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Abstract Let A be a von Neumann algebra with no central abelian projections. It is
proved that if an additive map δ : A → A satisfies δ([[a, b], c]) = [[δ(a), b], c]+ [[a, δ(b)], c]+
[[a, b], δ(c)] for any a, b, c ∈ A with ab = 0 (resp. ab = P , where P is a fixed nontrivial
projection in A), then there exist an additive derivation d from A into itself and an additive
map f : A → ZA vanishing at every second commutator [[a, b], c] with ab = 0 (resp.
ab = P ) such that δ(a) = d(a) + f(a) for any a ∈ A.
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1 Introduction

Let A be an algebra over a field F. Recall that an additive (a linear) map δ from A into

itself is called an additive (a linear) derivation if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A. δ

is called an additive (a linear) Lie derivation if δ([a, b]) = [δ(a), b] + [a, δ(b)] for all a, b ∈ A,

where [a, b] = ab − ba. More generally, δ is called an additive (a linear) Lie triple derivation

if δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)] for all a, b, c ∈ A. The structures of Lie

triple derivations on some operator algebras were intensively studied (see [2, 7, 9] and references

therein). LetM be a von Neumann algebra with no central abelian projections. Miers [9] proved

that if L : M → M is a linear Lie triple derivation, then there exists an element T ∈ M and a

linear map f : M → ZM which annihilates brackets such that L(a) = aT − Ta+ f(a) for any

a ∈ M.

In recent years, the local actions of derivations have been studied intensively. One direction

is to study the conditions under which derivations of operator algebras can be completely

determined by the actions on some elements concerning products. We say that an additive (a

linear) map δ : A → A is derivable at a given point G ∈ A, if δ(ab) = δ(a)b+aδ(b) for all a, b ∈ A

with ab = G. This kind of maps were discussed by several authors (see [1, 3, 4–5, 11–12] and

references therein). But, so far, there have been few papers on the study of the local actions of

Lie triple derivations on operator algebras. We say that an additive (a linear) map δ : A → A is

Lie triple derivable at a given point G ∈ A, if δ([[a, b], c]) = [[δ(a), b], c]+[[a, δ(b)], c]+[[a, b], δ(c)]

for all a, b, c ∈ A with ab = G. It is the aim of the present article to investigate the additive
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(linear) Lie triple derivations on von Neumann algebras with no central abelian projections by

the local actions. It is a generalization of the results in [9].

We need some notations and preliminaries about von Neumann algebras. A von Neumann

algebra A is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing

the identity I. ZA = {z ∈ A : za = az for all a ∈ A} is called the center of A. A projection

P is called a central abelian projection if P ∈ ZA and PAP is abelian. We denote ā be the

central carrier of a, which is the smallest central projection satisfying Pa = a. It is well known

that a is the projection whose range is the closed linear span of {Aa(h) : h ∈ H}. For each

self-adjoint operator r ∈ A, the core of r denoted by r is sup{a ∈ ZA : a = a∗, a ≤ r}. If P ∈ A

is a projection and P = 0, we call P a core-free projection. It is easy to verify that P = 0 if

and only if I− P = I. By [8, Lemma 4], we can say that A is a von Neumann algebra with no

central abelian projections if and only if it has a projection P ∈ A such that P = 0 and P = I.

We refer the reader to [6] for the theory of von Neumann algebras.

2 Characterizing Lie Triple Derivations by Acting on Zero-Product

In this section, we consider the question of characterizing Lie triple derivations by action at

zero product on von Neumann algebras with no central abelian projections.

Theorem 2.1 Let A be a von Neumann algebra without central abelian projections. Sup-

pose that δ : A → A is an additive map satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for all a, b, c ∈ A with ab = 0. Then there exists an additive derivation d from A into itself and

an additive map f : A → ZA vanishing at every second commutator [[a, b], c] when ab = 0 such

that

δ(a) = d(a) + f(a), ∀a ∈ A.

Note that every linear derivation of a von Neumann is inner (see [10]). By Theorem 2.1, the

following corollary is immediate. It is a generalization of Theorem 1 in [9].

Corollary 2.1 Let A be a von Neumann algebra without central abelian projections.

Suppose that δ : A → A is a linear map satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for all a, b, c ∈ A with ab = 0. Then there exists an element T ∈ A and a linear map f : A → ZA

vanishing at every second commutator [[a, b], c] when ab = 0 such that

δ(a) = aT − Ta+ f(a), ∀a ∈ A.

Proof of Theorem 2.1 By [8, Lemma 4], there is a projection P ∈ A such that P = 0

and P = I. In what follows, we denote P1 = P and P2 = I− P1. By the definitions of core and

central carrier, P2 is also a core-free projection and P2 = I. Set Aij = PiAPj for i, j = 1, 2.

Then A = A11 +A12 +A21 +A22. For an operator aij ∈ A, we always mean that aij ∈ Aij .

We shall organize the proof of Theorem 2.1 in a series of claims.

Claim 2.1 Let aii ∈ Aii, i = 1, 2. If a11b12 = b12a22 for all b12 ∈ A12, then a11+a22 ∈ ZA.
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For any x11 ∈ A11, x12 ∈ A12, we have a11x11x12 = x11x12a22 = x11a11x12. Since P2 = I,

which means that {AP2(h) : h ∈ H} is dense in H , we get a11x11 = x11a11, that is, a11 ∈

ZP1AP1
. By [6, Corollary 5.5.7], we know ZP1AP1

= ZAP1. So there exists z1 ∈ ZA such that

a11 = z1P1.

Similarly, we have a22 = z2P2, z2 ∈ ZA. It follows that z1b12 = a11b12 = b12a22 = z2b12.

Then (z1 − z2)P1 = 0, which implies (z1 − z2)AP1 = 0. By P1 = I, we obtain z1 = z2. Hence

a11 + a22 ∈ ZA, the claim holds.

Moreover, for any a12 ∈ A12, since a12P1 = 0, we have

δ(a12) = δ([[a12, P1], P1])

= [[δ(a12), P1], P1] + [[a12, δ(P1)], P1] + [[a12, P1], δ(P1)]

= P1δ(a12)P2 + P2δ(a12)P1 + P1δ(P1)a12 − a12δ(P1)P2

+ δ(P1)a12 − a12δ(P1).

Multiplying P1 from the left side and P2 from the right side of the above equation, we arrive

at P1δ(P1)a12 = a12δ(P1)P2. It follows from Claim 2.1 that P1δ(P1)P1 + P2δ(P1)P2 ∈ ZA.

Let E = P1δ(P1)P2 − P2δ(P1)P1, and ϕ = δ − δE , where δE is the inner derivation given by

δE(x) = xE − Ex for all x ∈ A. It is not difficult to verify

ϕ(P1) = P1δ(P1)P1 + P2δ(P1)P2 ∈ ZA

and

ϕ([[a, b], c]) = [[ϕ(a), b], c] + [[a, ϕ(b)], c] + [[a, b], ϕ(c)]

for any a, b, c ∈ A with ab = 0.

Claim 2.2 ϕ(P2) ∈ ZA.

Since P2P1 = 0 and ϕ(P1) ∈ ZA, we have

0 = ϕ([[P2, P1], P1]) = [[ϕ(P2), P1], P1] = P1ϕ(P2)P2 + P2ϕ(P2)P1.

For any a12 ∈ A12, since P2a12 = 0, we get

−ϕ(a12) = ϕ([[P2, a12], P2])

= [[ϕ(P2), a12], P2] + [[P2, ϕ(a12)], P2] + [[P2, a12], ϕ(P2)]

= P1ϕ(P2)a12 − a12ϕ(P2)P2 − P1ϕ(a12)P2 − P2ϕ(a12)P1 − a12ϕ(P2) + ϕ(P2)a12.

Multiplying the above equation by P1 from the left and by P2 from the right, we obtain

P1ϕ(P2)a12 = a12ϕ(P2)P2.

Then it follows that P1ϕ(P2)P1 + P2ϕ(P2)P2 ∈ ZA by Claim 2.1, and hence ϕ(P2) ∈ ZA.

Claim 2.3 ϕ(Aij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.

Since a12P1 = 0 and ϕ(P1) ∈ ZA, we get

ϕ(a12) = ϕ([[a12, P1], P1]) = P1ϕ(a12)P2 + P2ϕ(a12)P1.

Now it suffices to show that P2ϕ(a12)P1 = 0. Indeed, for any b12 ∈ A12, x ∈ A, it is easy to

check that

0 = ϕ([[a12, b12], x]) = [[ϕ(a12), b12], x] + [[a12, ϕ(b12)], x],
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which leads to [ϕ(a12), b12] + [a12, ϕ(b12)] = z ∈ ZA. Then we have

[ϕ(a12), b12] = z − [a12, ϕ(b12)]

= z + [[a12, P1], ϕ(b12)]

= z + ϕ([[a12, P1], b12])− [[ϕ(a12), P1], b12]

= z − [[ϕ(a12), P1], b12]

= z − [P2ϕ(a12)P1, b12].

This together with P1ϕ(a12)P1 = P2ϕ(a12)P2 = 0 entails that [P2ϕ(a12)P1, b12] ∈ ZA. This

leads to [P2ϕ(a12)P1, b12] = 0. Then P2ϕ(a12)b12 = 0. Since P2 = I, we have P2ϕ(a12)P1 = 0.

Consequently, ϕ(A12) ⊆ A12.

Similarly, we can obtain ϕ(A21) ⊆ A21.

Claim 2.4 There exist maps fi : Aii → ZA such that ϕ(aii) − fi(aii) ∈ Aii for any

aii ∈ Aii, i = 1, 2.

Since a11P2 = 0 and from Claim 2.2, we have

0 = ϕ([[a11, P2], P2]) = [[ϕ(a11), P2], P2] = P1ϕ(a11)P2 + P2ϕ(a11)P1.

Moreover, for any b22 ∈ A22 and x ∈ A, it is easy to check that

0 = ϕ([[a11, b22], x]) = [[ϕ(a11), b22], x] + [[a11, ϕ(b22)], x],

which implies that [ϕ(a11), b22]+ [a11, ϕ(b22)] ∈ ZA. Multiplying the above equation from both

sides by P2, we arrive at [P2ϕ(a11)P2, b22] ∈ ZAP2, which leads to [P2ϕ(a11)P2, b22] = 0. For

every a11 ∈ A11, there is unique Z ∈ ZA such that P2ϕ(a11)P2 = ZP2. So we can define

f1 : A11 → ZA by f1(a11) = Z for all a11 ∈ A11.

Indeed, since Z ∈ ZA, we have P1ZP2 = P2ZP1 = 0. Let a11 = ã11 and f1(ã11) = Z̃. It

follows from the preceding argumentation that

Z = P1ZP1 + P2ϕ(a11)P2 (2.1)

and

Z̃ = P1Z̃P1 + P2ϕ(ã11)P2. (2.2)

By (2.1)–(2.2), we have Z− Z̃ = P1ZP1−P1Z̃P1. Since [8, Lemma 14], that is, P1AP1

⋂
ZA =

{0}, we get Z = Z̃.

Therefore, for any a11 ∈ A11, we have

ϕ(a11) = P1ϕ(a11)P1 + P2ϕ(a11)P2

= (P1ϕ(a11)P1 − P1f1(a11)P1) + f1(a11)

∈ A11 + ZA.

Similarly, we can define a map f2 : A22 → ZA such that ϕ(a22) − f2(a22) ∈ A22 for any

a22 ∈ A22. So Claim 2.4 is true.

Now, we define two maps f : A → ZA and d : A → A respectively by

f(a) = f1(P1aP1) + f2(P2aP2), ∀a ∈ A
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and

d(a) = ϕ(a)− f(a), ∀a ∈ A.

By the definition of d and Claim 2.4, we have d(P1) = d(P2) = 0, d(Aij) ⊆ Aij , 1 ≤ i, j ≤ 2

and d(aij) = ϕ(aij) for all aij ∈ Aij , 1 ≤ i 6= j ≤ 2.

In the following we shall show that d is an additive derivation.

Claim 2.5 d is an additive map.

Since d = ϕ− f and f = f1 + f2, we only need to show that f1 and f2 are additive maps.

For any a11, b11 ∈ A11, it follows from (2.1) that

f1(a11) = P1f1(a11)P1 + P2ϕ(a11)P2, (2.3)

f1(b11) = P1f1(b11)P1 + P2ϕ(b11)P2 (2.4)

and

f1(a11 + b11) = P1f1(a11 + b11)P1 + P2ϕ(a11 + b11)P2. (2.5)

By (2.3)–(2.5), we get

f1(a11) + f1(b11)− f1(a11 + b11)

= P1f1(a11)P1 + P1f1(b11)P1 − P1f1(a11 + b11)P1.

Since f1(a11)+f1(b11)−f1(a11+b11) ∈ ZA and P1f1(a11)P1+P1f1(b11)P1−P1f1(a11+b11)P1 ∈

P1AP1, we have f1(a11) + f1(b11)− f1(a11 + b11) = 0.

Similarly, f2 is an additive map.

Claim 2.6 d(aiibij) = aiid(bij) + d(aii)bij for any aii ∈ Aii, bij ∈ Aij , 1 ≤ i 6= j ≤ 2.

Due to bijaii = 0, the following equations hold:

d(aiibij) = ϕ(aiibij)

= ϕ([[bij , aii], Pi])

= [[ϕ(bij), aii], Pi] + [[bij , ϕ(aii)], Pi]

= [[d(bij), aii], Pi] + [[bij , d(aii)], Pi]

= aiid(bij) + d(aii)bij .

With the similar argument in Claim 2.6, we have the following claim.

Claim 2.7 d(aijbjj) = aijd(bjj) + d(aij)bjj for any aij ∈ Aij , bjj ∈ Ajj , 1 ≤ i 6= j ≤ 2.

Claim 2.8 d(aiibii) = aiid(bii) + d(aii)bii for any aii, bii ∈ Aii, i = 1, 2.

For any bij ∈ Aij , we have, from Claim 2.6, that

d(aiibiibij) = aiibiid(bij) + d(aiibii)bij .

At the same time,

d(aiibiibij) = aiid(biibij) + d(aii)biibij

= aiibiid(bij) + aiid(bii)bij + d(aii)biibij .

Comparing the above two equations, we get

d(aiibii)bij = aiid(bii)bij + d(aii)biibij .
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Note Pj = I. It follows from the fact that {APj(h) : h ∈ H} is dense in H that d(aiibii) =

aiid(bii) + d(aii)bii.

Claim 2.9 d(aijbji) = aijd(bji) + d(aij)bji for any aij ∈ Aij , bji ∈ Aji, 1 ≤ i 6= j ≤ 2.

Since P2a12 = 0 and ϕ(P2) ∈ ZA, we have

ϕ([[P2, a12], b21]) = [[P2, ϕ(a12)], b21] + [[P2, a12], ϕ(b21)]

= [[P2, d(a12)], b21] + [[P2, a12], d(b21)]

= b21d(a12) + d(b21)a12 − a12d(b21)− d(a12)b21.

Since d(a) = ϕ(a)− f(a), ∀a ∈ A,

d(b21a12 − a12b21)− f(b21a12 − a12b21) = b21d(a12) + d(b21)a12 − a12d(b21)− d(a12)b21. (2.6)

We shall show f(b21a12 − a12b21) = 0. Multiplying the above equation by a12 to the left side

and right side respectively, we obtain the following two equations:

a12d(b21a12)− a12f(b21a12 − a12b21) = a12b21d(a12) + a12d(b21)a12 (2.7)

and

d(a12)b21a12 + a12d(b21)a12 = d(a12b21)a12 + a12f(b21a12 − a12b21). (2.8)

Computing (2.7)–(2.8), we get

a12d(b21a12) + d(a12)b21a12 − a12f(b21a12 − a12b21)

= a12b21d(a12) + d(a12b21)a12 + a12f(b21a12 − a12b21).

It follows from Claims 2.6–2.7 that

a12d(b21a12) + d(a12)b21a12 = d(a12b21a12) = a12b21d(a12) + d(a12b21)a12,

which combining with the above equation implies a12f(b21a12−a12b21) = 0. Using polar decom-

position of a12, we have V |a12|f(b21a12 − a12b21) = 0, which yields |a12|f(b21a12 − a12b21) = 0.

This leads to f(b21a12 − a12b21)
∗|a12| = 0, and so a12f(b21a12 − a12b21)

∗ = 0.

Similarly, we have b21f(b21a12 − a12b21)
∗ = 0.

Then multiplying (2.6) by f(b21a12 − a12b21)
∗ to the right side, we arrive at

f(b21a12 − a12b21)f(b21a12 − a12b21)
∗ = d(b21a12 − a12b21)f(b21a12 − a12b21)

∗. (2.9)

Due to Claim 2.8, the following equations hold:

d(a12b21)f(b21a12 − a12b21)
∗

= d(a12b21f(b21a12 − a12b21)
∗)− a12b21d(P1f(b21a12 − a12b21)

∗P1)

= −a12b21d(P1f(b21a12 − a12b21)
∗P1),

d(b21a12)f(b21a12 − a12b21)
∗

= d(b21a12f(b21a12 − a12b21)
∗)− b21a12d(P2f(b21a12 − a12b21)

∗P2)

= −b21a12d(P2f(b21a12 − a12b21)
∗P2).
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Putting the above two equations into (2.9), we have

f(b21a12 − a12b21)f(b21a12 − a12b21)
∗

= −b21a12d(P2f(b21a12 − a12b21)
∗P2) + a12b21d(P1f(b21a12 − a12b21)

∗P1).

Multiplying the equation by f(b21a12 − a12b21)
∗ to the left side, we get

f(b21a12 − a12b21)
∗f(b21a12 − a12b21)f(b21a12 − a12b21)

∗ = 0,

which implies f(b21a12 − a12b21) = 0. So we arrive at

d(b21a12 − a12b21) = d(b21)a12 + b21d(a12)− d(a12)b21 − a12d(b21).

This is equivalent to d(a12b21) = d(a12)b21 + a12d(b21) and d(b21a12) = d(b21)a12 + b21d(a12),

as desired.

By Claims 2.5–2.9, we can conclude that d is an additive derivation. Hence we have δ(a) =

ϕ(a)+δE(a) = d(a)+f(a)+δE(a), ∀a ∈ A. Denote φ(a) = d(a)+δE(a), then δ(a) = φ(a)+f(a),

∀a ∈ A. Clearly, φ is an additive derivation on A and f is an additive map from A to ZA.

For ab = 0, it follows that

f([[a, b], c]) = δ([[a, b], c])− φ([[a, b], c])

= [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]− φ([[a, b], c])

= [[φ(a), b], c] + [[a, φ(b)], c] + [[a, b], φ(c)]− φ([[a, b], c])

= 0.

3 Characterizing Lie Triple Derivations by Acting on

Projection-Product

In this section, we consider the question of characterizing Lie triple derivations by acting at

projection-product on von Neumann algebras without central abelian projections. The proof of

the following theorem shares the similar outline as that of Theorem 2.1, but it needs different

techniques.

Theorem 3.1 Let A be a von Neumann algebra without central abelian projections and

P be a projection in A with P = 0 and P = I. Suppose that δ : A → A is an additive map

satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]

for all a, b, c ∈ A with ab = P . Then there exists an additive derivation φ from A into itself

and an additive map f : A → ZA vanishing at every second commutator [[a, b], c] when ab = P

such that

δ(a) = φ(a) + f(a), ∀a ∈ A.

Note that all linear derivations of von Neumann algebras are inner (see [10]). We have the

following corollary. It is a generalization of Theorem 1 in [9].

Corollary 3.1 Let A be a von Neumann algebra without central abelian projections and P

be a projection in A with P = 0 and P = I. Suppose that δ : A → A is a linear map satisfying

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)]
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for all a, b, c ∈ A with ab = P . Then there exists an element T ∈ A and a linear map f : A → ZA

vanishing at every second commutator [[a, b], c] when ab = P such that

δ(a) = aT − Ta+ f(a), ∀a ∈ A.

Proof of Theorem 3.1 We shall use the same symbols with that in Section 2.

For any a12 ∈ A12, since (P1 + a12)P1 = P1, we obtain

δ(a12) = δ([[P1 + a12, P1], P1])

= [[δ(P1 + a12), P1], P1] + [[P1 + a12, δ(P1)], P1] + [[P1 + a12, P1], δ(P1)]

= [[δ(a12), P1], P1] + [[a12, δ(P1)], P1] + [[a12, P1], δ(P1)]

= P1δ(a12)P2 + P2δ(a12)P1 + P1δ(P1)a12 − a12δ(P1)P2

+ δ(P1)a12 − a12δ(P1).

Multiplying P1 from the left side and P2 from the right side of the above equation, we arrive

at P1δ(P1)a12 = a12δ(P1)P2. It follows from Claim 2.1 that P1δ(P1)P1 +P2δ(P1)P2 ∈ ZA. Let

E = P1δ(P1)P2−P2δ(P1)P1, and ϕ = δ−δE , where δE is the inner derivation. It is not difficult

to verify that

ϕ(P1) = P1δ(P1)P1 + P2δ(P1)P2 ∈ ZA

and

ϕ([[a, b], c]) = [[ϕ(a), b], c] + [[a, ϕ(b)], c] + [[a, b], ϕ(c)]

for any a, b ∈ A with ab = P1.

Now we organize the proof in a series of claims.

Claim 3.1 ϕ(P2) ∈ ZA.

Since (P1 + P2)P1 = P1 and ϕ(P1) ∈ ZA, we have

0 = ϕ([[P1 + P2, P1], P1]) = [[ϕ(P1 + P2), P1], P1] = P1ϕ(P2)P2 + P2ϕ(P2)P1.

For any a12 ∈ A12, since (P1 + a12)(P1 + P2 − a12) = P1, we get

ϕ(a12) = ϕ([[P1 + a12, P1 + P2 − a12], P1])

= [[ϕ(a12),−a12], P1] + [[P1 + a12, ϕ(P2)− ϕ(a12)], P1]

= P2ϕ(a12)P1 + P1ϕ(a12)P2 + P1ϕ(P2)a12 − a12ϕ(P2)P2.

Multiplying the above equation by P1 from the left and by P2 from the right, we obtain

P1ϕ(P2)a12 = a12ϕ(P2)P2.

It follows from Claim 2.1 that P1ϕ(P2)P1 + P2ϕ(P2)P2 ∈ ZA. Hence ϕ(P2) ∈ ZA.

Claim 3.2 ϕ(Aij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.

Since (P1 + a12)P1 = P1 and ϕ(P1) ∈ ZA, we get

ϕ(a12) = ϕ([[P1 + a12, P1], P1]) = P1ϕ(a12)P2 + P2ϕ(a12)P1.
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Now, for any b12 ∈ A12, we have

0 = ϕ([[P1 + b12, P1], b12])

= [[ϕ(b12), P1], b12] + [[b12, P1], ϕ(b12)]

= P2ϕ(b12)b12 − b12ϕ(b12)P1 + ϕ(b12)b12 − b12ϕ(b12).

Multiplying the above equation from both side by P2, we arrive at P2ϕ(b12)b12 = 0. Moreover,

it follows that

0 = ϕ([[P1 + a12, P1], b12])

= [[ϕ(a12), P1], b12] + [[a12, P1], ϕ(b12)]

= P2ϕ(a12)b12 − b12ϕ(a12)P1 + ϕ(b12)a12 − a12ϕ(b12).

Multiplying the equation by b12 from the right and for the fact P2ϕ(b12)b12 = 0, we obtain

b12ϕ(a12)b12 = 0. By linearizing, we get b12ϕ(a12)d12+d12ϕ(a12)b12 = 0 for any b12, d12 ∈ A12.

It is not difficult to check

P2ϕ(a12)b12ϕ(a12)[b12ϕ(a12)d12]ϕ(a12)P1 + P2ϕ(a12)b12ϕ(a12)[d12ϕ(a12)b12]ϕ(a12)P1 = 0,

that is,

P2ϕ(a12)b12ϕ(a12)d12ϕ(a12)b12ϕ(a12)P1 = 0.

As von Neumann algebras are semiprime, we see P2ϕ(a12)b12ϕ(a12)P1 = 0. Then P2ϕ(a12)P1 =

0. Consequently, ϕ(A12) ⊆ A12.

Similarly, we can obtain ϕ(A21) ⊆ A21.

Claim 3.3 There exists a map f1 on A11 such that ϕ(a11)−f1(a11) ∈ A11 for all a11 ∈ A11.

First suppose that a11 is invertible in A11, i.e., there exists a−1

11
∈ A11 such that a−1

11
a11 =

a11a
−1

11
= P1. Since a−1

11
a11 = P1, we have

0 = ϕ([[a−1

11
, a11], P1]) = [[ϕ(a−1

11
), a11], P1] + [[a−1

11
, ϕ(a11)], P1].

It follows from (P2 + a−1

11
)a11 = P1 and Claim 3.1 that

0 = ϕ([[P2 + a−1

11
, a11], P1])

= [[ϕ(a−1

11
), a11], P1] + [[P2 + a−1

11
, ϕ(a11)], P1]

= P1ϕ(a11)P2 + P2ϕ(a11)P1.

Moreover, for any b22 ∈ A22 and x ∈ A, since (a−1

11
+ b22)a11 = P1, it is easy to check that

0 = ϕ([[a−1

11
+ b22, a11], x])

= [[ϕ(a−1

11
+ b22), a11], x] + [[a−1

11
+ b22, ϕ(a11)], x]

= [[ϕ(b22), a11], x] + [b22, ϕ(a11)], x],

which implies that [ϕ(b22), a11]+ [b22, ϕ(a11)] ∈ ZA. Multiplying the above equation from both

sides by P2, we arrive at [b22, P2ϕ(a11)P2] ∈ ZAP2. So we get [b22, P2ϕ(a11)P2] = 0. Then

there exists Z ∈ ZA such that P2ϕ(a11)P2 = ZP2.
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If a11 is not invertible in A11, we may find a sufficiently big number n such that nP1−a11 is

invertible in A11. It follows from the preceding case that P1ϕ(nP1−a11)P2+P2ϕ(nP1−a11)P1 =

0, and P2ϕ(nP1−a11)P2 = ZP2. Since ϕ(P1) ∈ ZA, we also have P1ϕ(a11)P2+P2ϕ(a11)P1 = 0

and P2ϕ(a11)P2 ∈ ZAP2. Without loss of generality, we still denote P2ϕ(a11)P2 = ZP2.

We define f1 : M11 → ZM by f1(a11) = Z for all a11 ∈ A11. With the similarly argument

as in Claim 2.4, we know f1 is well defined. Hence

ϕ(a11) = (P1ϕ(a11)P1 − P1f1(a11)P1) + f1(a11) ∈ A11 + ZA.

Claim 3.4 There exists a map f2 onA22 such that ϕ(a22)−f2(a22) ∈ A22 for any a22 ∈ A22.

For any a22 ∈ A22, since (P1 + a22)P1 = P1, we have

0 = ϕ([[P1 + a22, P1], P1]) = P1ϕ(a22)P2 + P2ϕ(a22)P1.

The rest step is similar to the proof of Claim 3.3.

Now, we define two maps f : A → ZA and d : A → A respectively by

f(a) = f1(P1aP1) + f2(P2aP2), ∀a ∈ A

and

d(a) = ϕ(a)− f(a), ∀a ∈ A.

By the definition of d and Claim 3.4, we have d(P1) = d(P2) = 0, d(Aij) ⊆ Aij , 1 ≤ i, j ≤ 2

and d(aij) = ϕ(aij) for all aij ∈ Aij , 1 ≤ i 6= j ≤ 2.

In the following we shall show that d is an additive derivation.

Claim 3.5 d is an additive map.

The proof is similar to that of Claim 2.5.

Claim 3.6 d(a11b12) = a11d(b12) + d(a11)b12 for any a11 ∈ A11, b12 ∈ A12.

If a11 is invertible in A11, then for any x12 ∈ A12, we have (a−1

11
x12 + a−1

11
)a11 = P1. It

follows that

d(a12) = d([[a−1

11
x12 + a−1

11
, a11], P1])

= ϕ([[a−1

11
x12 + a−1

11
, a11], P1])

= [[ϕ(a−1

11
x12 + a−1

11
), a11], P1] + [[a−1

11
x12 + a−1

11
, ϕ(a11)], P1]

= [[d(a−1

11
x12 + a−1

11
), a11], P1] + [[a−1

11
x12 + a−1

11
, d(a11)], P1]

= [[d(a−1

11
x12), a11], P1] + [[a−1

11
x12, d(a11)], P1]

= a11d(a
−1

11
x12) + d(a11)a

−1

11
x12.

Replacing b12 with a−1

11
x12, we have d(a11b12) = a11d(b12) + d(a11)b12.

If a11 is not invertible in A11, we may find a sufficiently big number n such that nP1 − a11

is invertible in A11. Then d((nP1 − a11)a12) = (nP1 − a11)d(a12) + d(nP1 − a11)a12. Clearly,

P1 is invertible in A11, so we get d(a11b12) = a11d(b12) + d(a11)b12 from the above equation.

Claim 3.7 d(a21b11) = a21d(b11) + d(a21)b11 for any a21 ∈ A21, b11 ∈ A11.

Considering a11(x21a
−1

11
+ a−1

11
) = P1 and using the same approach in Claim 3.6, we know

that Claim 3.7 is true.

Claim 3.8 d(a22b21) = a22d(b21) + d(a22)b21 for any a22 ∈ A22, b21 ∈ A21.
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Due to (P1 + a22 − a22b21)(P1 + b21) = P1, we compute

−d(b21) = d([[P1 + a22 − a22b21, P1 + b21], P1])

= ϕ([[P1 + a22 − a22b21, P1 + b21], P1])

= [[d(P1 + a22 − a22b21), P1 + b21], P1]

+ [[P1 + a22 − a22b21, d(P1 + b21)], P1]

= a22d(b21)− d(a22b21) + d(a22)b21 − d(b21),

that is, d(a22b21) = a22d(b21) + d(a22)b21.

Considering (P1 + a12)(P1 − b22 + a12b22) = P1, we arrive at the following claim.

Claim 3.9 d(a12b22) = a12d(b22) + d(a12)b22 for any a12 ∈ A12, b22 ∈ A22.

Claim 3.10 d(aiibii) = aiid(bii) + d(aii)bii, i = 1, 2.

It is similar to Claim 2.8.

Claim 3.11 d(aijbji) = aijd(bji) + d(aij)bji for any aij , bij ∈ Aij , 1 ≤ i 6= j ≤ 2.

Since (a12 + P1)P1 = P1, we have

ϕ(b21a12 − a12b21) = ϕ([[a12 + P1, P1], b21])

= [[d(a12 + P1), P1], b21] + [[a12 + P1, P1], d(b21)]

= b21d(a12) + d(b21)a12 − a12d(b21)− d(a12)b21.

Since d(a) = ϕ(a)− f(a), ∀a ∈ A,

d(b21a12 − a12b21)− f(b21a12 − a12b21)

= b21d(a12) + d(b21)a12 − a12d(b21)− d(a12)b21.

With the same approach as in Claim 2.9, we can get f(b21a12 − a12b21) = 0. So we arrive at

d(b21a12 − a12b21) = d(b21)a12 + b21d(a12)− d(a12)b21 − a12d(b21).

This is equivalent to d(b21a12) = d(b21)a12 + b21d(a12) and d(a12b21) = d(a12)b21 + a12(.b21).

Consequently, Claim 3.11 is true.

So we can conclude that d is an additive derivation by Claims 3.5–3.11. Hence we have

δ(a) = ϕ(a) + δE(a) = d(a) + f(a) + δE(a), ∀a ∈ A. Denote φ(a) = d(a) + δE(a), then

δ(a) = φ(a) + f(a), ∀a ∈ A. Clearly, φ is an additive derivation on A and f is an additive map

from A to ZA.

With the similar argument as in the proof of Theorem 2.1, we can verify the additive map

f : A → ZA vanishing at every second commutator [[a, b], c] when ab = P .
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