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Abstract The author shows that if a locally conformal Kähler metric is Hermitian Yang-

Mills with respect to itself with Einstein constant c ≤ 0, then it is a Kähler-Einstein metric.

In the case of c > 0, some identities on torsions and an inequality on the second Chern

number are derived.
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1 Introduction

Let (X, g) be a compact Hermitian manifold of complex dimension n ≥ 2. Let ω = iΣgijdz
i∧

dzj be the associated positive definite (1,1)-form, which is also called a Hermitian metric.
Let Rω be the curvature of the Chern connection of ω. A Hermitian metric ω is a Hermitian

Yang-Mills (HYM for short) metric with respect to itself if

n · iRω ∧ ωn−1 = c · IT 1,0X ⊗ ωn, (1.1)

where c =
∫
X
itrRω ∧ ωn−1/

∫
X
ωn is the Einstein constant. In this paper we will always assume

that a Hermitian metric ω is Hermitian Yang-Mills with respect to itself. It is also called an
Einstein-Hermitian metric in [4]. In fact, in [4] Gauduchon and Ivanov proved that when n = 2,
ω is a HYM metric if and only if ω is a Kähler-Einstein metric or is the natural metric on the
Hopf surface, i.e., is locally isometric to the product R× S3 (up to homothety).

In this paper we consider how to generalize Gauduchon and Ivanov’s result to the higher
dimensional case. We need some definitions.

A Hermitian metric ω is called a Gauduchon metric if i∂∂ωn−1 = 0. A well-known result
in [3] says that there exists a unique Gauduchon metric, up to a constant conformal factor, in
the conformal class of a Hermitian metric.

A Hermitian metric ω is called a locally conformal Kähler (l.c.K for short) metric if for any
point x ∈ X , there exist an open neighbourhood U of x and a smooth function ϕ ∈ A0

R
(U) such

that ω′ = eϕω is a Kähler metric on U .
Denote torsions of the Chern connection of a Hermitian metric ω to be

Tkij = ∂kgij − ∂igkj and Ti = ΣgklTikl.

Then τ = ΣTidz
i is the torsion 1-form of ω. A Hermitian metric ω is l.c.K if and only if

equations

(n− 1)∂ω = τ ∧ ω (1.2)
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and

d(τ + τ ) = 0 (1.3)

hold. Note that when n = 2, equation (1.2) always holds for any Hermitian metric ω and when
n ≥ 3, (1.2) implies (1.3). These results can be consulted in [2].

As we will see, the natural metric ω on the Hopf manifold of complex dimension n ≥ 2 is a
Gauduchon, l.c.K and HYM metric. Our main result is as follows.

Theorem 1.1 Let ω be a l.c.K and HYM metric on a compact complex manifold X of

dimension n ≥ 2. If c ≤ 0, then ω is a Kähler-Einstein metric; If c > 0 and ω is also a

(non-Kähler) Gauduchon metric, then |τ |2= (n− 1)c and

(n− 2)‖D′τ‖2 = n(c‖τ‖2 − ‖D′′τ‖2). (1.4)

Hence the real 1-form τ+τ is a non-vanishing d-closed form and so the Euler characterization
of X is equal to zero. We wonder whether the case of c > 0 implies ω is a Kähler-Einstein
metric or is the natural metric (up to homothety) on the Hopf manifold.

Theorem 1.2 Let ω be a Gauduchon, l.c.K and HYM metric on a compact complex man-

ifold X of dimension n ≥ 2. Then

∫

X

c2(X,ω) ∧
ωn−2

(n− 2)!
≥ 0. (1.5)

The equality holds if and only if ω is either a flat Kähler metric or the natural metric on the

Hopf surface.

A Kähler-Einstein metric ω satisfies the Miyaoka-Yau inequality

4π2(2(n+ 1) · c2(X,ω)− n · c1(X,ω)2) ∧
ωn−2

(n− 2)!
≥ 0, (1.6)

from which we can easily get

c2(X,ω) ∧
ωn−2

(n− 2)!
≥ 0.

When ω is non-Kähler and HYM, it satisfies the Bogomolov-Lübke inequality

4π2(2n · c2(X,ω)− (n− 1) · c1(X,ω)2) ∧
ωn−2

(n− 2)!
≥ 0, (1.7)

where the equality holds if and only if ω is projectively flat. Under the assumption in Theorem
1.2, we will show that

∫
X
c1(X,ω)2 ∧ ωn−2

(n−2)! ≥ 0, hence the inequality (1.5) follows.
This paper is arranged as follows. In Section 2, the geometry of the natural metric on

the Hopf manifold of dimension n is studied. In Section 3, some identities on torsion of a
Gauduchon and HYM metric are derived and in particular identity (1.4) in Theorem 1.1 is
proved. In Section 4, we finish the proof of Theorem 1.1 and in Section 5 we prove Theorem
1.2.

We follow the notations in [5]. For a Hermitian metric ω, we denote Rω to be the curvature
of the Chern connection of ω. Locally, its components are

Rp

ikl
= −Σgpj∂l∂kgij +Σgpjgmq∂lgmj∂kgiq

and Rijkl = ΣgpjR
p

ikl
. Denote Rij = ΣgklRklij and Kij = ΣgklRijkl. Then ρω = iΣRijdz

i∧dzj

is the Ricci curvature and Kω = iΣKijdz
i ∧ dzj is the mean curvature (see [5, p. 26]). Hence

the equation (1.1) is equivalent to Kij = c · gij .
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2 Hopf Manifolds

Let Hn = S2n−1 × S1 with n ≥ 2 be the standard Hopf manifold (see [6, Section 6]),
equipped with the natural metric

ω = iΣ
4δij
|z |2

dzi ∧ dzj .

It is direct to check that ω is both Gauduchon and l.c.K.
The torsions of the Chern connection of ω are

Tikj = −
4

|z |4
(ziδkj − zkδij) and Ti = −

n− 1

|z |2
zi,

and hence |τ |2= (n−1)2

4 . Further calculation yields

∇kTi = 0 and ∇jTi = −
n− 1

|z |2

(
δij −

zizj

|z |2

)
, (2.1)

which imply D′τ = 0 and |D′′τ |2= (n−1)3

16 .
The curvature Rω is

Rijkl =
4δij
|z |4

(
δkl −

zkzl

|z |2

)
, (2.2)

and the mean curvature Kω is

Kij =
n− 1

|z |2
δij =

n− 1

4
gij .

Hence ω satisfies the HYM equation (1.1) with c = n−1
4 .

By (2.2), the Ricci curvature of ω is

Rkl =
n

|z |2

(
δkl −

zkzl

|z |2

)
,

and hence

Rijkl =
1

n
Rklgij ,

i.e., ω is projectively flat. So the equality in the Bogomolov-Lübke inequality (1.7) holds.
Now we assume n > 2. Since

ρω ∧ ρω ∧
ωn−2

(n− 2)!
=

n2(n− 1)(n− 2)

16

ωn

n!
,

and ω is projectively flat, by the formula in [5, p. 42], we have

8π2 · c2(H
n, ω) ∧

ωn−2

(n− 2)!
=

n− 1

n
4π2 · c1(H

n, ω)2 ∧
ωn−2

(n− 2)!

=
n(n− 1)2(n− 2)

16

ωn

n!
> 0.

Moreover, we calculate

4π2(2(n+ 1) · c2(H
n, ω)− n · c1(H

n, ω)2) ∧
ωn−2

(n− 2)!

= −
1

n
ρω ∧ ρω ∧

ωn−2

(n− 2)!
= −

n(n− 1)(n− 2)

16

ωn

n!
< 0.

Hence the natural metric ω on Hn does not satisfy the Miyaoka-Yau inequality (1.6), but
satisfies the inequality (1.5).
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3 Some Identities on Torsion

The start point of Theorem 1.1 is the following identities. Let ω be a HYM metric. Denote

|T |2= ΣgijgpqgmnTipnTjqm.

We have

iΛω∂∂ |T |2 = Σgijgpqgmngkl(∇k∇lTipnTjqm + Tipn∇k∇lTjqm

+∇lTipn∇kTjqm +∇kTipn∇lTjqm)

= 2Re(Σgijgpqgmngkl∇k∇lTipnTjqm)+ |D′T |2 + |D′′T |2

+ΣgijgpqgmngklTipn[∇k,∇l]Tjqm, (3.1)

where

Σgkl[∇k,∇l]Tjqm = Σgkl(ΣTsqmRs

jlk
+ΣTjsmRs

qlk
− ΣTjqrR

r

mkl
) = c · Tjqm.

Let ω be a Gauduchon metric. Integrating (3.1) over X yields

−

∫

X

2Re(Σgijgpqgmngkl∇k∇lTipnTjqm)
ωn

n!
= ‖D′T ‖2 + ‖D′′T ‖2 + c‖T ‖2,

where the left hand side, after integration by parts, is equal to

∫

X

2Re(ΣgijgpqgmngklTkTjqm∇lTipn)
ωn

n!
+ 2‖D′′T ‖2. (3.2)

Thus we obtain the following result.

Proposition 3.1 If a Gauduchon metric ω satisfies the HYM equation (1.1), then

∫

X

2Re(ΣgijgpqgmngklTkTjqm∇lTipn)
ωn

n!
= ‖D′T ‖2 − ‖D′′T ‖2 + c‖T ‖2.

For any Hermitian metric ω, we obtain from the calculation (3.1) that

iΛω∂∂ |τ |2= 2Re(Σgijgmngkl∇k∇lTiTj)+ |D′τ |2 + |D′′τ |2 +ΣgijgklTi[∇k,∇l]Tj .

From the HYM equation (1.1) and the calculation (3.2), we obtain the following result.

Proposition 3.2 If a Gauduchon metric ω satisfies the HYM equation (1.1), then

∫

X

2Re(ΣgijgklTk∇lTiTj)
ωn

n!
= ‖D′τ‖2 − ‖D′′τ‖2 + c‖τ‖2. (3.3)

The curvature Rω of the Chern connection of a Hermitian metric ω satisfies the following
Bianchi identity

Rijkl −Rkjil = ∇lTikj , (3.4)

which imples

Σgkl∇k∇lTipj = Σgkl∇k(Rijpl −Rpjil). (3.5)
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Combining the Bianchi identity

∇pRijkl −∇kRijpl = ΣRijmlT
m
kp

with the HYM equation (1.1), we obtain

Σgkl∇kRijpl = Σgkl∇kRijpl − c · ∇pgij = ΣgklRijmlT
m
pk.

Inserting it into (3.5) yields

Σgkl∇k∇lTipj = Σgkl(ΣRijmlT
m
pk +ΣRpjmlT

m
ki ).

Moreover, we have

Σgkl∇k∇lTi = Σgkl(ΣRp

ijml
Tm
pk +ΣRmlT

m
ki ). (3.6)

Let ω be a l.c.K metric. By (1.2), we have

Tkij =
1

n− 1
(Tkgij − Tigkj). (3.7)

Notice that inserting (3.7) into Proposition 3.1 recovers (3.3). Inserting (3.7) and the HYM
equation (1.1) into (3.6), we obtain

(n− 1)Σgkl∇k∇lTi = −(n− 1)c · Ti − ΣgklRp

ipl
Tk +ΣgklRilTk

= −(n− 1)c · Ti − ΣgklTk∇lTi. (by (3.4))

Moreover, we have

(n− 1) · 2Re(Σgijgkl∇k∇lTiTj) = −2(n− 1)c |τ |2 −2Re(ΣgijgklTk∇lTiTj).

Integrating it over X and using integration by parts as in (3.2) to the left hand side yields

− 2(n− 1)‖D′′τ‖2 − (n− 1)

∫

X

2Re(ΣgijgklTk∇lTiTj)
ωn

n!

= −2(n− 1)c‖τ‖2 −

∫

X

2Re(ΣgijgklTk∇lTiTj)
ωn

n!
,

which implies

(n− 2)

∫

X

2Re(ΣgijgklTk∇lTiTj)
ωn

n!
= 2(n− 1)(c‖τ‖2 − ‖D′′τ‖2). (3.8)

Comparing it with (3.3), we obtain the following result.

Proposition 3.3 Let n > 2 and ω be a Gauduchon and l.c.K metric. If ω satisfies the

HYM equation (1.1), then identity (1.4) in Theorem 1.1 holds.

For n = 2, by [4] the Hopf surface (H2, ω) is the only non-Kähler HYM metric with respect
to itself. By (2.1), we have |D′τ |= 0 and c | τ |2=|D′′τ |2. Hence, the identity (1.4) also holds
for n = 2.
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4 Proof of Theorem 1.1

Let us recall a well-known result in [3].

Lemma 4.1 Let (X,ω) be a compact Hermitian manifold of complex dimension n ≥ 2.
Then dimR ker((iΛω∂∂)

∗) = 1 and any function f ∈ ker((iΛω∂∂)
∗) has constant sign. Moreover,

if ω is a Gauduchon metric, then ker((iΛω∂∂)
∗) = R.

Let ω be a l.c.K and HYM metric on a compact complex manifold X of dimension n ≥ 2.
We follow the idea in [1] to prove Theorem 1.1.

Proof There are two scalar curvatures of any Hermitian metric ω:

s = ΣgijgklRijkl, ŝ = ΣgijgklRilkj .

Since ω satisfies the HYM equation (1.1), and so s = nc. By (3.4), we have

ŝ− s = Σgij∇jTi.

By (1.3), we have ∂τ + ∂τ = 0, which implies

∂ ∂
∗

ω = i∂τ = −i∂τ = ∂∂∗ω.

Inserting these and the HYM equation (1.1) into Proposition 3.2 in [1] yields

(ŝ− c)ω = (n− 1)ρω − n∂ ∂
∗

ω, (4.1)

which implies d((ŝ− c)ω) = 0. Then

(iΛω∂∂)
∗(ŝ− c)n−1 =

i

(n− 1)!
∗ ∂∂((ŝ− c)ω)n−1 = 0. (4.2)

By Lemma 4.1, we have ŝ− c ≡ 0 or ±(ŝ− c) > 0.
If ŝ− c ≡ 0, then

0 ≤ ‖τ‖2 = −

∫

X

Σgij∂jTi

ωn

n!
=

∫

X

(s− ŝ)
ωn

n!
= (n− 1)c

∫

X

ωn

n!
,

which implies c = 0 and τ = 0. Hence ω is a Kähler metric due to (3.7).
If ŝ− c is not identically 0, then ±(ŝ− c)ω is a Kähler metric, i.e., ω is a globally conformal

Kähler metric. In this case, ω is actually Kähler-Einstein.
Indeed, let ω′ = efω be a Kähler metric for some function f ∈ A0

R
(X). By (1.2),

τ = −(n− 1)∂f.

Since
ŝ = s+Σgij∂jTi = nc− (n− 1)iΛω∂∂f,

we obtain from (4.1) that

ρω′ = ρω − n · i∂∂f = (c− iΛω∂∂f)ω,

which implies d((c − iΛω∂∂f)ω) = 0. By Lemma 4.1, the function c − iΛω∂∂f has constant
sign.

If c − iΛω∂∂f > 0, then f is a constant by the maximum principle and c is non-positive.
Hence we obtain c > 0, a contradiction.
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If c − iΛω∂∂f = 0, the same reason as above yields c = 0 and f is a constant. Hence, ω is
a Kähler metric.

If c− iΛω∂∂f < 0, by the uniqueness of the Gauduchon metric in the conformal class of a

Hermitian metric, the constant γ = c
∫
X

e−fω′n

∫
X

ω′n satisfies

γef = c− iΛω∂∂f < 0.

In this case, c < 0. Notice that

0 = n

∫

X

i∂∂ef ∧ ω′n−1 ≥ n

∫

X

ef · i∂∂f ∧ ω′n−1 =

∫

X

(c− γef )ω′n.

Inserting γ into the right hand side above, we have

c
( ∫

X

ω′n
)2

≤ c
( ∫

X

e−fω′n
)(∫

X

efω′n
)
.

By the Cauchy-Schwarz inequality, we obtain

(∫

X

ω′n
)2

≤
(∫

X

e−fω′n
)(∫

X

efω′n
)
≤

( ∫

X

ω′n
)2

.

Hence, the above inequalities hold if and only if f is a constant. Combining the above arguments,
we obtain the first part of Theorem 1.1.

As to the second part, we obtain from Lemma 4.1 and (4.2) that ŝ− c is a constant. If ŝ− c
is not identically zero, then ω is Kähler. Hence ŝ− c ≡ 0, and

|τ |2= −Σgij∂jTi = s− ŝ = (n− 1)c > 0, (4.3)

where the first identity holds for any Gauduchon metric.

In the case c > 0, we obtain from (4.1) that

ρω =
n

n− 1
∂ ∂

∗

ω, (4.4)

which implies

‖D′τ‖2 =
n

n− 2
(c‖τ‖2 − ‖D′′τ‖2) (by (1.4))

=
n

n− 1

∫

X

Re(Σgijgkl∇lTiTjTk)
ωn

n!
(by (3.8))

= −

∫

X

ΣgijgklRilTjTk

ωn

n!
.

By these facts, it seems that the Hopf manifold (Hn, ω) is the only (non-Kähler) l.c.K metric
satisfying the HYM equation (1.1) with positive Einstein constant.

5 Proof of Theorem 1.2

Let ω be a Gauduchon, l.c.K and HYM metric on a compact complex manifold X of dimen-
sion n ≥ 2. We are ready to prove Theorem 1.2.

Proof By the Bogomolov-Lübke inequality (1.7), the inequality (1.5) holds if

∫

X

c1(X,ω)2 ∧
ωn−2

(n− 2)!
≥ 0. (5.1)
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If c ≤ 0, then ω is Kähler-Einstein and (5.1) is obvious. For the equality, by (1.6) we have
c = 0, and then ρω = 0. Hence, we obtain

0 = 8π2

∫

X

c2(X,ω) ∧
ωn−2

(n− 2)!
=

∫

X

tr(Rω ∧Rω) ∧
ωn−2

(n− 2)!

=

∫

X

(|Rω |
2 − |Kω |

2)
ωn

n!
= ‖Rω‖

2,

where the second equality follows from the formula [5, (4.1)] and the last one follows from
Kω = ρω.

If c > 0, then we use again the formula [5, (4.1)] to calculate

4π2

∫

X

c1(X,ω)2 ∧
ωn−2

(n− 2)!
=

∫

X

(s2− |ρω |
2)
ωn

n!
.

From (4.4), (4.3) and (1.4), we obtain

∫

X

(s2− |ρω |
2)
ωn

n!
=

( n

n− 1

)2
∫

X

((n− 1)2c2− |D′′τ |2)
ωn

n!

=
( n

n− 1

)2

((n− 1)c‖τ‖2 − ‖D′′τ‖2)

=
n(n− 2)

(n− 1)2
(nc‖τ‖2 + ‖D′τ‖2) ≥ 0,

(5.2)

which implies the inequality (5.1), and hence the inequality (1.5). For the equality, we obtain
from the Bogomolov-Lübke inequality (1.7) that

0 ≥ 4π2

∫

X

c1(X,ω)2 ∧
ωn−2

(n− 2)!
,

which contradicts (5.2) unless n = 2. By the result in [4], ω is the natural metric on the Hopf
surface.
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