \leq & \left|W^{N}\left(x+u, x ; y_{1}, y_{2}\right)\right| \psi^{\beta}\left(x+u ; y_{1} ; y_{2}\right) \mid \\
& +\left|K^{N}\left(x ; y_{1}, y_{2}\right)\right|\left|\psi^{\beta}\left(x+u ; y_{1} ; y_{2}\right)-\psi^{\beta}\left(x ; y_{1}, y_{2}\right)\right| .
\end{aligned}
$$

Let $|u| \leq \frac{\beta}{2}$. By Lemma 3.2 and Lemma 3.4 and the argument used in the proof of Lemma 3.7, we deduce that

$$
\begin{align*}
& \left|J_{2}^{\beta}\left(f_{1}, f_{2}\right)(x)\right| \lesssim \int_{\max _{k=1,2}\left|x-y_{k}\right|>\frac{\beta}{2}}\left|W^{N}\left(x+u, x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& +\frac{|u|}{\beta} \int_{k=1,2}\left|x-y_{k}\right| \leq 3 \beta\left|K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{2}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \max _{k=1,2}\left|x-y_{k}\right| \geq \frac{\beta}{2} \\
& \lesssim \sum_{\substack{j_{1}, j_{2} \geq 0 \\
\max \left\{j_{1}, j_{2}\right\} \geq 1}}\left(\int_{S_{j_{2}}\left(B\left(x, \frac{\beta}{4}\right)\right)}\left(\int_{S_{j_{1}}\left(B\left(x, \frac{\beta}{4}\right)\right)}\left|W^{N}(x, x+u ; y, z)\right|^{r_{1}^{\prime}} \mathrm{d} y\right)^{\frac{r_{2}^{\prime}}{r_{1}}} \mathrm{~d} z\right)^{\frac{1}{r_{2}^{\prime}}} \\
& \times\left(\int_{S_{j_{1}}\left(B\left(x, \frac{\beta}{4}\right)\right)}\left|f_{1}(y)\right|^{r_{1}} \mathrm{~d} y\right)^{\frac{1}{r_{1}}}\left(\int_{S_{j_{2}}\left(B\left(x, \frac{\beta}{4}\right)\right)}\left|f_{2}(z)\right|^{r_{2}} \mathrm{~d} z\right)^{\frac{1}{r_{2}}} \\
& +\frac{|u|}{\beta} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) \\
& \lesssim \sum_{\max \left\{j_{1}, j_{2}\right\} \geq 1} \frac{|u|^{s-\frac{n}{r_{1}}-\frac{n}{r_{2}}}}{\left|{2 j^{*}} B\left(x, \frac{\beta}{4}\right)\right|^{\frac{s}{n}}} \prod_{k=1}^{2}\left(\int_{S_{j_{k}}\left(B\left(x, \frac{\beta}{4}\right)\right)}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{\frac{1}{r_{k}}} \\
& +\frac{|u|}{\beta} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) \\
& \lesssim\left(\frac{|u|}{\beta}\right)^{\varrho} \mathcal{M}_{\vec{r},-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}}^{(1)}\left(f_{1}, f_{2}\right)(x) \tag{3.18}
\end{align*}
$$

with $\varrho=\min \left\{1, s-\frac{n}{r_{1}}-\frac{n}{r_{2}}\right\}$. Note that

$$
\left|\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(x+u)-\left[b_{1}, T_{\sigma, N}^{\beta}\right]_{1}\left(f_{1}, f_{2}\right)(x)\right| \lesssim \sum_{k=1}^{2} \mathrm{~J}_{k}^{\beta}\left(f_{1}, f_{2}\right)(x)
$$

The conclusion (b) now follows from (3.17)-(3.18), Lemma 3.6 and Theorem 2.1, if we choose γ such that $0<-\gamma+\frac{n}{r_{1}}+\frac{n}{r_{2}}<n \theta \min \left\{\frac{1}{p_{1}}, \frac{1}{p_{2}}\right\}$.

References

[1] Bényi, A. and Torres, R. H., Compact bilinear operators and commutators, Proc. Amer. Math. Soc., 141, 2013, 3609-3621.
[2] Benyi, A., Damián, W., Moen, K. and Torres, R., Compactness of bilinear commutator: The weighted case, Michigan Math. J., 64, 2015, 39-51.
[3] Bourdaud, G., Lanze de Cristoforis, M. and Sickel, W., Functional calculus on BMO and related spaces, J. Func. Anal., 189, 2002, 515-538.
[4] Bui, A. T. and Duong, X. T., Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math., 137, 2013, 63-75.
[5] Clop, A. and Cruz, V., Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math., 38, 2013, 91-113.
[6] Coifman, R. R. and Meyer, Y., Au delà des opérateurs pseudo-différentiels, Astériaque, 57, 1978, 1-185.
[7] Coifman, R. R. and Weiss, G., Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, 1977, 569-645.
[8] Fujita, M. and Tomita, N., Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc., 364, 2012, 6335-6353.
[9] Grafakos, L., Liu, L. and Yang, D., Multilple weighted norm inequalities for maximal singular integrals with non-smooth kernels, Proc. Royal Soc. Edinb. Ser. A, 141, 2011, 755-775.
[10] Grafakos, L., Miyachi, A. and Tomita, N., On multilinear Fourier multipliers of limited smoothness, Canad. J. Math., 65, 2013, 299-330.
[11] Grafakos, L. and Si , Z., The Hörmander multiplier theorem for multilinear operators, J. Reine. Angew. Math., 668, 2012, 133-147.
[12] Grafakos, L. and Torres, R. H., Multilinear Calderón-Zygmund theory, Adv. Math., 165, 2002, $124-164$.
[13] Grafakos, L. and Torres, R. H., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51, 2002, 1261-1276.
[14] Hu, G., The compactness of the commutator of bilinear Fourier multiplier operator, Taiwanese J. Math., 18, 2014, 661-675.
[15] Hu, G. and Lin, C., Weighted norm inequalities for multilinear singular integral operators and applications, Anal. Appl., 12, 2014, 269-291.
[16] Hu, G. and Yi, W., Estimates for the commutators of bilinear Fourier multiplier, Czech. Math. J., 63, 2013, 1113-1134.
[17] Jiao, Y., A weighted norm inequality for the bilinear Fourier multiplier operator, Math. Inequal. Appl., 17, 2014, 899-912.
[18] Kenig, C. and Stein, E. M., Multilinear estimates and fractional integral, Math. Res. Lett., 6, 1999, 1-15.
[19] Lerner, A., Ombrossi, S., Pérez, C., et al., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theorey, Adv. Math., 220, 2009, 1222-1264.
[20] Miyachi, A. and Tomita, N., Minimal smoothness conditions for bilinear Fourier multiplier, Rev. Mat. Iberoamericana, 29, 2013, 495-530.
[21] Tomita, N., A Hörmander type multiplier theorem for multilinear operator, J. Funct. Anal., 259, 2010, 2028-2044.
[22] Zhou, J. and Li, P., Compactness of the commutator of multilinear Fourier multiplier operator on weighted Lebesgue space, J. Funct. Spaces, 2014, Article ID 606504. http://dx.doi.org/10.1155/2014/606504

[^0]: Manuscript received October 11, 2014. Revised October 29, 2015.
 ${ }^{1}$ Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China. E-mail: guoenxx@163.com
 *This work was supported by the National Natural Science Foundation of China (No. 11371370).

