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Abstract Let (X, d, µ) be a metric measure space satisfying both the upper doubling and
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1 Introduction and Preliminaries

The theory of Calderón-Zygmund operators and commutators plays an important role in

harmonic analysis and partial differential equations. The theory of commutators were intro-

duced in a general form by Calderón [2–3], in which Calderón showed that these kinds of

operators are bounded on L2. In [4], the authors proved that given a singular integral T with

standard Calderón-Zygmund kernel, the operator [b, T ] = bT −Tb is bounded in Lp, 1 < p < ∞

if b is a BMO function, the converse implication is due to [12]. We refer also to [14], in which

Pérez proved endpoint estimates for commutators of singular integrals with BMO functions.

Recently, many mathematicians pay attention to the study of non-doubling measure spaces.

One of the most general settings to which Calderón-Zygmund theory extends naturally is the

spaces of homogeneous type in the sense of Coifman and Weiss [5], Many results from real

and harmonic analysis on Euclidean spaces have their natural extensions on these space(see,

for example, [5–6, 8]). A metric space (X, d) equipped with a nonnegative Borel measure

µ is called a space of homogeneous type if (X, d, µ) satisfies the following measure doubling

condition that there exists a positive constant Cµ, depending on µ, such that for any ball
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B(x, r) = {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

µ(B(x, 2r)) ≤ Cµµ(B(x, r)). (1.1)

This definition was introduced by Coifman and Weiss in [5]. We point out that d may also

be assumed to be a quasi-metric. However, for the simplicity, in this paper, we always assume

that d is a metric; see also [9]. The measure doubling condition (1.1) plays a key role in

the classical theory of Calderón-Zygmund operators. However, many results on the classical

Calderón-Zygmund theory have been proved still valid if the measure doubling condition is

replaced by a weaker condition such as the polynomial growth condition; see, for example,

[7, 15, 18]. To be precise, let k ∈ (0,∞), X be a metric space endowed with a metric d and a

nonnegative “k-dimensional” Borel measure µ in the sense that there exists a positive constant

C0 such that for all x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ C0r
k. (1.2)

Such a measure need not satisfy the doubling condition (1.1). In [15], Tolsa established

Calderón-Zygmund theory for non doubling measures. Because the measures satisfying (1.2)

are only different form, not more general than,the measures satisfying (1.1), the theory with

this kinds of non-doubling measures is not in all respects a generalization of the corresponding

theory of spaces of homogeneous type. Hytönen in [9] introduced a new class of metric measure

spaces satisfying the so-called upper doubling and the geometrically doubling conditions (see

Definitions 1.1–1.2 below). This new class of metric measure spaces includes both spaces of ho-

mogeneous type and metric spaces with the measures satisfying (1.2) as special cases. Recently,

many results on the Calderón-Zygmund theory have been built on the non-homogeneous metric

measure spaces (see [1, 10–11, 13, 18]). Let us mention that Bui and Duong [1] showed that

if the Calderón-Zygmund operator is bounded on L2(µ), the commutator of this operator with

a function RBMO(µ) is bounded on Lp(µ),1 < p < ∞ on non-homogeneous metric measure

space.

θ-type Calderón-Zygmund operator was introduced by Yabuta in [17], In [16], the authors

studied the properties of θ-type Calderón-Zygmund operator and commutator. In this paper,

we study the commutators of θ-type Calderón-Zygmund operator with RBMO function on non-

homogeneous metric measure space. We show that this commutators is bounded from L∞(µ)

into RBMO(µ) and from H1,∞
at (µ) into L1(µ), respectively. To state our main result, we recall

some necessary notations which will be used in the proof of our main results. We start with the

notion of the upper doubling and geometrically doubling metric measure space which introduced

in [1, 9].

Definition 1.1 A measure µ in the metric space (X,µ) is said to be an upper doubling

measure if there exists a dominating function λ with the following properties:

(i) λ : X × (0,∞) 7→ (0,∞).

(ii) For any fixed x ∈ X, r 7→ λ(x, r) is increasing.

(iii) There exists a constant Cλ > 0 such that λ(x, 2r) ≤ Cλλ(x, r) for all x ∈ X, r > 0.
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(iv) The inequality µ(x, r) := µ(B(x, r)) ≤ λ(x, r) holds for all x ∈ X, r > 0.

(v) And λ(x, r) ≈ λ(y, r) for all r > 0, x, y ∈ X and d(x, y) ≤ r.

Obviously, a space of homogeneous type is a special case of upper doubling spaces, if we

take the dominating function λ(x, r) = µ(B(x, r)). On the other hand, a metric space (X, d, µ)

satisfying the polynomial growth condition (1.2) is also an upper doubling measure space by

taking λ(x, r) = C0r
k. We now recall the notion of the geometrically doubling space introduced

in [9].

Definition 1.2 A metric space (X, d) is called geometrically doubling if there exists some

N0 ∈ N = {1, 2, · · · } such that for any ball B(x, r) ⊂ X , there exists a finite ball covering{
B
(
xi,

r
2

)}
i
of B(x, r) such that the cardinality of this covering is at most N0.

Let (X, d) be a metric space. In [9], Hytönen showed that the following statements are

mutually equivalent:

(i) (X, d) is geometrically doubling.

(ii) For any ε ∈ (0, 1) and any ball B(x, r) ⊂ X , there exists a finite ball covering {B(xi, εr)}i

of B(x, r) such that the cardinality of this covering is at most N0ε
−n, where and in what follows,

N0 is as in Definition 1.2 and n = log2 N0.

(iii) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X contains at most N0ε
−n centers {xi}i of

disjoint balls {B(xi, εr)}i.

(iv) There exists M ∈ N such that any ball B(x, r) ⊂ X contains at most M centers {xi}i

of disjoint balls
{
B
(
xi,

r
4

)}M

i=1
.

We now recall the coefficients KB,Q and K ′
B,Q for any two balls B ⊂ Q which were intro-

duced in [1]. For any two balls B ⊂ Q, let

KB,Q = 1+

ˆ

rB≤d(x,xB)≤rQ

1

λ(xB , d(x, xB))
dµ(x),

K ′
B,Q = 1+

NB,Q∑

k=1

µ(6kB)

λ(xB , 6krB)
,

where NB,Q is the smallest integer satisfying 6NB,QrB ≥ rQ. If λ(x, ar) = amλ(x, r) for all

x ∈ X and a, r > 0, it is not difficult to show that KB,Q ≈ K ′
B,Q. However, in general, we only

have KB,Q ≤ CK ′
B,Q. This definition is a variant of the definition in [15]. Similar to Lemma

2.1 in [15], the authors in [1] showed the following property.

Lemma 1.1 (i) If Q ⊂ R ⊂ S are balls in X, then

max{KQ,R,KR,S} ≤ KQ,S ≤ C(KQ,R +KR,S).

(ii) If Q ⊂ R are of compatible size, then KQ,R ≤ C.

(iii) If αQ, · · · , αN−1Q are non (α, β)-doubling balls (β > C
log2 α

λ ) then KQ,αNQ ≤ C.

Throughout this paper, C always means a positive constant independent of the main pa-

rameters involved, but it may be different in different contents.
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2 Main Results and Proofs

At first, based on the definition of θ-type Calderón-Zygmund operator in [17] , we define

the θ-type Calderón-Zygmund operator on non-homogeneous metric measure spaces as follows.

Definition 2.1 Let θ be a non-negative, non-decreasing function on R
+ = (0,∞) satisfying

ˆ 1

0

θ(t)

t
dt < ∞. (2.1)

A kernel K(·, ·) ∈ L1
loc(X ×X\{(x, y) : x = y}) is called a θ-type Calderón-Zygmund kernel if

the following conditions hold

|K(x, y)| ≤ Cmin
{ 1

λ(x, d(x, y))
,

1

λ(y, d(x, y))

}
(2.2)

and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ Cθ
(d(x, x′)

d(x, y)

) 1

λ(x, d(x, y))
, (2.3)

when d(x, y) ≥ 2d(x, x′).

A linear operator T is called the θ-type Calderón-Zygmund operator with kernel K(·, ·)

satisfying (2.2) and (2.3) if for all f ∈ L∞(µ) with bounded support and x /∈ suppf ,

Tf(x) =

ˆ

X

K(x, y)f(y)dµ(y). (2.4)

The RBMO(µ) space for the general non-homogeneous space (X,µ) was introduced by Hytönen

in [9], and studied systematically in [1]. Both of the authors also gave some characterizations

of RBMO(µ) space.

Definition 2.2 Given a ball B ⊂ X, let N be the smallest non-negative integer such that

B̃ = 6NB is doubling (such a ball B exists due to Lemma 1.1). Let ρ > 1 be some fixed constant.

We say that f ∈ L1
loc(µ) is in the RBMO(µ) if there exists some constant C > 0 such that for

any ball B,

1

µ(ρB)

ˆ

B

|f(x) −m
B̃
f |dµ(x) ≤ C (2.5)

and for any two doubling balls Q and R such that Q ⊂ R,

|mQf −mRf | ≤ CKQ,R, (2.6)

where mBf is the mean value of f over the ball B. Then we set

‖f‖∗ = inf{C : (2.5) and (2.6) hold}.

We need the following equivalent property of Definition 2.2 (see[1]).
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Lemma 2.1 For f ∈ L1
loc(µ), the following three are equivalent:

(a) f ∈ RBMO(µ).

(b) There exists some constant Cb such that for any ball B,

1

µ(6B)

ˆ

B

|f(x)−mBf |dµ(x) ≤ Cb (2.7)

and for any two balls Q and R such that Q ⊂ R,

|mQf −mRf | ≤ CbKQ,R

(µ(6Q)

µ(Q)
+

µ(6R)

µ(R)

)
. (2.8)

(c) There exists some constant Cc such that for any doubling ball B,

1

µ(B)

ˆ

B

|f(x)−mBf |dµ(x) ≤ Cc (2.9)

and

|mQf −mRf | ≤ CcKQ,R (2.10)

for any two doubling balls Q ⊂ R.

Definition 2.3 Let the kernel K satisfy Definition 2.1. The commutator of the θ-type

Calderón-Zygmund operator T with RBMO function is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x) =

ˆ

X

K(x, y)(b(x) − b(y))f(y)dy.

The main result of our paper is given as follows.

Theorem 2.1 Let T be θ-type Calderón-Zygmund operator defined by (2.4) as above and T

is bounded on L2(µ). If b ∈ RBMO(µ), then the commutator [b, T ] is bounded from L∞(µ) into

RBMO(µ) on non-homogeneous space.

Proof By characterization of RBMO(µ) given by (2.9)–(2.10) in Lemma 2.1, We only need

to prove the following two estimations:

(i) There exists some constant C such that for any doubling ball B,
ˆ

B

|([b, T ]f −mB([b, T ]f)|dµ ≤ C‖f‖L∞(µ)‖b‖∗µ(B). (2.11)

(ii) For any two doubling balls Q and R with Q ⊂ R, one has

|mQ([b, T ]f)−mR([b, T ]f)| ≤ CKQ,R‖f‖L∞(µ)‖b‖∗. (2.12)

We first check (2.11). Let {bB} be a family of numbers, satisfying
ˆ

B

|b− bB|dµ ≤ 2µ(6B)‖b‖∗

for balls B, and

|bQ − bR| ≤ 2KQ,R‖b‖∗
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for balls Q ⊂ R. Denote hB = mB(T ((b− bB)fχX\6B)), f1 = fχ6B and f2 = fχX\6B.

For any doubling ball B, we can write
ˆ

B

|[b, T ]f −mB([b, T ]f)|dµ

=

ˆ

B

|(b− bB)Tf − T ((b− bB)f1)− T ((b− bB)f2) + hB − hB −mB([b, T ]f)|dµ

≤

ˆ

B

|(b− bB)Tf |dµ+

ˆ

B

|T ((b− bB)f1)|dµ

+

ˆ

B

|T ((b− bB)f2)− hB|dµ+

ˆ

B

|hB +mB([b, T ]f)|dµ

= I1 + I2 + I3 + I4.

By Hölder’s inequality, L2(µ)-boundedness of T and corollary 6.3 in [9], it follows

I1 ≤
( ˆ

B

|Tf |2dµ
) 1

2
(ˆ

B

|b− bB|
2dµ

) 1
2

≤ C‖f‖L∞(µ)µ(B)
1
2 ‖b‖∗µ(B)

1
2

≤ C‖f‖L∞(µ)‖b‖∗µ(B).

Using the doubling property of ball B and the coefficient KB,6B ≤ C, we have

I2 ≤
(ˆ

B

|T ((b− bB)f1)|
2dµ

) 1
2
(ˆ

B

dµ
) 1

2

≤ C‖(b− bB)f1‖L2(µ)µ
(ˆ

B

dµ
) 1

2

≤ C‖f‖L∞(µ)µ(B)
1
2

(ˆ

6B

|b− bB|
2dµ

) 1
2

≤ C‖f‖L∞(µ)µ(B)
1
2

(( ˆ

6B

|b− b6B|
2dµ

) 1
2

+
(ˆ

6B

|bB − b6B|
2dµ

) 1
2
)

≤ C‖f‖L∞(µ)µ(B)
1
2 (‖b‖∗µ(36B)

1
2 +KB,6B‖b‖∗µ(6B)

1
2 )

≤ C‖f‖L∞(µ)‖b‖∗µ(B)
1
2µ(36B)

1
2

≤ C‖f‖L∞(µ)‖b‖∗µ(B).

In order to get the estimation of I3, we need to estimate |T ((b− bB)f2)− hB|.

For x, y ∈ B, by the definition (2.1), we get

|T ((b− bB)f2)(x) − T ((b− bB)f2)(y)|

=
∣∣∣
ˆ

X\6B

K(x, z)(b(z)− bB)f(z)dµ(z)−

ˆ

X\6B

K(y, z)(b(z)− bB)f(z)dµ(z)
∣∣∣

≤ C‖f‖L∞(µ)

ˆ

X\6B

|K(x, z)−K(y, z)||b(z)− bB|dµ(z)

≤ C‖f‖L∞(µ)

ˆ

X\6B

θ
(d(x, y)
d(x, z)

) 1

λ(x, d(x, z))
|b(z)− bB|dµ(z)

≤ C‖f‖L∞(µ)

∞∑

k=1

ˆ

6k+1B\6kB

θ
(d(x, y)
d(x, z)

) 1

λ(x, d(x, z))
|b(z)− b6k+1B|dµ(z)
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+ C‖f‖L∞(µ)

∞∑

k=1

ˆ

6k+1B\6kB

θ
(d(x, y)
d(x, z)

) 1

λ(x, d(x, z))
|bB − b6k+1B|dµ(z)

≤ C‖f‖L∞(µ)

∞∑

k=1

ˆ

6k+1B\6kB

θ(6−k)
1

λ(x, 6k−1rB)
|b(z)− b6k+1B|dµ(z)

+ C‖f‖L∞(µ)‖b‖∗

∞∑

k=1

KB,6k+1B

ˆ

6k+1B\6kB

θ(6−k)
1

λ(x, 6k−1rB)
dµ(z)

≤ C‖f‖L∞(µ)‖b‖∗

( ∞∑

k=1

θ(6−k)
µ(6k+2B)

λ(x, 6k+2rB)
+

∞∑

k=1

KB,6k+1Bθ(6
−k)

µ(6k+1B)

λ(x, 6k+1rB)

)

≤ C‖f‖L∞(µ)‖b‖∗. (2.13)

Here we have used the following inequality that

ˆ 1

0

θ(t)

t
dt ≥

∞∑

k=1

ˆ 61−k

6−k

θ(6−k)

61−k
dt ≥ C

∞∑

k=1

θ(6−k), µ(6k+nB) ≤ λ(x, 6k+nrB).

From the above estimate and the choice of hB, we obtain

I3 = |T ((b− bB)f2)(x) − hB|

= |T ((b− bB)f2)(x) −mB(T (b− bB)f2(y))|

≤ C‖f‖L∞(µ)‖b‖∗µ(B)

and

I4 ≤ |hB +mB([b, T ]f)|µ(B) ≤ C

ˆ

B

|[b, T ]f + hB|dµ ≤ C‖f‖L∞(µ)‖b‖∗µ(B).

Therefore we have (2.11).

Next we prove (2.12). For any x ∈ Q, y ∈ R, we write

|[b, T ]f(x)− [b, T ]f(y)|

= |(b(x) − bQ)Tf(x)− T ((b− bQ)f)(x) − (b(y)− bQ)Tf(y) + T ((b− bQ)f)(y)|

≤ |(b(x) − bQ)Tf(x)|+ |(b(y)− bQ)Tf(y)|+ |T ((b− bQ)f)(x)− T ((b− bQ)f)(y)|

= J1 + J2 + J3.

With the argument similar to the estimate for I1 it follows that

mQ(|(b − bQ)Tf |) ≤ C‖f‖L∞(µ)‖b‖∗

and
ˆ

R

|(b(y)− bQ)Tf(y)|dµ(y)

≤
( ˆ

R

|Tf(y)|2dµ(y)
) 1

2
(ˆ

R

|(b(y)− bQ)|
2dµ(y)

) 1
2

≤ C‖f‖L∞(µ)µ(R)
1
2

[(ˆ

R

|(b(y)− bR)|
2dµ(y)

) 1
2

+
(ˆ

R

|(bR − bQ)|
2dµ(y)

) 1
2
]
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≤ CKQ,R‖b‖∗‖f‖L∞(µ)µ(R)
1
2µ(R)

1
2

≤ CKQ,R‖b‖∗‖f‖L∞(µ)µ(R).

Therefore

mR(|(b − bQ)Tf |) ≤ CKQ,R‖b‖∗‖f‖L∞(µ).

We now estimate J3, Let N be the first integer k such that R ⊂ 6kQ. We denote QR = 6N+1Q.

Then we write

|T ((b− bQ)f)(x) − T ((b− bQ)f)(y)|

= |T ((b− bQ)fχX\QR
)(x) − T ((b− bQ)fχX\QR

)(y)|

+ |T ((b− bQ)fχQR
)(x)| − |T ((b− bQ)fχQR

)(y)|

= J31 + J32 + J33.

Similar to (2.13), we can show that

J31 ≤ C‖f‖L∞(µ)

ˆ

X\QR

|K(x, z)−K(y, z)||b(z)− bQ|dµ(z)

≤ C‖f‖L∞(µ)

ˆ

X\QR

θ
(d(x, y)
d(x, z)

) 1

λ(x, d(x, z))
|b(z)− bQ|dµ(z)

≤ C‖f‖L∞(µ)

∞∑

k=1

ˆ

6k+1QR\6kQR

θ(6−k)
1

λ(x, 6k−1rQR
)
|b(z)− b6k+1QR

|dµ(z)

+ C‖f‖L∞(µ)‖b‖∗KQ,6k+1QR

∞∑

k=1

ˆ

6k+1QR\6kQR

θ(6−k)
1

λ(x, 6k−1rQR
)
dµ(z)

≤ C‖f‖L∞(µ)‖b‖∗

( ∞∑

k=1

θ(6−k)
µ(6k+2QR)

λ(x, 6k+2rQR
)
+

∞∑

k=1

(K +KQ,R)θ(6
−k)

µ(6k+1QR)

λ(x, 6k+1rQR
)

)

≤ C‖f‖L∞(µ)‖b‖∗

∞∑

k=1

θ(6−k)(K +KQ,R)

≤ C‖f‖L∞(µ)‖b‖∗KQ,R.

Here we have used the following inequality

KQ,6k+1QR
≤ C(KQ,R +KR,QR

+KQR,6k+1QR
) ≤ C(KQ,R +K)

and the fact rQR
≈ rR.

For J32, we have

J32 = |T ((b− bQ)fχQR
)(x)| ≤

ˆ

QR

|K(x, y)(b(y)− bQ)f(y)|dµ(y)

≤ C‖f‖L∞(µ)

ˆ

QR

1

λ(x, d(x, y))
|b(y)− bQ|dµ(y)

≤ C‖f‖L∞(µ)
1

λ(x, y)

( ˆ

QR

|b(y)− bQR
|dµ(y) +

ˆ

QR

|bQ − bQR
|dµ(y)

)
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≤ C‖f‖L∞(µ)
1

λ(x, rQR
)
‖b‖∗KQ,QR

µ(6QR)

≤ C‖f‖L∞(µ)‖b‖∗KQ,R.

The estimation of J33 is similar. Hence J3 ≤ C‖f‖L∞(µ)‖b‖∗KQ,R. We proved (2.12) and

complete the proof of Theorem 2.1.

Now we are going to show that if a θ-type Calderón-Zygmund operator is bounded on L2(µ),

then the commutators of θ-type Calderón-Zygmund operator with RBMO function is bounded

from H1,∞
at (µ) into L1(µ). Before stating our results, we first recall some definitions.

Definition 2.4 Let ρ > 1. A function a ∈ L1
loc(µ) is called a atomic block if

(1) there exists some balls B such that supp(a) ⊂ B;

(2)
´

X
ad(µ) = 0;

(3) there are functions aj supported on balls Bj ⊂ B and numbers λj ∈ R such that

a =

∞∑

j=1

λjaj ,

where the sum converges in L1(µ), and ‖aj‖L∞(µ) ≤ (µ(ρBj)KBj ,B)
−1 and the constant KBj ,B

being given in the paragraph before Lemma 1.1.

We denote |a|H1,∞
at (µ) =

∞∑
j=1

|λj |. We say that f ∈ H1,∞
at (µ) if there are atomic blocks ai

such that

f =

∞∑

i=1

ai

with
∞∑
i=1

|ai|H1,∞
at (µ) < ∞. The H1,∞

at (µ) norm of f is defined by

‖f‖H1,∞
at (µ) = inf

∞∑

i=1

|ai|H1,∞
at (µ),

where the infimum is taken over all the possible decompositions of f in atomic blocks. It was

proved in [1] that the atomic Hardy space H1,∞
at (µ) is independent of the choice of ρ. Here we

choose ρ = 6.

Theorem 2.2 Assume that θ-type Calderón-Zygmund operator defined by (2.4) as above

and T is bounded on L2(µ), then the commutators of T with RBMO function is bounded from

H1,∞
at (µ) into L1(µ) on non-homogeneous space.

Proof It is enough to show that
ˆ

X

|[b, T ]a(x)|dµ(x) ≤ C‖a‖H1,∞
at (µ)

for any atomic block a with supp(a) ⊂ B, a =
∑
j

λjaj , where the aj is function satisfying

property of the definition of atomic block.
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For a atomic block a(x), we can write

ˆ

X

|[b, T ]a(x)|dµ(x) ≤

ˆ

6B

|[b, T ]a(x)|dµ(x) +

ˆ

X\6B

|[b, T ]a(x)|dµ(x)

= I1 + I2.

First we will estimate I1.

In fact

I1 =

ˆ

6B

|[b, T ]a(x)|dµ(x) ≤
∑

j

|λj |

ˆ

6B

|[b, T ]aj(x)|dµ(x)

≤
∑

j

|λj |

ˆ

6B\6Bj

|[b, T ]aj(x)|dµ(x) +
∑

j

|λj |

ˆ

6Bj

|[b, T ]aj(x)|dµ(x)

= I11 + I12.

Since

[b, T ]aj(x) = (b −mBj
b)Taj(x)− T ((b−mBj

b)aj)(x),

we write

I12 =
∑

j

|λj |

ˆ

6Bj

|[b, T ]aj(x)|dµ(x)

≤
∑

j

|λj |

ˆ

6Bj

|b−mBj
b||Taj(x)|dµ(x) +

∑

j

|λj |

ˆ

6Bj

|T ((b−mBj
b)aj)(x)|dµ(x).

By using Hölder’s inequality and the boundedness of T on L2(µ), we obtain

ˆ

6Bj

|b−mBj
b||Taj(x)|dµ(x)

≤
(ˆ

6Bj

|b−mBj
b|

2
dµ(x)

) 1
2
( ˆ

6Bj

|Taj(x)|
2
dµ(x)

) 1
2

≤ ‖a‖L∞(µ)µ(6Bj)
1
2

[( ˆ

6Bj

|b−m6Bj
b|2dµ(x)

) 1
2

+
(ˆ

6Bj

|mBj
−m6Bj

b|2dµ(x)
) 1

2
]

≤ ‖a‖L∞(µ)µ(6Bj)
1
2 (Cµ(36Bj)

1
2 + CKBj ,6Bj

µ(6Bj)
1
2 )

≤ C.

Similarly

ˆ

6Bj

|T ((b−mBj
b)aj)(x)|dµ(x) ≤

(ˆ

6Bj

∣∣(b −mBj
b)aj(x)

∣∣2dµ(x)
) 1

2

≤ C.

Thus

I12 ≤ C
∑

j

|λj | ≤ C‖a‖H1,∞
at (µ).
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For I11, we write

I11 ≤
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

|[b, T ]aj(x)|dµ(x)

≤
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

|b−mBj
b||Taj(x)|dµ(x)

+
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

|T ((b−mBj
b)aj)(x)|dµ(x)

= I111 + I112.

Let xj be the center of ball Bj . According to the definition of atomic block, we obtain

I111 ≤
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

ˆ

Bj

|b(x)−mBj
b||K(x, y)−K(x, xj)|

· |aj(y)|dµ(y)dµ(x)

≤ C
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

ˆ

Bj

|b(x)−mBj
b|θ

(d(y, xj)

d(x, xj)

)

·
1

λ(x, d(x, xj))
|aj(y)|dµ(y)dµ(x)

≤ C
∑

j

|λj |

NBj,B∑

k=1

ˆ

Bj

|aj(y)|dµ(y)θ(6
−k)

1

λ(xj , 6k−1rBj
)

·

ˆ

6k+1Bj\6kBj

|b(x)−mBj
b|dµ(x).

Since (2.6)–(2.7) and Lemma 1.1,
ˆ

6k+1Bj\6kBj

|b(x)−mBj
b|dµ(x)

≤

ˆ

6k+1Bj\6kBj

|b(x)−m6k+1Bj
b|dµ(x) +

ˆ

6k+1Bj\6kBj

|mBj
b−m6k+1Bj

b|dµ(x)

≤ Cµ(6k+2Bj) + CKBj ,6k+1Bj
µ(6k+1Bj)

≤ CKBj ,Bµ(6
k+2Bj).

Thus

I111 ≤ C
∑

j

|λj |

NBj,B∑

k=1

‖aj‖L∞(µ)µ(Bj)θ(6
−k)KBj ,B

≤ C
∑

j

|λj |

NBj,B∑

k=1

θ(6−k)‖aj‖L∞(µ)µ(6Bj)KBj ,B

≤ C
∑

j

|λj |
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≤ C‖a‖H1,∞
at (µ)

and

I112 ≤
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

(ˆ

Bj

K(x, y)((b −mBj
b)aj)(y)dµ(y)

)
dµ(x)

≤ C
∑

j

|λj |

NBj,B∑

k=1

ˆ

6k+1Bj\6kBj

1

λ(x, d(x, y))
‖aj‖L∞(µ)µ(6Bj)dµ(x)

≤ C
∑

j

|λj |

NBj,B∑

k=1

K−1
Bj,B

≤ C‖a‖H1,∞
at (µ).

Hence

I1 =

ˆ

6B

|[b, T ]a(x)|dµ(x) ≤ C‖a‖H1,∞
at (µ).

Now, for I2, we can write

I2 = [b, T ]a(x) = (b−mBb)Ta(x)− T ((b−mBb)a)(x).

Thus

I2 ≤

ˆ

X\6B

|b−mBb||Ta(x)|dµ(x) +

ˆ

X\6B

|T ((b−mBb)a)(x)|dµ(x)

= I21 + I22.

Let xB be the center of ball B and r be the radius of ball B. Then

I21 ≤

ˆ

X\6B

|b(x)−mBb|

ˆ

B

|K(x, y)−K(x, xB)||a(y)|dµ(y)dµ(x)

≤ C

ˆ

B

|a(y)|

∞∑

k=1

ˆ

6k+1B\6kB

θ
(d(y, xB)

d(x, xB)

) 1

λ(x, d(x, xB ))
|b(x)−mBb|dµ(x)dµ(y).

Similarly estimation of I111, we can show that

I21 =

ˆ

X\6B

|b−mBb||Ta(x)|dµ(x) ≤ C‖a‖
H

1,∞
at (µ).

For I22, we get

I22 ≤

ˆ

X\6B

∣∣∣
ˆ

B

(K(x, y)−K(x, xB))(b(y)−mBb)a(y)dµ(y)
∣∣∣dµ(x)

≤ C

∞∑

k=1

ˆ

6k+1B\6kB

ˆ

B

θ
(d(y, xB)

d(x, xB)

) 1

λ(x, d(x, xB))
|b(y)−mBb||a(y)|dµ(y)dµ(x)

≤ C

∞∑

k=1

θ(6−k)

ˆ

B

|b(y)−mBb||a(y)|dµ(y)



Boundedness of Commutators 597

≤ C
∑

j

|λj |

ˆ

Bj

|b(y)−mBb||aj(y)|dµ(y)

≤ C
∑

j

|λj |‖aj‖L∞(µ)

(ˆ

Bj

|b(y)−mBj
b|dµ(y) +

ˆ

Bj

|mBb−mBj
b|dµ(y)

)

≤ C
∑

j

|λj |µ(6Bj)
−1K−1

Bj ,B
µ(6Bj)KBj ,B

≤ C
∑

j

|λj |.

Therefore I22 ≤ C‖a‖H1,∞
at (µ). Then we obtain I2 ≤ C‖a‖H1,∞

at (µ). The theorem is proved.

Remark 2.1 In [1], Bui and Duong showed that the space RBMO(µ) is embedded in the

dual space of H1,∞
at , That is RBMO(µ) ⊂ (H1,∞

at )∗. So we can not obtain the above result by

duality.

In [1], Bui and Duong established the following interpolation theorem.

Theorem 2.3 Let T be a linear operator which is bounded from H1,∞
at (µ) into L1(µ) and

from L∞(µ) into RBMO(µ). Then T extends boundedly to Lp(µ) for all 1 < p < ∞.

By using Theorem 2.3, as a consequence of Theorem 2.1 and Theorem 2.2, we immediately

obtain the following theorem.

Theorem 2.4 Let T be θ-type Calderón-Zygmund operator defined by (2.4) as above and

b ∈ RBMO(µ). Then the commutator [b, T ] can be extended to a bounded operator on Lp(µ) for

all (1 < p < ∞).

Remark 2.2 The classical theorem of the boundedness of the commutator on Lp(µ) space

was obtained by using the pointwise estimate for commutator, see the papers [4,14]. However,

our method is different. We derive the Lp(µ) boundedness from the endpoint estimates on the

non-homogeneous metric spaces.
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