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1 Introduction

Group algebra is one of the important sources of constructing linear codes. We call C a

group code if C is just a right ideal in a group ring R[G], where R is a commutative ring and

G is a finite group. In particular, if G is abelian, then C is an abelian code. A brief survey on

group codes of some recent results is provided as follows.

(1) Ferraz et al. [10] determined the number of simple components of a semisimple finite

abelian group algebra, in term of the number of q-cyclotomic classes.

(2) Brochero Mart́ınez et al. [3] determined an explicit expression for the primitive idempo-

tents of Fq[G], where Fq is a finite field, G is a finite cyclic group of order pk, and p is an odd

prime with gcd(q, p) = 1. Brochero Mart́ınez [2] also showed explicitly all central irreducible

idempotents and their Wedderburn decomposition of the dihedral group algebra Fq[D2n] if every

prime divisor of n divides q − 1.

(3) Polcino Milies et al. [17] calculated the minimum distances and the dimensions of all

cyclic codes of length pn over a finite field Fq. If p is an odd prime, Fq is a finite field with
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q elements, and q generates the group of invertible elements of the residue ring module pn,

denoted by Zpn .

(4) Jitman et al. [12] gave a characterization and an enumeration of Euclidean self-dual and

Euclidean self-orthogonal abelian codes in principal ideal group algebras. Then Jitman et al.

continued this work and studied the Hermitian self-dual abelian codes in a group ring Fq2 [G]

in [13].

(5) Choosuwan et al. [6] gave the complete enumeration of self-dual abelian codes in non-

principal ideal group algebras F2k [A×Z×Z2s ] with respect to both the Euclidean and Hermitian

inner products, where k and s are positive and A is an abelian group of odd order.

(6) In 2017, Boripan et al. [1] studied a family of abelian codes with complementary dual

in a group algebra Fpv [G] in the two cases of Euclidean and Hermitian inner products, where p

is a prime, v is a positive integer, and G is an arbitrary finite abelian group.

(7) Cao et al. [7] proved that any left D2n-code (left ideal of the group algebra Fq[D2n]

with gcd(q, 2n) = 1) is a direct sum of concatenated codes with inner codes Ai and outer codes

Ci, where Ai is a minimal self-reciprocal cyclic code over Fq of length n and Ci is a skew cyclic

code of length 2 over an extension field or principal ideal ring of Fq. Cao et al. also extended

the results of [7] to the left dihedral codes over Galois rings GR(p2, n) in [8].

Linear complementary dual (LCD for short) codes are a class of linear codes introduced by

Massey [14] in 1964. LCD codes have been extensively studied in literature recently. Carlet et

al. [5] introduced a general construction of LCD codes from linear codes. Mesnager et al. [15]

provided a construction scheme for obtaining LCD codes from any algebraic curve. Carlet et. al

[4] investigated several constructions of new Euclidean and Hermitian LCD maximum distance

separable (MDS for short) code using some linear codes with small dimension or codimension,

self-orthogonal codes and generalized Reed-Solomon codes.

In this paper, we give precise descriptions and enumerations of LCD codes and self-orthogonal

codes in the finite dihedral group algebras Fq[D2n] if gcd(q, 2n) = 1. Some numerical examples

are also presented to illustrate our main results.

The present paper is organized as follows. In Section 2, we give a review of some properties

of group algebras and some other preliminaries. In Section 3, we prove our main results. In

Section 4, as examples, we count the numbers of all LCD and self-orthgonal codes for the

following dihedral group algebras: (i) for q = 3, F3[D14],F3[D16],F3[D26]; (ii) for q = 5,

F5[D16],F5[D26].

2 Preliminaries

2.1 Group algebras

Let Fq be a finite field and G a finite group. The group algebra Fq[G] is defined as the

vector over Fq with basis G, and it has scalar, additive and multiplicative operators as follows:

For c, ag, bg ∈ Fq and g ∈ G,

c
(∑

g∈G

agg
)
=

∑

g∈G

cagg,
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∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g,

(∑

g∈G

agg
)( ∑

h∈G

bhh
)
=

∑

g∈G

( ∑

uv=g

aubv

)
g.

Then Fq[G] is an associative Fq-algebra with the identity 1 = 1Fq
1G, where 1Fq

and 1G are the

identity elements of Fq and G, respectively. Readers are referred to [16, 18] for more details on

group ring or group algebra.

Define the (standard) inner product on Fq[G] as follows: For α =
∑
g∈G

agg, β =
∑
g∈G

bgg ∈

Fq[G],

〈α, β〉 =
∑

g∈G

agbg.

If C is a right ideal of Fq[G], then C is a linear code over Fq. Hence the dual code of C is

defined as

C⊥ = {α ∈ Fq[G] | 〈α, β〉 = 0 for every β ∈ C}.

If C ⊆ C⊥, then C is called a self-orthogonal code. If C
⋂
C⊥ = 0, then C is called a linear

complementary dual code, or shortly an LCD code. One has the following simple fact: If

g, h ∈ G, then

〈g, h〉 =

{
1, if g = h,
0, otherwise.

Suppose that α, β ∈ Fq[G] and g ∈ G. Then

〈αg, βg〉 = 〈α, β〉,

which is called G-invariance. Suppose that α =
∑
g∈G

agg ∈ Fq[G]. Then wt(α) = |{ag 6= 0| g ∈

G}| is called the Hamming weight of α.

2.2 Some lemmas

Lemma 2.1 (see Maschke’s Theorem [18]) Let R be a ring and G be a group. Then the

group ring R[G] is semisimple if and only if the following conditions hold.

(i) R is a semisimple ring.

(ii) G is finite.

(iii) |G| is invertible in R.

By Lemma 2.1, it is easy to verify that Fq[G] is semisimple if and only if G is a finite group

and char(Fq) ∤ |G|. By the Wedderburn-Artin theorem, Fq[G] is isomorphic to a direct sum of

matrix algebras over division rings, such that each division algebra is a finite algebra over Fq,

i.e., there is an isomorphism of Fq-algebra:

ρ : Fq[G] ∼= Ml1(D1)
⊕

Ml2(D2)
⊕

· · ·
⊕

Mlt(Dt),
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whereDj are fields such that |G| =
t∑

j=1

l2j [Dj : Fq]. Hence, every right ideal of Fq[G] is generated

by an idempotent of Fq[G]. Observe that Fq[G] has t central irreducible idempotents, each one

of the form

ei = ρ−1(0, · · · , 0, Ii, 0, · · · , 0),

where Ii are the identity matrices of the component Mli(Di) for 1 ≤ i ≤ t.

Let Fq be a finite field of order q and n be a positive integer with gcd(2n, q) = 1. For any

monic polynomial g(x) ∈ Fq[x] with g(0) = a0 6= 0, g∗(x) denotes the reciprocal polynomial of

g(x), i.e., g∗(x) = a−1
0 xdeg(g)g( 1

x
). We say that g(x) is a self-reciprocal polynomial if g(x) =

g∗(x). Suppose that there is an irreducible factorization of xn − 1 over Fq as follows:

xn − 1 = f1(x)f2(x) · · · fr(x)fr+1(x)f
∗
r+1(x) · · · fr+s(x)f

∗
r+s(x),

where fi(x) = f∗
i (x), 1 ≤ i ≤ r. For convenience, we set f1(x) = x− 1 and f2(x) = x+ 1 if n is

even; and f1(x) = x− 1 if n is odd.

Let Cn be a cyclic group of order n. It is well known that Fq[Cn] ∼= Fq[x]/〈x
n − 1〉. By the

Chinese remainder theorem,

Fq[x]/〈x
n − 1〉 ∼=

( r+s⊕

j=1

Fq[x]/〈fj(x)〉
)
⊕

( r+s⊕

j=r+1

Fq[x]/〈f
∗
j (x)〉

)
.

Lemma 2.2 (see [3]) Let I be an ideal of Fq[Cn] generated by the monic polynomial g(x),

which is a divisor of xn − 1. Set f(x) = xn
−1

g(x) . Then the principal idempotent of I is

ef = −
((f∗(x))′)∗

n
·
xn − 1

f(x)
.

Lemma 2.3 (see [2]) Let Fq be a finite field with order q and D2n = 〈x, y | xn = 1, y2 =

1, yxy = x−1〉 be the dihedral group with 2n elements. Then the group algebra Fq[D2n] has the

Wedderburn decomposition of the form

Fq[D2n] ∼=

r+s⊕

j=1

Aj ,

where

Aj =

{
Fq

⊕
Fq, j ≤ δ,

M2(Fq(αj + α−1
j )), δ + 1 ≤ j ≤ r + s,

δ =

{
1, if n is odd,
2, if n is even.

Observe that, if r + 1 ≤ j ≤ r + s, then M2(Fq(αj + α−1
j )) = M2(Fq(αj)).

Lemma 2.4 (see [2]) The dihedral group algebra Fq[D2n] has δ + r + s central irreducible

idempotents:

(1) 2δ idempotents of the form 1+y

2 efj and 1−y

2 efj , where j ≤ δ,

(2) r− δ idempotents efj , where j = δ+1, · · · , r, generated by the auto-reciprocals factor of

xn − 1,

(3) s idempotents efj + ef∗

j
, where j = r + 1, · · · , r + s.
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3 Main Results

The adjoint of an element α =
∑
g∈G

agg ∈ Fq[G] is defined by α̂ =
∑
g∈G

agg
−1. Suppose that

e is an idempotent of Fq[G]. If eFq[G] is an irreducible right ideal, e is called an irreducible

idempotent. If there is a factorization of orthogonal irreducible idempotents: 1 = e1 + · · ·+ en,

then {e1, · · · , en} is called a complete set of orthogonal idempotents. In fact, for each right

ideal I of Fq[G], I =
∑
i∈S

eiFq[G], where S ⊂ {1, · · · , n}.

If ê = e, then e is called a projective idempotent. If êe = 0, then e is called an isotropic

idempotent.

Lemma 3.1 (see [9]) If C is a right ideal of Fq[G], then the following statements are

equivalent:

(a) C is an LCD code,

(b) C = eFq[G], where e2 = e = ê.

In this section, we give the generators and enumerations of LCD codes and self-orthogonal

codes in finite dihedral group algebra Fq[D2n]. In the following, we shall find a complete

set of orthogonal idempotent with irreducible projective idempotents and irreducible isotropic

idempotents by central irreducible idempotents of Fq[D2n] by Lemma 2.4.

Theorem 3.1 The dihedral group algebra Fq[D2n] has a complete set of orthogonal idem-

potents with 2r irreducible projective idempotents and 2s irreducible isotropic idempotents.

Proof (1) As in the proof of Lemma 2.3, let τ be the isomorphism of Fq-algebra defined

by
r+s∑
j=1

τj . Note that

τ1 : Fq[D2n] → Fq

⊕
Fq,

x 7→ (1, 1), y 7→ (1,−1),

and if n is even, then

τ2 : Fq[D2n] → Fq

⊕
Fq,

x 7→ (−1,−1), y 7→ (1,−1).

For j ≥ δ + 1,

τj : Fq[D2n] → M2(Fq(αj)),

x 7→

(
αj 0
0 α−1

j

)
, y 7→

(
0 1
1 0

)
,

where αj is a root of fj(x).

By Lemma 2.2, efj (1 ≤ j ≤ r) are center primitive idempotents of Fq[Cn]. We proceed the

proof with the following two cases:

Case 1. If j ≤ δ, then by Lemma 2.4, 1+y
2 efj and 1−y

2 efj are orthogonal irreducible idem-

potents of dihedral group algebra Fq[D2n].
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Case 2. If δ + 1 ≤ j ≤ r, then we need to verify that τj(
1+y
2 efj ) and τj(

1−y
2 efj ) are

idempotents of M2(Fq(αj)). Since fj(x) = f∗
j (x) and αj is a root of fj(x),

τj(efj ) =

(
efj (αj) 0

0 efj (αj)

)
=

(
1 0
0 1

)
.

Hence

τj

(1 + y

2
efj

)
= τj

(1 + y

2

)
τj(efj ) =

1

2

(
1 1
1 1

)(
1 0
0 1

)
=

1

2

(
1 1
1 1

)
,

τj

(1− y

2
efj

)
= τj

(1− y

2

)
τj(efj ) =

1

2

(
1 −1
−1 1

)(
1 0
0 1

)
=

1

2

(
1 −1
−1 1

)
.

It is obvious that τj
(
1+y

2 efj
)
and τj

(
1−y

2 efj
)
are orthogonal irreducible idempotents of M2(Fq

(αj)), and moreover,

τj

(1 + y

2
efj

)
+ τj

(1− y

2
efj

)
= I2.

Therefore, 1+y
2 efj and 1−y

2 efj are orthogonal irreducible idempotents of Fq[D2n].

Next we prove that efj = êfj by Lemma 3.1. In fact,

efj = −
((f∗

j (x))
′)∗

n
·
xn − 1

fj(x)
=

k∑

i=1

uλji
,

where fj(x) = (x − λj1)(x − λj2) · · · (x − λjk) ∈ Fqt [x], Fq[x]/(fj(x)) ∼= Fqt (for some positive

integer t), and

uλji
=

1

n

n−1∑

l=0

λ−l
ji x

l =
1

n
(1 + λ−1

ji x+ λ−2
ji x2 + · · ·+ λ1−n

ji xn−1), 1 ≤ j ≤ k.

Then

ûλji
=

1

n
(1 + λ−1

ji x
−1 + λ−2

ji x
−2 + · · ·+ λn− l

ji x−(n−1)).

Since λj1, λj2, · · · , λjk are all roots of fj(x), λ
−1
j1 , λ−1

j2 , · · · , λ
−1
jk are also all roots of fj(x). Hence

êfj = efj .

Since ŷ = y−1 = y, it is easy to get two orthogonal irreducible projective idempotents:

̂1 + y

2
efj =

1 + y

2
efj ,

̂1− y

2
efj =

1− y

2
efj ,

and τj
(
1+y

2 efj
)
+ τj

(
1−y

2 efj
)
= I2, δ + 1 ≤ j ≤ r.

(2) Next, we need to check that êfj efj = 0 and êf∗

j
ef∗

j
= 0 for all j = r + 1, · · · , r + s.

In fact, fj(x) = (x − λj1)(x − λj2) · · · (x − λjk) ∈ Fqt [x], Fq[x]/(fj(x)) ∼= Fqt , and efj =

−
((f∗

j (x))
′)∗

n
· xn

−1
fj(x)

=
k∑

i=1

uλji
, where uλji

= 1
n

n−1∑
l=0

λ−l
ji x

l, 1 ≤ i ≤ k. Then

ûλji
=

1

n
(1 + λ−1

ji x
−1 + λ−2

ji x−2 + · · ·+ λn−l
ji x−(n−1)).

Since λj1, λj2, · · · , λjk are all roots of fj(x), λ
−1
j1 , λ

−1
j2 , · · · , λ−1

jk are also all roots of f∗
j (x). Hence

êfj = ef∗

j
.
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Hence

τj(êfjefj ) = τj(êfj )τj(efj ) =

(
êfj (αj) 0

0 êfj (α
−1
j )

)(
efj (αj) 0

0 efj (α
−1
j )

)

=

(
0 0
0 1

)(
1 0
0 0

)
= 0.

Similarly, we can obtain τj(êf∗

j
ef∗

j
) = 0. Therefore êfjefj = 0, êf∗

j
ef∗

j
= 0, efj + ef∗

j
= I2.

This completes the proof.

For convenience of enumerations, we give the following sets:

∆1 =
{1 + y

2
efi ,

1− y

2
efi : 1 ≤ i ≤ r

}
,

∆2 = {efi , ef∗

i
: r + 1 ≤ i ≤ r + s}.

Then ∆1 ∪∆2 is a complete set of orthogonal idempotents in Fq[D2n].

Theorem 3.2 There are 22r+s LCD codes in the finite dihedral group algebra Fq[D2n].

Proof For a right ideal C of Fq[D2n], by the Wedderburn-Artin theorem

C =
(∑

i∈S

ei

)
Fq[D2n],

where S ⊂ ∆1 ∪∆2. By Lemma 3.1, C is an LCD code if and only if
∑̂
i∈S

ei =
∑
i∈S

êi =
∑
i∈S

ei.

It is easy to know that the idempotents of ∆1 are irreducible projective idempotents. Set

∆′
2 = {efi + ef∗

i
: r + 1 ≤ i ≤ r + s}.

Then ∆1 ∪∆′
2 consists of all irreducible projective idempotents.

Suppose that C =
∑
i∈S

eiFq[D2n] is an LCD code. Then S ⊂ ∆1 ∪ ∆′
2. The converse also

holds. Moreover, from |∆1 ∪∆′
2| = 2s+ r, we obtain the result.

The proof is completed.

Lemma 3.2 For any α, β, γ ∈ Fq[G], 〈αβ, γ〉 = 〈α, β̂γ〉.

Proof For g ∈ G, we only need to verify that 〈gβ, γ〉 = 〈g, β̂γ〉. Letting β =
∑
h∈G

ahh, γ =
∑
h∈G

bhh, we obtain that

〈gβ, γ〉 =
〈 ∑

h∈G

ahgh,
∑

h∈G

bhh
〉
=

∑

h∈G

ahbh,

〈g, β̂γ〉 =
〈
g,

∑

h∈G

ahh
−1

∑

h∈G

bhh
〉
=

〈
g,

∑

h∈G

ahh
−1

∑

h∈G

bhhg
〉
=

∑

h∈G

ahbh.

Therefore, we get 〈gβ, γ〉 = 〈g, β̂γ〉, and in general, we have 〈αβ, γ〉 = 〈α, β̂γ〉.

This completes the proof.

Based on Lemma 3.2, we can get the following theorem.
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Theorem 3.3 Let C = eFq[G] be an right ideal of Fq[G], where e is an idempotent of Fq[G].

Then C is a self-orthogonal code if and only if êe = 0.

Proof For any α, β ∈ Fq[G], we can easily get

0 = 〈eα, eβ〉 = 〈α, êeβ〉.

Hence, we have êe = 0.

The proof is completed.

Theorem 3.4 There are 3s self-orthogonal codes in the finite dihedral group algebra Fq[D2n].

Proof For a right ideal C of Fq[D2n], by the Wedderburn-Artin theorem

C =
(∑

i∈S

ei

)
Fq[D2n],

where S ⊂ ∆1∪∆2. By Theorem 3.3. C is a self-orthogonal code if and only if
∑̂
i∈S

ei
( ∑
i∈S

ei
)
= 0.

Suppose that C = fFq[D2n] is a right ideal of Fq[D2n], where

f =
∑

efi+ef∗

i
∈∆′

2

(aefi + bef∗

i
), (a, b) ∈ {(0, 0), (0, 1), (1, 0)}.

Then C is a self-orthogonal code. The converse also holds. Moreover, from |∆′
2| = s, we obtain

the result.

The proof is completed.

4 Examples

In this section, we will give some examples to illustrate our main results.

Example 4.1 (i) Let q = 3 and n = 7. We consider the dihedral group algebra F3[D14].

Here

x7 − 1 = f1(x)f2(x),

where

f1(x) = x− 1, f2(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

By Theorem 3.2, there are 24 LCD codes in F3[D14].

(ii) Let q = 3 and n = 8. We consider the dihedral group algebra F3[D16]. Here

x8 − 1 = f1(x)f2(x)f3(x)f4(x)f
∗
4 (x),

where

f1(x) = x− 1, f2(x) = x+ 1, f3(x) = x2 + 1, f4(x) = x2 + x+ 2, f∗
4 (x) = x2 + 2x+ 2.

By Theorem 3.2, there are 27 LCD codes in F3[D16]. By Theorem 3.4, there are 3 self-

orthogonal codes in F3[D16].
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(iii) Let q = 3 and n = 13. We consider the dihedral group algebra F3[D26]. Here

x13 − 1 = f1(x)f2(x)f
∗
2 (x)f3(x)f

∗
3 (x),

where

f1(x) = x− 1, f2(x) = x3 + 2x+ 2, f∗
2 (x) = x3 + x2 + 2,

f3(x) = x3 + x2 + x+ 1, f∗
4 (x) = x3 + 2x2 + 2x+ 2.

By Theorem 3.2, there are 24 LCD codes in F3[D26]. By Theorem 3.4, there are 32 self-

orthogonal codes in F3[D26].

Example 4.2 (i) Let q = 5 and n = 8. We consider the dihedral group algebra F5[D16].

Here

x8 − 1 = f1(x)f2(x)f3(x)f
∗
3 (x)f4(x)f

∗
4 (x),

where

f1(x) = x− 1, f2(x) = x+ 1, f3(x) = x+ 2, f∗
3 (x) = x+ 3,

f4(x) = x2 + 2, f∗
4 (x) = x2 + 3.

By Theorem 3.2, there are 26 LCD codes in F5[D16]. By Theorem 3.4, there are 32 self-

orthogonal codes in F5[D16].

(ii) Let q = 5 and n = 13. We consider the dihedral group algebra F5[D26]. Here

x13 − 1 = f1(x)f2(x)f3(x)f4(x),

where

f1(x) = x− 1, f2(x) = x4 + x3 + 4x2 + x+ 1,

f3(x) = x4 + 2x3 + x2 + 2x+ 1, f4(x) = x4 + 3x3 + 3x+ 1.

By Theorem 3.4, there are 28 LCD codes in F5[D26].
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