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Abstract Let t ≥ 2 be an integer, and let p1, · · · , pt be distinct primes. By using algebraic

properties, the present paper gives a sufficient and necessary condition for the existence
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1 Introduction

Let q be a power of the prime p and Fq be the finit field of q elements. In 1957, the

concept of cyclic codes over Fq was proposed (cf. [14]). Cyclic codes over finite fields, as a

class of good linear codes, have attracted extensive attentions due to their special algebraic

properties, decoding algorithms, and easy realization etc. In 1967, the concept of negacyclic

codes over Fq was given (cf. [1]). Later, scholars generalized cyclic codes over finite fields

to be constacyclic codes over finite fields. Fixed u ∈ F∗
q , the linear code C with length n

over Fq is a u-constacyclic code if for any c = (c0, c1, · · · , cn−1) ∈ C, the u-constacyclic shift

(ucn−1, c0, c1, · · · , cn−2) ∈ C. In particular, when u = 1, C is a cyclic code; when u = −1, C is a

negacyclic code. It’s well-known that self-orthogonal and self-dual cycle codes over finite fields

are both useful in cryptography and coding theory due to their many good algebraic properties.

In 2011, some sufficient and necessary conditions for the existence of self-dual cyclic codes over

Fq were obtained (cf. [10]). In 2014, a sufficient and necessary condition for the existence of

nontrivial self-orthogonal cyclic codes over Fq was obtained and then the corresponding explicit

enumerating formula were determined (cf. [11]).

On the other hand, in recent years, codes over finite rings are also interesting since the

binary image of a linear code over Z4 is a binary code (not necessarily linear) (cf. [4–7, 12]).

Definition 1.1 (cf. [5]) Let R be a finite ring, a code C with length n over R is a nonempty

subset of Rn, and the ring R is referred to as the alphabet of the code. If this subset is, in

addition, an R-submodule of Rn, then C is called linear. For a unit λ of R, the λ-constacyclic

(λ-twisted) shift τλ on Rn is the shift

τλ(x0, x1, · · · , xn−1) = (λxn−1, x0, · · · , xn−2),
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and a linear code C is said to be λ-constacyclic if τλ(C) = C. It means that C is closed under

the λ-constacyclic shift τλ. In case λ = 1, those λ-constacyclic codes are called cyclic codes,

and when λ = −1, such λ-constacyclic codes are called negacyclic codes.

Proposition 1.1 (cf. [5]) Let R be a finite ring, a linear code C with length n is λ-

constacyclic over R if and only if C is an ideal of the ring R[x]/〈xn − λ〉.

Definition 1.2 (cf. [5, 8]) Given two n-tuples x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1)

∈ Rn, their inner product or dot product is defined as usual:

x · y = x0y0 + x1y1 + x2y2 + · · ·+ xn−1yn−1

evaluated in R. Two n-tuples x, y are called orthogonal if x · y = 0. For a linear code C over R,

its dual code C⊥ is the set of n-tuples over R which are orthogonal to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.

A code C is self-orthogonal if C ⊆ C⊥, and it is self-dual if C = C⊥.

Definition 1.3 (cf. [13]) Let x ∈ R, [x] denotes the largest integer less than x, the function

[x] is called the Gauss function.

Proposition 1.2 (cf. [4]) Suppose that R is a finite ring, λ is a unit of R and C is an

λ-constacyclic code over the finite ring R with identity, then C⊥ is an λ−1-constacyclic code

over R.

In 2003, Blackford [2] studied negative cyclic codes with even length over Z4. In 2009, the

structure of negative cyclic codes with even length and their dual codes over the finite chain

ring Z2a was obtained, where a is a positive integer (cf. [15]). In 2013, a (1 + ωγ)-constacyclic

code of arbitrary length over the general finite chain ring were constructed (cf. [3]).

The present paper continues to the study, and discusses constacyclic codes over the finite

non-chain ring Zp1p2···pt
, where p1, p2, · · · , pt are distinct primes. A sufficient and necessary

condition for the existence of both constacyclic codes and non-trivial self-orthogonal cyclic

codes over Zp1p2···pt
are obtained, and then the explicit enumerating formula for the numbers

of these codes is given. In fact, the following main results are proved.

Theorem 1.1 Let p1, p2, · · · , pt be distinct primes, λ be a unit of Zp1p2···pt
. Suppose that

C is a code with length n over Zp1p2···pt
, then

(1) C is an λ-constacyclic code if and only if there exist some λi-constacyclic codes Ci with

length n over Zpi
such that C ∼=

t
⊕

i=1

Ci, where λi ≡ λ(mod pi) (1 ≤ i ≤ t);

(2) C is a cyclic code if and only if for any i = 1, · · · , t, Ci is a cyclic code over Zpi
;

(3) C is a self-orthogonal (self-dual) cyclic code if and only if for any i = 1, · · · , t, Ci is a

self-orthogonal (self-dual) cyclic code over Zpi
.

Without loss of generality, if C = {0}, then a code C over Zp1p2···pt
is trivial. Otherwise,

C is non-trivial. The following Theorem 1.2 gives a sufficient and necessary condition for the

existence of non-trivial self-orthogonal cyclic codes over Zp1p2···pt
.

Theorem 1.2 There exists a non-trivial self-orthogonal cyclic code with length n over

Zp1p2···pt
if and only if there is at least one pi, such that one of the following conditions is

satisfied.

(1) gcd(n, pi) 6= 1.
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(2) If gcd(n, pi) = 1, then 2 ∤ ordn(pi).

(3) If gcd(n, pi) = 1 and 2 | ordn(pi), then n ∤ (q
ordn(pi)

2 + 1).

It is well-known that, for a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ am+1x
m+1 + amxm(n > m, an, am 6= 0) ∈ Fq[x],

the reverse polynomial is

f∗(x) = anx
m + an−1x

m+1 + · · ·+ am+1x
n−1 + amxn.

Especially, there exists some α ∈ F∗
q such that f(x) = αg∗(x), then f(x) and g(x) are a pair

reciprocal polynomials. Furthermore, if f(x) = αf∗(x), then f(x) is an introspect polynomial.

On the other hand, for any positive integer n with gcd(n, q) = 1, xn − 1 has the unique

irreducible factorizations over Fq as follows:

xn − 1 = f1(x) · · · fk(x)h1(x)h
∗
1(x) · · · hl(x)h

∗
l (x), (∗)

where fi(x) (1 ≤ i ≤ k) is irreducible introspect and hj(x) (1 ≤ j ≤ l) is irreducible over Fq

(cf. [8, 11]). Based on this, the explicit enumerating formula for the number of non-trivial

self-orthogonal cyclic codes over the ring Zp1p2···pt
is obtained. And then there is no self-dual

cyclic code with any length over Zp1p2···pt
when t ≥ 2.

Theorem 1.3 Let t ≥ 2 be an integer, p1, p2, · · · , pt be distinct primes. Suppose that

n = prii ni with gcd(ni, pi) = 1 (1 ≤ i ≤ t) and xni − 1 has the unique irreducible factorizations

over Fpi
as follows:

xni − 1 = f
1i
(x) · · · fki

(x)h1i (x)h
∗
1i
(x) · · · hli(x)h

∗
li
(x).

Set

Si = {di : di | n, di > 2, 2 | orddi
(pi), di | (p

orddi
(pi)

2

i + 1)},

then

ki =
3 + (−1)n

2
+

∑

di∈Si

ϕ(di)

orddi
(pi)

, li =
1

2

∑

di|n

ϕ(di)

orddi
(pi)

−
ki
2
, i = 1, 2, · · · , t,

and the number of non-trivial self-orthogonal cyclic codes with length n over Zp1p2···pt
is

N(n, p1p2 · · · pt) =
t
∏

i=1

([prii
2

+ 1
])ki

( (prii + 1)(prii + 2)

2

)li

− 1,

where [·] is the Gauss function.

Theorem 1.4 Let t ≥ 2 be an integer, p1, p2, · · · , pt be distinct primes. Then there is no

self-dual cyclic code with any length over Zp1p2···pt
.

2 Preliminaries

Some preliminaries are needed before proving our main results. Let q be a power of the

prime p, n be a positive integer, and ordn(q) be the order of q modulo n. Without loss of

generality, set ord1(q) = 1. For convenience, all rings in this paper have identities.
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Definition 2.1 (cf. [9]) Let R1, R2, · · · , Rt be rings and

R =

t
⊕

i=1

Ri = {(a1, a2, · · · , at) | ai ∈ Ri, i = 1, 2, · · · , t}.

For (a1, a2, · · · , at), (b1, b2, · · · , bt) ∈ R, define two operations “+” and “ ∗ ” over R as follows:

(a1, a2, · · · , at) + (b1, b2, · · · , bt) = (a1 + b1, a2 + b2, · · · , at + bt),

(a1, a2, · · · , at) ∗ (b1, b2, · · · , bt) = (a1b1, a2b2, · · · , atbt),

easily to see that (R,+, ∗) is a ring and called to be the direct sum of Ri (i = 1, 2, · · · , t).

Proposition 2.1 (cf. [9])

(1) Let Z be the integer ring and m ∈ N+, then Z/〈m〉 ∼= Zm.

(2) Let θ : R → T be a ring homomorphism, then θ is a monomorphism if and only if

ker(θ) = 0, where ker(θ) = {a ∈ R | θ(a) = 0}.

(3) Let R be a commutative ring, and Ii (i = 1, 2, · · · , t) be pairwise coprime ideals of R. If

I =
t
⋂

i=1

Ii, then there is a ring isomorphism R/I ∼=
n
∏

i=1

R/Ii.

Proposition 2.2 (cf. [11]) Let n ∈ Z+ and q be a power of the prime p.

(1) If gcd(n, q) 6= 1, then there exists a non-trivial self-orthogonal cyclic code with length n.

(2) If gcd(n, q) = 1, then there exists a non-trivial self-orthogonal cyclic code with length n

if and only if n > 2, there exists a positive divisor d ≥ 3 of n and one of the following is true:

(1◦) 2 ∤ ordd(q);

(2◦) if 2 | ordd(q), then d ∤ (q
ordd(q)

2 + 1).

Proposition 2.3 (cf. [11]) Let n ∈ Z+, q be a power of the prime p with gcd(n, p) = 1.

Then there exists a non-trivial self-orthogonal cyclic code with length n over Fq if and only if

n > 2 and one of the following is true:

(1) 2 ∤ ordn(q);

(2) if 2 | ordn(q), then n ∤ (q
ordn(q)

2 + 1).

Proposition 2.4 (cf. [11]) Let n ∈ Z+, q be a power of the prime p with gcd(n, p) = 1,

and ϕ(n) be the Euler function of n. If xn − 1 ∈ Fq[x] has the factorizations as (∗), and

S = {d : d | n, d > 2, 2 | ordd(q), d | (q
ordd(q)

2 + 1)},

then

k =
3 + (−1)n

2
+

∑

d∈S

ϕ(d)

ordd(q)
, l =

P (n, q)− k

2
,

and the number of irreducible factors for xn − 1 over Fq is

P (n, q) = k + 2l =
∑

d|n

ϕ(d)

ordd(q)
.

Proposition 2.5 (cf. [8]) Let n ∈ Z+, q be a power of the prime p, and xn − 1 = g(x)h(x)

with g(x), h(x) ∈ Fq[x]. Then the cyclic code C = (g(x)) with length n over Fq is self-orthogonal

if and only if h∗(x) | g(x), i.e., g(x) = m(x)h∗(x), xn − 1 = m(x)h(x)h∗(x), where h∗(x) is the

reverse polynomial of h(x).
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Proposition 2.6 (cf. [11]) Let p be a prime and n = prn0 with gcd(n0, p) = 1. Suppose q

is a power of the prime p, and xn0 − 1 ∈ Fq[x] has the unique irreducible factorizations over Fq

as follows:

xn0 − 1 = f1(x) · · · fk(x)h1(x)h
∗
1(x) · · ·hl(x)h

∗
l (x).

Then the number of non-trivial self-orthogonal cyclic codes with length n over Fq is

N(n, q) =
([pr

2
+ 1

])k((pr + 1)(pr + 2)

2

)l

− 1.

Proposition 2.7 (cf. [11]) Let q be a power of the prime p. Suppose that there exists a

self-dual cyclic code C with length n over Fq, then 2 | gcd(n, q).

The following two lemmas are important to prove our main results.

Lemma 2.1 Let t be a positive integer, R,R1, · · · , Rt be commutative rings with identities.

If there is a ring isomorphism between R and
t
⊕

i=1

Ri, then there is a polynomial ring isomorphism

R[x] ∼=
t
⊕

i=1

Ri[x].

Proof Let ϕ : R →
t
⊕

i=1

Ri be a ring isomorphism with ϕ(aj) = (a1j , a2j , · · · , atj), where

aj ∈ R, aij ∈ Ri (i = 1, 2, · · · , t). Define the map ϕ′ :

R[x] → R1[x]⊕R2[x]⊕ · · · ⊕Rt[x],
∑

j

ajx
j 7→

(

∑

j

a1jx
j ,
∑

j

a2jx
j , · · · ,

∑

j

atjx
j
)

,

i.e., ϕ′
(
∑

j

ajx
j
)

=
∑

j

ϕ(aj)x
j , it’s easy to show that ϕ′ is bijective. Since ϕ is a ring isomor-

phism, thus for any
∑

j

ajx
j ,
∑

j

bjx
j ∈ R[x], we have

ϕ′
(

∑

j

ajx
j +

∑

j

bjx
j
)

= ϕ′
(

∑

j

(aj + bj)x
j
)

=
∑

j

ϕ(aj + bj)x
j

=
∑

j

(ϕ(aj) + ϕ(bj))x
j =

∑

j

ϕ(aj)x
j +

∑

j

ϕ(bj)x
j

= ϕ′
(

∑

j

ajx
j
)

+ ϕ′
(

∑

j

bjx
j
)

and

ϕ′
(

∑

j

ajx
j
∑

j

bjx
j
)

= ϕ′
(

∑

l

(

∑

j+k=l

ajbk

)

xl
)

=
∑

l

ϕ
(

∑

j+k=l

ajbk

)

xl

=
∑

j

ϕ(aj)x
j ∗

∑

j

ϕ(bj)x
j = ϕ′

(

∑

j

ajx
j
)

∗ ϕ′
(

∑

j

bjx
j
)

,

this means that ϕ′ is a ring homomorphism.

Thus we complete the proof of Lemma 2.1.

Lemma 2.2 Let R,R1, · · · , Rt be commutative rings, and φ be a ring isomorphism between

R and
t
⊕

i=1

Ri. If I is an ideal of R, i.e., I ⊳ R, and J = φ(I), then we have
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(1) J ⊳

t
⊕

i=1

Ri and J =
t
⊕

i=1

Ii, where

Ii = {ri ∈ Ri | (0, · · · , ri, · · · , 0) ∈ J} ⊳ Ri (i = 1, 2, · · · , t);

(2) R/I ∼=
t
⊕

i=1

Ri/Ii.

Proof (1) Since φ is a ring isomorphism between R and
t
⊕

i=1

Ri and I ⊳ R, thus J = φ(I) ⊳

t
⊕

i=1

Ri. Furthermore, for (r1, r2, · · · , rt) ∈ J , we have

(0, 0, · · · , ri, 0, · · · , 0) = (0, 0, · · · , 1, 0, · · · , 0) ∗ (r1, r2, · · · , rt) ∈ J,

namely, ri ∈ Ii (i = 1, 2, · · · , t), and then (r1, r2, · · · , rt) ∈
t
⊕

i=1

Ii, i.e., J ⊆
t
⊕

i=1

Ii. On the other

hand, for (r1, r2, · · · , rt) ∈
t
⊕

i=1

Ii, we can get
t
⊕

i=1

Ii ⊆ J by

(r1, r2, · · · , rt) =
t

∑

i=1

(0, 0, · · · , ri, 0, · · · , 0) ∈ J.

Hence J =
t
⊕

i=1

Ii.

Note that for any i = 1, 2, · · · , t, from 0 ∈ Ii we know that Ii is not empty. Now for a, b ∈ Ii,

from the definition of Ii, we have

(0, 0, · · · , a, · · · , 0), (0, 0, · · · , b, · · · , 0) ∈ J.

Since J is an ideal of
t
⊕

i=1

Ri, thus

(0, 0, · · · , a, · · · , 0) + (0, 0, · · · ,−b, · · · , 0) = (0, 0, · · · , a− b, · · · , 0) ∈ J,

which means that a− b ∈ Ii. Secondly, for any ri ∈ Ri (i = 1, 2, · · · , t), we know that

(0, 0, · · · , ri, · · · , 0) ∈ R1 ⊕R2 ⊕ · · · ⊕Rt.

Now from J ⊳

t
⊕

i=1

Ri we can get

(0, 0, · · · , a, · · · , 0) ∗ (0, 0, · · · , ri, · · · , 0) = (0, 0, · · · , ria, · · · , 0) ∈ J

and

(0, 0, · · · , ri, · · · , 0) ∗ (0, 0, · · · , a, · · · , 0) = (0, 0, · · · , ari, · · · , 0) ∈ J,

i.e., ari, ria ∈ Ii (1 ≤ i ≤ t). Hence Ii ⊳ Ri (i = 1, 2, · · · , t). Thus we complete the proof of

(1).

(2) For any r ∈ R, denote φ(r) = (r1, r2, · · · , rt), where ri ∈ Ri (1 ≤ i ≤ t). Now define a

map φ′ :

R/I →

t
⊕

i=1

Ri/Ii,
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r + I 7→ (r1 + I1, r2 + I2, · · · , rt + It).

Note that if φ′(r + I) = (0, 0, · · · , 0), i.e.,

(r1 + I1, r2 + I2, · · · , rt + It) = (0, 0, · · · , 0),

equivalently, ri ∈ Ii (i = 1, 2, · · · , t), then

φ(r) = (r1, r2, · · · , rt) ∈

t
⊕

i=1

Ii = J = φ(I),

which means that r ∈ I, i.e., r + I = 0, thus from (2) of Proposition 2.1, φ′ is injective.

Now for any (r1 + I1, r2 + I2, · · · , rt + It) ∈
t
⊕

i=1

Ri/Ii, there exists some r ∈ R such that

φ(r) = (r1, r2, · · · , rt) since φ is an epimorphism, hence we can get

φ′(r + I) = (r1 + I1, r2 + I2, · · · , rt + It) ∈

t
⊕

i=1

Ri/Ii,

i.e., φ′ is an epimorphism.

Furthermore, for s ∈ R, set φ(s) = (s1, s2, · · · , st) and φ(rs) = ((rs)1, (rs)2, · · · , (rs)t).

Since φ is a ring isomorphism from R to
t
⊕

i=1

Ri, we have

((rs)1, (rs)2, · · · , (rs)t) = φ(rs) = φ(r) ∗ φ(s)

= (r1, r2, · · · , rt) ∗ (s1, s2, · · · , st)

= (r1s1, r2s2, · · · , rtst). (3.1)

Now for any r + I, s+ I ∈ R/I, we have

φ′((r + I) + (s+ I)) = φ′(r + s+ I) = (r1 + s1 + I1, r2 + s2 + I2, · · · , rt + st + It)

= (r1 + I1, r2 + I2, · · · , rt + It) + (s1 + I1, s2 + I2, · · · , st + It)

= φ′(r + I) + φ′(s+ I) (3.2)

and

φ′((r + I)(s+ I)) = φ′(rs + I)

= ((rs)1 + I1, (rs)2 + I2, · · · , (rs)t + It). (3.3)

From (3.1) and (3.3), we know that

φ′((r + I)(s+ I)) = (r1 + I1, r2 + I2, · · · , rt + It) ∗ (s1 + I1, s2 + I2, · · · , st + It)

= φ′(r + I) ∗ φ′(s+ I).

This means that φ′ is a ring homomorphism.

From the above, φ′ is a ring isomorphism from R/I to
t
⊕

i=1

Ri/Ii. This completes the proof

of (2).
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3 The Proofs of Our Main Results

In this section, we give the proofs of the main results.

Proof of Theorem 1.1 (1) Since p1, p2, · · · , pt are distinct primes, 〈pi〉 (i = 1, 2, · · · , t)

are pairwise coprime ideals of Z. From (1) and (3) of Proposition 2.1 and Lemma 2.1, we can

get the following two ring isomorphisms:

ϕ : Zp1p2···pt
∼= Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpt

,

aj 7→ (a1j , a2j , · · · , atj),where aj ≡ aij(mod pi)

and

ϕ′ : Zp1p2···pt
[x] ∼= Zp1 [x]⊕ Zp2 [x]⊕ · · · ⊕ Zpt

[x],
∑

j

ajx
j 7→

(

∑

j

a1jx
j ,
∑

j

a2jx
j , · · · ,

∑

j

atjx
j
)

,

hence ϕ′
(
∑

j

ajx
j
)

=
∑

j

ϕ(aj)x
j .

For any ideal I = 〈xn − λ〉 ⊳ Zp1p2···pt
[x], from λi ≡ λ(mod pi) and the definitions of both

ϕ and ϕ′, we know that

ϕ′(I) = ϕ′(〈xn − λ〉) = 〈ϕ′(xn − λ)〉

= 〈(xn − λ1), (x
n − λ2), · · · , (x

n − λt)〉

=

t
⊕

i=1

〈xn − λi〉.

Thus by Lemma 2.2 we have

Zp1p2···pt
[x]/〈xn − λ〉 ∼=

t
⊕

i=1

Zpi
[x]/〈xn − λi〉,

which means that I ′ ⊳Zp1p2···pt
[x]/〈xn − λ〉 if and only if I ′i ⊳Zpi

[x]/〈xn − λi〉 (i = 1, 2, · · · , t)

and I ′ ∼=
t
⊕

i=1

I ′i . Now by Proposition 1.1, we immediately have (1).

(2) By taking λ = 1 in (1), we can get (2).

(3) By Proposition 1.1, there exists a ring isomorphism

τ : Zp1p2···pt
[x]/〈xn − 1〉 ∼=

t
⊕

i=1

Zpi
[x]/〈xn − 1〉

such that for any C ⊳ Zp1p2···pt
[x]/〈xn−1〉, there exists Ci ⊳ Zpi

[x]/〈xn−1〉 (i = 1, 2, · · · , t) (i.e.,

Ci ⊆ Zn
pi

is a cyclic code) such that τ(C) = (C1, C2, · · · , Ct). Note that C is an ideal and then

C is a cyclic code over Zp1p2···pt
. Thus by Proposition 1.2, the dual code C⊥ is also a cyclic

code over Zp1p2···pt
. Hence, from (1)–(2) of Theorem 1.1 there exist some cyclic codes Di over

Zpi
(i = 1, 2, · · · , t) such that

τ(C⊥) = (D1,D2, · · · ,Dt).

Now, for any ci ∈ Ci and di ∈ Di (i = 1, 2, · · · , t), we have

c = (c1, c2, · · · , ct) ∈ (C1, C2, · · · , Ct) = τ(C),



On Constacyclic Codes over Zp1p2···pt 563

d = (d1, d2, · · · , dt) ∈ (D1,D2, · · · ,Dt) = τ(C⊥).

Note that τ is an isomorphism and so τ−1 is also an isomorphism. Thus τ−1(c) ∈ C and

τ−1(d) ∈ C⊥, namely, τ−1(c)τ−1(d) = 0. While τ−1 is an isomorphism, hence

0 = τ−1(c)τ−1(d) = τ−1(c ∗ d)

= τ−1((c1, c2, · · · , ct) ∗ (d1, d2, · · · , dt))

= τ−1(c1d1, c2d2, · · · , ctdt),

i.e., cidi = 0 (1 ≤ i ≤ t), this means that Di ⊆ C⊥
i (i = 1, 2, · · · , t).

On the other hand, for any c′i ∈ C⊥
i (i = 1, 2, · · · , t), i.e., cic

′
i = 0. By (1)–(2) of Theorem

1.1, there exist some ci ∈ Ci (i = 1, 2, · · · , t) and c′ ∈ τ−1(C⊥
1 , C⊥

2 , · · · , C⊥
t ) such that

τ(c) = (c1, c2, · · · , ct) ∈ (C1, C2, · · · , Ct), τ(c′) = (c′1, c
′
2, · · · , c

′
t) ∈ (C⊥

1 , C⊥
2 , · · · , C⊥

t ).

Thus

τ(c) ∗ τ(c′) = (c1, c2, · · · , ct) ∗ (c
′
1, c

′
2, · · · , c

′
t) = (0, 0, · · · , 0).

Hence from cic
′
i = 0 (1 ≤ i ≤ t) and τ−1 is an isomorphism, we have

cc′ = τ−1(c1, c2, · · · , ct)τ
−1(c′1, c

′
2, · · · , c

′
t) = τ−1((c1, c2, · · · , ct) ∗ (c

′
1, c

′
2, · · · , c

′
t))

= τ−1(c1c
′
1, c2c

′
2, · · · , ctc

′
t) = τ−1(0, 0, · · · , 0) = 0,

i.e., c′ ∈ C⊥. Now from τ(C⊥) = (D1,D2, · · · ,Dt), we know that

τ(c′) = (c′1, c
′
2, · · · , c

′
t) ∈ (D1,D2, · · · ,Dt),

i.e., c′i ∈ Di (i = 1, 2, · · · , t), thus C⊥
i ⊆ Di (i = 1, 2, · · · , t).

Therefore C⊥
i = Di (i = 1, 2, · · · , t), i.e.,

τ(C⊥) = (C⊥
1 , C⊥

2 , · · · , C⊥
t ). (3.4)

Thus from τ is an isomorphism and (3.4), we can obtain:

C is a self-orthogonal cyclic code ⇔ C ⊆ C⊥ ⇔ τ(C) ⊆ τ(C⊥)

⇔ (C1, C2, · · · , Ct) ⊆ (C⊥
1 , C⊥

2 , · · · , C⊥
t )

⇔ Ci ⊆ C⊥
i (i = 1, 2, · · · , t)

⇔ ∀i = 1, 2, · · · , t, Ci is a self-orthogonal cyclic code.

In particular, C is self-dual, i.e., C = C⊥ if and only if for any i = 1, 2, · · · , t, Ci = C⊥
i , i.e., Ci

is self-dual.

This completes the proof of (3).

Proof of Theorem 1.2 By Theorem 1.1 we know that C is a self-orthogonal cyclic code over

Zp1p2···pt
if and only if there exist self-orthogonal cyclic codes Ci over Zpi

(i = 1, 2, · · · , t) such

that C ∼=
t
⊕

i=1

Ci. Note that, C = {0} if and only if Ci = {0} (i = 1, 2, · · · , t). Now by Theorem

1.1, C is non-trivial self-orthogonal if and only if there exist some Ci ⊆ Zn
pi

(i = 1, 2, · · · , t) such

that Ci is a non-trivial self-orthogonal cyclic code. By Propositions 2.2–2.3, this is equivalent

to that there exist some pi (i = 1, 2, · · · , t) such that one of the following conditions is true.

(1) gcd(n, pi) 6= 1;



564 D. R. Xie and Q. Y. Liao

(2) If gcd(n, pi) = 1, then 2 ∤ ordn(pi);

(3) If gcd(n, pi) = 1 and 2 | ordn(pi), then n ∤ (q
ordn(pi)

2 + 1).

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3 Note that for any i = 1, 2, · · · , t, Zpi
is a finite field since pi (1 ≤

i ≤ t) is a prime. Thus by Proposition 2.6, the number of non-trivial self-orthogonal cyclic

codes with length n over Zpi
is

N(n, pi) =
([prii

2
+ 1

])ki
((prii + 1)(prii + 2)

2

)li

− 1, i = 1, 2, · · · , t.

Now from (3) of Lemma 2.1, the number of self-orthogonal cyclic codes with length n over

Zp1p2···pt
is

t
∏

i=1

([prii
2

+ 1
])ki

( (prii + 1)(prii + 2)

2

)li

.

Note that C = {0} if and only if Ci = {0} (i = 1, 2, · · · , t), thus from Theorem 1.2 and

Proposition 2.6, we immediately have Theorem 1.3.

Proof of Theorem 1.4 From (3) of Theorem 1.1, there exists a self-dual cyclic code with

length n over Zp1p2···pt
if and only if for any i = 1, 2, · · · , t, there exists a self-dual cyclic code

with length n over Zpi
. Note that t ≥ 2 is an integer and p1, p2, · · · , pt are distinct primes,

hence there is no self-dual cyclic code over Zp1p2···pt
by Proposition 2.7.

4 Examples

In this section, by using elementary methods and techniques, one can get the number of

non-trivial self-orthogonal cyclic codes over Zp1p2···pt
basing on Theorem 1.3.

Example 4.1 For n = 10 = 2 × 5, we have gcd(10, 3) = 1. Then by Theorem 1.1, we

know that there exists a self-orthogonal cyclic code C over Z6 if and only if there exists a

self-orthogonal cyclic code C1 over Z2 and a self-orthogonal cyclic code C2 over Z3, such that

C ∼= C1 ⊕ C2.

Note that ord5(2) = 4, ord2(3) = 1, ord5(3) = 4 and ord10(3) = 4, then by Theorem 1.3, we

have k1 = 2, k2 = 4, l1 = 0 and l2 = 0. Thus the number of non-trivial self-orthogonal cyclic

codes over Z6 is

N(10, 6) =
([2r1

2
+ 1

])k1
( (2r1 + 1)(2r1 + 2)

2

)l1([3r2

2
+ 1

])k2
( (3r2 + 1)(3r2 + 2)

2

)l2

− 1

=
([21

2
+ 1

])2((21 + 1)(21 + 2)

2

)0([30

2
+ 1

])4( (30 + 1)(30 + 2)

2

)0

− 1

= 4− 1 = 3.

Furthermore, by Theorem 1.4, there doesn’t exist any self-dual cyclic code over Z6.

On the other hand, the canonical decomposition of x10 − 1 over Z2 is

x10 − 1 = (x+ 1)2(x4 + x3 + x2 + x+ 1)2.

And the canonical decomposition of x10 − 1 over Z3 is

x10 − 1 = (x− 1)(x+ 1)(x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x− 1).
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Now set

g11 = (x + 1)(x4 + x3 + x2 + x+ 1) = x5 + 1,

g12 = (x + 1)2(x4 + x3 + x2 + x+ 1) = x6 + x5 + x+ 1,

and

g13 = (x+ 1)(x4 + x3 + x2 + x+ 1)2 = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Then by Proposition 2.5, C11 = 〈g11〉, C12 = 〈g12〉 and C13 = 〈g13〉 are non-trivial self-orthogonal

cyclic codes over Z2 and there doesn’t exist any non-trivial self-orthogonal cyclic code over Z3.

Thus by Theorem 1.1, there are three non-trivial self-orthogonal cyclic codes over Z6 as follows:

C1 = 〈4x10 + 3x5 − 1〉 ∼= C11 ⊕ {0},

C2 = 〈4x10 + 3x6 + 3x5 + 3x− 1〉 ∼= C12 ⊕ {0},

C3 = 〈4x10 + 3x9 + 3x8 + 3x7 + 3x6 + 3x5 + 3x4 + 3x3 + 3x2 + 3x− 1〉 ∼= C13 ⊕ {0},

which are not self-dual cyclic.

Example 4.2 For n = 9 = 32, we have gcd(9, 5) = 1. Now by Theorem 1.1, we know that

there exists a self-orthogonal cyclic code C over Z15 if and only if there exists a self-orthogonal

cyclic code C1 over Z3 and a self-orthogonal cyclic code C2 over Z5, such that C ∼= C1 ⊕ C2.

Note that ord3(5) = 2 and ord9(5) = 6, then by Theorem 1.3, we have

k1 = 1, k2 = 3, l1 = 0, l2 = 0, r1 = 2, r2 = 0.

Thus the number of non-trivial self-orthogonal cyclic codes over Z15 is

N(9, 15) =
([3r1

2
+ 1

])k1
( (3r1 + 1)(3r1 + 2)

2

)l1([5r2

2
+ 1

])k2
( (5r2 + 1)(5r2 + 2)

2

)l2

− 1

=
([31

1
+ 1

])1((31 + 1)(31 + 2)

2

)0([50

2
+ 1

])3( (50 + 1)(50 + 2)

2

)1

− 1

= 5− 1 = 4.

Furthermore, by Theorem 1.4, there doesn’t exist any self-dual cyclic code over Z15.

On the other hand, the canonical decomposition of x9 − 1 over Z5 is

x9 − 1 = (x+ 1)(x2 + x+ 1)(x6 + x3 + 1).

Now set

g11 = (x+ 2)5 = x5 + x4 + x3 + 2x2 + 2x+ 2,

g12 = (x+ 2)6 = x6 + x3 + 1,

g13 = (x+ 2)7 = x7 + 2x6 + x
4
+2x3

+x+2,

g14 = (x+ 2)8 = x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Then by Proposition 2.5, C11 = 〈g11〉, C12 = 〈g12〉, C13 = 〈g13〉 and C14 = 〈g14〉 are non-trivial

self-orthogonal cyclic codes over Z3 and there doesn’t exist any non-trivial self-orthogonal cyclic

code over Z5. Thus by Theorem 1.1, there are eight non-trivial self-orthogonal cyclic codes over

Z15 as follows:

C1 = 〈6x9 + 10x5 + 10x4 + 10x3 + 5x2 + 5x− 1〉 ∼= C11 ⊕ {0},
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C2 = 〈6x9 + 10x6 + 10x3 + 4〉 ∼= C12 ⊕ {0},

C3 = 〈6x9 + 10x7 + 5x6 + 10x4 + 5x3 + 10x− 1〉 ∼= C13 ⊕ {0},

C4 =
〈

6x9 + 10

8
∑

i=1

xi + 4
〉

∼= C14 ⊕ {0},

which are not self-dual cyclic.

5 Conclusion

It’s well-known that the polynomial ring Zp1p2···pt
[x] is not a unique factorization domain.

Hence to study constacyclic codes over R = Zp1p2···pt
is difficult basing on polynomial factoriza-

tions. By constructing an isomorphic between R and Zpi
(i = 1, 2, · · · , t), to study constacyclic

codes over R is reduced to study the corresponding constacyclic codes over finite fields Zpi
,

which is much easier. Based on this, the present paper studies constacyclic codes over Zp1p2···pt

and obtains some good results.
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