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Abstract This paper investigates the optimal recovery of Sobolev spaces W r

1 [−1, 1], r ∈ N

in the space L1[−1, 1]. They obtain the values of the sampling numbers of W r

1 [−1, 1] in
L1[−1, 1] and show that the Lagrange interpolation algorithms based on the extreme points
of Chebyshev polynomials are optimal algorithms. Meanwhile, they prove that the extreme
points of Chebyshev polynomials are optimal Lagrange interpolation nodes.
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1 Introduction and Main Results

Let F be a Banach space of functions defined on a compact set D that can be continuously

embedded in C(D), BF is the unit ball of F , and G (k F ) is a normed linear space with norm

‖ · ‖G. We want to approximate functions f from BF by using a finite number of arbitrary

function values f(t) (standard information) for some t ∈ D. We consider only nonadaptive

information. For x = (x1, x2, · · · , xn) ∈ Dn, we use Ix to denote the nonadaptive information

operator, i.e.,

Ix(f) := (f(x1), f(x2), · · · , f(xn)) ∈ R
n, f ∈ F.

We say that An = ϕ ◦ Ix is an algorithm based on the information operator Ix, where ϕ is an

arbitrary mapping from R
n to G. We also consider linear algorithms, i.e., algorithms of the

form

Alin
n (f) = ϕlin ◦ Ix(f) :=

n
∑

j=1

f(xj)hj , hj ∈ G, xj ∈ D, j = 1, · · · , n.

We use an algorithmAn to reconstruct functions fromBF . The worst case error of the algorithm

An for BF in G is defined by

e(BF,An, G) := sup
f∈BF

‖f −An(f)‖G. (1.1)
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For a given x = (x1, x2, · · · , xn) ∈ Dn, the worst case error for BF in G based on the

information operator Ix is defined by

e(BF, Ix, G) := inf
ϕ

sup
f∈BF

‖f − ϕ ◦ Ix(f)‖G,

where the infimum is taken over all mappings ϕ from R
n to G.

We define the linear sampling numbers and the sampling numbers for BF in G by

glinn (BF,G) := inf
Alin

n

e(BF,Alin
n , G),

and

gn(BF,G) := inf
An

e(BF,An, G) = inf
x∈Dn

e(BF, Ix, G), (1.2)

respectively. If there exists an information operator Ix∗ and a mapping ϕ∗ such that the

algorithm A∗
n = ϕ∗ ◦ Ix∗ satisfies

e(BF,A∗
n, G) = gn(BF,G),

then we call Ix∗ the nth optimal information and A∗
n the nth optimal algorithm.

The sampling numbers are closely related to many classical approximation problems such

as width and information-based complexity, and they have a wide range of applications in

numerical analysis. The aim of studying sampling numbers is to find optimal or nearly optimal

information, construct optimal or nearly optimal algorithms according to the known standard

information, and determine orders (or values) of the sampling numbers.

Let L1 ≡ L1[−1, 1] be the space of measurable functions defined on [−1, 1], for which the

norm

‖f‖1 :=

∫ 1

−1

|f(x)|dx

is finite. Denote by W r
1 ≡ W r

1 [−1, 1], r ∈ N the class of all functions f such that f (r−1) (f (0) :=

f) are absolutely continuous and f (r) ∈ L1.

In recent years, the study of sampling numbers has attracted much interest, and a great

number of interesting results have been obtained (see [1–15]). This paper investigates the

sampling numbers of Sobolev spaces W r
1 in L1. We remark that, in most cases, we can achieve

only weak equivalences (orders) of the sampling numbers. In this paper, we obtain the values

of the sampling numbers of Sobolev spaces W r
1 in L1. To show our results, we introduce the

following Lagrange interpolation algorithms.

Let x1, x2, · · · , xn be n distinct points in [−1, 1]. Write x = (x1, x2, · · · , xn). Then, the

Lagrange interpolation polynomial Lx(f) of a function f : [−1, 1] → R based on the knots

x = (x1, x2, · · · , xn) is defined by

Lx(f) ∈ Pn−1, Lx(f, xk) = f(xk), k = 1, 2, · · · , n, (1.3)
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where and in the following, Pn represents the space of all algebraic polynomials of degree at

most n. The classical Lagrange interpolation formula gives

Lx(f, x) =
n
∑

k=1

f(xk)ℓk(x),

where

ℓk(x) =
Wx(x)

(x− xk)W ′
x
(xk)

, Wx(x) =
n
∏

k=1

(x− xk).

First, we obtain the following results.

Theorem 1.1 For r ∈ N, we have

gr(BW r
1 , L1) = glinr (BW r

1 , L1) = e(BW r
1 , Lxr

, L1) =
Cr

r!
, (1.4)

where

xr =
(

cos
rπ

r + 1
, cos

(r − 1)π

r + 1
, · · · , cos

π

r + 1

)

(1.5)

is the set of extreme points of (r + 1)th Chebyshev polynomial Tr+1(x) = cos((r + 1) arccosx),

and

Cr =
∥

∥

∥
(1− ·)r − 2

r
∑

i=1

(−1)i−1
(

cos
iπ

r + 1
− ·

)r

+

∥

∥

∥

∞
, xr

+ =

{

xr , x ≥ 0;

0, x < 0.
(1.6)

Choosing nodes is important for interpolation algorithms. Given a sufficiently smooth func-

tion, if nodes are not suitably chosen, then the interpolation polynomials do not converge to

the function as the number of nodes tends to infinity. A well-known example is the Runge’s

phenomenon. Hence the study of optimal interpolation nodes is a hot topic, see [16–19] and

the references therein. In general, if nodes c = (c1, c2, · · · , cn) ∈ [−1, 1]n satisfies

e(BF,Lc, G) = inf
x=(x1,x2,··· ,xn)∈[−1,1]n

e(BF,Lx, G), (1.7)

then we call c = (c1, c2, · · · , cn) the nth optimal Lagrange interpolation nodes and Lc the nth

optimal Lagrange interpolation algorithm for BF in G. The value e(BF,Lc, G) is called the

nth optimal Lagrange interpolation error for BF in G and we denote it as e(n,BF,G).

Using Cr ≡ Cr[−1, 1], r = 0, 1, 2, · · · represents the spaces of functions with rth order

continuous derivative on [−1, 1], respectively. The most important optimal Lagrange interpo-

lation nodes problem is for C0 in L∞. For n = 3 and n = 4, the results can be found in [20]

and [21], respectively. For n ≥ 5, it is still an open problem. For r ≥ 1, it is well known

that the rth optimal Lagrange interpolation nodes are the zeros of the rth Chebyshev polyno-

mial Tr(x) = cos(r arccosx) for Cr in L∞. In this paper, we give the rth optimal Lagrange

interpolation nodes for BW r
1 in L1. The result is as follows.
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Theorem 1.2 Let r ∈ N. Then we have

e(r, BW r
1 , L1) = e(BW r

1 , Lxr
, L1) =

Cr

r!
,

where xr and Cr are given by (1.5) and (1.6), respectively.

The remainder of this paper is organized as follows. In Section 2, we give some lemmas

related to the proof of our main results. The proofs of Theorems 1.1 and 1.2 are given in

Section 3 respectively.

2 Background Information

First we introduce a remainder theorem about Lagrange interpolation (see [22]). Let

x0, x1, x2, · · · , xn be n+ 1 distinct points in [−1, 1]. For 0 ≤ i ≤ n, let

∆i = (−1)i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xn−1
0

(n− 1)!

xn−2
0

(n− 2)!
· · ·

x
n−j+1
0

(n− j + 1)!

x
n−j
0

(n− j)!
· · · 1

xn−1
1

(n− 1)!

xn−2
1

(n− 2)!
· · ·

x
n−j+1
1

(n− j + 1)!

x
n−j
1

(n− j)!
· · · 1

· · · · · · · · · · · · · · · · · · · · ·

xn−1
i−1

(n− 1)!

xn−2
i−1

(n− 2)!
· · ·

x
n−j+1
i−1

(n− j + 1)!

x
n−j
i−1

(n− j)!
· · · 1

xn−1
i+1

(n− 1)!

xn−2
i+1

(n− 2)!
· · ·

x
n−j+1
i+1

(n− j + 1)!

x
n−j
i+1

(n− j)!
· · · 1

· · · · · · · · · · · · · · · · · · · · ·
xn−1
n

(n− 1)!

xn−2
n

(n− 2)!
· · ·

xn−j+1
n

(n− j + 1)!

xn−j
n

(n− j)!
· · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.1)

Then for f ∈ Wn
1 , it follows from [22, (8)] that

n
∑

i=0

∆i

(

f(xi)−

∫ 1

−1

f (n)(t) ·
(xi − t)n−1

+

(n− 1)!
dt
)

= 0. (2.2)

In particular, if f(xi) = 0 for 1 ≤ i ≤ n, x0 = x, then (2.2) becomes

f(x) =

∫ 1

−1

Bx(x, t)f
(n)(t)dt, (2.3)

where x = (x1, x2, · · · , xn) and

Bx(x, t) =

n
∑

i=0

(xi − t)n−1
+

(n− 1)!

∆i

∆0
.

Noting that x0 = x, for i = 1, 2, · · · , n, from (2.1) it is easy to verify that

∆i

∆0
= −ℓi(x). (2.4)

Hence, it follows from (2.4) that

Bx(x, t) =
1

(n− 1)!

(

(x− t)n−1
+ −

n
∑

i=1

(xi − t)n−1
+ ℓi(x)

)
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=
(x− t)n−1

+ − Lx((· − t)n−1
+ , x)

(n− 1)!
. (2.5)

If f ∈ Wn
1 , x = (x1, x2, · · · , xn), then it follows from (1.3) that

f(xi)− Lx(f, xi) = 0, i = 1, 2, · · · , n. (2.6)

Since Lx(f) is an algebraic polynomial of degree at most n−1, we conclude that (f−Lx(f))
(n)(t)

= f (n)(t) and this means f − Lx(f) ∈ Wn
1 . Combining these facts with (2.3) and (2.6), we

obtain

f(x)− Lx(f, x) =

∫ 1

−1

Bx(x, t)(f − Lx(f))
(n)(t)dt =

∫ 1

−1

Bx(x, t)f
(n)(t)dt. (2.7)

Now we introduce some information about the norms of integral operators. Let K(x, t) be

a piecewise continuous function on [−1, 1]2. We define

S(f, x) =

∫ 1

−1

K(x, t)f(t)dt.

It is known that S is a linear continuous operator from L1 to L1. Furthermore, let ‖S‖1,1

be the operator norm of S from L1 to L1. Then it is known that

‖S‖1,1 = sup
f∈L1,f 6=0

‖Sf‖1
‖f‖1

= sup
−1≤t≤1

∫ 1

−1

|K(x, t)|dx. (2.8)

Lemma 2.1 Let −1 ≤ x1 < x2 < · · · < xr ≤ 1, x = (x1, x2, · · · , xr). Then we have

e(BW r
1 , Lx, L1) = sup

−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx, (2.9)

where Bx(x, t) is given by (2.5).

Proof If f ∈ BW r
1 , then it follows from (2.7) with n = r that

f(x)− Lx(f, x) =

∫ 1

−1

Bx(x, t)f
(r)(t)dt. (2.10)

Let

T (f, x) =

∫ 1

−1

Bx(x, t)f(t)dt. (2.11)

Then it follows from (2.8) and (2.10) that

‖f − Lx(f)‖1 = ‖T (f (r))‖1 ≤ ‖f (r)‖1 · sup
−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx

≤ sup
−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx. (2.12)

By (1.1) and (2.12), we conclude that

e(BW r
1 , Lx, L1) ≤ sup

−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx. (2.13)
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On the other hand, for any g ∈ L1[−1, 1], let

f(x) =
1

(r − 1)!

∫ x

−1

(x− t)r−1g(t)dt.

By a direct computation, we obtain

f
(r)

(x) = g(x). (2.14)

From (2.10) and (2.14) it follows that

f(x)− Lx(f, x) =

∫ 1

−1

Bx(x, t)f
(r)

(t)dt =

∫ 1

−1

Bx(x, t)g(t)dt = T (g, x). (2.15)

By (2.15), we obtain

‖f − Lx(f)‖1 = ‖T (g)‖1. (2.16)

From (1.1), (2.8) and (2.16) it follows that

e(BW r
1 , Lx, L1) ≥ sup

‖g‖1≤1

‖T (g)‖1 = sup
−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx. (2.17)

Combining (2.13) with (2.17), we obtain (2.9). This completes the proof of Lemma 2.1.

An n-dimensional subspace G of C[−1, 1] is called a weak Chebyshev subspace if every

function g ∈ G has at most n− 1 sign changes. By [23, Theorem 6.3] we know that for every

n-dimensional weak Chebyshev subspace of C[−1, 1], there exists a set of n-canonical points

t1 < · · · < tn in (−1, 1), i.e., there exist t1 < · · · < tn in (−1, 1) such that

n
∑

i=0

(−1)i
∫ ti+1

ti

g(t)dt = 0 (2.18)

holds for all g ∈ G, where t0 = −1 and tn+1 = 1.

If G is a weak Chebyshev subspace of C[−1, 1], then the set

K(G) = {f ∈ C[−1, 1] : span(G ∪ f) is a weak Chebyshev subspace of C[−1, 1]}

is called the convexity cone of G.

Lemma 2.2 (see [23, Theorem 6.6]) Let G be an n-dimensional weak Chebyshev subspace

of C[−1, 1]. If the set {t1, · · · , tn} of canonical points of G is poised with respect to G, then

every function f ∈ K(G) has a unique best L1-approximation gf from G and gf is uniquely

determined by

gf(ti) = f(ti), i = 1, · · · , n. (2.19)

Lemma 2.3 (see [24, Lemma 4.3]) For x = (x1, x2, · · · , xr) ∈ [−1, 1]r, we have

e(BW r
1 , Ix, L1) := inf

ϕ
sup

‖f(r)‖1≤1

‖f − ϕ ◦ Ix(f)‖1 = sup
‖f(r)‖1≤1,

f(x1)=f(x2)=···=f(xr)=0

‖f‖1. (2.20)
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3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 We consider the upper estimate first. Let xr be given by (1.5).

Then, the Lagrange interpolation algorithm Lxr
is a linear algorithm. Hence, it follows from

(2.9) that

gr(BW r
1 , L1) ≤ glinr (BW r

1 , L1) ≤ e(BW r
1 , Lxr

, L1) = sup
−1≤t≤1

∫ 1

−1

|Bxr
(x, t)|dx. (3.1)

We will compute the last integration in (3.1). For t = −1, we have (· − t)r−1
+ = (· − t)r−1 ∈

Pr−1. For t = 1, we have (· − t)r−1
+ = 0 ∈ Pr−1. Hence from (2.5) it follows that Bxr

(x, t) = 0

for t = ±1. This means that
∫ 1

−1

|Bxr
(x, t)|dx = 0 for t = ±1. (3.2)

Next we consider t ∈ (−1, 1). It is known that Pr is a Chebyshev subspace of C[−1, 1].

Furthermore, from [23, Theorem 4.10] we know that the canonical points for Pr on [−1, 1] are

the extreme points of the Chebyshev polynomial Tr+2 in (−1, 1), i.e.,

ti = cos
(r + 2− i)π

r + 2
, i = 1, · · · , r + 1. (3.3)

From (3.3) it follows that xr is the set of the canonical points for Pr−1 on [−1, 1]. Furthermore,

from [23, Theorem 1.19] we know that for each t ∈ (−1, 1), span(Pr−1∪ (·− t)r−1
+ ) is an (r+1)-

dimensional weak Chebyshev space of C[−1, 1], i.e., (· − t)r−1
+ ∈ K(Pr−1). Hence from Lemma

2.2 and (1.3), it follows that Lxr
((· − t)r−1

+ ) is the best L1-approximation of (· − t)r−1
+ from

Pr−1 on [−1, 1]. Therefore, from [25, Theorem 10.5], (3.2) and (2.18), it follows that

∫ 1

−1

|Bxr
(x, t)|dx =

1

(r − 1)!

∫ 1

−1

|(x− t)r−1
+ − Lxr

((· − t)r−1
+ , x)|dx

=
1

(r − 1)!

∣

∣

∣

r
∑

i=0

(−1)i
∫ cos iπ

r+1

cos (i+1)π
r+1

(x− t)r−1
+ dx

∣

∣

∣
. (3.4)

For t ∈ (−1, 1), it is obvious that there exists an Nt with 0 ≤ Nt ≤ r such that t ∈
[

cos (Nt+1)π
r+1 , cos Ntπ

r+1

)

. Then (3.4) becomes

∫ 1

−1

|Bxr
(x, t)|dx

=
1

(r − 1)!

∣

∣

∣

Nt−1
∑

i=0

(−1)i
∫ cos iπ

r+1

cos (i+1)π
r+1

(x− t)r−1dx+ (−1)Nt

∫ cos
Ntπ

r+1

t

(x− t)r−1dx
∣

∣

∣
. (3.5)

By (3.5) and a direct computation, we obtain

∫ 1

−1

|Bxr
(x, t)|dx =

1

r!

(

(1− t)r − 2

Nt
∑

i=1

(−1)i−1
(

cos
iπ

r + 1
− t

)r)

=
1

r!

(

(1− t)r − 2

r
∑

i=1

(−1)i−1
(

cos
iπ

r + 1
− t

)r

+

)

. (3.6)
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From (3.1)–(3.2) and (3.6) we obtain the upper estimate.

Now we consider the lower estimate. Let x1, x2, · · · , xr be r arbitrary distinct points in

[−1, 1] and x = (x1, x2, · · · , xr). Combining Lemma 2.3 with (2.6) as well as (f−Lx(f))
(r)(x) =

f (r)(x), we obtain

e(BW r
1 , Ix, L1) = sup

‖f(r)‖1≤1,
f(x1)=f(x2)=···=f(xr)=0

‖f‖1

≥ sup
‖f(r)‖1≤1

‖f − Lx(f)‖1 = e(BW r
1 , Lx, L1). (3.7)

From (3.7) and (2.9) it follows that

e(BW r
1 , Ix, L1) ≥ sup

−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx. (3.8)

For any −1 ≤ t ≤ 1, since Lxr
((· − t)r−1

+ ) is the best L1-approximation of (· − t)r−1
+ from Pr−1

on [−1, 1], we obtain

∫ 1

−1

|Bx(x, t)|dx =
1

(r − 1)!

∫ 1

−1

|(x − t)r−1
+ − Lx((· − t)r−1

+ , x)|dx

≥
1

(r − 1)!

∫ 1

−1

|(x − t)r−1
+ − Lxr

((· − t)r−1
+ , x)|dx

=

∫ 1

−1

|Bxr
(x, t)|dx. (3.9)

From (1.2) and (3.8)–(3.9) we obtain the lower estimate. This completes the proof of Theorem

1.1.

Proof of Theorem 1.2 From (1.4) we obtain the upper estimate. On the other hand, from

(2.9), (3.9) and (1.7) we obtain the lower estimate. The proof of Theorem 1.2 is completed.

Note 1 The values of Cr can be computed for r = 1, 2, · · · , respectively. For example,

C1 = 1, C2 = 1
2 , C3 = 1−

√
2
2 . We guess that

Cr = 1− 2

[ r+1
2 ]

∑

i=1

(−1)i−1
(

cos
iπ

r + 1

)r

,

where [x] represents the integer part of x.

Note 2 In practice, one often wants to have boundary points as interpolation nodes, i.e.,

x = (−1, x2, · · · , xr−1, 1).

Then the following question arises: For which sets of points −1 < c2 < c3 < · · · < cr−1 < 1, we

have

e(BF,Lc, G) = inf
x=(−1,x2,··· ,xr−1,1)

e(BF,Lx, G). (3.10)
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Papers [15, 18] considered this problem recently. Obviously, from (2.9) it follows that

c = (−1, c2, · · · , cr−1, 1) is the solution of (3.10) for BW r
1 in L1 if and only if

sup
−1≤t≤1

∫ 1

−1

|Bc(x, t)|dx = min
x=(−1,x2,··· ,xr−1,1)

sup
−1≤t≤1

∫ 1

−1

|Bx(x, t)|dx. (3.11)

To each integer r > 2, we can compute the solution of (3.10) for BW r
1 in L1 by using (3.11).

But the explicit solution to this problem is an open problem.

Note 3 When n 6= r, the values of the sampling numbers and the nth optimal Lagrange

interpolation nodes of the problems given by (1.7) and (3.10) for BW r
1 in L1 are open problems.
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