李娜,李建林.有限uM,D-正交指数函数系的一个充分条件[J].数学年刊A辑,2019,40(4):457~466
有限uM,D-正交指数函数系的一个充分条件
A Sufficient Condition for the Finite uM,D-Orthogonal Exponentials Function System
投稿时间:2015-07-14  修订日期:2015-12-29
DOI:10.16205/j.cnki.cama.2019.0035
中文关键词:  Self-affine measures, Orthogonal exponential function system, Non-spectrality, Determinant
英文关键词:Self-affine measures, Orthogonal exponential function system, Non-spectrality, Determinant
基金项目:本文受到国家自然科学基金(No.11171201,No.11571214)的资助.
作者单位E-mail
李娜 陕西师范大学数学与信息科学学院, 陕西 西安 710119. jllimath10@snnu.edu.com 
李建林 陕西师范大学数学与信息科学学院, 陕西 西安 710119. jllimath10@snnu.edu.com 
摘要点击次数: 55
全文下载次数: 46
中文摘要:
      设$\mu_{M,D}$是由仿射迭代函数系$\{\phi_{d}(x)=M^{-1}(x+d)\}_{d\in D}$唯一确定的自仿测度, 它的谱与非谱性质与Hilbert空间$L^{2}(\mu_{M,D})$中正交指数函数系的有限性和无限性有着直接的关系. 本文将利用矩阵的初等变换给出$\mu_{M,D}$\,{-}\!\!正交指数函数系有限性的一个充分条件. 由于这个条件只与 矩阵$M$的行列式有关, 因此, 它在$\mu_{M,D}$的非谱性的判断方面便于直接验证.
英文摘要:
      Let $\mu_{M,D}$ be a self-affine measure uniquely determined by the iterated function system $\{\phi_{d}(x)=M^{-1}(x+d)\}_{d\in D}$.\ The spectrality or non-spectrality of $\mu_{M,D}$ is directly connected with the finiteness or infiniteness of orthogonal exponentials in the Hilbert space $L^{2}(\mu_{M,D})$. In this paper, the authors provide a sufficient condition for the finite $\mu_{M,D}${-}orthogonal exponentials by applying the elementary matrix transformations. This sufficient condition depends only upon the determinant of the matrix $M$, and is easy to use in the research of non-spectrality of $\mu_{M,D}$.
查看全文  查看/发表评论  下载PDF阅读器
关闭

主管单位:国家教育部 主办单位:复旦大学 地址:上海市邯郸路220号复旦大学数学科学学院 E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持