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1 Introduction

Classification theorems have been obtained for AH algebras—the inductive limits of cut

downs of matrix algebras over compact metric spaces by projections—and AD algebras—the

inductive limits of Elliott dimension drop interval algebras in two special cases:

(1) Real rank zero case: All such AH algebras with no dimension growth and such AD

algebras (see [1–4, 7–8, 12–17]).

(2) Simple case: All such AH algebras with no dimension growth (which includes all simple

AD algebras by [9]) (see [5–6, 11, 18, 27–32, 39–40]).

In [11], the authors pointed out two important possible next steps after the completion of

classification of simple AH algebras (with no dimension growth). One of these is the classifi-

cation of simple ASH algebras—the simple inductive limits of subhomogeneous algebras (with

no dimension growth). The other is to generalize and unify the above-mentioned classification

theorems for simple AH algebras and real rank zero AH algebras by classifying AH algebras

with the ideal property. The ideal properties in the classification theory are intensively studied

previously (see [35–36, 41–42])In particular, ASI and AI algebras with the ideal property are

classified by the Stevens-Jiang invariant (see [22, 26, 41])In this article, we have achieved several

key results for the second goal by providing two decomposition theorems.

As in [8], let TII,k be the 2-dimensional connected simplicial complex with H1(TII,k) = 0

and H2(TII,k) = Z/kZ, and let Ik be the subalgebra of Mk(C[0, 1]) defined by

Ik = {f ∈Mk(C[0, 1]) : f(0) ∈ C · 1k and f(1) ∈ C · 1k}.
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This algebra is called an Elliott dimension drop interval algebra. Denote by HD the class of

algebras consisting of direct sums of building blocks of the forms Ml(Ik) and PMn(C(X))P ,

with X being one of the spaces {pt}, [0, 1], S1 and TII,k, and with P ∈ Mn(C(X)) being

a projection. (In [2], this class is denoted by SH(2), and in [24], this class is denoted by

B). We will call a C∗-algebra an AHD algebra, if it is an inductive limit of algebras in HD.

In [19–20, 23, 28], it is proved that all AH algebras with the ideal property of no dimension

growth are inductive limits of algebras in the class HD—that is, they are AHD algebras. By

this reduction theorem, to classify AH algebras with the ideal property, we must study the

properties of homomorphisms between those basic building blocks.

In the local uniqueness theorem for classification, it requires the homomorphisms involved

to satisfy a certain spectral distribution property, called the sdp property (more specifically,

sdp(η, δ) property introduced in [18] and [11] for some positive real numbers η and δ). This

property automatically holds for the homomorphisms φn,m (provided that m is large enough)

giving rise to a simple inductive limit procedure. But for the case of general inductive limit

C∗-algebras with the ideal property, to obtain this sdp property, we must pass to certain good

quotient algebras which correspond to simplicial sub-complexes of the original spaces; a uniform

uniqueness theorem, that does not depend on the choice of simplicial sub-complexes involved,

is required. For the case of an interval, whose simplicial sub-complexes are finite unions of

subintervals and points, such a uniform uniqueness theorem is proved in [23] (see [5, 26] also).

But for the general case, there is no uniqueness theorem for the general case involving arbitrary

finite subsets of Mn(C(TII,k)) (or Ml(Ik)). In this paper, we prove decomposition theorems

between such building blocks or between a building block of this kind and a homogeneous

building block. And we will compare the decompositions of two different homomorphisms in

the last part of Section 4. Such decomposition and comparison results will be used in the proof

of the uniqueness theorem for AH algebras with the ideal property in [19].

2 Notation and Terminology

In this section, we will introduce some notation and terminology. We can assume all con-

necting maps in the inductive system are injective (see [10]).

Definition 2.1 Let X be a compact metric space and ψ : C(X) → PMk1(C(Y ))P (with

rank(P ) = k) be a unital homomorphism. For any point y ∈ Y , there are k mutually orthogonal

rank 1 projections p1, p2, · · · , pk with
k∑
i=1

pi = P (y) and {x1(y), x2(y), · · · , xk(y)} ⊂ X (may be

repeat) such that

ψ(f)(y) =

k∑

i=1

f(xi(y))pi, ∀f ∈ C(X).

We denote the set {x1(y), x2(y), · · · , xk(y)} (counting multiplicities) by Spψy. We call Spψy
the spectrum of ψ at the point y.

2.1 For any f ∈ Ik ⊂Mk(C[0, 1]) = C([0, 1],Mk(C)) as in [13, 3.2], let function f : [0, 1] →

C ⊔Mk(C) (disjoint union) be defined by

f(t) =





λ, if t = 0 and f(0) = λ1k,

µ, if t = 1 and f(1) = µ1k,

f(t), if 0 < t < 1.
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That is, f(t) is the value of irreducible representation of f corresponding to the point t. Simi-

larly, for f ∈Ml(Ik), we can define f : [0, 1] →Ml(C) ⊔Mlk(C) by

f(t) =






a, if t = 0 and f(0) = a⊗ 1k,

b, if t = 1 and f(1) = b⊗ 1k,

f(t), if 0 < t < 1.

2.2 Suppose that φ : Ik → PMn(C(Y ))P is a unital homomorphism. Let r = rank(P ). For

each y ∈ Y , there are t1, t2, · · · , tm ∈ [0, 1] and a unitary u ∈Mn(C) such that

P (y) = u

(
1rank(P ) 0

0 0

)
u∗

and

φ(f)(y) = u




f(t1)
f(t2)

. . .

f(tm)
0n−r



u∗ ∈ P (y)Mn(C)P (y) (2.1)

for all f ∈ Ik.

2.3 Let φ be the homomorphism defined by (2.1) above with t1, t2, · · · , tm as appeared in

the diagonal of the matrix. We define the set Spφy to be the points t1, t2, · · · , tm with possible

fraction multiplicity. If ti = 0 or 1, we assume that the multiplicity of ti is
1
k
; if 0 < ti < 1, we

assume that the multiplicity of ti is 1. For example if we assume

t1 = t2 = t3 = 0 < t4 ≤ t5 ≤ · · · ≤ tm−2 < 1 = tm−1 = tm,

then Spφy = {0∼
1
k , 0∼

1
k , 0∼

1
k , t4, t5, · · · , tm−2, 1

∼ 1
k , 1∼

1
k }, which can also be written as

Spφy = {0∼
3
k , t4, t5, · · · , tm−2, 1

∼ 2
k }.

Here we emphasize that, for t ∈ (0, 1), we do not allow the multiplicity of t to be non-integral.

Also for 0 or 1, the multiplicity must be multiple of 1
k
(other fraction numbers are not allowed).

Let ψ : C[0, 1] → PMn(C(Y ))P be defined by the following composition:

ψ : C[0, 1] →֒ Ik
φ
−→ PMn(C(X))P,

where the first map is the canonical inclusion. Then we have Spψy = {Spφy}∼k—that is, for

each element t ∈ (0, 1), its multiplicity in Spψy is exactly k times of the multiplicity in φy.

2.4 (a) We use ♯(.) to denote the cardinal number of a set. Very often, the sets under

consideration will be sets with multiplicity, in which case we will also count multiplicity when

we use the notation ♯. The set may also contain fractional point. For example,

♯{01, 12, 0, 0, 1} = 5.

(b) We use a∼k to denote a, a, · · · , a︸ ︷︷ ︸
k

. For example {a∼3, b∼2} = {a, a, a, b, b}.
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(c) For any metric space X , any x0 ∈ X and c > 0, let Bc(x0) , {x ∈ X | d(x, x0) < c}, the

open ball with radius c and center x0.

(d) Suppose that A is a C∗-algebra, B ⊂ A is a subset (often a subalgebra), F ⊂ A is a finite

subset and ε > 0. If for each element f ∈ F , there is an element g ∈ B such that ‖f − g‖ < ε,

then we will say that F is approximately contained in B within ε, and denote this by F ⊂ε B.

(e) Let X be a compact metric space. For any δ > 0, a finite set {x1, x2, · · · , xn} is said to

be δ-dense in X if for any x ∈ X , there is xi ∈ {x1, x2, · · · , xn} such that dist(x, xi) < δ.

(f) We will use • or •• to denote any possible positive integers.

(g) For any two projections p, q ∈ A, by [p] ≤ [q] we mean that p is unitarily equivalent to

a sub-projection of q. And we use p ∼ q to denote that p is unitarily equivalent to q.

2.5 Let A =Ml(Ik). Then every point t ∈ (0, 1) corresponds to an irreducible representation

πt, defined by πt(f) = f(t). The representations π0 and π1 defined by

π0 = f(0), π1 = f(1)

are no longer irreducible. We use 0 and 1 to denote the corresponding points for the irreducible

representations. That is,

π0(f) = f(0), π1(f) = f(1).

Or we can also write f(0) , f(0) and f(1) , f(1). Then (2.1) could be written as

φ(f)(y) = u




f(t1)
f(t2)

. . .

f(tm)
0n−r



u∗,

where some of ti may be 0 or 1. In this notation, up to unitary equivalence, f(0) is equal to

diag(f(0), f(0), · · · , f(0)︸ ︷︷ ︸
k

).

Under this notation, we can also write 0∼
1
k as 0. Then the example of Spφy in 2.3 can be

written as

Spφy = {0∼
1
k , 0∼

1
k , 0∼

1
k , t4, t5, · · · , tm−2, 1

∼ 1
k , 1∼

1
k } = {0, 0, 0, t4, t5, · · · , tm−2, 1, 1}.

2.6 For a homomorphism φ : A → Mn(Ik), where A = Ik or C(X), and for any t ∈ [0, 1],

define Spφt = Spψt, where ψ is defined by the composition

ψ : A
φ
−→Mn(Il) →Mnl(C[0, 1]).

Also Spφ0 = Sp(π0 ◦ φ). Hence, Spφ0 = {Spφ0}∼k.

2.7 Let φ : Mn(A) → B be a unital homomorphism. It is well known (see [8, 1.34, 2.6])

that there is an identification of B with (φ(e11)Bφ(e11))⊗Mn(C) such that

φ = φ1 ⊗ idn :Mn(A) = A⊗Mn(C) → (φ(e11)Bφ(e11))⊗Mn(C) = B,

where e11 is the matrix unit of upper left corner of Mn(A) and φ1 = φ|e11Mn(A)e11 : A →

φ(e11)Bφ(e11).
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If we further assume that A = Ik or C(X) (with X being a connected CW complex) and

B is either QMn(C(Y ))Q or Ml(Ik1 ), then for any y ∈ SpB, define Spφy , Sp(φ1)y. Here, we

use the standard notation that if B = PMm(C(Y ))P then SpB = Y ; and if B = Ml(Ik), then

Sp(B) = [0, 1].

2.8 Let A and B be either of form PMn(C(X))P (with X path connected) or of form

Ml(Ik). Let φ : A → B be a unital homomorphism. We say that φ has property sdp(η, δ)

(spectral distribution property with respect to η and δ) if for any η-ball

Bη(x) = {x′ ∈ X | dist(x′, x) < η} ⊂ X(= Sp(A))

and any point y ∈ Sp(B),

♯(Spφy ∩Bη(x)) ≥ δ · ♯Spφy,

counting multiplicity. If φ is not unital, we say that φ has sdp(η, δ) if the corresponding unital

homomorphism φ : A→ φ(1A)Bφ(1A) has property sdp(η, δ).

2.9 Set PnX = X ×X × · · · ×X︸ ︷︷ ︸
n

/ ∼, where the equivalence relation ∼ is defined by

(x1, x2, · · · , xn) ∼ (x′1, x
′
2, · · · , x

′
n)

if there is a permutation σ of {1, 2, · · · , n} such that xi = x′
σ(i) for each 1 ≤ i ≤ n. A metric d

on X can be extended to a metric on PnX by

d([x1, x2, · · · , xn], [x
′
1, x

′
2, · · · , x

′
n]) = min

σ
max
1≤i≤n

d(xi, x
′
σ(i)),

where σ is taken from the set of all permutations, and [x1, x2, · · · , xn] denotes the equivalence

class of (x1, x2, · · · , xk) in P kX.

2.10 Let X be a metric space with metric d. Two k-tuple of (possible repeating) points

{x1, x2, · · · , xn} ⊂ X and {x′1, x
′
2, · · · , x

′
n} ⊂ X are said to be paired within η if there is a

permutation σ such that

d(xi, x
′
σ(i)) < η, i = 1, 2, · · · , k.

This is equivalent to the following statement. If one regards [x1, x2, · · · , xn] and [x′1, x
′
2, · · · , x

′
n]

as points in PnX , then

d([x1, x2, · · · , xn], [x
′
1, x

′
2, · · · , x

′
n]) < η.

2.11 For X = [0, 1], let P (n,k)X , where n, k ∈ Z+\{0}, denote the set of n
k
elements from

X , in which only 0 or 1 may appear fractional times. That is, each element in X is of the form

{0∼
n0
k , t1, t2, · · · , tm, 1

∼
n1
k } (2.2)

with 0 < t1 ≤ t2 ≤ · · · ≤ tm < 1 and n0

k
+m+ n1

k
= n

k
.

An element in P (n,k)X can always be written as

{0∼
k0
k , t1, t2, · · · , ti, 1

∼
k1
k }, (2.3)



834 C. L. Jiang, L. Q. Li and K. Wang

where 0 ≤ k0 < k, 0 ≤ k1 < k, 0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ 1 and k0
k
+ i + k1

k
= n

k
. (Here ti could

be 0 or 1.) In the above Representations (2.2)–(2.3), we know that

k0 ≡ n0 (mod k), k1 ≡ n1 (mod k).

Let

y = [0∼
k0
k , t1, t2, · · · , ti, 1

∼
k1
k ] ∈ P (n,k)X,

y′ = [0∼
k′
0
k , t′1, t

′
2, · · · , t

′
i, 1

∼
k′
1
k ] ∈ P (n,k)X

with k0, k1, k
′
0, k

′
1 ∈ {0, 1, · · · , k − 1}.

We define dist(y, y′) as the following: If k0 6= k′0 or k1 6= k′1, then dist(y, y′) = 1; if k0 = k′0
and k1 = k′1 (consequently i = i′), then

dist(y, y′) = max
1≤j≤i

|tj − t′j |

as we order the {tj} and {t′j} as t1 ≤ t2 ≤ · · · ≤ ti and t
′
1 ≤ t′2 ≤ · · · ≤ t′i, respectively.

Note that P (n,1)X = PnX with the same metric. Let φ, ϕ : Ik → Mn(C) be two unital

homomorphisms. Then Spφ and Spψ define two elements in P (n,k)[0, 1]. We say that Spφ and

Spψ can be paired within η, if dist(Spφ, Spψ) < η.

Note that if dist(Spφ, Spψ) < 1, then KK(φ) = KK(ψ).

2.12 Let A = PMk(C(X))P , or Ml(Ik) and X1 ⊂ Sp(A) be a closed subset—that is, X1

is a closed subset of X or of [0, 1]. We define A|X1 to be the quotient algebra A/I, where

I = {f ∈ A, f |X1 = 0}. Evidently Sp(A|X1 ) = X1.

If B = QMk(C(Y ))Q, φ : A → B is a homomorphism, and Y1 ⊂ Sp(B)(= Y or [0, 1]) is a

closed subset, then we use φ|Y1 to denote the composition:

φ|Y1 : A
φ

−→ B → B|Y1 .

If Sp(φ|Y1) ⊂ X1 ∪X2 ∪ · · · ∪Xk, where X1, X2, · · · , Xk are mutually disjoint closed subsets of

X , then the homomorphism φ|Y1 factors as

A→ A|X1∪X2∪···∪Xn
=

n⊕

i=1

A|Xi
→ B|Y1 .

We use φ|Xi

Y1
to denote the part of φ|Y1 corresponding to the map A|Xi

→ B|Y1 . Hence φ|Y1 =⊕
i

φ|Xi

Y1
.

3 Decomposition Theorem I

In this section, we will prove the following theorem.

Theorem 3.1 Let F ⊂ Ik be a finite set, ε > 0. There is an η > 0, satisfying that if

φ : Ik → PM•(C(X))P (dim(X) ≤ 2)

is a unital homomorphism such that for any x ∈ X,

♯
(
Spφ′x ∩

[
0,
η

4

])
≥ k, ♯

(
Spφ′x ∩

[
1−

η

4
, 1
])

≥ k,
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where

φ′ : C[0, 1]
ı

−→ Ik
φ

−→ PM(C(X))P,

then there are three mutually orthogonal projections

Q0, Q1, P1 ∈ PM•(C(X))P

with

Q0 +Q1 + P1 = P

and a unital homomorphism

ψ1 : Mk(C[0, 1]) → P1M•(C(X))P1,

such that

(1) write ψ(f) = f(0)Q0 + f(1)Q1 + (ψ1 ◦ ı)(f), then

‖ φ(f)− ψ(f) ‖< ε

for all f ∈ F ⊂ Ik ⊂Mk(C[0, 1]), and

(2) rank(Q0) ≤ k and rank(Q1) ≤ k.

We divide the proof into several steps.

3.1 Let η > 0 (and η < 1) be such that if | t− t′ |< η, then ‖ f(t)−f(t′) ‖< ε
6 for all f ∈ F .

We will prove that this η is as desired. Let a unital homomorphism φ : Ik → PM•C(X)P

satisfy that ♯
(
Spφx ∩

[
0, η4

])
≥ k and ♯

(
Spφx ∩

[
1 − η

4 , 1
])

≥ k for each x ∈ X. We will prove

such φ has the decomposition as desired.

3.2 Let rank(P ) = n, and let ei,j ∈Mn(C) be the matrix units. For any closed set Y ⊂ [0, 1],

define hY ∈ C[0, 1] ⊂ Ik (considering C[0,1] as in the center of Ik) as

hY (t) =






1, if t ∈ Y,

1−
12n

η
dist(t, x), if dist(t, x) ≤

η

12n
,

0, if dist(t, x) ≥
η

12n
.

Define H ′ = {hY | Y is closed} ∪ {hY eij | Y ⊂ [ η
12n , 1 − η

12n ] is closed}. Note that for a

closed set Y ⊂ [ η
12n , 1−

η
12n ], hY (0) = hY (1) = 0, and therefore hY eij ∈ Ik. Note also that the

family H ′ is equally continuous. There is a finite set H ⊂ H ′ satisfying that for any h′ ∈ H ′,

∃h ∈ H such that

‖ h− h′ ‖≤
ε

12(n+ 1)2
.

For finite set H ∪ F , ε > 0 and φ : Ik → PM•(C(X))P , there is a τ > 0 such that the

following are true:

(a) For x, x′ ∈ X with dist(x′, x) < τ , Spφ|x and Spφ|x′ can be paired within η
24n2 . This is

equivalent to the condition that Spφ′|x can be paired with Spφ′|x′ within η
24n2 (sinceKK(φ|x) =

KK(φ|x′)), where φ′ = φ ◦ ı is as the above.

(b) For x, x′ ∈ X with dist(x′, x) < τ ,

‖φ(h)(x) − φ(h)(x′)‖ ≤
ε

12(n+ 1)2
,



836 C. L. Jiang, L. Q. Li and K. Wang

regarding φ(h)(x) ∈ P (x)M•(C)P (x) ⊂M•(C) and φ(h)(x′) ∈ P (x′)M•(C)P (x′) ⊂M•(C). In
particular, ‖P (x)− P (x′)‖ < ε

12(n+1)2 since 1 ∈ H .

3.3 Choose any simplicial decomposition on X such that for any simplex ∆ ⊂ X , the set

Star(△) = ∪{
◦

∆′| ∆′ is a simplex of X with ∆′ ∩∆ 6= ∅}

has diameter at most τ
2 , where

◦

∆′ is the interior of the simplex ∆′.

3.4 We will construct the homomorphism ψ : Ik → PM•(C(X))P which is of the form

ψ(f) = f(0)Q0 + f(1)Q1 + ψ1(f)

as described in the theorem. Our construction will be carried out simplex by simplex.

First, define the restriction of map ψ to PM•(C(X))P |v = P (v)M•(C)P (v) for each vertex

v ∈ X . The homomorphism is denoted by

ψ|{v} : Ik → P (v)M•(C)P (v).

(Here and below, we refer the reader to 2.12 for the notation ψ|X1 for a subset X1 ⊂ X .)

Next, we will define, for each 1-simplex [a, b] ⊂ X , the homomorphisms

ψ|[a,b] : Ik → P |[a,b]M•(C([a, b]))P |[a,b]

which will give the same maps as the previously defined maps ψ|{a} and ψ|{b} on the boundary

{a, b}. Finally, we will define, for each 2-simplex ∆ ⊂ X , the homomorphism

ψ|∆ : Ik → P |∆M•(C(∆))P |∆

such that ψ|∂△ should be the same as what previously defined.

3.5 For each simplex ∆ of any dimension, let C∆ denote the center of the simplex. That is, if

∆ is a vertex v, then C∆ = v; if ∆ is a 1-simplex identified with [a,b], then C∆ = a+b
2 ; and if ∆ is

a 2-simplex identified with a triangle in R2 with vertices {a, b, c} ⊆ R2, then C∆ = a+b+c
3 ∈ R2

which is barycenter of ∆.

3.6 According to each simplex ∆ (of possible dimensions 0, 1 or 2), we will divide the

set Spφ′|∆ ⊂ [0, 1] into pieces, where φ′ : C[0, 1] →֒ Ik
φ

−→ PM•C(X)P . (Recall Spφ′|x =

{Spφ|x}∼k, and Spφ′|x has no fractional multiplicity.) So for each x ∈ X ,

Spφ′|x = n = rank(P ) (counting multiplicity).

If we order Spφ′|x as

0 ≤ λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) ≤ 1,

then all functions λi are continuous functions. By path connectedness of simplex ∆, the set

Spφ|∆ can be written as

Spφ|∆ = [a0, b0] ∪ [a1, b1] ∪ · · · ∪ [ak′−1, bk′−1] ∪ [ak′ , bk′ ]

with

0 ≤ a0 ≤ b0 < a1 ≤ b1 < a2 ≤ b2 < · · · < ak′−1 ≤ bk′−1 < ak′ ≤ bk′ ≤ 1.
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(Note that, if ai = bi, then [ai, bi] = {ai} is a degenerated interval.)

We will group the above intervals into groups T0 ∪ T1 ∪ · · · ∪ Tlast such that Spφ|∆ = ∪Tj ,

with the condition that for any λ ∈ Tj, µ ∈ Tj+1, we have λ < µ, according to the following

procedure:

(i) Spφ|∆ ∩
[
0, η4 + η

12n

]
⊂ T0, that is, all the above intervals [ai, bi] with ai ≤ η

4 + η
12n

should be in the group T0; and Spφ|∆ ∩
[
1 −

(
η
4 + η

12n

)
, 1
]
⊂ Tlast, that is all [ai, bi] with

bi ≥ 1−
(
η
4 + η

12n

)
will be grouped into the last group Tlast.

(ii) If ai − bi−1 ≤ η
12n , then [ai−1, bi−1] and [ai, bi] are in the same group, say Tj .

(iii) If ai − bi−1 >
η

12n , ai >
η
4 + η

12n and bi−1 < 1−
(
η
4 + η

12n

)
, then [ai−1, bi−1] and [ai, bi]

are in different groups, say Tj and Tj+1.

Denote Tlast by Tl∆ (i.e., l∆ = last) — if there is no confusion, we call Tl∆ by Tl. Let t0 = 0,

s0 = max{ η4 ,maxT0}, tl = min{1 − η
4 ,minTl}, sl = 1; and for 1 < i < l, let ti = minTi, and

si = maxTi. Then Ti ⊂ [ti, si]. With the above notation, we have the following lemma.

Lemma 3.1 With the above notation, we have the following:

(a) Length[t0, s0] ≤
η
4 + η

6 ;

(b) Length[tl, sl] ≤
η
4 + η

6 ;

(c) Length[ti, si] ≤
η
6 for i ∈ {1, 2, · · · , l − 1};

(d) ti+1 − si >
η

12n for i ∈ {0, 1, 2, · · · , l− 1}.

Proof From (ii) of 3.6, we know that minTi+1 −maxTi >
η

12n ; and from (i), we know that

minT1 >
η
4 + η

12n and maxTl−1 < 1−
(
η
4 + η

12n

)
. Hence (d) holds.

The following fact is well known:

For any two sequences 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 1 and 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 1,

{λi}ni=1 and {µi}ni=1 can be paired within σ if and only if |λi − µi| < σ for all i ∈ {1, 2, · · · , n}.

Note that ∆ is path connected and Spφ|∆ =
k′⋃
i=1

[ai, bi] with [ai, bi]∩ [aj, bj ] = ∅ if i 6= j. We

conclude that for any z, z′ ∈ ∆ and i,

♯(Spφ|z ∩ [ai, bi]) = ♯(Spφ|z′ ∩ [ai, bi])

counting multiplicity. In our construction, we know that Spφ|z and Spφ|z′ can be paired within
η

24n2 , using the above mentioned fact. We know also that

Spφ|z ∩ [ai, bi], Spφ|z′ ∩ [ai, bi]

can be paired within η
24n2 . Consequently

[ai, bi] ⊂ η

24n2
[ai, bi] ∩ Spφ|C∆ ,

where C∆ is the center of simplex ∆. Note that Spφ|C∆ ∩ [ai, bi] is a finite set with at most

n points in [0, 1] and η
24n2 -neighborhood of each point is a closed interval of length at most(

η
24n2

)
· 2 = η

12n2 . Hence we have

length[ai, bi] ≤
( η

12n2

)
· n =

η

12n
.

Furthermore, each Tj contains at most n intervals [ai, bi]. And for each consecutive pair of

intervals in Tj (0 < j < l), we have

[ai, bi] ∪ [ai+1, bi+1] ⊂
(η
4
+

η

12n
, 1−

(η
4
+

η

12n

))
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and the distance between them ai+1 − bi ≤
η

12n . That is, the gap between them is at most η
12n .

Hence for each i ∈ {1, 2, · · · , l − 1}, the length of [ti, si] is at most

n ·
η

12n
+ (n− 1) ·

η

12n
<
η

6

(at most n possible intervals and n− 1 gaps).

Also,

length[t0, s0] <
η

4
+
η

6

and

length[tl, sl] <
η

4
+
η

6
.

3.7 For each simplex ∆ with face ∆′ ⊂ ∆, we use Ti(∆) and Tj(∆
′) to denote the sets

[ti(∆), si(∆)] or [tj(∆
′), sj(∆

′)] as in 3.6, corresponding to ∆ and ∆′. Then evidently, the

decomposition

Spφ|∆′ =
⋃

j

(Tj(∆
′) ∩ Spφ|∆′)

is a refinement of the decomposition Spφ|∆ = ∪(Ti(∆) ∩ Spφ|∆)— that is, if two elements

λ, µ ∈ Spφ|∆′ are in the set Tj(∆
′) for a same index j, then they are in the set Ti(∆) for a

same index i.

3.8 For each simplex ∆, consider the homomorphism

φ : Ik → PM•(C(∆))P = A|∆.

Since Spφ|∆ ⊂
l⋃

j=0

Tj(∆) =
l⋃

j=1

[tj , sj ], φ factors through as

Ik →
l⊕

j=0

Ik|[tj ,sj ]
⊕φj

−−−→ PM•(C(∆))P.

Let Pj(x) = φj(1k|[tj ,sj ])(x) for each x ∈ ∆. Then Pj(x) are mutually orthogonal projections

satisfying
l∑

j=0

Pj(x) = P (x).

By the assumption of Theorem 3.1, we have rank(P0) ≥ k and rank(Pl) ≥ k.

3.9 Now we define ψ : Ik → A|∆ simplex by simplex, starting with vertices — the zero

dimensional simplices.

Let v ∈ X be a vertex. As in 3.6, we write

Spφ|{v} =

l⋃

i=0

[ti, si] ∩ Spφ|{v},
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where 0 = t0 < s0 < t1 ≤ s1 < · · · < tl−1 ≤ sl−1 < tl < sl = 1, with

[
0,
η

4

]
⊂ [t0, s0] ⊂

[
0,
η

2

]
,

[
1−

η

4
, 1
]
⊂ [tl, sl] ⊂

[
1−

η

2
, 1
]
,

0 ≤ si − ti <
η

6
for each i ∈ {1, 2, · · · , l − 1},

ti+1 − si >
η

12n
for each i ∈ {0, 1, 2, · · · , l − 1}.

Recall that φ|{v} : Ik → P (v)M•(C)P (v) (as in 3.8) can be written as

φ|{v} = diag(φ0, φ1, · · · , φl) : Ik →
l⊕

i=0

PiM•(C)Pi ⊂ P (v)M•(C)P (v),

where φi = φ|
[ti,si]
{v} : Ik → Ik|[ti,si] → PiM•(C)Pi and P (v) =

l∑
i=0

Pi. (Here and below, we

refer the reader to 2.12 for the notation φ|
Zj

X1
(X1 ⊂ X), which makes sense, provided that

Sp(φ|X1 ) ⊂
⋃
j

Zj , where {Zj} are mutually disjoint closed subsets of the spectrum of the

domain algebra of φ.)

From now on, we will use diag0≤i≤l (φi) to denote diag(φ0, φ1, · · · , φl).

Define ψi : Ik|[ti,si] → PiM•(C)Pi by

ψi = φi if 1 ≤ i ≤ l − 1.

(That is, we do not modify φi for 1 ≤ i ≤ l− 1.) For i = 0 (the case i = l is similar) we do the

following modification. There is a unitary u ∈M•(C) such that

φ0(f)(v) = u







f(0)
f(0)

. . .

f(0)




j×j

f(ξ1)
f(ξ2)

. . .

f(ξ••)
0

. . .

0




u∗,

where ξi ∈ (0, s1], 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξ•• ≤ s1. Or write it as

φ0(f)(v) = u diag(f(0)∼j , f(ξ1), f(ξ2), · · · , f(ξ••), 0, · · · , 0)u
∗.

If 0 < j ≤ k then we do not do any modification and just let ψ0 = φ0. If j > k, then write

j = kk′ + j′ with 0 < j′ ≤ k, choose ξ′ ∈ (0, ξ1), and define

ψ0(f)(v) = u diag(f(0)∼j
′

, f(ξ′)∼k
′

, f(ξ1), f(ξ2), · · · , f(ξ••), 0, · · · , 0)u
∗.
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That is, change kk′ terms of f(0) in the diagonal of the definition of φ0 to k′ terms of the form

f(ξ′). If j = 0, then we change ξ1 to 0, that is,

ψ0(f)(v) = u diag(f(0)∼k, f(ξ2), · · · , f(ξ••), 0, · · · , 0)u
∗.

Since |ξ′ − 0| < η
2 and |ξ1 − 0| < η

2 , we have ‖φ0(f) − ψ0(f)‖ <
ε
6 for all f ∈ F (see 3.1).

We modify φl in a similar way to define ψl. Let

ψ|{v} = diag(ψ0, ψ1, · · · , ψl) : Ik → P (v)M•(C)P (v),

where ψi=ψ|
[ti,si]
{v} . Then ‖φ(f)− ψ(f)‖ < ε

6 for all f ∈ F .

Remark 3.1 Let us emphasize that the homomorphisms ψi are the same as φi for i ∈

{1, 2, · · · , l{v} − 1}. We modify φ0 and φl (l = l{v}) to get ψ0 and ψl.

Also, we have

Sp(ψ0) ⊂ [0, s0], Sp(ψl{v}) ⊂ [tl{v} , 1].

Furthermore, ψi(1) = φi(1) for any i, and consequently ψ(1) = φ(1).

3.10 Now consider 1-simplex ∆=[a, b] ⊂ X . We need to define ψ|∆ = ψ|[a,b] from previously

defined ψ|{a} and ψ|{b}. According to 3.6, write Spφ|∆ =
l∆⋃
j=1

Spφ|∆ ∩ Tj(∆) with T0(∆) =

[0, s0(∆)] and Tl∆(∆) = [tl∆(∆), 1]. Recall that in the definition of ψ|{a}, ψ|{b}, we use the

decomposition

φ|{a} = diag1≤j≤l{a}
(φ|

Tj({a})

{a} )

and

φ|{b} = diag1≤j≤l{b}(φ|
Tj({b})

{b} ),

and only modified φ0 = φ|
[0,s0{a}]
{a} (or φ|

[0,s0{b}]
{b} ) and φl{a} = φ|

[tl{a}
({a}),1]

{a} (or φ|
[tl{b} ({b}),1]

{b} ).

For ∆ = [a, b], let us consider the decomposition

φ|∆ =

l∆⊕

j=1

φ|
[tj(∆),sj(∆)]
∆ .

From the above, we know that for any 0 < j < l∆, the definition of ψ|
[tj(∆),sj(∆)]

{a} is the same

as (φ|
[tj(∆),sj(∆)]
∆ )|{a}, since the decomposition

Spφ|{a} =

l{a}⋃

j=1

Tj({a}) ∩ Spφ|{a}

is finer than the decomposition

Spφ|{a} =

l∆⋃

j=1

Tj(∆) ∩ Spφ|{a}

(see 3.7) and only partial maps involving [0, s1{a}] (⊂ [0, s1(∆)]) and [tl{a}
({a}), 1] (⊂ [tl∆(∆), 1])

are modified. The same is true for φ|{b} and ψ|{b}. Therefore, we can define the partial maps

ψ|
[tj(∆),sj(∆)]
∆ = φ|

[tj(∆),sj(∆)]
∆
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for 0 < j < l∆. The only parts need to be modified are φ|
[0,s0(∆)]
∆ and φ|

[tl(∆),1]
∆ .

3.11 Now denote φ|
[0,s0(∆)]
∆ (∆ = [a, b]) by φ0 and φ|

[tl(∆),1]
∆ by φl, and s0(∆) by s0, tl(∆)(∆)

by tl. Now we have two unital homomorphisms

φ0 : Ik|[0,s0] → P0M•C(∆)P0

and

φl : Ik|[tl,1] → PlM•C(∆)Pl,

where P0, Pl are defined as in 3.8. We will do the modification of φ0 to get ψ0 (the one for φl
is completely the same).

We already have the definitions of ψ0|{a} and ψ0|{b}. Note that P0 ∈ M•(C(∆)) can be

written as φ(h[0,s0]), where h[0,s0] is the test function appeared in 3.2, which is equal to 1 on

[0, s0] and 0 on
[
s0 +

η
12n , 1

]
.
(
Note that φ(h[0,s0]) is a projection since Spφ ⊂ [0, s0] ∪ [t1, 1]

and t1 > s0 +
η

12n .
)
Consequently,

‖P0(x) − P0(y)‖ <
ε

12(n+ 1)2

for all x, y ∈ [a, b] = ∆ (see (b) of 3.2).

There exists a unitary W ∈M•(C(∆)) such that

P0(x) =W (x)







1
. . .

1




rank(P0)×rank(P0)

0
. . .

0




W ∗(x)

for all x ∈ ∆ and ‖W (x)−W (y)‖ <
ε

6(n+ 1)2
.

To define

ψ0 : Ik|[0,s0] → P0M•(C(∆))P0 ,

it suffices to define

AdW ◦ ψ0 : Ik|[0,s0] →Mrank(P0)(C(∆)),

since

W ∗P0W =

(
1rank(P0) 0

0 0

)
.

Note that

♯(Spψ̃0|{a} ∩ {0}) = rank(P0) (mod k),

where

ψ̃0 : C[0, s0] →֒ Ik|[0,s0]
ψ0
−→ P0({a})M•.(C)P0({a}).

(This is true since the multiplicities of all the spectra other than 0 are multiples of k.) Similarly,

♯(Spψ̃0|{b} ∩ {0}) = rank(P0) (mod k).

Also, from the definition of ψ on the vertices (namely on {a} and {b}) from 3.9, we know that

♯(Spψ̃0|{b} ∩ {0}) = ♯(Spψ̃0|{a} ∩ {0}) , k′ ≤ k.
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Lemma 3.2 Suppose that two unital homomorphisms

α′, α′′ : Ik|[0,s0] →Mrank(P0)(C)

satisfy that

0 < ♯(Spα̃′ ∩ {0}) = ♯(Spα̃′′ ∩ {0}) ≤ k

counting multiplicity, where α̃′ (or α̃′′) is the composition

C[0, s0] →֒ Ik|[0,s0]
α′

−→ Mrank(P0)(C) (or C[0, s0] →֒ Ik|[0,s0]
α′′

−→Mrank(P0)(C)),

then there is a homomorphism

α : Ik|[0,s0] →Mrank(P0)(C[a, b]),

such that 0 < ♯(Spα̃|t ∩ {0}) ≤ k for all t ∈ [a, b] and α|{a} = α′, α|{b} = α′′, where again α̃ is

the composition

C[0, s0] →֒ Ik|[0,s0]
α

−→Mrank(P0)(C[a, b]).

Proof We can regard [a, b] = [0, 1]. There are two unitaries u, v ∈Mrank(P0)(C), a number

k′ ∈ {1, 2, · · · , k}, and two finite sequences of numbers:

0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξ• ≤ s0,

0 < ξ′ ≤ ξ′2 ≤ · · · ≤ ξ′• ≤ s0

such that

α′(f) = u






f(0)

. . .

f(0)




k′×k′

f(ξ1)
. . .

f(ξ•)




u∗

and

α′′(f) = v






f(0)

. . .

f(0)




k′×k′

f(ξ′1)
. . .

f(ξ′•)




v∗.

Let u(t), 0 ≤ t ≤ 1
2 be any unitary path with u(0) = u, u

(
1
2

)
= v. Define α as follows.

For 0 ≤ t ≤ 1
2 ,

α(f)(t) = u(t)










f(0)
. . .

f(0)







k′×k′

f(ξ1)
f(ξ2)

. . .

f(ξ•)




u∗(t);
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and for 1
2 ≤ t ≤ 1,

α(f)(t) = v










f(0)
. . .

f(0)







k′×k′

f((2− 2t)ξ1 + (2t− 1)ξ′1)

. . .

f((2− 2t)ξ• + (2t− 1)ξ′•)




v∗.

Then α is a desired homomorphism.

3.12 Applying the above lemma, we can define

α : Ik|[0,s0] →Mrank(P0)(C[a, b])

such that

ı ◦ α|{a} = AdW (a) ◦ ψ0|{a}

and

ı ◦ α|{b} = AdW (b) ◦ ψ0|{b},

where ı :Mrank(P0)(C) →M•(C) is defined by

ı(A) =

(
A 0
0 0

)
.

Define

ψ0 : Ik|[0,s0] → P0M•(C(∆))P0

by ψ0 = AdW ∗ ◦ (ı ◦ α) — that is, for any t ∈ [a, b] = ∆,

ψ0(f)(t) =W (t)

(
α(f)(t) 0

0 0

)
W ∗(t).

As mentioned in 3.10, when we modify φ|[a,b] to obtain ψ|[a,b], we only need to modify

φ0 = φ|
[0,s0]
[a,b] and φl = φ|

[tl,1]
[a,b] . The modifications of φl to ψl are the same as the one from φ0 to

ψ0. Thus we have the definition of ψ|[a,b] = diag0≤i≤l(ψi).

3.13 Let us estimate the difference of φ|[a,b] and ψ|[a,b] on the finite set F ⊂ Ik. Note that

φ|[a,b] = diag0≤i≤l(φi), ψ|[a,b] = diag0≤i≤l(ψi)

and φi = ψi for 0 < i < l. So we only need to estimate ‖φ0(f)− ψ0(f)‖ and ‖φl(f)− ψl(f)‖.

Note that φ0 and ψ0 are from Ik|[0,s0] to P0M•(C[a, b])P0, where P0 is as in 3.11. And both

AdW ◦ φ0 and AdW ◦ ψ0 can be regarded as ı ◦ φ′ and ı ◦ ψ′ for

φ′, ψ′ : Ik|[0,s0] →Mrank(P0)(C[a, b]),

where

ı :Mrank(P0)(C[a, b]) →M•(C[a, b])

is given by

ı(A) =

(
A 0
0 0

)
.
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Claim Let α : Ik|[0,s0] →Mrank(P0)(C[a, b]) be any unital homomorphism. Then we have

∥∥∥∥∥α(f)−



f(0)

. . .

f(0)




rank(P0)

∥∥∥∥∥ ≤ sup
0<ξ≤s0

‖f(ξ)− f(0)‖.

In fact, for each x ∈ [a, b], there exist ux ∈ U(Mrank(P0)(C)), k′ ∈ {1, 2, · · · , k} and

0 ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξ•• ≤ s0 such that

α(f)(x) = ux






f(0)

. . .

f(0)




k′×k′

f(ξ1)
. . .

f(ξ••)




u∗x.

It follows that

‖α(f)(x) − f(0) · 1rank(P0)‖

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

ux













f(0)

. . .

f(0)







k′×k′

f(ξ1)
. . .

f(ξ••)




−










f(0)

. . .

f(0)







k′×k′

f(0)
. . .

f(0)







u∗x

∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥







0
0

. . .

0




k′×k′

f(ξ1)− f(0)
. . .

f(ξ••)− f(0)




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ sup
0≤ξ≤s0

‖f(ξ)− f(0) ‖ .

Thus, the claim is true.

It follows from the claim that

‖φ(f)(t)− ψ(f)(t)‖ ≤ 2max
(

sup
0≤ξ≤s0

‖f(ξ)− f(0)‖, sup
tl≤ξ≤1

‖f(ξ)− f(1)‖
)
≤ 2 ·

ε

6

for all t ∈ [a, b], and f ∈ F , as |s0 − 0| < η
2 and |tl − 1| < η

2 . Hence we have the definition of ψ

on the 1-skeleton X(1) ⊂ X satisfying

‖φ(f)(t)− ψ(f)(t)‖ <
ε

3

for all t ∈ X(1) and f ∈ F.
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3.14 Now fix a 2-simplex ∆ ⊂ X . We define

ψ|∆ : Ik → PM•(C(∆))P

based on the previous definition of

ψ|∂∆ : Ik → PM•C(∂∆)P.

Again, write

φ|∆ = diag0≤i≤l(∆)(φi),

where

φi = φ|
[ti(∆),si(∆)]
∆ = Ik|[ti,si] → PiM•(C(∆))Pi

and Pi are projections defined on ∆ with

l(∆)∑

i=0

Pi(x) = P (x), ∀x ∈ ∆.

For each face ∆′ ⊂ ∂∆, we know that the decomposition

Spφ|∆′ =

l∆′⋃

j=0

Tj(∆
′) ∩ Spφ|∆′ =

l∆′⋃

j=0

[tj(∆
′), sj(∆

′)] ∩ Spφ|∆′

is finer than the decomposition

Spφ|∆′ =

l∆⋃

j=0

Tj(∆) ∩ Spφ|∆′ =

l∆⋃

j=0

[tj(∆), sj(∆)] ∩ Spφ|∆′ .

Consequently,

[0, s0(∆
′)] ⊂ [0, s0(∆)], [tl(∆′), 1] ⊂ [tl(∆), 1].

Note that when we define ψ|∆′ by modifying φ|∆′ , we only modify the parts of φ|
[0,s0(∆

′)]
∆′

and φ|
[tl(∆′),1]

∆′ — that is

φ|
[s0(∆

′)+δ,tl(∆′)(∆
′)−δ]

∆′ = ψ|
[s0(∆

′)+δ,tl(∆′)(∆
′)−δ]

∆′ ,

where δ ∈ (0, η
12n ). Hence

φ|
[t1(∆),sl(∆)−1(∆)]

∆′ = ψ|
[t1(∆),sl(∆)−1(∆)]

∆′

since

t1(∆) > s0(∆) +
η

12n
≥ s0(∆

′) + δ

and

sl(∆)−1 < tl(∆)(∆) −
η

12n
< tl(∆′)(∆

′)− δ.

Because ∆′ ⊂ ∂∆ is an arbitrary face, we have

φ|
[t1(∆),sl(∆)−1(∆)]

∂∆ = ψ|
[t1(∆),sl(∆)−1(∆)]

∂∆ .
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Therefore similar to what we did on 1-simplexes, define

ψ|
[tj(∆),sj(∆)]
∆ = φ|

[tj(∆),sj(∆)]
∆

for j ∈ {1, 2, · · · , l(∆) − 1}. Then we only need to modify φ|
[0,s0(∆)]
∆ = φ0 and φ|

[tl(∆),1]

∆ = φl.

We will only do it for φ0.

3.15 We have the definition of unital homomorphism

ψ0|∂∆ : Ik|[0,s0] → P0M•(C(∂∆))P0

such that

♯(Spψ̃0|x ∩ {0}) = k′ ∈ {1, 2, · · · , k}

for any x ∈ ∂∆, where ∆ is a 2-simplex and ψ̃0 is defined as the composition

C[0, s0] →֒ Ik|(0,s0]
ψ0
−→ P0M•(C(∂∆))P0.

We need to extend it to a homomorphism

ψ0|∆ : Ik|[0,s0] → P0M•(C(∆))P0

such that ♯(Spψ̃0|∆ ∩ {0}) = k′ for all x ∈ ∆. Once this extension is obtained, as in 3.13, we

can use the claim in 3.13 to prove that φ|
[0,s0]
∆ and ψ|

[0,s0]
∆ are approximately equal within ε

3 for

all f ∈ F .
(
Note that in the argument of 3.13, the estimation is true which do not depend on

the choice of the extension. It only uses |s0 − 0| < η
2 < η, and ‖f(t) − f(t′)‖ < ε

6 whenever

|t− t′| < η.
)

There is a W ∈ U(M•(C(∆))) such that

P0(x) =W (x)

(
1rank(P0) 0

0 0

)
W ∗(x)

for all x ∈ ∆. Again, if we can extend

(AdW ◦ ψ0)|∂∆ : Ik|[0,s0] →

(
1rank(P0) 0

0 0

)
M•(C(∆))

(
1rank(P0) 0

0 0

)

to

α|∆ : Ik|[0,s0] →

(
1rank(P0) 0

0 0

)
M•(C(∆))

(
1rank(P0) 0

0 0

)
,

then we can set ψ0|∆ = AdW ∗◦α|∆ to obtain our extension. But (AdW ◦ψ0)|∂∆ (or α|∆) should

be regarded as a homomorphism from Ik|[0,s0] to Mrank(P0)(C(∂∆)) (or to Mrank(P0)(C(∆))).

Hence the construction of ψ0|∆ follows from the following lemma.

Lemma 3.3 Let β : Ik|[0,s0] → Mn′(C(S1)) be a unital homomorphism such that for any

x ∈ S1,

♯(Sp(β ◦ ı)x ∩ {0}) = k′ ∈ {1, 2, · · · , k}

for some fixed k′ (not depending on x), where ı : C[0, s0] → Ik|[0,s0]. Then there is a homomor-

phism

β : Ik|[0,s0] →Mn′(C(D)),
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where D is the disk with boundary S1, such that

♯Sp(β ◦ ı)x ∩ {0} = k′

for all x ∈ D and π ◦ β = β, where

π :Mn′(C(D)) → Mn′(C(S1))

is the restriction.

Proof Let h(t) = t ·1k be the function in the center of Ik|[0,s0]. Then β(h) is a self adjoint

element in Mn′(C(S1)). For each z ∈ S1, write the eigenvalue of β(h)(z) in increasing order

0 = λ1(z) ≤ λ2(z) ≤ · · · ≤ λn′(z) ≤ s0.

Then λ1, λ2, · · · , λn′ are continuous functions from S1 to [0, s0]. From the assumption, we know

that λ1(z) = λ2(z) = · · · = λk′ (z) = 0 and for all j > k′, λj(z) > 0. (Note that each λj (j > k′)

repeats some multiple of k times.) Consequently, there is ξ ∈ (0, s0] such that λj(z) ≥ ξ for all

j > k′. Hence β factors through as

Ik|[0,s0] → Ik|{0} ⊕ Ik|[ξ,s0]
diag(β0,β1)
−−−−−−−→Mn′(C(S1)),

where

β0 : Ik|{0}(= C) → Q0Mn′(C(S1))Q0

and

β1 : Ik|[ξ,s0](=Mk(C[ξ, s0])) → Q1Mn′(C(S1))Q1

with

Q0 +Q1 = 1n′ ∈Mn′(C(S1)).

Note that rank(Q0) = k′, and rank(Q1) = n′ − k′, which is a multiple of k. Write rank(Q1) =

n′ − k′ = kk′′. There is a unitary u ∈Mn(C(S
1)) such that

uQ0u
∗ =

(
1k′ 0
0 0

)
, uQ1u

∗ =

(
0 0
0 1n′−k′

)
.

Hence

Adu∗ ◦ β = diag(β′
0, β

′
1)

with

β′
0 : Ik|{0}(= C) →Mk′(C(S

1)),

β′
1 : Ik|[ξ,s0](=Mk(C[ξ, s0])) →Mkk′′ (C(S

1)).

Evidently,

β′
0(c) =



c

. . .

c


 = c · 1k′ ∈Mk′(C(S

1)), ∀c ∈ C.

For β′
1, there exist β′′ : C[ξ, s0] →Mk′′(C(S

1)) and a unitary V ∈Mkk′′ (C(S
1)) such that

V β′
1(f)V

∗ = β′′ ⊗ idk(f), ∀f ∈Mk(C[ξ, s0]).
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Let

W =

(
1k′ 0
0 V

)
· u.

Then

(AdW ∗ ◦ β)(f) =




f(0)
. . .

f(0)
β′′ ⊗ idk(f)


 .

Let m be the winding number of the map

S1 ∋ z 7→ det(W (z)) ∈ T ⊆ C.

Then W ∈ U(Mn′(C(S1))) is homotopic to W ′ ∈Mn′(C(S1)) defined by

W ′(z) =




zm

1
1

. . .

1



, ∀z ∈ S1 = T.

Let {wr} 1
2≤r≤1 be a unitary path in Mn′(C(S1)) with

w 1
2
(z) =W ′(z), w1(z) =W (z), ∀z ∈ S1.

Evidently the homomorphism

β′′ : C[ξ, s0] →Mk′′(C(S
1))

is homotopic to the homomorphism

β′′′ : C[ξ, s0] →Mk′′ (C(S
1))

defined by

β′′′(f)(e2πiθ) = f(ξ)1k′′

— that is β′′′(f)(eiθ) is the constant matrix f(ξ)1k′′ (which does not depend on θ). There is a

path {βr}0≤r≤ 1
2
of homomorphisms

βr : C([ξ, s0]) →Mk′′(C(S
1))

such that β 1
2
= β′′ and β0 = β′′′.

Finally, regard D = {reiθ, 0 ≤ r ≤ 1}, and define β : Ik|[0,s0] →Mn′(C(D)) by

β(f)(reiθ) =





w∗
r (e

iθ)




( f(0)
. . .

f(0)

)

k′×k′

(β′′ ⊗ idk)(f)(e
iθ)


wr(e

iθ), if 1
2 ≤ r ≤ 1,




( f(0)
. . .

f(0)

)

k′×k′

(βr ⊗ idk)(f)(e
iθ)


 , if 0 ≤ r ≤ 1

2 .
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This homomorphism is as desired.

Proof of Theorem 3.1 From the above arguments, we have constructed

ψ : Ik → PM•(C(X))P

with the property

‖φ(f)− ψ(f)‖ <
ε

3

for all f ∈ F . And importantly, for each x ∈ X , ♯(Spψ̃|x ∩ {0}) is a constant k′ ∈ {1, 2, · · · , k}

and ♯(Spψ̃|x ∩ {1}) is also a constant k′1 ∈ {1, 2, · · · , k}, where ψ̃ is the composition

C[0, 1] →֒ Ik
ψ

−→ PM•(C(X))P.

Let h(t) = t · 1k ∈ Ik be the canonical function in the center of Ik. Then ψ(h) ∈

PM•(C(X))P is a self-adjoint element. For each x ∈ X , denote the eigenvalues of ψ(h)(x)

by

0 ≤ λ1(x) ≤ λ2(x) ≤ · · · ≤ λrank(P )(x) ≤ 1.

Then all λi(x) are continuous functions from X to [0, 1]. Furthermore,

λ1(x) = λ2(x) = · · · = λk′ (x) = 0,

0 < λk′+1(x) ≤ λk′+2(x) ≤ · · · ≤ λrank(P )−k′1
(x) < 1

and

λrank(P )−k′1+1(x) = λrank(P )−k′1+2(x) = · · · = λrank(P )(x) = 1.

Let

ξ1 = min
x∈X

λk′+1(x) > 0, ξ2 = maxλrank(P )−k′1
(x) < 1.

Then

Spψ ⊂ {0} ∪ [ξ1, ξ2] ∪ {1}.

That is, ψ factors through as

Ik → C⊕Mk(C[ξ1, ξ2])⊕ C
diag(α0,ψ1,α1)
−−−−−−−−−→ PM•(C(X))P,

where we identify Ik|{0} = C and Ik|{1} = C.
Let Q0 = α0(1), Q1 = α1(1) and P1 = ψ1(1Mk(C([ξ1,ξ2]))). Finally, regarding ψ1 as

Mk(C[0, 1])
restriction
−−−−−−→Mk(C([ξ1, ξ2]))

ψ1
−→ P1M•(C(X))P1,

we finish the proof of Theorem 3.1.

3.16 From the definition of ψ in the above procedure, for every x ∈ X , the map

ψ|x : Ik
ψ

−→ PM•(C(X))P
evaluate at x

−−−−−−−−→ P (x)M•(C)P (x)

is defined when the construction of

ψ|∆ : Ik → PM•(C(∆))P
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is carried out for the unique simplex ∆ such that x ∈
◦

∆ (the interior of ∆). And when we

define ψ|∆ by modifying φ|∆, the only modifications are made on the two parts φ|
[0,s0(∆)]
∆ and

φ|
[tl(∆),1]
∆ . Consequently,

Spφ|x ∩ (s0(∆), tl(∆)) = Spψ|x ∩ (s0(∆), tl(∆))

as sets with multiplicity. On the other hand for any simplex ∆, s0(∆) < η
2 and tl(∆)(∆) > 1− η

2 .

Hence

Spφ|x ∩
[η
2
, 1−

η

2

]
= Spψ|x ∩

[η
2
, 1−

η

2

]
.

If we further assume that φ has property sdp
(
η
4 , δ
)
, then ψ has property sdp(η, δ). As a conse-

quence, we can use the decomposition theorem for

ψ1 :Mk(C[0, 1]) → P1M•(C(X))P1

to study the homomorphisms φ, ψ : Ik → PM•(C(X))P. Note that the homomorphisms

f 7→ f(0)Q0 and f 7→ f(1)Q1 factor through the C∗-algebra C.

3.17 Lemma 3.3 is not true for the case k′ = 0. In fact, there exists a unital homomorphism

α : Mk(C) → Mk(C(S
1)), which can not be extended to a homomorphism α : Mk(C) →

Mk(C(D)). Let πs0 : Ik|[0,s0] → Mk(C) be the map defined by evaluating at the point s0.

Then β = α ◦ πs0 : Ik|[0,s0] → Mk(C(S
1)) can not be extended to β : Ik|[0,s0] → Mk(C(D))

such that ♯Sp(β ◦ ı)x ∩ {0} = k′ = 0 for all x ∈ D, where ı is the canonical map from Mk(C) to
Ik|[ζ,s0] for some 0 < ζ < s0.

4 Decomposition Theorem II

Our next task is to study the possible decomposition of φ : C(X) → Ml(Ik2) for X being

[0, 1], S1 or TII,k. The cases of [0, 1], S1 are more or less known (see [4, 9]). Let us assume

that X is a 2-dimensional connected simplicial complex.

The following lemma is essentially due to Su [38]. The case of X =graph was stated in [27].

Lemma 4.1 For any connected simplicial complex X, a finite set F ⊂ C(X) which gener-

ates C(X), η > 0 and a positive interger n > 0, there is a δ > 0, such that for any two unital

homomorphisms φ, ψ : C(X) → Mn(C), if ‖φ(f) − ψ(f)‖ < δ for all f ∈ F, then Sp(φ) and

Sp(ψ) can be paired within η.

This is a consequence of [39, Lemmas 2.2–2.3]; also see [25, argument 2.1.3]. For the case

of graphs, it was stated in [25, 2.1.9].

Lemma 4.2 For any connected simplicial complex X, a finite generating set F ⊂ C(X),

ε > 0 and positive integer n > 0, there is δ > 0 with the following property: If x1, x2, · · · , xn ∈ X

are n points (possibly repeating), u, v ∈Mn(C) are two unitaries such that

∥∥∥∥∥∥∥∥∥

u




f(x1)
f(x2)

. . .

f(xn)


 u∗ − v




f(x1)
f(x2)

. . .

f(xn)


 v∗

∥∥∥∥∥∥∥∥∥

< δ
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for all f ∈ F , then there is a path of unitaries ut ∈ Mn(C) connecting u and v (i.e, u0 =

u, u1 = v) with the property that

∥∥∥∥∥∥∥∥∥

ut




f(x1)
f(x2)

. . .

f(xn)


u∗t − ut′




f(x1)
f(x2)

. . .

f(xn)


 u∗t′

∥∥∥∥∥∥∥∥∥

< ε

for all f ∈ F and t, t′ ∈ [0, 1] (of course δ depends on both ε and n).

This was proved in the steps 2–3 of the proof of [39, Theorem 3.1].

The following lemma reduces the study of φ : C(X) → Ml(Ik) to the study of homomorphism

φ1 : C(Γ) →Ml(Ik), where Γ ⊂ X is 1-skeleton of X under a certain simplicial decomposition.

Since Γ is a graph, we will use the technique in [25–26] to obtain the decomposition of φ1.

Lemma 4.3 Let X be a 2-dimensional simplicial complex. For any F ⊂C(X), ε>0, η>0,

and any unital homomorphism φ : C(X) → Ml(Ik), there is a simpicial decomposition of X

with 1-skeleton X(1) = Γ and a homomorphism φ1 : C(Γ) → Ml(Ik) such that

(1) ‖φ(f)− φ1 ◦ π(f)‖ < ε, where π : C(X) → C(Γ) is given by π(f) = f |Γ.

(2) For any t ∈ [0, 1], Spφ|t and Sp(φ1 ◦ π)t can be paired within η.

Proof By Lemma 4.1, we only need to prove that there exists a homomorphism φ1 to satisfy

condition (1). Without loss of generality, we assume that F generates C(X). By Lemma 4.2,

there is an ε′ > 0 such that for any x1, x2, · · · , xkl ∈ X and unitaries u, v ∈Mkl(C), if
∥∥∥∥∥∥∥∥∥

u




f(x1)
f(x2)

. . .

f(xkl)


u∗ − v




f(x1)
f(x2)

. . .

f(xkl)


 v∗

∥∥∥∥∥∥∥∥∥

< ε′,

then there is a continuous path ut with u0 = u, u1 = v satisfying

∥∥∥∥∥∥∥∥∥

ut




f(x1)
f(x2)

. . .

f(xkl)


u∗t − ut′




f(x1)
f(x2)

. . .

f(xkl)


 u∗t′

∥∥∥∥∥∥∥∥∥

<
ε

3
.

Recall for the simplicial complex, a continuous path {x(t)}0≤t≤1 is called piecewise linear if

there is a sequence of points

0 = t0 < t1 < · · · < tn = 1

such that {x(t)}ti≤t≤ti+1 fall in the same simplex of X and are linear there. Note that the

property of piecewise linear is preserved under any subdivision of the simplicial complex. For

the simplicial complex X , we endow the standard metric on X , briefly described as below (see

[18, 1.4.1] for detail). Identify each n-simplex with an n-simplex in Rn whose edges are of length

1, preserving affine structure of the simplexes. Such identifications give rise to a unique metric

on the simplex ∆. For any two points x, y ∈ X , d(x, y) is defined to be the length of the shortest

path connecting x and y. (The length is measured in individual simplex, by breaking the path

into small pieces.) With this metric, if x0, x1 ∈ X with d(x0, x1) = d, then there is a piecewise
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linear path x(t) with length d such that x(0) = x0, x(1) = x1. Furthermore, d(x(t), x(t)′) ≤ d

for all t, t′ ∈ [0, 1]. In fact, we can choose x(t), such that

d(x(t), x(t′)) = |t′ − t| · d.

There is an η′ < η
4 such that the following is true: For any x, x′ ∈ X with d(x, x′) < 2η′,

|f(x)− f(x)′| <
ε′

3
.

Let δ > 0, such that if |t− t′| ≤ δ, then

‖φ(f)(t)− φ(f)(t′)‖ <
ε′

3
, ∀f ∈ F,

and Spφt and Spφt′ can be paired within η′.

Divide the interval [0, 1] into pieces 0 = t0 < t1 < t2 < · · · < t• = 1, with |ti+1 − ti| <

δ. We first define ψ : C(X) → Ml(Ik) such that ψ is close to φ on F within ε
3 , Spφt and

Spψt can be paired within η′, and with extra property that on each interval [ti, ti+1], Spψt =

{α1(t), α2(t), · · · , αlk(t)} with all αj : [ti, ti+1] → X being piecewise linear.

Set ψ|{ti} = φ|{ti} for each ti (i = 0, 1, 2, · · · , •)— that is

ψ(f)(ti) = φ(f)(ti) for i = 0, 1, 2, · · · , •.

We will define ψ|{t} for t ∈ (ti, ti+1) by interpolating the definitions between ψ|{ti} and ψ|{ti+1}.

(Note that we do not change the definitions of φ|{0} and φ|{1}, hence ψ is a homomorphism

into Ml(Ik) instead of Mlk(C[0, 1]).)

Let

Spψ|{ti} = {α1, α2, · · · , αlk} ⊂ X,

Spψ|{ti+1} = {β1, β2, · · · , βlk} ⊂ X.

Since Spψ|{ti} and Spψ|{ti+1} can be paired within η′, we can assume dist(αi, βi) < η′.

There exist two unitaries u, v ∈Mlk(C) such that

ψ(f)(ti) = u



f(α1)

. . .

f(αkl)


u∗, ψ(f)(ti+1) = v



f(β1)

. . .

f(βkl)


 v∗.

Noting that ‖f(αj)− f(βj)‖ <
ε′

3 for each j, we have

∥∥∥∥∥∥∥
v



f(α1)

. . .

f(αkl)


 v∗ − v



f(β1)

. . .

f(βkl)


 v∗

∥∥∥∥∥∥∥
<
ε′

3
.

Combining with ‖ψ(f)(ti)− ψ(f)(ti+1)‖ <
ε′

3 , we get

∥∥∥∥∥∥∥
u



f(α1)

. . .

f(αkl)


u∗ − v



f(α1)

. . .

f(αkl)


 v∗

∥∥∥∥∥∥∥
<

2ε′

3
.
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Since ε′ is the number δ in Lemma 4.2 for ε
3 , applying Lemma 4.2, there is a unitary path u(t),

ti ≤ t ≤ ti+ti+1

2 with u(ti) = u, u( ti+ti+1

2 ) = v such that

∥∥∥∥∥∥∥
u(t)



f(α1)

. . .

f(αkl)


 u∗(t)− u(t′)



f(α1)

. . .

f(αkl)


u∗(t′)

∥∥∥∥∥∥∥
<
ε

3

for all t, t′ ∈ [ti,
ti+ti+1

2 ].

There are piecewise linear paths ri(t) with ri
( ti+ti+1

2

)
= αi and ri(ti+1) = βi such that

d(ri(t), ri(t
′)) ≤ dist(αi, βi) < η′.

Define ψ(f) as follows: For t ∈ [ti,
ti+ti+1

2 ],

ψ(f)(t) = u(t)



f(α1)

. . .

f(αkl)


 u∗(t);

for t ∈ [ ti+ti+1

2 , ti+1],

ψ(f)(t) = v




f(r1(t))
f(r2(t))

. . .

f(rkl(t))


 v∗.

Then {Spψt, t ∈ [ti, ti+1]} is a collection of kl piecewise linear maps from [ti, ti+1] to X . (Note

that for t ∈ [ti,
ti+ti+1

2 ], we use constant maps which are linear.)

Now let’s subdivide the simplicial complex X so that each simplex of the subdivision has

diameter at most η′, and so that all the points in Spφ|{0} = Spψ|{0} and Spφ|{1} = Spψ|{1} are

vertices. With this simplicial decomposition we have Spψ∩∆ $ ∆ for every 2-simplex ∆. This

is true because Spψ|[ti,ti+1] is the union of the collection of images of kl piecewise linear maps

from [ti, ti+1] to X , and a finite union of line segments must be 1-dimensional. Hence for each

simplex ∆ of dimension 2, we can choose a point x∆ ∈
◦

∆, such that x∆ 6∈ Spψ.

There is a σ > 0 such that Spψ has no intersection with Bσ(x∆) = {x ∈ X, dist(x, x∆) ≤ σ}

for all ∆. Let Y = X\(∪{Bσ(x∆) | ∆ is 2-simplex}). Then Spψ ⊂ Y . That is, ψ factors

through C(Y ) as

ψ : C(X)
restriction
−−−−−−→ C(Y )

ψ1
−→Ml(Ik).

Let α : Y → X(1) be the standard retraction defined as a map sending ∆\{x∆} to ∂∆ for each

simplex ∆. Then d(x, α(x)) < η′. Let φ1 : C(X(1)) →Ml(Ik) be defined by

ψ1 ◦ α
∗ : C(X(1))

α∗

−→ C(Y )
ψ1
−→Ml(Ik).

Evidently φ1 is as desired.

Corollary 4.1 Suppose that φ : C(X) → Ml(Ik) is a unital homomorphism. For any finite

set F ⊂ C(X), ε > 0 and η > 0, there is a unital homomorphism

ψ : C(X) →Ml(Ik)
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such that

(1) φ(f)(0) = ψ(f)(0), φ(f)(1) = ψ(f)(1) for all f ∈ C(X);

(2) ‖φ(f)− ψ(f)‖ < ε for all f ∈ F ;

(3) Spφt and Spψt can be paired within η;

(4) for each t ∈ (0, 1), the maximal multiplicity of Spψt is one — that is, ψ|{t} has distinct

spectra.

Proof Applying Lemma 4.3, we reduce the case of C(X) to the case of C(X(1)), where X(1)

is a 1-dimensional simplicial complex. The corollary of this case is almost the same as the special

case of [25, Theorem 2.1.6] (where we let Y = [0, 1]). Note that from the proof of [25, Theorem

2.1.6], if we do not require the homomorphism ψ to have distinct spectrum at the end points 0

and 1, then we do not need to modify the original homomorphism φ at these two end points. The

proof goes the same way as the proof there with some small modifications. We briefly describe

them as below. One divides the interval Y = [0, 1] into small pieces [0, 1] =
m−1⋃
i=0

[yi, yi+1] with

y0 = 0 < y1 < y2 · · · < ym = 1, as in the proof of [27, Theorem 2.1.6]. Define ψ|yi with

1 ≤ i ≤ m− 1, by slightly modifying φ|yi so that ψ|yi has distinct spectra; but define ψ|0 = φ|0
and ψ|1 = φ|1 (no modifications are made at the ending points). Therefore, in our case, ψ|0
and ψ|1 do not have distinct spectra—this is the only difference from [27, Theorem 2.1.6]. For

all intervals [yi, yi+1] with 1 ≤ i ≤ m − 2, the constructions of ψ|[yi,yi+1] are the same as in

the proof of [27, Theorem 2.1.6]. For the constructions of ψ|[0,y1] and ψ|[ym−1,1], we need to

modify [27, Lemma 2.1.1] and [28, Lemma 2.1.2] accordingly, in an obvious way, and then apply

these modifications. For example, [27, Lemma 2.1.1] should be modified to the following case:

Among two l-element sets X0 = {x01, x
0
2, · · · , x

0
l } and X1 = {x11, x

1
2, · · · , x

1
l } — only one of

them is distinct. That is, the following statement is true with the same proof.

Let X = X1 ∨X2 ∨ · · · ∨Xk be a bunch of k intervals Xi = [0, 1] (1 ≤ i ≤ k) and Y = [0, 1].

Suppose that

X0 = {x01, x
0
2, · · · , x

0
l } ⊂ X, X1 = {x11, x

1
2, · · · , x

1
l } ⊂ X

with x1i 6= x1j if i 6= j. Then there are l continuous functions f1, f2, · · · , fl : Y → X such that

(1) as sets with multiplicity, we have

{f1(0), f2(0), · · · , fl(0)} = X0, {f1(1), f2(1), · · · , fl(1)} = X1,

(2) for each t ∈ (0, 1] ⊂ Y and i 6= j, we have

fi(t) 6= fj(t).

Remark 4.1 In Corollary 4.1, we can further assume that Spψ|{0} and Spψ|{1} have eigen-

value multiplicity just k as homomorphisms from C(X) to Mlk(C[0, 1]), or equivalently, both

maps

C(X)
ψ

−→Ml(Ik)
evaluate at 0
−−−−−−−−→Ml(C), C(X)

ψ
−→Ml(Ik)

evaluate at 1
−−−−−−−−→ Ml(C)

have distinct spectrum. To do this, we first extend the definition of the original φ to a slightly

larger interval [−δ, 1 + δ] as below.
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Find u ∈Ml(C) and x1, x2, · · · , xl ∈ X such that

φ(f)(0) = u




f(x1)
f(x2)

. . .

f(xl)


u∗ ⊗ 1k.

Since X is path connected and X 6= {pt}, there are functions αi : [−δ, 0] → X such that

{αi(−δ)}li=1 is a set of distinct l points, αi(0) = xi, and dist(αi(t), αi(0)) are as small as we

want. Define

φ(f)(t) = u



f(α1(t))

. . .

f(αl(t))


 u∗ ⊗ 1k for t ∈ [−δ, 0].

Similarly, we can define φ(f)(t) for t ∈ [1, 1+ δ], so that φ|1+δ as a homomorphism from C(X)

to Mkl(C) has multiplicity exactly k and φ(f)(1 + δ) ∈ Ml(C) ⊗ 1k. One can reparemetrize

[−δ, 1+δ] to [0, 1] so that φ|0 and φ|1 as homomorphisms from C(X) toMkl(C) have multiplicity

exactly k. Then we apply the corollary to perturb φ to ψ without changing the definition at

the end points.

Remark 4.2 The same argument can be used to prove the following result. Let X 6= {pt}

be a connected finite simplicial complex of any dimension. Let Y be a 1-dimensional simplicial

complex. Then any homomorphism φ : C(X) → Mn(C(Y )) can be approximated arbitrarily

well by a homomorphism ψ with distinct spectrum. This is a strengthened form of [18, Theorem

2.1] for the case dim(Y ) = 1.

The following theorem, for X = gragh, is a slight modification of [29, Theorem 2.7].

Theorem 4.1 Let X be a connected simplicial complex of dimension at most 2, and G ⊂

C(X) be a finite set which generates C(X). For any ε > 0, there is an η > 0 such that the

following statement is true.

Suppose that φ : C(X) → Ml1l2+r(Ik) is a unital homomorphism satisfying the following

condition: There are l1 continuous maps

a1, a2, · · · , al1 : [0, 1](= Sp(Ik)) → X

such that for every y ∈ [0, 1], Spφy (considered as a homomorphism from C(X) to

M(l1l2+r)k(C[0, 1])) and Θ(y) can be paired within η, where

Θ(y) = {a1(y)
∼l2k, a2(y)

∼l2k, · · · , al1−1(y)
∼l2k, al1(y)

∼(l2+r)k}.

It follows that there are l1 mutually orthogonal projections p1, p2, · · · , pl1 ∈ Ml1l2+r(Ik) such

that

(i) for all g ∈ G and y ∈ Y,

∥∥∥φ(g)(y)− p0φ(g)(y)p0 ⊕
l1∑

k=1

g(ak(y))pk

∥∥∥ < ε,

where p0 = 1−
l1∑
i=1

pi;

(ii) rank(pi) = (l2 − 3)k for 1 ≤ i < l1, rank(pl1) = (l2 + r − 3)k (as projections in

M(l1l2+r)k(C[0, 1])) and rank(p0) = 3l1k.
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Proof We will apply [29, Theorem 2.7] (using map ai to replace map b◦ai as in [29, Remark

2.8]) and its proof (see [27, 2.9–2.16]) for the case Y in [29, Theorem 2.7] being [0,1]. As a

matter of fact, in the proof of [29, Theorem 2.7], Li does use the fact that X is a graph, for only

one property that any homomorphism from C(X) to MnC(Y ) (Y graph) can be approximated

arbitrarily well by homomorphisms with distinct spectra. By Remark 4.2, [29, Theorem 2.7]

holds for the case X 6= {pt} being any connected simplicial complex and Y , a graph.

For finite set G ⊂ C(X), and ε > 0, choose η > 0 such that dist(x1, x2) ≤ η implies

|g(x1) − g(x2)| <
ε
4 for all g ∈ G, as in [29, 2.16]. Without lose of generality, we can assume

that the Spφ|t is distinct for any t ∈ (0, 1) and Spφ|0 and Spφ|1 have multiplicities k as in

Corollary 4.1 and Remark 4.1 above. When we go through Li’s proof in [29], we need to make

the projections pi satisfy the extra condition:

pi(0), pi(1) ∈ (Ml1l2+r(C))⊗ 1k ⊆M(l1l2+r)k(C).

We will repeat part of the proof of [29, Theorem 2.7] and point out how to modify it.

As in the proof of [29, Theorem 2.7], we can choose an open cover U0, U1, · · · , U• of [0, 1]

with

U0 = [0, b0), U1 = (a1, b1), U2 = (a2, b2), · · · , U•−1 = (a•−1, b•−1), U• = (a•, 1],

0 < a1 < b0 < a2 < b1 < a3 < b2 < · · · < a• < b•−1 < 1.

We will define P iU (i = 1, 2, · · · , l1) as same as in [29, 2.12] for U = Ui (0 < i < •)—note

that Spφy, for y ∈ (a1, b•−1) ⊂ (0, 1), are distinct. For U0 and U•, a special care is needed as

follows. We will only do it for U0 (it is the same for U•). Write Spφ|0 = {λ∼k1 , λ∼k2 , · · · , λ∼kq }

with q = l1l2+r. Then {λ1, λ2, · · · , λq} can be paired with {a0(0)∼l2 , a2(0)∼l2 , · · · , al1−1(0)
∼l2 ,

al1(0)
∼(l2+r)} (note that ∼ l2k is changed to ∼ l2 here) within η. We can divide {λ1, λ2, · · · , λq}

into groups {λ1, λ2, · · · , λq} =
l1⋃
j=1

E′j (where |E′j | = l2 if 1 ≤ j ≤ l1 − 1, and |E′j | = l2 + r if

j = l1) such that dist(λi, aj(0)) < η for all λi ∈ Ej .

Let σ′ satisfy the following conditions:

(1) σ′ < min{dist(λi, λj), i 6= j};

(2) σ′ < η −max{dist(λi, aj(0)), λi ∈ Ej}.

We can choose b1(> b0 > a1 > 0) being so small that for any y ∈ [0, b1], Spφy and Spφ0 can

be paired within σ′

2 and dist(aj(y), aj(0)) <
σ′

2 . Then for each y ∈ [0, b1], Spφy can be written

as a set of

{λ11(y), λ
2
1(y), · · · , λ

k
1(y), λ

1
2(y), λ

2
2(y), · · · , λ

k
2(y), · · · , λ

1
q(y), · · · , λ

k
q (y)}

with λji (0) = λi. Then let Ej(y) be the set {λi
′

i (y); λi ∈ E′j}. In this way we have, if λi
′

i ∈ Ej ,

then

dist(λi
′

i (y), aj(y)) < η.

Let both P jU0
(y) and P jU1

(y) (defined on U0 = [0, b0) and U1 = (a1, b1)) be the spectral projec-

tions corresponding to Ej(y). In particular, P jU0
(0) ∈ Ml1l2+r(C) ⊗ 1k. We can define pj(y)

as a subprojection of P jU (y) (for U ∋ y) as in [27, 2.9–2.16] for each y ∈ [b0, a•] but with rank

(pj(y)) = (l2 − 3)k (instead of l2 − 3 in [29]) for 1 ≤ j ≤ l1 − 1 and rank(pl1(y)) = (l2 + r− 3)k

(instead of l2 + r − 3 in [29]). Also we can choose an arbitrary subprojection pj(0) < P jU0
(0) ∈
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Ml1l2+r(C) ⊗ 1k of form pj(0) = p′j(0) ⊗ 1k ∈ Ml1l2+r(C) ⊗ 1k with rank(p′j(0)) = l2 − 3 for

1 ≤ j ≤ l1 − 1, and rank(p′l1(0)) = l2 + r − 3. Consequently,

rank(pj(0)) = (l2 − 3)k, rank(pl1(0)) = (l2 + r − 3)k.

Finally, connect pj(0) and pj(b0) by pj(y) for y ∈ [0, b0] inside P
j
U0
(y). As one can see from

[27, 2.16], if the projections pj(y) are subprojections of P jU (y), then all the estimations in that

proof hold. After we do similar modifications for P jU•
(y) and pj(y) near point 1, we will get

pj(y) ∈ Ml1l2+r(Ik) instead of M(l1l2+r)k(C[0, 1]). (This method was also used in the proof of

[13, Theorem 3.10].)

The following result is a generalization of [18, Proposition 4.42].

Theorem 4.2 Let X be a connected finite simplicial complex of dimension at most 2,

ε > 0 and F ⊂ C(X), a finite set of generators. Suppose that η ∈ (0, ε) satisfies that if

dist(x, x′) ≤ 2η, then ‖f(x)− f(x′)‖ < ε
4 for all f ∈ F.

For any δ > 0 and positive integer J > 0, there exists an integer L > 0 and a finite set

H ⊆ AffTC(X)(= CR(X)) such that the following holds.

If φ, ψ : C(X) → B =MK(Ik) (or B = PM•(C(Y ))P ) are unital homomorphisms with the

properties:

(a) φ has sdp
(
η
32 , δ

)
;

(b) K ≥ L (or rank(P ) ≥ L);

(c) ‖AffTφ(h)−AffTψ(h)‖ < δ
4 for all h ∈ H,

then there are three orthogonal projections Q0, Q1, Q2 ∈ B, two homomorphisms φ1 ∈ Hom(

C(X), Q1BQ1)1 and φ2 ∈ Hom(C(X), Q2BQ2)1, and a unitary u ∈ B such that

(1) 1B = Q0 +Q1 +Q2;

(2) ‖φ(f)− (Q0φ(f)Q0 + φ1(f) + φ2(f))‖ < ε and

‖(Adu ◦ ψ)(f)− (Q0(Adu ◦ ψ)(f)Q0 + φ1(f) + φ2(f))‖ < ε for all f ∈ F ;

(3) φ2 factors through C[0, 1];

(4) Q1 = p1 + · · · + pn with (rank(Q0) + 2)J < rank(pi) (i = 1, 2, · · · , n), where rank:

K0(B) → Z is the map induced on K0 by the evaluation map at 0 or 1 (which is rank pi(0) for

B =MK(Ik), where rank pi(0) is regarded as projections in MK(C) not MK(Mk(C))), and φ1
is defined by

φ1(f) =

n∑

i=1

f(xi)pi, ∀f ∈ C(X),

where p1, p2, · · · , pn are mutually orthogonal projections and {x1, x2, · · · , xn} ⊂ X is an ε-dense

subset of X.

Proof For the case B = PM•(C(Y ))P , this is [18, Proposition 4.42]. The proof for the case

B = MK(Ik) is almost the same as the proof of [18, Proposition 4.42], replacing [18, Theorem

4.1] by Theorem 4.1 above. The only thing one should notice is that, in [18, Lemma 4.33],

rankφ(1) = K; the K should be corresponding to K in our theorem (not Kk) and Θ(y) should

be defined as

Θ(y) = {α ◦ β1(y)
∼L2k, α ◦ β2(y)

∼L2k, · · · , α ◦ βL−1(y)
∼L2k, α ◦ βL(y)

∼(L2+L1)k}.

(Note that in the above, we use ∼L2k and ∼(L2 + L1)k to replace ∼L2 and ∼(L2 + L1) in

[18].) In the proof of this version of [18, Lemma 4.33], one can choose the homomorphism
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ψ′ : C(X) →Mk(C[0, 1]) (not to MKk(C[0, 1])) as the map ψ there, with

‖AffTφ(f)−AffTψ′(f)‖ <
δ

4
, ∀f ∈ H(η, δ, x)

as in [18, Lemma 4.33]. Then let ψ = ψ′⊗ ık, where ık : C →Mk(C) is defined by ık(λ) = λ ·1k.

With this modification, we have that Spψ′
y is

Θ′(y) = {α ◦ β1(y)
∼L2 , α ◦ β2(y)

∼L2 , · · · , α ◦ βL−1(y)
∼L2 , α ◦ βL(y)

∼(L2+L1)},

and Spψy is

Θ(y) = {α ◦ β1(y)
∼L2k, α ◦ β2(y)

∼L2k, · · · , α ◦ βL−1(y)
∼L2k, α ◦ βL(y)

∼(L2+L1)k}

as desired. All other parts of the proof are exactly the same.

For the proof of uinqueness theorem in [19], it is important to have a simultaneous decom-

position for two homomorphisms as below.

Theorem 4.3 Let X be a connected finite simplicial complex of dimension at most 2,

ε > 0 and F ⊂ C(X), a finite set of generators. Suppose that η ∈ (0, ε) satisfies that if

dist(x, x′) ≤ 2η, then ‖f(x)− f(x′)‖ < ε
4 for all f ∈ F . Let κ be a fixed simplicial structure of

X.

For any δ > 0 and positive integer J > 0, there exists an integer L > 0 and a finite set

H ⊆ AffTC(X)(= CR(X)) such that the following holds.

If X1 is a connected sub-complex of (X,κ), and if φ, ψ : C(X1) → B = MK(Ik) (or B =

PM•(C(Y ))P ) are unital homomorphisms with the following properties:

(a) φ has sdp
(
η
32 , δ

)
;

(b) K ≥ L (or rank(P ) ≥ L);

(c) ‖AffTφ(h|X1)−AffTψ(h|X1)‖ <
δ
4 for all h ∈ H,

then there are three orthogonal projections Q0, Q1, Q2 ∈ B, two homomorphisms φ1 ∈ Hom(C(X1),

Q1BQ1)1 and φ2 ∈ Hom(C(X1), Q2BQ2)1, and a unitary u ∈ B such that

(1) 1B = Q0 +Q1 +Q2;

(2) ‖φ(f |X1)−(Q0φ(f |X1 )Q0+φ1(f |X1)+φ2(f |X1))‖ < ε and ‖(Adu◦ψ)(f |X1)−(Q0(Adu◦

ψ)(f |X1)Q0 + φ1(f |X1) + φ2(f |X1))‖ < ε for all f ∈ F ;

(3) φ2 factors through C[0, 1];

(4) Q1 = p1 + · · ·+ pn with (rank(Q0) + 2)J < rank(pi) (i = 1, 2, · · · , n), and φ1 is defined

by

φ1(f) =

n∑

i=1

f(xi)pi, ∀f ∈ C(X),

where p1, p2, · · · , pn are mutually orthogonal projections and {x1, x2, · · · , xn} ⊂ X1 is an ε-

dense subset of X1.

Proof Suppose that {Xi}i are all connected sub-complexes of (X,κ) (there are finitely

many of them for a fixed simplicial structure of a finite complex). Use Theorem 4.1 to each Xi

to obtain Li and Hi ⊆ AffT (C(Xi)) as in the theorem. By Tietze Extension theorem, there

are finite sets H̃i ⊆ AffT (C(X)) such that Hi ⊆ {h|Xi
| h ∈ H̃i}. Evidently L = max

i
{Li} and

H =
⋃
i

H̃i are as desired.
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