董欣.复环面情形的Suita猜想[J].数学年刊A辑,2014,35(1):101~108
复环面情形的Suita猜想
Suita Conjecture for a Complex Torus
  
DOI:
中文关键词:  Suita猜想, 复环面, Bergman核, Arakelov-Green函数
英文关键词:Suita conjecture, Complex torus, Bergman kernel, Arakelov-Green's function
基金项目:国家自然科学基金 (No.11031008, No.11171255)和名古屋大学2012年学生项目
作者单位E-mail
董欣 同济大学数学系, 上海,200092
名古屋大学大学院多元数理科学研究科, 日本 名古屋,464-8602. 
1987xindong@tongji.edu.cn 
摘要点击次数: 1210
全文下载次数: 42
中文摘要:
      对任意复环面的情形证明了推广的Suita猜想, 即$ \alpha\pi K \geq c^2\ (\alpha \in \mathbb R)$, 其中$c$ 是修正后的对数容度, $K$是对角线上的Bergman 核. 还阐明了对任意亏格$\geq2$的紧Riemann面情形的公开问题. 文中结果的证明部分地依赖于椭圆函数理论.
英文摘要:
      The author proves that the generalized Suita conjecture holds for any complex torus, which means that $\alpha\pi K \geq c^2\ (\alpha\in\mathbb R)$, $c$ being the modified logarithmic capacity, and $K$ being the Bergman kernel on the diagonal. The open problem for general compact Riemann surfaces with genus $\geq2$ is also elaborated. The proof relies in part on elliptic function theories.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持