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Abstract In this paper, the authors first introduce the concept of congruence pairs on
the class of decomposable MS-algebras generalizing that for principal MS-algebras (see
[13]). They show that every congruence relation θ on a decomposable MS-algebra L can
be uniquely determined by a congruence pair (θ1, θ2), where θ1 is a congruence on the
de Morgan subalgebra L◦◦ of L and θ2 is a lattice congruence on the sublattice D(L)
of L. They obtain certain congruence pairs of a decomposable MS-algebra L via central
elements of L. Moreover, they characterize the permutability of congruences and the strong
extensions of decomposable MS-algebras in terms of congruence pairs.
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1 Introduction

Blyth and Varlet [18] studied Morgan Stone algebras (briefly MS-algebras) as a generaliza-

tion of the classes of de Morgan and Stone algebras. Such algebras are bounded distributive

lattices with additional unary operation. Blyth and Varlet [19] described the lattice of subva-

rieties of the variety MS of all MS-algebras. Badawy, Guffova and Haviar [12] introduced and

characterized the class of decomposable MS-algebras by means of decomposable MS-triples.

They observed that every decomposable MS-algebra L has two auxiliary substructures, name-

ly, the de Morgan subalgebra L◦◦ of all closed elements of L and the sublattice D(L) of all

dense elements of L. Also, they introduced and characterized principal MS-algebras by means

of principal MS-triples. They observed that the class of decomposable MS-algebras contains

the class of principal MS-algebras. Badawy [1–7] investigated a relationship between congru-

ences and special filters of a principal MS-algebra and a decomposable MS-algebra, respectively.

Also, Badawy and El-Fawal [9] studied homomorphisms and subalgebras of decomposable MS-

algebras in terms of decomposable MS-triples. Recently, Badawy and Atallah [8] introduced

and characterized the set B(L) of all central elements of an MS-algebra L and established the

relationship between its MS-intervals and congruences. For recent studies of (decomposable)

MS-algebras and double MS-algebras see also [2, 4–6, 10–11, 14–15, 23, 25, 31].
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In this paper, we introduce a suitable notion of congruence pairs of decomposable MS-

algebras which is a generalization of the notion of congruence pairs of both Stone algebras and

principal MS-algebras. We study many properties of congruence pairs of a decomposable MS-

algebra. We derive that every congruence relation θ on a decomposable MS-algebra L can be

represented by a pair of congruences (θ1, θ2), where θ1 ∈ Con(L◦◦) and θ2 ∈ Con(D(L)). We

establish that there is a one to one correspondence between the lattice Con(L) of all congruences

of L and the lattice A(L) of all congruence pairs of L. Also, we investigate the relationship

between the central elements of a decomposable MS-algebra L and the congruence pairs of the

form (θ[a ↓], θ[aϕ(L)]) for a ∈ L◦◦. Using the concept of congruence pairs, we prove that a

decomposable MS-algebra L is congruence permutable if and only if both L◦◦ and D(L) are

congruence permutable. If L is a subalgebra of a decomposable MS-algebra L1, we show that

L1 is a strong extension of L if and only if L◦◦

1 is a strong extension of L◦◦ and D(L1) is a

strong extension of D(L).

2 Preliminaries

In this section, we give the definitions and the main results which are needed through this

work. We refer the readers to [8–9, 12–13, 18–20, 29–31] for more details.

A de Morgan algebra is an algebra (L;∨,∧,− , 0, 1) of type (2,2,1,0,0), where (L;∨,∧, 0, 1)

is a bounded distributive lattice and − is the unary operation of involution satisfying:

x = x, (x ∨ y) = x ∧ y, (x ∧ y) = x ∨ y.

A Stone algebra is a universal algebra (L;∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0), where the unary

operation ∗ of pseudocomplementation has the properties that x ∧ a = 0 ⇔ x ≤ a∗ and

x∗∗ ∨ x∗ = 1.

An MS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0), where a unary operation ◦

satisfies :

x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.

The classMS of all MS-algebras is equational. A de Morgan algebra is an MS-algebra satisfying

the identity, x = x◦◦. The class S of Stone algebras is a subclass of MS and is characterized

by the identity x ∧ x◦ = 0.

We recall some of the basic properties of MS-algebras which were proved in [18] or [20].

Theorem 2.1 For any two elements a, b of an MS-algebra L, we have

(1) 0◦ = 1,

(2) a ≤ b⇒ b◦ ≤ a◦,

(3) a◦◦◦ = a◦,

(4) (a ∨ b)◦ = a◦ ∧ b◦,

(5) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,

(6) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

We recall special subsets of an MS-algebra L which play an important role in the construc-

tion:
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(1) L◦◦ = {x ∈ L : x = x◦◦} is the set of closed elements of L which is a de Morgan

subalgebra of L (see [18]),

(2) D(L) = {x ∈ L : x◦ = 0} is the set of dense elements of L which is a filter of L (see

[12]),

(3) a ↑= {x ∈ L : x ≥ a} is the principal filter of L generated by the element a of L,

(4) a ↓= {x ∈ L : x ≤ a} is the principal ideal of L generated by the element a of L.

Now, we recall from [12] the definition of a decomposable MS-algebra and some related prop-

erties.

Definition 2.1 (see [12]) An MS-algebra (L;∨,∧,◦ , 0, 1) is called a decomposable MS-

algebra if for every x ∈ L there exists d ∈ D(L) such that x = x◦◦ ∧ d.

The class of decomposable MS-algebras contains both the class M of all de Morgan algebras

and the class S of all Stone algebras.

Let L be a decomposable MS-algebra. Define a map ϕ(L) : L◦◦ → F (D(L)) (the lattice of

all filters of D(L)) by

aϕ(L) = a◦ ↑ ∩D(L), for all a ∈ L◦◦.

It is known that ϕ(L) is a (0,1)-lattice homomorphism (see [12]).

An equivalence relation θ on a lattice L is called a lattice congruence on L if it is compatible

with the lattice operations, that is, (a, b) ∈ θ and (c, d) ∈ θ imply (a ∨ c, b ∨ d) ∈ θ and

(a ∧ c, b ∧ d) ∈ θ.

Let θ be a lattice congruence on a bounded lattice (a lattice with the smallest element 0

and the greatest element 1) L. Then the subset {x ∈ L : (x, 0) ∈ θ} is called the Kernel of θ

and is denoted by Ker θ. Also, the subset {x ∈ L : (x, 1) ∈ θ} is called the Cokernel of θ and

is denoted by Coker θ. It is clear that Ker θ and Coker θ are ideal and filter of L, respectively.

Theorem 2.2 (see [26]) An equivalence relation on a lattice L is a lattice congruence on

L if and only if (a, b) ∈ θ implies (a ∨ c, b ∨ c) ∈ θ and (a ∧ c, b ∧ c) ∈ θ for all c ∈ L.

A lattice congruence θ on an MS-algebra (L;◦ ) is called a congruence on L if (a, b) ∈ θ

implies (a◦, b◦) ∈ θ.

The symbols ∇L and ∆L will be used, as usual, for the universal congruence L×L and the

equality congruence on L, respectively.

Let L be an MS-algebra. Then, we use Con(L) to denote the congruence lattice of L and

we also use θL◦◦ , θD(L) to denote the restrictions of a congruence θ ∈ Con(L) to L◦◦ and D(L),

respectively. Evidently, (θL◦◦ , θD(L)) ∈ Con(L◦◦)× Con(D(L)).

Now, we restrict the definition of a congruence pair of quasi-modular p-algebras (see [29,

Definition 7]) to Stone algebras.

Definition 2.2 Let L be a Stone algebra. Then the pair (θ1, θ2) ∈ Con(L◦◦)× Con(D(L))

is called a congruence pair if a ∈ L◦◦, u ∈ D(L), u ≥ a and a ≡ 1(θ1) imply u ≡ 1(θ2).

Definition 2.3 (see [12]) An MS-algebra (L;∨,∧,◦ , 0, 1) is called a principal MS-algebra

if it satisfies the following conditions:

(i) The filter D(L) is principal, i.e., there exists an element dL ∈ L such that D(L) = [dL),
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(ii) x = x◦◦ ∧ (x ∨ dL) for any x ∈ L.

It is known that any principal MS-algebra is a decomposable MS-algebra (see [12]). From

[13], we recall the definition of a congruence pair of a principal MS-algebra.

Definition 2.4 (see [13]) Let L be a principal MS-algebra with a smallest dense element

dL. A pair of congruences (θ1, θ2) ∈ Con(L◦◦)× Con(D(L)) will be called a congruence pair if

(a, b) ∈ θ1 implies (a ∨ dL, b ∨ dL) ∈ θ2.

3 Congruence Pairs of a Decomposable MS-Algebra

The notion of a congruence pair was studied on various classes of algebras containing the

class S of all Stone algebras. Katriňák [27, 29] studied the congruence pairs and the lattices

of congruence pairs of certain p-algebras, El-Assar [21] characterized the congruence lattices

of quasi-modular p-algebras, Badawy and Shume [16] considered the congruence pairs and

related properties of principal p-algebras. Also, Badawy [3] presented a characterization of the

congruence lattices of principal p-algebras. Beazear [17] introduced the notion of congruence

pairs on MS-algebras from the subvariety K2 (K2-algebras). Recently, Badawy, Haviar and

Ploščica [13] studied the concept of congruence pairs of principal MS-algebras. Also, they

characterized the congruence lattices of principal MS-algebras in terms of congruence pairs.

In this section we introduce the concept of congruence pairs on decomposable MS-algebras

generalizing that for principal MS-algebras. Some properties of congruence pairs of a decom-

posable MS-algebra L will be investigated.

Definition 3.1 Let L be a decomposable MS-algebra. An arbitrary pair (θ1, θ2) in Con(L◦◦)

×Con(D(L)) is called a congruence pair if a ≡ b(θ1) implies a∨ d ≡ b∨ d(θ2) for all d ∈ D(L).

It is clear that if L is a principal MS-algebra with a smallest dense element dL, then Definition

2.6 implies Definition 3.1.

Lemma 3.1 Let L be a decomposable MS-algebra and (θ1, θ2) be a congruence pair. Then

we have the following property:

a ≡ b(θ1) and c ≡ d(θ2) imply a ∨ c ≡ b ∨ d(θ2).

Proof Let a ≡ b(θ1). Thus by Definition 3.1, we get a∨ c ≡ b∨ c(θ2), a∨ d ≡ b∨ d(θ2) and

hence a ∨ c ∨ d ≡ b ∨ c ∨ d(θ2) as c, d, c ∨ d ∈ D(L). Then a ∨ c ≡ b ∨ c(θ2) and c ≡ d(θ2) imply

a∨ c ≡ b∨ c∨ d. Also a∨ d ≡ b∨ d(θ2) and c ≡ d(θ2) imply a∨ c∨ d ≡ b∨ d(θ2). Consequently

a ∨ c ≡ b ∨ d(θ2).

For a Stone algebra, the following lemma shows that Definitions 2.4 and 3.1 are equivalent.

Lemma 3.2 Let L be a Stone algebra. Then (θ1, θ2) ∈ Con(L◦◦) × Con(D(L)) is a con-

gruence pair according to Definition 2.4 if and only if it is a congruence pair by Definition

3.1.

Proof Let L be a Stone algebra. Then L◦◦ is a Boolean subalgebra of L. Thus a ∨ a◦ = 1

for all a ∈ L◦◦. Let (θ1, θ2) ∈ Con(L◦◦) × Con(D(L)) be a congruence pair by Definition 2.4.
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Suppose that a ≡ b(θ1). Let α = (a ∨ b◦) ∧ (a◦ ∨ b). Then α ∈ L◦◦ and α ∧ a = α ∧ b = a ∧ b.

Since a ∨ b◦ ≡ b ∨ b◦(θ1) = 1 and a◦ ∨ b ≡ a◦ ∨ a(θ1) = 1, we have α ≡ 1(θ1) and by Definition

2.4, α ≤ α ∨ d ∈ D(L) implies α ∨ d ≡ 1(θ2) for all d ∈ D(L). Since L is a distributive lattice,

we have

a ∨ d = (a ∨ d) ∧ 1 ≡ (a ∨ d) ∧ (α ∨ d)(θ2) = (a ∧ α) ∨ d = (a ∧ b) ∨ d.

In a similar way, we get b∨ d ≡ (a∧ b)∨ d(θ2). Thus a∨ d ≡ b∨ d(θ2). For the converse, let a ∈

L◦◦, a ≤ u ∈ D(L) and a ≡ 1(θ1). Then we have a∨d ≡ 1∨d(θ2) for all d ∈ D(L) by Definition

3.1. Without loss of generality we can take u ≥ d. Then u = a ∨ d ∨ u ≡ 1 ∨ u ∨ d(θ2) = 1.

Therefore (θ1, θ2) is a congruence pair according to Definition 2.4.

The following theorem gives one of the main results of this paper. We give a characterization

of congruence pairs of a decomposable MS-algebra.

Theorem 3.1 Let L be a decomposable MS-algebra. Then every congruence relation θ of L

determines a congruence pair (θL◦◦ , θD(L)). Conversely, every congruence pair (θ1, θ2) uniquely

determines a congruence relation θ on L satisfying θL◦◦ = θ1 and θD(L) = θ2 by the rule

x ≡ y(θ) if and only if x◦◦ ≡ y◦◦(θ1) and x ∨ d ≡ y ∨ d(θ2) for all d ∈ D(L).

Proof Let θ ∈ Con(L) and a ≡ b(θL◦◦) for a, b ∈ L◦◦. Then a ≡ b(θ). This result implies

that a ∨ d ≡ b ∨ d(θ). Hence, a ∨ d ≡ b ∨ d(θD(L)), where a ∨ d, b ∨ d ∈ D(L). This shows that

(θL◦◦ , θD(L)) is a congruence pair. Conversely, let (θ1, θ2) be a congruence pair and let θ be

defined as above. It is clear that θ is an equivalence relation. We now proceed to show that θ

is a congruence on L. Let a ≡ b(θ) and c ≡ f(θ). Then we get a◦◦ ≡ b◦◦(θ1), c
◦◦ ≡ f◦◦(θ1) and

a ∨ d ≡ b ∨ d(θ2), c ∨ d ≡ f ∨ d(θ2) for all d ∈ D(L). Now, we have

(a ∧ c)◦◦ = a◦◦ ∧ c◦◦ ≡ b◦◦ ∧ f◦◦(θ1) = (b ∧ f)◦◦,

(a ∧ c) ∨ d = (a ∨ d) ∧ (c ∨ d) ≡ (b ∨ d) ∧ (f ∨ d)(θ2) = (b ∧ f) ∨ d for all d ∈ D(L).

Then a∧ c ≡ b∧ f(θ), and therefore θ preserves the meet operation of L. Also, θ preserves the

join operation of L since the following equalities hold on L :

(a ∨ c)◦◦ = a◦◦ ∨ c◦◦ ≡ b◦◦ ∨ f◦◦(θ1) = (b ∨ f)◦◦,

(a ∨ c) ∨ d = (a ∨ d) ∨ (c ∨ d) ≡ (b ∨ d) ∨ (f ∨ d)(θ2) = (b ∨ f) ∨ d, ∀d ∈ D(L).

In order to show that θ preserves the unary operation ◦, we let a ≡ b(θ), then a◦◦ ≡ b◦◦(θ1).

Hence, a◦ = a◦◦◦ ≡ b◦◦◦(θ1) = b◦. Thus by Definition 3.1, we have shown that a◦∨d ≡ b◦∨d(θ2)

for all d ∈ D(L). Therefore, a◦ ≡ b◦(θ).

Now, we proceed to show that θL◦◦ = θ1 and θD(L) = θ2. If a, b ∈ L◦◦ and a ≡ b(θ1),

then a◦◦ ≡ b◦◦(θ1) and a ∨ d ≡ b ∨ d(θ2), the latter holds by Definition 3.1 since (θ1, θ2) is

a congruence pair. It follows that a ≡ b(θL◦◦), thus θ1 ≤ θL◦◦ . The inequality θL◦◦ ≤ θ1 as

well as the equality θD(L) = θ2 follow straight from the definition of θ. For the uniqueness of

θ, let θ and θ́ be two congruences on L with θL◦◦ = θ́L◦◦ = θ1 and θD(L) = θ́D(L) = θ2. Let

x ≡ y(θ). Then x◦◦ ≡ y◦◦(θL◦◦) and x ∨ d ≡ y ∨ d(θD(L)). Now, we have x◦◦ ≡ y◦◦(θ́L◦◦) and
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x ∨ d ≡ y ∨ d(θ́D(L)) for all d ∈ D(L). Thus x ≡ y(θ́) and θ ≤ θ́. Similarly, we can prove that

θ́ ≤ θ. Hence θ = θ́ and our proof is completed.

Corollary 3.1 Let L be a decomposable MS-algebra. Then the set A(L) of congruence pairs

of L is a bounded sublattice of Con(L◦◦)×Con(D(L)) and θ 7→ (θL◦◦ , θD(L)) is an isomorphism

of Con(L) and A(L).

Proof It is clear that (△L◦◦ ,△D(L)), (▽L◦◦ ,▽D(L)) ∈ A(L). Let (θ1, θ2), (ψ1, ψ2) ∈ A(L).

Then, it is easy to verify that (θ1 ∧ ψ1, θ2 ∧ ψ2) ∈ A(L). Now, we proceed to show that

(θ1∨ψ1, θ2∨ψ2) ∈ A(L). Let a ≡ b(θ1∨ψ1). Then there is a finite sequence a = a0, a1, · · · , an =

b in L◦◦ such that, for each i with 0 ≤ i ≤ n− 1, either ai−1 ≡ ai(θ1) or ai ≡ ai+1(ψ1). Then

ai−1 ∨ d ≡ ai ∨ d(θ2) or ai ∨ d ≡ ai+1 ∨ d(ψ2), for every d ∈ D(L) by Definition 3.1. Thus we

have the sequence

a ∨ d = a0 ∨ d, a1 ∨ d, · · · , an ∨ d = b ∨ d in D(L).

The above result leads to a ∨ d ≡ b ∨ d(θ2 ∨ ψ2) and hence (θ1 ∨ ψ1, θ2 ∨ ψ2) ∈ A(L). Thus we

conclude that A(L) is a bounded sublattice of Con(L◦◦)×Con(D(L)). It is clear that the map

θ 7→ (θL◦◦ , θD(L)) of Con(L) into A(L) is an isomorphism.

The next corollary follows immediately.

Corollary 3.2 Let L be a decomposable MS-algebra. Then the following statements hold:

(1) (∀Φ ∈ Con(D(L)))(△L◦◦ ,Φ) ∈ A(L),

(2) (∀Ψ ∈ Con(L◦◦) (Ψ,▽D(L)) ∈ A(L).

4 Congruence Pairs via Central Elements of a Decomposable MS-

algebra

In this section, we investigate the relationship between the central elements of a decompos-

able MS-algebra L and the congruence pairs of L.

From [8], we recall the following.

Definition 4.1 (see [8]) An element a of an MS-algebra L is called a central element of L

if a ∨ a◦ = 1. The set of all central elements of L is denoted by B(L).

Theorem 4.1 (see [8]) Let L be an MS-algebra. Then B(L) is a Boolean subalgebra of

L◦◦.

For each central element a of an MS-algebra L, we define a relation θ[a ↓] on L◦◦ as follows:

(x, y) ∈ θ[a ↓] ⇔ x ∧ a◦ = y ∧ a◦.

For each central element a of a decomposable MS-algebra L, we define a relation θ[aϕ(L)]

on D(L) as follows:

(x, y) ∈ θ[aϕ(L)] ⇔ x ∧ d = y ∧ d for some d ∈ aϕ(L).

The properties of the above two relations are given in the following two lemmas, respectively.
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Lemma 4.1 Let L be an MS-algebra. Then for every a, b of B(L), we have

(1) θ[a ↓] is a congruence on L◦◦ with Ker(θ[a ↓]) = a ↓,

(2) a ≤ b if and only if θ[a ↓] ⊆ θ[b ↓],

(3) a = b if and only if θ[a ↓] = θ[b ↓],

(4) θ[0 ↓] = △L◦◦ and θ[1 ↓] = ▽L◦◦,

(5) θ[a ↓] ∨ θ[b ↓] = θ[(a ∨ b) ↓],

(6) θ[a ↓] ∩ θ[b ↓] = θ[(a ∧ b) ↓].

Proof (1) It is clear that θ[a ↓] is an equivalence relation on L◦◦ for every a ∈ B(L). Now

let (x, y) ∈ θ[a ↓] and c ∈ L◦◦. Then x ∧ a◦ = y ∧ a◦ and hence

(x ∨ c) ∧ a◦ = (x ∧ a◦) ∨ (c ∧ a◦)

= (y ∧ a◦) ∨ (c ∧ a◦)

= (y ∨ c) ∧ a◦.

Therefore (x ∨ c, y ∨ c) ∈ θ[a ↓] for all c ∈ L◦◦. Also, we can deduce that (x ∧ c, y ∧ c) ∈ θ[a ↓].

Then by Theorem 2.6, θ[a ↓] is a lattice congruence on L◦◦. To show that θ[a ↓] is preserved

by a unary operation ◦ on L◦◦, let (x, y) ∈ θ[a ↓]. Then we have:

(x, y) ∈ θ[a ↓] ⇒ x ∧ a◦ = y ∧ a◦

⇒ (x ∧ a◦) ∨ a = (y ∧ a◦) ∨ a

⇒ (x ∨ a) ∧ (a◦ ∨ a) = (y ∨ a) ∧ (a◦ ∨ a)

⇒ x ∨ a = y ∨ a as a◦ ∨ a = 1

⇒ (x ∨ a)◦ = (y ∨ a)◦

⇒ x◦ ∧ a◦ = y◦ ∧ a◦

⇒ (x◦, y◦) ∈ θ[a ↓].

Further,

Ker(θ[a ↓]) = {x ∈ L◦◦ : (x, 0) ∈ θ[a ↓]}

= {x ∈ L◦◦ : x ∧ a◦ = 0}

= {x ∈ L◦◦ : x ≤ a} = a ↓,

as a = a ∨ 0 = a ∨ (x ∧ a◦) = a ∨ x implies x ≤ a.

(2) Let a ≤ b and (x, y) ∈ θ[a ↓]. Then x ∧ a◦ = y ∧ a◦. Thus x ∧ a◦ ∧ b◦ = y ∧ a◦ ∧ b◦

and b◦ ≤ a◦ imply x ∧ b◦ = y ∧ b◦. So (x, y) ∈ θ[b ↓] and hence θ[a ↓] ⊆ θ[b ↓]. Conversely,

let θ[a ↓] ⊆ θ[b ↓]. As a is a central element of L, then (a ∧ b) ∧ a◦ = 0 = a ∧ a◦. Hence

(a ∧ b, a) ∈ θ[a ↓]. By hypotheses, (a ∧ b, a) ∈ θ[b ↓]. Since b is a central element of L, then

(a ∧ b) ∧ b◦ = a ∧ b◦ implies a ∧ b◦ = 0. Now, since a ∧ b◦ = 0 and a, b belong to the Boolean

algebra B(L) then a ≤ b◦◦ = b.

(3) It is obvious.

(4) Let (x, y) ∈ θ[0 ↓]. Then x = x ∧ 0◦ = y ∧ 0◦ = y. Therefore θ[0 ↓] = △L◦◦ . For all

x, y ∈ L, we have x ∧ 1◦ = 0 = y ∧ 1◦ and hence (x, y) ∈ θ[1 ↓]. Then θ[1 ↓] = ▽L◦◦ .
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(5) Since a, b ≤ a ∨ b, then by (2), θ[a ↓], θ[b ↓] ⊆ θ[(a ∨ b) ↓]. Therefore θ[(a ∨ b) ↓] is an

upper bound of both θ[a ↓] and θ[b ↓]. Suppose that θ[c ↓] is an upper bound of θ[a ↓] and

θ[b ↓]. Then θ[a ↓], θ[b ↓] ⊆ θ[c ↓]. Thus by (2) we get a, b ≤ c. Then a ∨ b ≤ c. Again by (2),

θ[(a ∨ b) ↓] ⊆ θ[(c) ↓]. Therefore θ[(a ∨ b) ↓] is the least upper bound of both θ[a ↓] and θ[b ↓].

This deduces that θ[a ↓] ∨ θ[b ↓] = θ[(a ∨ b) ↓].

(6) Since a∧b ≤ a, b, then by (2), θ[(a∧b) ↓] ⊆ θ[a ↓], θ[a ↓]. Thus θ[(a∧b) ↓] ⊆ θ[a ↓]∩θ[a ↓].

Conversely, let (x, y) ∈ θ[a ↓] ∩ θ[b ↓]. Then

(x, y) ∈ θ[a ↓] ∩ θ[b ↓] ⇒ (x, y) ∈ θ[a ↓] and (x, y) ∈ θ[b ↓]

⇒ x ∧ a◦ = y ∧ a◦ and x ∧ b◦ = y ∧ b◦

⇒ (x ∧ a◦) ∨ (x ∧ b◦) = (y ∧ a◦) ∨ (y ∧ b◦)

⇒ x ∧ (a◦ ∨ b◦) = y ∧ (a◦ ∨ b◦) by distributivity of L

⇒ x ∧ (a ∧ b)◦ = y ∧ (a ∧ b)◦

⇒ (x, y) ∈ θ[(a ∧ b) ↓].

Therefore θ[(a ↓] ∩ θ[b ↓] ⊆ θ[(a ∧ b) ↓] and hence θ[(a ∧ b) ↓] = θ[a ↓] ∩ θ[b ↓].

Lemma 4.2 Let L be a decomposable MS-algebra. Then for every a, b of B(L), we have

(1) θ[aϕ(L)] is a congruence on D(L) with Coker(θ[aϕ(L)]) = aϕ(L),

(2) a ≤ b implies θ[aϕ(L)] ⊆ θ[bϕ(L)],

(3) θ[(0ϕ(L)] = △D(L) and θ[1ϕ(L)] = ▽D(L),

(4) θ[aϕ(L)] ∨ θ[bϕ(L)] = θ[(a ∨ b)ϕ(L)],

(5) θ[aϕ(L)] ∧ θ[bϕ(L)] = θ[(a ∧ b)ϕ(L)].

Proof (1) We know that aϕ(L) = a◦ ↑ ∩D(L) is a filter of D(L). Obviously, θ[aϕ(L)]

is an equivalence relation on D(L). Let (x, y), (x′, y′) ∈ θ[aϕ(L)]. Thus x ∧ d = y ∧ d and

x′ ∧ e = y′ ∧ e for some d, e ∈ aϕ(L). Then

(x ∨ x′) ∧ (d ∧ e) = (x ∧ d ∧ e) ∨ (x′ ∧ d ∧ e)

= (y ∧ d ∧ e) ∨ (y′ ∧ d ∧ e)

= (y ∨ y′) ∧ (d ∧ e) where d ∧ e ∈ aϕ(L).

Hence (x ∨ x′, y ∨ y′) ∈ θ[aϕ(L)]. Using a similar way, we get (x ∧ x′, y ∧ y′) ∈ θ[aϕ(L)], so

θ[aϕ(L)] is lattice congruence on D(L). Also, we have

Coker(θ[aϕ(L)]) = {x ∈ D(L) : (x, 1) ∈ θ[aϕ(L)]}

= {x ∈ D(L) : x ∧ d = 1 ∧ d = d for some d ∈ aϕ(L)}

= {x ∈ D(L) : x ≥ d ∈ aϕ(L)}

= aϕ(L).

(2) Let a ≤ b. Then aϕ(L) ⊆ bϕ(L). Let (x, y) ∈ θ[aϕ(L)]. Then x ∧ d = y ∧ d for some

d ∈ aϕ(L). Since d ∈ aϕ(L) and aϕ(L) ⊆ bϕ(L), then d ∈ bϕ(L). So, (x, y) ∈ θ[bϕ(L)].

Therefore θ[aϕ(L)] ⊆ θ[abϕ(L)].
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(3) Let (x, y) ∈ θ[0ϕ(L)]. Since 0ϕ(L) = (1], then x = y and hence θ[0ϕ(L)] = △D(L). Since

1ϕ(L) = D(L), then θ[1ϕ(L)] = θ[D(L)] = D(L)×D(L) = ▽D(L).

(4) Since a, b ≤ a ∨ b, then aϕ(L), bϕ(L) ⊆ (a ∨ b)ϕ(L). Hence by (2), we have

θ[aϕ(L)], θ[bϕ(L)] ⊆ θ[(a ∨ b)ϕ(L)] .

Then θ[(a∨b)ϕ(L)] is an upper bound of θ[aϕ(L)] and θ[bϕ(L)]. Let θ[cϕ(L)] be an upper bound

of θ[aϕ(L)] and θ[bϕ(L)]. Then θ[aϕ(L)], θ[bϕ(L)] ⊆ θ[cϕ(L)] implies aϕ(L), bϕ(L) ⊆ cϕ(L).

Thus (a ∨ b)ϕ(L) = aϕ(L) ∨ bϕ(L) ⊆ cϕ(L) and hence θ[(a ∨ b)ϕ(L)] ⊆ θ[cϕ(L)]. Therefore

θ[(a ∨ b)ϕ(L)] is the least upper bound of both θ[aϕ(L)] and θ[bϕ(L)].

(5) Since a ∧ b ≤ a, b, then by (2), θ[(a ∧ b)ϕ(L)] ⊆ θ[aϕ(L)], θ[bϕ(L)] and hence θ[(a ∧

b)ϕ(L)] ⊆ θ[aϕ(L)] ∩ θ[bϕ(L)]. Conversely, let (x, y) ∈ θ[aϕ(L)] ∩ θ[bϕ(L)]. Then (x, y) ∈

θ[aϕ(L)] and (x, y) ∈ θ[bϕ(L)]. Thus x∧d = y∧d for some d ∈ aϕ(L) and x∧e = y∧e for some

e ∈ bϕ(L). Since d∨e ≥ d, e and d ∈ aϕ(L), b ∈ bϕ(L), then d∨e ∈ aϕ(L)∩bϕ(L) = (a∧b)ϕ(L).

Now

x ∧ (d ∨ e) = (x ∧ d) ∨ (x ∧ e) by distributivity of L

= (y ∧ d) ∨ (y ∧ e)

= y ∧ (d ∨ e) where d ∨ e ∈ (a ∧ b)ϕ(L).

Therefore (x, y) ∈ θ[(a ∧ b)ϕ(L)] and hence θ[aϕ(L)] ∩ θ[bϕ(L)] ⊆ θ[(a ∧ b)ϕ(L)].

Let L be a decomposable MS-algebra. Consider the subsets B and D of Con(L◦◦) and

Con(D(L)), respectively as follows:

B = {θ[a ↓] : a ∈ B(L)}, D = {θ[aϕ(L)] : a ∈ B(L)}.

The proof of the following theorem is a consequence of Lemmas 4.3–4.4.

Theorem 4.2 Let L be a decomposable MS-algebra. Then

(1) (B,∨,∧,′ ,△L◦◦,▽L◦◦) is a Boolean algebra, where (θ[a ↓])′ = θ[a◦ ↓],

(2) (D,∨,∧,′ ,△D(L),▽D(L)) is a Boolean algebra, where (θ[aϕ(L)])′ = θ[a◦ϕ(L)].

Now, we observe that every central element a of a decomposable MS-algebra L associated

with the congruence pair (θ[a ↓], θ[aϕ(L)]).

Theorem 4.3 Let L be a decomposable MS-algebra and a ∈ L◦◦. Then a is a central

element of L if and only if (θ[a ↓], θ[aϕ(L)]) is a congruence pair of L.

Proof Let a be a central element of L. By Lemmas 4.3(1) and 4.4(1), θ[a ↓] and θ[aϕ(L)]

are congruences on L◦◦ and D(L), respectively. To show that (θ[a ↓], θ[aϕ(L)]) is a congruence

pair, let (b, c) ∈ θ[a ↓]. Then

(b, c) ∈ θ[a ↓] ⇒ b ∧ a◦ = c ∧ a◦

⇒ (b ∧ a◦) ∨ d = (c ∧ a◦) ∨ d for all d ∈ D(L)

⇒ (b ∨ d) ∧ (a◦ ∨ d) = (c ∨ d) ∧ (a◦ ∨ d) where a◦ ∨ d ∈ [a◦) ∩D(L) = aϕ(L)

⇒ (b ∨ d, c ∨ d) ∈ θ[aϕ(L)].



570 S. El-Assar and A. Badawy

Thus (θ[a ↓], θ[aϕ(L)]) ∈ A(L). Conversely, let (θ[a ↓], θ[aϕ(L)]) ∈ A(L). Since (a, 0) ∈ θ[a ↓],

then a ∧ a◦ = 0 ∧ a◦ = 0. Now, a ∨ a◦ = (a◦ ∧ a)◦ = 0◦ = 1. Therfore a ∈ B(L).

Let L be a decomposable MS-algebra. Consider the set

A′(L) = {(θ[a ↓], θ[aϕ(L)]) : a ∈ B(L)}.

From Theorems 4.5–4.6, we observe the following important results.

Theorem 4.4 Let L be a decomposable MS-algebra. Then (A′(L);∨,∧,′ , 0A′(L), 1A′(L)) is

a Boolean algebra, where

(θ[a ↓], θ[aϕ(L)]) ∨ (θ[b ↓], θ[bϕ(L)]) = (θ[(a ∨ b) ↓], θ[(a ∨ b)ϕ(L)]),

(θ[a ↓], θ[aϕ(L)]) ∧ (θ[b ↓], θ[bϕ(L)]) = (θ[(a ∧ b) ↓], θ[(a ∧ b)ϕ(L)]),

(θ[a ↓], θ[aϕ(L)])′ = (θ[a◦ ↓], θ[a◦ϕ(L)]),

1A′(L) = (∇L◦◦ ,∇D(L)),

0A′(L) = (△L◦◦ ,△D(L)).

Theorem 4.5 Let L be a decomposable MS-algebra. Then B(L) is isomorphic to A′(L)

under the isomorphism a 7→ (θ[a ↓], θ[aϕ(L)]).

5 Congruence Permutable of Decomposable MS-Algebras

El-Assar [21] studied the notion of n-permutability of congruences of p-algebras satisfying

certain condition. Also, El-Assar and Abd El-Hakim [24] characterized the permutability of

congruences of modular p-algebras. Badawy and Shume [16] characterized the permutability of

congruences of the class of principal p-algebras.

Let L be an algebra. We say that θ, ψ ∈ Con(L) permute if for any a, b, c ∈ L with (a, b) ∈ θ

and (b, c) ∈ ψ, there exists h ∈ L such that (a, h) ∈ ψ and (h, c) ∈ θ, that is θ ◦ψ = ψ ◦θ, where

θ ◦ ψ is the relational product of θ and ψ.

An algebra L is said to be congruence permutable (briefly, permutable) if every pair of

congruences on it is permutable.

We characterize the congruence permutable of a decomposable MS-algebra in the following

theorem.

Theorem 5.1 Let L be a decomposable MS-algebra. Then the following conditions are

equivalent:

(1) L has congruence permutable,

(2) L◦◦ and D(L) both are congruence permutable.

Proof To show the equivalence of the conditions (1) and (2), we have to show that t-

wo congruences θ, ψ ∈ Con(L) are permutable if and only if their restrictions θL◦◦ , ψL◦◦ and

θD(L), ψD(L) both are congruence permutable on L◦◦ and D(L), respectively. Let θ, ψ be per-

mutable on L. Firstly, we will prove that θL◦◦, ψL◦◦ are permutable on L◦◦. Let a, b, c ∈ L◦◦

be such that (a, b) ∈ θL◦◦ and (b, c) ∈ ψL◦◦ . Then (a, b) ∈ θ and (b, c) ∈ ψ. Since θ, ψ are

permutable, then there exists x ∈ L such that (a, x) ∈ ψ and (x, c) ∈ θ. Thus (a, x◦◦) ∈ ψ and
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(x◦◦, c) ∈ θ. Then (a, x◦◦) ∈ ψL◦◦ and (x◦◦, c) ∈ θL◦◦ as x◦◦ ∈ L◦◦. Therefore θL◦◦ , ψL◦◦ are

permutable on L◦◦. Now we prove that permutability of θ and ψ implies permutability of θD(L)

and ψD(L). Let x, y, z ∈ D(L) be such that (x, y) ∈ θD(L) and (y, z) ∈ ψD(L). Then (x, y) ∈ θ

and (y, z) ∈ ψ. Since θ, ψ are permutable, then there exists a ∈ L such that (x, a) ∈ ψ and

(a, z) ∈ θ. Then for every d ∈ D(L), we have (x ∨ d, a ∨ d) ∈ ψ and (a ∨ d, z ∨ d) ∈ θ. We can

choose d ≤ x, z. Then (x, a ∨ d) ∈ ψD(L) and (a ∨ d, z) ∈ θD(L) with a ∨ d ∈ D(L). Therefore

θD(L) and θD(L) both are congruence permutable on D(L).

Conversely, let θ, ψ ∈ Con(L) such that θL◦◦, ψL◦◦ and θD(L), ψD(L) are congruence per-

mutable on L◦◦ and D(L) respectively. Consider the elements x, y, z ∈ L with (x, y) ∈ θ and

(y, z) ∈ ψ. By Theorem 3.4, we get (x◦◦, y◦◦) ∈ θL◦◦ , (y◦◦, z◦◦) ∈ ψL◦◦ and (x ∨ d, y ∨ d) ∈

θD(L), (y∨d, z∨d) ∈ ψD(L) for all d ∈ D(L). Since θL◦◦ , ψL◦◦ are permutable, then there exists

a ∈ L◦◦ with (x◦◦, a) ∈ ψL◦◦ and (a, z◦◦) ∈ θL◦◦ . Since θD(L), ψD(L) are permutable congru-

ences on D(L), then there exists e ∈ D(L) such that (x ∨ d, e) ∈ ψD(L) and (e, z ∨ d) ∈ θD(L).

It follows that

(x◦◦, a) ∈ ψ, (a, z◦◦) ∈ θ, and (x ∨ d, e) ∈ ψ, (e, z ∨ d) ∈ θ.

Since L is a decomposable MS-algebra, then there exist d1, d2 ∈ D(L) such that x = x◦◦ ∧ d1

and z = z◦◦∧d2. Hence x ≤ d1 and z ≤ d2. Since θ and ψ are compatible with the ∧ operation,

then we have

(x◦◦, a) ∈ ψ and (x ∨ d1, e) ∈ ψ imply (x, a ∧ e) = (x◦◦ ∧ (x ∨ d1), a ∧ e) ∈ ψ,

and

(a, z◦◦) ∈ θ and (e, z ∨ d2) ∈ θ imply (a ∧ e, z) = (a ∧ e, z◦◦ ∧ (z ∨ d2)) ∈ θ.

Consequently, we deduce that (x, a ∧ e) ∈ ψ and (a ∧ e, z) ∈ θ. Therefore θ, ψ are permutable.

Let L be an MS-algebra. Define the relation Φ on L as follows:

(x, y) ∈ Φ ⇔ x◦◦ = y◦◦.

It is known that Φ is a congruence relation on L (see [18]). Then Φ satisfies the following

property.

Corollary 5.1 Let L be a decomposable MS-algebra. Then the congruence relation Φ per-

mutes with any element of Con(L), as ΦL◦◦ = △L◦◦ and ΦD(L) = ∇D(L).

6 Strong Extensions of Decomposable MS-Algebras

It is known that the class of distributive lattices satisfies the Congruence Extension Property

(CEP for short) briefly. Luo [30] proved that the class MS of all MS-algebras satisfies the CEP.

The notion of a strong extension of algebras was first introduced by Varlet [32]. EL-Assar and

Abd El-Hakim [24] studied the strong extension for modular p-algebras. Also EL-Assar [22]

introduced the strong extension for quasi-modular p-algebras. Now we recall the following two

definitions.
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Definition 6.1 (see [28]) An algebra A satisfies the CEP if for every subalgebra B of A

and every θ of B, θ extends to a congruence of A.

Definition 6.2 (see [28]) An algebra L is said to be a strong extension of the algebra M ,

if M is a subalgebra of L and every congruence of M has at most one extension to L.

In the following theorem, we study strong extensions of decomposable MS-algebras using

the congruence pairs technique.

Theorem 6.1 Let L be a subalgebra of a decomposable MS-algebra L1. Then L1 is a strong

extension of L if and only if the following conditions hold:

(1) D(L1) is a strong extension of D(L),

(2) L◦◦

1 is a strong extension of L◦◦.

Proof Let L1 be a strong extension of L. Let θ2 ∈ Con(D(L)). Then θ2 has an extension

to D(L1). Since CEP holds for the class of distributive lattices, we have to verify that θ2 has a

unique extension to D(L1). Let θ2, θ́2 ∈ Con(D(L1)) such that θ2 | D(L) = θ́2 | D(L) = θ2. By

Corollary 3.6 (1), we have (△L◦◦

1
, θ2), (△L◦◦

1
, θ́2) ∈ A(L1) and (△L◦◦ , θ2) ∈ A(L). By Theorem

3.4, there exist θ and θ́ ∈ Con(L1) and θ ∈ Con(L) determined by the congruence pairs

(△L◦◦

1
, θ2), (△L◦◦

1
, θ́2) and (△L◦◦ , θ2), respectively. Now, we deduce that θ | L = θ́ | L = θ,

but θ has at most one extension to L1. Thus θ = θ́, and this result leads to θ2 = θ́2, proving

(1). Now we prove that L◦◦

1 is a strong extension of L◦◦. Let θ1 ∈ Con(L◦◦). Then θ1 has

an extension to L◦◦

1 , because the class of de Morgan algebras satisfies the CEP. We will show

that this extension is unique. Let θ1, θ́1 ∈ Con(L◦◦

1 ) with θ1 | L◦◦ = θ́1 | L◦◦ = θ1. Then by

Corollary 3.6 (2), it is clear that (θ1,∇D(L1)) and (θ́1,∇D(L1)) are congruence pairs of L1 and

(θ1,∇D(L)) is a congruence pair of L. Now, by Theorem 3.4, there exist θ and θ́ of Con(L1)

corresponding to (θ1,∇D(L1)) and (θ́1,∇D(L1)) respectively and θ of Con(L) corresponding to

(θ1,∇D(L1)). Then θ | L = θ́ | L = θ, which gives θ1 = θ́1. Therefore L
◦◦

1 is a strong extension

of L◦◦. Conversely, suppose that the conditions (1) and (2) hold and let θ ∈ Con(L). Then θ

has an extension to L1, because the class of MS-algebras satisfies the CEP. We will show that

this extension is unique. Assume that θ and θ́ of Con(L1) such that θ | L = θ́ | L = θ. By

Theorem 3.4, these can be represented by congruence pairs as θ = (θ1, θ2), θ́ = (θ́1, θ́2) and

θ = (θ1, θ2), where θ1 | L◦◦ = θ́1 | L◦◦ = θ1 and θ2 | D(L) = θ́2 | D(L) = θ2. By the conditions

(1) and (2), we get θ1 = θ́1 and θ2 = θ́2. Therefore θ = θ́.

Corollary 6.1 Let L1 and L be decomposable MS-algebras. If L1 is a strong extension of

L, then Con(L1) ∼= Con(L).

Proof Since the class of MS-algebras satisfies the CEP, then every congruence of L has an

extension. By hypotheses this extension is unique. Then Con(L1) ∼= Con(L).

7 Conclusion

In this paper, we introduced the notion of congruence pairs of decomposable MS-algebras. It

is proved that every congruence relation θ on a decomposable MS-algebra L can be represented

by a unique congruence pair (θ1, θ2), where θ1 is a congruence relation on the de Morgan algebra
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L◦◦ and θ2 is a lattice congruence relation on the lattice D(L). Also, it is observed that Con(L),

the lattice of all congruences of a decomposable MS-algebra L, is isomorphic to A(L), the lattice

of all congruence pairs of L. It is observed that there is a one to one correspondence between

the set B(L) of central elements of a decomposable MS-algebra L and the set of congruence

pairs of the form (θ[a ↓], θ[aϕ(L)]), where a ∈ B(L). Permutability of congruences and strong

extensions of decomposable MS-algebras are considered in terms of congruence pairs. In a

future work, we will describe the congruence lattices of decomposable MS-algebras by means

of congruence pairs.
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