A Künneth Formula for Finite Sets*

Chong WANG ${ }^{1}$ Shiquan REN ${ }^{2}$ Jian LIU 3

Abstract

In this paper, the authors define the homology of sets, which comes from and contains the ideas of path homology and embedded homology. Moreover, A Künneth formula for sets associated to the homology of sets is given.

Keywords Künneth formula, Finite set, Principal ideal domain, Cartesian product, Free R-module
2020 MR Subject Classification Primary 55U15, 55N35; Secondary 55U25.

1 Introduction

Let R be a commutative ring with unit, and let (C, ∂) be a complex of finitely generated free R-modules of rank n. Let $X=\left\{x_{1}, \cdots, x_{n}\right\}$ be a finite set. Then there is a natural map

$$
X \rightarrow C, \quad x_{i} \mapsto e_{i},
$$

where e_{1}, \cdots, e_{n} is a basis of C. For the sake of simplicity, we denote $C=(R[X], \partial)$. Let S be a graded sub R-module of C. Let $\operatorname{Inf}_{*}(S, C)=\left(S \cap \partial^{-1} S, \partial\right)$. Then $\operatorname{Inf}_{*}(S, C)$ is a subcomplex of C.

Definition 1.1 Let Y be a subset of X, and let $R[Y]$ be a free R-module generated by Y. The homology of the set Y associated to $C=(R[X], \partial)$ is

$$
H_{C}(Y ; R)=H\left(\operatorname{Inf}_{*}(R[Y], C)\right)
$$

If there is no ambiguity, we denote $H(Y)=H_{C}(Y ; R)$.
The idea of the homology of sets is essentially from the path homology of digraphs (see [4]) and multi-graphs (see [5]) and the embedded homology of hypergraphs (see [2]). In this paper, we will always consider free R-modules instead of abelian groups.

[^0]Künneth formulas describe the homology of a product space in terms of the homology of the factors. In [7], Hatcher gave the classical algebraic Künneth formula. In [4, 6], Grigor'yan, Lin, Muranov and Yau studied the Künneth formula for the path homology (with field coefficients) of digraphs. In this paper, we study the Künneth formula for sets which can be applied to digraphs and hypergraphs.

From now on, R is assumed to be a principal ideal domain. For convenience, the tensor product is always over R.

Theorem 1.1 Let R be a principal ideal domain. Let $C=R[X], C^{\prime}=R\left[X^{\prime}\right]$ be complexes of free R-modules generated by finite sets X, X^{\prime}, respectively, and let Y, Y^{\prime} be subsets of X, X^{\prime}, respectively. Then there is a natural exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(Y) \otimes H_{q}\left(Y^{\prime}\right) \rightarrow H_{n}\left(Y \times Y^{\prime}\right) \rightarrow \bigoplus_{p+q=n} \operatorname{Tor}_{R}\left(H_{p}(Y), H_{q-1}\left(Y^{\prime}\right)\right) \rightarrow 0
$$

where $Y \times Y^{\prime}$ is the Cartesian product of sets.
Recently, people are interested in digraphs in topology (see [4, 6]). Let $G=(V, E)$ be a digraph. Let X be the set of regular paths on V. Then we can obtain a chain complex $(C, \partial)=(R[X], \partial)($ see $[6])$. Let $A(G)$ be the set of allowed paths on G. We find that the path homology of digraph G coincides with the homology of set $A(G)$, i.e.,

$$
H(G)=H_{C}(A(G)) .
$$

Grigor'yan et al. studied the Künneth formula for digraphs over a field (see [6]). Let G^{\prime} be another digraph. In view of Theorem 1.1, in order to get the Künneth formula for digraphs with ring coefficients, we need to show

$$
H\left(A(G) \times A\left(G^{\prime}\right)\right) \cong H\left(A\left(G \square G^{\prime}\right)\right),
$$

wheredenotes the Cartesian product of digraphs.
A hypergraph is a potential topic connecting simplicial complex in topology and a graph in combinatorics, which is worth studying both in theory and application (see [1-3, 9]). Let \mathcal{H} be a hypergraph. Let $\mathcal{K}_{\mathcal{H}}$ be the smallest simplicial complex containing \mathcal{H}. Note that \mathcal{H} is a set of hyperedges, we observe that

$$
H(\mathcal{H})=H_{C}(\mathcal{H})
$$

where $(C, \partial)=\left(C_{*}\left(\mathcal{K}_{\mathcal{H}} ; R\right), \partial\right)$ is the chain complex of simplicial complex $\mathcal{K}_{\mathcal{H}}$. Let \mathcal{H}^{\prime} be another hypergraph. By Theorem 1.1, we have

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(\mathcal{H}) \otimes H_{q}\left(\mathcal{H}^{\prime}\right) \rightarrow H_{n}\left(\mathcal{H} \times \mathcal{H}^{\prime}\right) \rightarrow \bigoplus_{p+q=n} \operatorname{Tor}_{R}\left(H_{p}(\mathcal{H}), H_{q-1}\left(\mathcal{H}^{\prime}\right)\right) \rightarrow 0,
$$

where $\mathcal{H} \times \mathcal{H}^{\prime}$ is the Cartesian product of sets. Unfortunately, $\mathcal{H} \times \mathcal{H}^{\prime}$ is not a hypergraph. In another paper, we give a product of hypergraphs and show the Künneth formula for hypergraphs.

In the next section, we build a basic algebraic language. In Section 3, we prove Theorem 1.1.

2 Preliminaries

In this section, let $(C, \partial)=(R[X], \partial)$ be a complex of free R-modules generated by a finite set X. Let $D=R[Y]$ be a free R-module generated by $Y \subseteq X$.

Proposition 2.1 (see [8]) Let M be an $m \times n$ matrix over R. Then we have

$$
M=U \Lambda V, \quad U \in R^{m \times m}, V \in R^{n \times n}
$$

where $\operatorname{det}(U)=\operatorname{det}(V)=1$ and Λ is a matrix of form $\left(\Lambda_{m} O\right)$ or $\binom{\Lambda_{n}}{O}$. Here, Λ_{m} and Λ_{n} are diagonal matrices.

Lemma 2.1 Suppose that $z \in D$ and $\lambda z \in \operatorname{Inf}_{*}(D, C)$ for some nonzero element $\lambda \in R$. Then we have $z \in \operatorname{Inf}_{*}(D, C)$.

Proof Let $X=\left\{x_{1}, \cdots, x_{n}\right\}$. Then x_{1}, \cdots, x_{n} is a basis of $R[X]$. For convenience, we denote $e_{X}=\left(x_{1}, \cdots, x_{n}\right)^{T}$. Let Z be the set of complement of Y in X. Then we have $X=Y \sqcup Z$. Assume that

$$
\partial z=\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b}
\end{array}\right)\binom{e_{Y}}{e_{Z}}
$$

where $\mathbf{a}=\left(a_{1}, \cdots, a_{|Y|}\right) \in R^{1 \times|Y|}, \mathbf{b}=\left(b_{1}, \cdots, b_{|Z|}\right) \in R^{1 \times|Z|}$ and e_{Y}, e_{Z} are given by sets Y, Z, respectively. Since $\lambda \partial z \in D$, it follows that

$$
\lambda \mathbf{b} e_{Z}=0 .
$$

Since R is an integral domain, we have $\mathbf{b} e_{Z}=0$. Thus we obtain

$$
\partial z=\mathbf{a} e_{Y} \in D
$$

The lemma is proved.
Lemma 2.2 There is a basis $e_{1}, \cdots, e_{r(D)}$ of D such that $e_{1}, \cdots, e_{\alpha}$ is a basis of $\operatorname{Inf}_{*}(D, C)$ for some α, where $r(D)$ is the rank of D.

Proof Let e_{1}, \cdots, e_{n} be a basis of D, and let $f_{1}, \cdots, f_{\alpha}$ be a basis of $\operatorname{Inf}_{*}(D, C)$. Then we have

$$
\mathbf{f}=A \mathbf{e}
$$

where $\mathbf{f}=\left(f_{1}, \cdots, f_{\alpha}\right)^{T}, \mathbf{e}=\left(e_{1}, \cdots, e_{n}\right)^{T}$ and A is an $\alpha \times n$ matrix over R. By Proposition 2.1, we obtain

$$
A=U \Lambda V, \quad U \in R^{\alpha \times \alpha}, V \in R^{n \times n}
$$

where $\operatorname{det}(U)=\operatorname{det}(V)=1$ and

$$
\Lambda=\left(\begin{array}{cccccc}
d_{1} & & 0 & 0 & \cdots & 0 \\
& \ddots & & & \cdots & \\
0 & & d_{\alpha} & 0 & \cdots & 0
\end{array}\right) \in R^{\alpha \times n} .
$$

Let $\left(x_{1}, \cdots, x_{\alpha}\right)=U^{-1} \mathbf{f}$ and $\left(y_{1}, \cdots, y_{n}\right)=V \mathbf{e}$, then we have

$$
x_{i}=d_{i} y_{i}, \quad i=1, \cdots, \alpha .
$$

By Lemma 2.1, we have $y_{i} \in \operatorname{Inf}_{*}(D, C), i=1, \cdots, \alpha$. It follows that $y_{1}, \cdots, y_{\alpha}$ is a basis of $\operatorname{Inf}_{*}(D, C)$. Thus y_{1}, \cdots, y_{n} is the desired basis.

Example 2.1 Let $(C, \partial)=(\mathbb{Z}[x, y], \partial), \partial y=x, \partial x=0, \operatorname{deg} x=1$, and let $D=\mathbb{Z}[2 x, y]$ be a free \mathbb{Z}-module generated by $2 x, y$. Note that

$$
\operatorname{Inf}_{*}(D, C)=(\mathbb{Z}[2 x, 2 y], \partial), \quad \partial(2 y)=2 x
$$

Thus the condition that D is a free R-module generated by a subset of X is necessary for Lemma 2.2.

Lemma 2.3 Let $K=\operatorname{ker} \partial \subseteq C$. Then there is a basis $e_{1}, \cdots, e_{r(C)}$ of C such that e_{1}, \cdots, e_{α} is a basis of K for some α, where $r(C)$ is the rank of C.

Proof By a similar argument with the proof of Lemma 2.2, we have this lemma.
Definition 2.1 Let M be a finitely generated free R-module, and let $N \subseteq M$ be a free sub R-module of M. We say a family of elements $x_{1}, \cdots, x_{n} \in M$ is linearly independent modulo N if the condition

$$
c_{1} x_{1}+\cdots+c_{n} x_{n} \in N, \quad c_{1}, \cdots, c_{n} \in R
$$

implies $c_{1}=\cdots=c_{n}=0$.
By Lemma 2.3, we have $C=V \oplus K$, where $K=\operatorname{ker} \partial$ and V is the space of the complement of K in C. Note that a family of elements $x_{1}, \cdots, x_{n} \in C$ is linearly independent modulo K if and only if $\partial x_{1}, \cdots, \partial x_{n}$ is linearly independent.

3 The Proof of Main Theorem

In this section, let $C=R[X], C^{\prime}=R\left[X^{\prime}\right]$ be complexes of finitely generated free R-modules generated by sets X, X^{\prime}, respectively. Let $D=R[Y], D^{\prime}=R\left[Y^{\prime}\right]$ be finitely generated free R-modules generated by $Y \subseteq X, Y^{\prime} \subseteq X^{\prime}$, respectively. For convenience, all the differentials will be denoted by ∂ if there is no ambiguity.

The keypoint of proving Theorem 1.1 is to show

$$
\operatorname{Inf}_{*}\left(D \otimes D^{\prime}, C \otimes C^{\prime}\right)=\operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)
$$

We will give some lemmas first.
Lemma 3.1 Let M, N be finitely generated free R-modules. For each $z \in M \otimes N$, there exists a nonzero element $\lambda \in R$ such that

$$
\lambda z=\sum_{i=1}^{k} x_{i} \otimes y_{i}, \quad x_{i} \in M, y_{i} \in N, i=1, \cdots, k
$$

where $\left\{x_{i}\right\}_{1 \leq i \leq k},\left\{y_{i}\right\}_{1 \leq i \leq k}$ are two families of linearly independent elements in M, N, respectively.

Proof Let $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, where $x_{i} \in M, y_{i} \in N, i=1, \cdots, n$. If x_{1}, \cdots, x_{n} are not linearly independent, we have

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=0, \quad c_{1}, \cdots, c_{n} \in R
$$

We may assume $c_{n} \neq 0$. It follows that

$$
c_{n} z=\sum_{i=1}^{n-1} x_{i} \otimes\left(c_{n} y_{i}-c_{i} y_{n}\right) .
$$

Let $z_{i}=c_{n} y_{i}-c_{i} y_{n}$. Then we have $c_{n} z=\sum_{i=1}^{n-1} x_{i} \otimes z_{i}$. By finite steps, the above equation can be reduced to

$$
\lambda z=\sum_{i=1}^{k} x_{i} \otimes y_{i}
$$

where $\lambda \neq 0$ and $\left\{x_{i}\right\}_{1 \leq i \leq k},\{y\}_{1 \leq i \leq k}$ are two families of linearly independent elements in M and N, respectively.

Remark 3.1 In the above lemma, we can choose $\lambda=1$. Let $\left\{e_{i}\right\}_{1 \leq i \leq m},\left\{f_{i}\right\}_{1 \leq i \leq n}$ be the bases of M, N, respectively. Then we have

$$
z=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} e_{i} \otimes f_{j}, \quad a_{i j} \in R .
$$

Let $A=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ be a matrix over R. By Proposition 2.1, we have

$$
A=U \Lambda V, \quad U \in R^{m \times m}, V \in R^{n \times n}
$$

where $\operatorname{det}(U)=\operatorname{det}(V)=1$ and $\Lambda=\left(\begin{array}{c}\Lambda_{k} \\ O_{(m-k) \times k} \\ O_{(m-k) \times(n-k)}\end{array}\right)$. Here,

$$
\Lambda_{k}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right), \quad \lambda_{i} \neq 0, i=1, \cdots, k .
$$

Denote $\mathbf{e}=\left(e_{1}, \cdots, e_{m}\right)^{T}$ and $\mathbf{f}=\left(f_{1}, \cdots, f_{n}\right)^{T}$. Then we have

$$
z=\mathbf{e}^{T} \otimes A \mathbf{f}=\left(\mathbf{e}^{T} U\right) \otimes \Lambda(V \mathbf{f})
$$

which is the desired result.
The following lemma is a very useful tool in proving our main theorem.
Lemma 3.2 Let $\left\{x_{i}\right\}_{1 \leq i \leq k},\left\{y_{i}\right\}_{1 \leq i \leq k}$ be two families of linearly independent elements in C and C^{\prime}, respectively. If $\sum_{i=1}^{k} x_{i} \otimes y_{i} \in D \otimes D^{\prime}$, then we have

$$
x_{i} \in D, \quad y_{i} \in D^{\prime}, \quad i=1, \cdots, k .
$$

Proof Let $e_{1}, \cdots, e_{\alpha}, e_{\alpha+1}, \cdots, e_{m}$ be a basis of C such that $e_{1}, \cdots, e_{\alpha}$ is a basis of D. Similarly, let $f_{1}, \cdots, f_{\alpha}, f_{\alpha+1}, \cdots, f_{n}$ be a basis of C^{\prime} such that f_{1}, \cdots, f_{β} is a basis of D^{\prime}. Assume that

$$
x_{i}=\sum_{s=1}^{m} a_{i s} e_{s}, \quad y_{i}=\sum_{t=1}^{n} b_{i t} f_{t}, \quad 1 \leq i \leq k,
$$

where $a_{i s}, b_{i t} \in R$ for $1 \leq s \leq m, 1 \leq t \leq n$. Note that

$$
\sum_{i=1}^{k} x_{i} \otimes y_{i}=\sum_{s=1}^{m} \sum_{t=1}^{n}\left(\sum_{i=1}^{k} a_{i s} b_{i t}\right) e_{s} \otimes f_{t} \in D \otimes D^{\prime}
$$

We have $\sum_{i=1}^{k} a_{i s} b_{i t}=0$ for $s>\alpha$ or $t>\beta$. Let

$$
A_{0}=\left(a_{i s}\right)_{1 \leq i \leq k, 1 \leq s \leq \alpha}, \quad A_{1}=\left(a_{i s}\right)_{1 \leq i \leq k, \alpha+1 \leq s \leq m}
$$

and

$$
B_{0}=\left(b_{i t}\right)_{1 \leq i \leq k, 1 \leq t \leq \beta}, \quad B_{1}=\left(b_{i t}\right)_{1 \leq i \leq k, \beta+1 \leq t \leq n}
$$

It follows that

$$
\binom{A_{0}^{T}}{A_{1}^{T}}\left(\begin{array}{ll}
B_{0} & B_{1}
\end{array}\right)=\left(\begin{array}{cc}
A_{0}^{T} B_{0} & O \\
O & O
\end{array}\right) .
$$

Since $\operatorname{rank}\left(A_{0}^{T}\right) \geq \operatorname{rank}\left(A_{0}^{T} B_{0}\right)=k$, we have

$$
\operatorname{rank}\left(B_{1}\right) \leq k-\operatorname{rank}\left(A_{0}^{T}\right)+\operatorname{rank}\left(A_{0}^{T} B_{1}\right)=0 .
$$

Thus we obtain $B_{1}=O$. Similarly, we have $A_{1}=O$. These imply the lemma.
The following two lemmas are important parts of the proof of Theorem 3.1.
Lemma 3.3 Let $z=\sum_{i=1}^{m} x_{i} \otimes \alpha_{i}+\sum_{j=1}^{n} \beta_{j} \otimes y_{j} \in \operatorname{Inf}_{*}\left(D \otimes D^{\prime}, C \otimes C^{\prime}\right)$ such that

$$
\alpha_{1}, \cdots, \alpha_{m} \in \partial C, \beta_{1}, \cdots, \beta_{n} \in \partial C^{\prime}
$$

and each of the following sets

$$
\left\{\partial x_{1}, \cdots, \partial x_{m}\right\},\left\{\partial y_{1}, \cdots, \partial y_{n}\right\},\left\{\alpha_{1}, \cdots, \alpha_{m}\right\},\left\{\beta_{1}, \cdots, \beta_{n}\right\}
$$

is linearly independent. Then there exists a nonzero element $\lambda \in R$ such that $\lambda z \in \operatorname{Inf}_{*}(D, C) \otimes$ $\operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$.

Proof By Lemma 3.2, we have

$$
x_{i}, \beta_{j} \in D, \quad y_{j}, \alpha_{i} \in D^{\prime}, \quad 1 \leq i \leq m, 1 \leq j \leq n .
$$

Note that

$$
\partial z=\sum_{i=1}^{m} \partial x_{i} \otimes \alpha_{i}+\sum_{j=1}^{n} \beta_{j} \otimes \partial y_{j} \in D \otimes D^{\prime}
$$

If $\partial x_{k}, \beta_{1}, \cdots, \beta_{n}$ are not linearly independent, we have

$$
c_{k} \partial x_{k}=a_{k 1} \beta_{1}+\cdots+a_{k n} \beta_{n}, \quad c_{k} \neq 0, a_{k 1}, \cdots, a_{k n} \in R .
$$

Then $c_{k} \partial x_{k} \in D$. Moreover, we obtain

$$
c_{k} \partial z=\sum_{i \neq k} c_{k} \partial x_{i} \otimes \alpha_{i}+\sum_{j=1}^{n} \beta_{j} \otimes\left(c_{k} \partial y_{j}+a_{k j} \alpha_{k}\right)
$$

We may assume that $\partial x_{k}, \beta_{1}, \cdots, \beta_{n}$ are not linearly independent for $m^{\prime}+1 \leq k \leq m$. By finite steps, the above equation can be reduced to

$$
\lambda \partial z=\lambda \sum_{i=1}^{m^{\prime}} \partial x_{i} \otimes \alpha_{i}+\sum_{j=1}^{n} \beta_{j} \otimes y_{j}^{\prime}
$$

for some nonzero element $\lambda \in R$, where $y_{j}^{\prime}-\lambda \partial y_{j}(j=1, \cdots, n)$ is linearly generated by $\alpha_{m^{\prime}+1}, \cdots, \alpha_{m}$. In addition, $\partial x_{1}, \cdots, \partial x_{m^{\prime}}, \beta_{1}, \cdots, \beta_{n}$ are linearly independent. If $y_{j}^{\prime}, \alpha_{1}, \cdots$, $\alpha_{m^{\prime}}$ are not linearly independent, we can change y_{j}^{\prime} similarly as above. Then the above equation can be reduced to

$$
\lambda_{1} \lambda \partial z=\sum_{i=1}^{m^{\prime}} x_{i}^{\prime} \otimes \alpha_{i}+\lambda_{1} \sum_{j=1}^{n^{\prime}} \beta_{j} \otimes y_{j}^{\prime}
$$

for some nonzero elements $\lambda, \lambda_{1} \in R$, where $x_{i}^{\prime}-\lambda_{1} \lambda \partial x_{i}\left(i=1, \cdots, m^{\prime}\right)$ is linearly generated by $\beta_{n^{\prime}+1}, \cdots, \beta_{n}$. In addition, $y_{1}^{\prime}, \cdots, y_{n^{\prime}}^{\prime}, \alpha_{1}, \cdots, \alpha_{m^{\prime}}$ are linearly independent. If $x_{1}^{\prime}, \cdots, x_{m^{\prime}}^{\prime}, \beta_{1}, \cdots, \beta_{n^{\prime}}$ are not linearly independent, then $\partial x_{1}, \cdots, \partial x_{m^{\prime}}, \beta_{1}, \cdots, \beta_{n}$ are not linearly independent, which contradicts to our construction. Thus $x_{1}^{\prime}, \cdots, x_{m^{\prime}}^{\prime}, \beta_{1}, \cdots, \beta_{n^{\prime}}$ are linearly independent. By Lemma 3.2, we have

$$
x_{i}^{\prime} \in D, \quad y_{j}^{\prime} \in D^{\prime}, \quad 1 \leq i \leq m^{\prime}, 1 \leq j \leq n^{\prime}
$$

It follows that

$$
\lambda_{1} \lambda \partial x_{i} \in D, \quad \lambda \partial y_{j} \in D^{\prime}, \quad 1 \leq i \leq m^{\prime}, 1 \leq j \leq n^{\prime}
$$

Recall that we have $c_{k} \partial x_{k} \in D, c_{k} \neq 0$ for $m^{\prime}+1 \leq k \leq m$. It follows that $\lambda \partial x_{k} \in D$ for $m^{\prime}+1 \leq k \leq m$. Similarly, we have $\lambda_{1} y_{t}^{\prime} \in D^{\prime}$ for $n^{\prime}+1 \leq t \leq n$. Hence, we obtain that

$$
\lambda_{1} \lambda \partial x_{i} \in D, \quad \lambda_{1} \lambda \partial y_{j} \in D^{\prime}, \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

Thus there exists a nonzero element $\lambda_{2} \in R$ such that $\lambda_{2} z \in \operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$.
Lemma 3.4 Let $C=V \oplus K$ and $C^{\prime}=V^{\prime} \oplus K^{\prime}$, where K and K^{\prime} are the spaces of cycles in C and C^{\prime}, respectively. For each element $z \in C \otimes C^{\prime}$, there exists a nonzero element $\lambda \in R$ such that

$$
\lambda z=\sum_{i=1}^{N_{1}} x_{i} \otimes x_{i}^{\prime}+\sum_{j=1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+\sum_{k=1}^{N_{3}} y_{k} \otimes u_{k}^{\prime}+\sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime}
$$

where

$$
x_{i}, y_{k} \in C, \quad u_{j}, v_{l} \in K, \quad x_{i}^{\prime}, y_{j}^{\prime} \in C^{\prime}, \quad u_{k}^{\prime}, v_{l}^{\prime} \in K^{\prime}
$$

for $1 \leq i \leq N_{1}, 1 \leq j \leq N_{2}, 1 \leq k \leq N_{3}, 1 \leq l \leq N_{4}$ and
(i) $x_{1}, \cdots, x_{N_{1}}, y_{1}, \cdots, y_{N_{3}}, u_{1}, \cdots, u_{N_{2}}, v_{1}, \cdots, v_{N_{4}}$ are linearly independent;
(ii) $x_{1}, \cdots, x_{N_{1}}, y_{1}, \cdots, y_{N_{3}}$ are linearly independent modulo K;
(iii) $x_{1}^{\prime}, \cdots, x_{N_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{N_{2}}^{\prime}, u_{1}^{\prime}, \cdots, u_{N_{3}}^{\prime}, v_{1}^{\prime}, \cdots, v_{N_{4}}^{\prime}$ are linearly independent;
(iv) $x_{1}^{\prime}, \cdots, x_{N_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{N_{2}}^{\prime}$ are linearly independent modulo K^{\prime}.

Proof Note that

$$
C \otimes C^{\prime}=\left(V \otimes V^{\prime}\right) \oplus\left(K \otimes V^{\prime}\right) \oplus\left(V \otimes K^{\prime}\right) \oplus\left(K \otimes K^{\prime}\right) .
$$

In view of Lemma 3.1, for each element $z \in C \otimes C^{\prime}$, we have

$$
\lambda_{1} z=\sum_{i=1}^{N_{1}} x_{i} \otimes x_{i}^{\prime}+\sum_{j=1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+\sum_{k=1}^{N_{3}} y_{k} \otimes u_{k}^{\prime}+\sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime}
$$

for some $\lambda_{1} \in R$, where

$$
x_{i}, y_{k} \in V, \quad x_{i}^{\prime}, y_{j}^{\prime} \in V^{\prime}, \quad u_{j}, v_{l} \in K, \quad u_{k}^{\prime}, v_{l}^{\prime} \in K^{\prime}
$$

for $1 \leq i \leq N_{1}, 1 \leq j \leq N_{2}, 1 \leq k \leq N_{3}, 1 \leq l \leq N_{4}$ and each of the following sets

$$
\begin{aligned}
& \left\{x_{i}\right\}_{1 \leq i \leq N_{1}},\left\{x_{i}^{\prime}\right\}_{1 \leq i \leq N_{1}},\left\{u_{j}\right\}_{1 \leq j \leq N_{2}},\left\{u_{k}^{\prime}\right\}_{1 \leq k \leq N_{3}}, \\
& \left\{y_{k}\right\}_{1 \leq k \leq N_{3}},\left\{y_{j}^{\prime}\right\}_{1 \leq j \leq N_{2}},\left\{v_{l}\right\}_{1 \leq l \leq N_{4}},\left\{v_{l}\right\}_{1 \leq l \leq N_{4}}
\end{aligned}
$$

is a family of linearly independent elements. If $x_{1}, \cdots, x_{N_{1}}, y_{k_{0}}$ are not linearly independent, we obtain

$$
c_{k_{0}} y_{k_{0}}=a_{k_{0} 1} x_{1}+\cdots+a_{k_{0} N_{1}} x_{N_{1}}, \quad a_{k_{0} 1}, \cdots, a_{k_{0} N_{1}} \in R
$$

for some nonzero element $c_{k_{0}} \in R$. Thus we have

$$
c_{k_{0}} \lambda_{1} z=\sum_{i=1}^{N_{1}} x_{i} \otimes\left(a_{k_{0} i} x_{i}^{\prime}+c_{k_{0}} u_{k}^{\prime}\right)+c_{k_{0}} \sum_{j=1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+c_{k_{0}} \sum_{k \neq k_{0}} y_{k} \otimes u_{k}^{\prime}+c_{k_{0}} \sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime} .
$$

By finite steps, the above equation can be reduced to

$$
\lambda_{2} \lambda_{1} z=\sum_{i=1}^{N_{1}} x_{i} \otimes \bar{x}_{i}^{\prime}+\lambda_{2} \sum_{j=1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+\lambda_{2} \sum_{k=1}^{N_{3}^{\prime}} y_{k} \otimes u_{k}^{\prime}+\lambda_{2} \sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime},
$$

where $\bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime} \in C^{\prime}$ are linearly independent modulo K^{\prime} and $x_{1}, \cdots, x_{N_{1}}, y_{1}, \cdots, y_{N_{3}^{\prime}}$ are linearly independent. If $y_{j_{0}}^{\prime}, \bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime}$ are not linearly independent, by a similar substitution, we can obtain

$$
\lambda_{3} \lambda_{2} \lambda_{1} z=\sum_{i=1}^{N_{1}} \bar{x}_{i} \otimes \bar{x}_{i}^{\prime}+\lambda_{3} \lambda_{2} \sum_{j=1}^{N_{2}^{\prime}} u_{j} \otimes y_{j}^{\prime}+\lambda_{3} \lambda_{2} \sum_{k=1}^{N_{3}^{\prime}} y_{k} \otimes u_{k}^{\prime}+\lambda_{3} \lambda_{2} \sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime},
$$

such that
(i) $\bar{x}_{1}, \cdots, \bar{x}_{N_{1}}, y_{1}, \cdots, y_{N_{3}^{\prime}}, u_{1}, \cdots, u_{N_{2}^{\prime}}$ are linearly independent;
(ii) $\bar{x}_{1}, \cdots, \bar{x}_{N_{1}}, y_{1}, \cdots, y_{N_{3}^{\prime}}$ are linearly independent modulo K;
(iii) $\bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{N_{2}^{\prime}}^{\prime}, u_{1}^{\prime}, \cdots, u_{N_{3}^{\prime}}^{\prime}$ are linearly independent;
(iv) $\bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{N_{2}^{\prime}}^{\prime}$ are linearly independent modulo K^{\prime}.

To complete our proof, it suffices to consider the elements $v_{1}, \cdots, v_{N_{4}}$ and $v_{1}^{\prime}, \cdots, v_{N_{4}}^{\prime}$. If $v_{l_{0}}, u_{1}, \cdots, u_{N_{2}^{\prime}}$ are linearly independent, by a similar method as above, we can obtain the desired result.

Now, we return to the theorem mentioned before.
Theorem 3.1 $\operatorname{Inf}_{*}\left(D \otimes D^{\prime}, C \otimes C^{\prime}\right)=\operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$.
Proof It can be directly verified that

$$
\left(D \otimes D^{\prime}\right) \cap \partial^{-1}\left(D \otimes D^{\prime}\right) \supseteq\left(D \cap \partial^{-1} D\right) \otimes\left(D^{\prime} \cap \partial^{-1} D^{\prime}\right)
$$

Our main work is to show the inverse.
For each element $z \in \operatorname{Inf}_{*}\left(D \otimes D^{\prime}, C \otimes C^{\prime}\right)$, we have

$$
\lambda z=\sum_{i=1}^{N_{1}} x_{i} \otimes x_{i}^{\prime}+\sum_{j=1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+\sum_{k=1}^{N_{3}} y_{k} \otimes u_{k}^{\prime}+\sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime}
$$

where $\lambda \in R, x_{i}, y_{k} \in C, u_{j}, v_{l} \in K, x_{i}^{\prime}, y_{k}^{\prime} \in C^{\prime}, u_{k}^{\prime}, v_{l}^{\prime} \in K^{\prime}$ are given in Lemma 3.4. Since $z \in D \otimes D^{\prime}$, by Lemma 3.2, we have

$$
x_{i}, y_{k}, u_{j}, v_{l} \in D, \quad x_{i}^{\prime}, y_{k}^{\prime}, u_{k}^{\prime}, v_{l}^{\prime} \in D^{\prime}
$$

for $1 \leq i \leq N_{1}, 1 \leq j \leq N_{2}, 1 \leq k \leq N_{3}, 1 \leq l \leq N_{4}$. Note that

$$
\lambda \partial z=\sum_{i=1}^{N_{1}} \partial x_{i} \otimes x_{i}^{\prime}+\sum_{i=1}^{N_{1}}(-1)^{\operatorname{deg} x_{i}} x_{i} \otimes \partial x_{i}^{\prime}+\sum_{j=1}^{N_{2}}(-1)^{\operatorname{deg} u_{j}} u_{j} \otimes \partial y_{j}^{\prime}+\sum_{k=1}^{N_{3}} \partial y_{k} \otimes u_{k}^{\prime}
$$

Since $x_{1}, \cdots, x_{N_{1}}, y_{1}, \cdots, y_{N_{3}}$ are linearly independent modulo K, we obtain that

$$
x_{1}, \cdots, x_{N_{1}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}}
$$

are linearly independent. If $u_{j_{0}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}}$ are not linearly independent, we have

$$
c_{j_{0}} u_{j_{0}}=\sum_{i=1}^{N_{1}} a_{j_{0} i} \partial x_{i}+\sum_{k=1}^{N_{3}} b_{j_{0} k} \partial y_{k}, \quad c_{j_{0}} \neq 0
$$

It follows that

$$
\begin{aligned}
c_{j_{0}} \lambda \partial z= & \sum_{i=1}^{N_{1}} \partial x_{i} \otimes\left(c_{j_{0}} x_{i}^{\prime}+(-1)^{\operatorname{deg} u_{j_{0}}} a_{j_{0} i} \partial y_{j_{0}}^{\prime}\right)+c_{j_{0}} \sum_{i=1}^{N_{1}}(-1)^{\operatorname{deg} x_{i}} x_{i} \otimes \partial x_{i}^{\prime} \\
& +c_{j_{0}} \sum_{j \neq j_{0}}(-1)^{\operatorname{deg} u_{j}} u_{j} \otimes \partial y_{j}^{\prime}+\sum_{k=1}^{N_{3}} \partial y_{k} \otimes\left(c_{j_{0}} u_{k}^{\prime}+(-1)^{\operatorname{deg} u_{j_{0}}} b_{j_{0} k} \partial y_{j_{0}}^{\prime}\right)
\end{aligned}
$$

We may assume that $u_{j_{0}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}}$ are not linearly independent for $N_{2}^{\prime}+1 \leq$ $j_{0} \leq N_{2}$. By finite steps, we can reduce the above equation to

$$
\lambda_{1} \partial z=\sum_{i=1}^{N_{1}} \partial x_{i} \otimes \bar{x}_{i}^{\prime}+\mu_{1} \sum_{i=1}^{N_{1}} x_{i} \otimes \partial x_{i}^{\prime}+\mu_{2} \sum_{j=1}^{N_{2}^{\prime}} u_{j} \otimes \partial y_{j}^{\prime}+\sum_{k=1}^{N_{3}} \partial y_{k} \otimes \bar{u}_{k}^{\prime}
$$

for some nonzero elements $\lambda_{1}, \mu_{1}, \mu_{2} \in R$, where

$$
x_{1}, \cdots, x_{N_{1}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}}, u_{1}, \cdots, u_{N_{2}^{\prime}}
$$

are linearly independent. By the above construction, we have that

$$
\bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime}, \partial x_{1}^{\prime}, \cdots, \partial x_{N_{1}}^{\prime}, \partial y_{1}^{\prime}, \cdots, \partial y_{N_{2}^{\prime}}^{\prime}
$$

are linearly independent. If $\bar{u}_{k_{0}}^{\prime}, \partial x_{1}^{\prime}, \cdots, \partial x_{N_{1}}^{\prime}, \partial y_{1}^{\prime}, \cdots, \partial y_{N_{2}^{\prime}}^{\prime}$ are not linearly independent, by a similar progress, we can obtain

$$
\lambda_{2} \partial z=\nu_{1} \sum_{i=1}^{N_{1}} \partial x_{i} \otimes \bar{x}_{i}^{\prime}+\nu_{2} \sum_{i=1}^{N_{1}} \bar{x}_{i} \otimes \partial x_{i}^{\prime}+\nu_{3} \sum_{j=1}^{N_{2}^{\prime}} \bar{u}_{j} \otimes \partial y_{j}^{\prime}+\nu_{4} \sum_{k=1}^{N_{3}^{\prime}} \partial y_{k} \otimes \bar{u}_{k}^{\prime}
$$

for some nonzero elements $\lambda_{2}, \nu_{1}, \nu_{2}, \nu_{3}, \nu_{4} \in R$, where

$$
\bar{x}_{1}, \cdots, \bar{x}_{N_{1}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}^{\prime}}, \bar{u}_{1}, \cdots, \bar{u}_{N_{2}^{\prime}}
$$

are linearly independent and

$$
\bar{x}_{1}^{\prime}, \cdots, \bar{x}_{N_{1}}^{\prime}, \partial x_{1}^{\prime}, \cdots, \partial x_{N_{1}}^{\prime}, \partial y_{1}^{\prime}, \cdots, \partial y_{N_{2}^{\prime}}^{\prime}, \bar{u}_{1}^{\prime}, \cdots, \bar{u}_{N_{3}^{\prime}}^{\prime}
$$

are linearly independent. Recall that $\partial z \in D \otimes D^{\prime}$. By Lemma 3.2, we have

$$
\bar{x}_{1}, \cdots, \bar{x}_{N_{1}}, \partial x_{1}, \cdots, \partial x_{N_{1}}, \partial y_{1}, \cdots, \partial y_{N_{3}^{\prime}}, \bar{u}_{1}, \cdots, \bar{u}_{N_{2}^{\prime}} \in D
$$

It follows that

$$
x_{1}, \cdots, x_{N_{1}}, y_{1}, \cdots, y_{N_{3}^{\prime}} \in D \cap \partial^{-1} D=\operatorname{Inf}_{*}(D, C)
$$

Similarly, we have $x_{1}^{\prime}, \cdots, x_{N_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{N_{2}^{\prime}}^{\prime} \in \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$. It implies that

$$
\sum_{i=1}^{N_{1}} x_{i} \otimes x_{i}^{\prime}+\sum_{j=1}^{N_{2}^{\prime}} u_{j} \otimes y_{j}^{\prime}+\sum_{k=1}^{N_{3}^{\prime}} y_{k} \otimes u_{k}^{\prime}+\sum_{l=1}^{N_{4}} v_{l} \otimes v_{l}^{\prime} \in \operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)
$$

Let

$$
z_{1}=\sum_{j=N_{2}^{\prime}+1}^{N_{2}} u_{j} \otimes y_{j}^{\prime}+\sum_{k=N_{3}^{\prime}+1}^{N_{3}} y_{k} \otimes u_{k}^{\prime} .
$$

The previous construction implies that $u_{N_{2}^{\prime}+1}, \cdots, u_{N_{2}}$ and $u_{N_{3}^{\prime}+1}^{\prime}, \cdots, u_{N_{3}}^{\prime}$ are boundaries. By Lemma 3.3, there exists a nonzero element $\lambda^{\prime} \in R$ such that $\lambda^{\prime} z_{1} \in \operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$. Therefore we have

$$
\lambda \lambda^{\prime} z \in \operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)
$$

By Lemma 2.2, there exists a basis $S_{1} \sqcup T_{1}$ of D such that S_{1} is a basis of $\operatorname{Inf}_{*}(D, C)$. Similarly, there is a basis $S_{2} \sqcup T_{2}$ of D^{\prime} such that S_{2} is a basis of $\operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$. Let $S=S_{1} \otimes S_{2}$. Thus we can choose a basis $S \sqcup T$ of $D \otimes D^{\prime}$ such that S is a basis of $\operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$. Assume that

$$
z=\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b}
\end{array}\right)\binom{e_{S}}{e_{T}} \in D \otimes D^{\prime}
$$

where $\mathbf{a}=\left(a_{1}, \cdots, a_{|S|}\right) \in R^{1 \times|S|}, \mathbf{b}=\left(b_{1}, \cdots, b_{|T|}\right) \in R^{1 \times|T|}$. Since $\lambda \lambda^{\prime} z \in \operatorname{Inf}_{*}(D, C) \otimes$ $\operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)$, it follows that

$$
\lambda \lambda^{\prime} \mathbf{b} e_{T}=0 .
$$

Recall that R is a principal ideal domain, we have $\mathbf{b} e_{T}=0$. This implies that

$$
z \in \operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)
$$

which gives the desired result.
Example 3.1 Continuing with Example 2.1, let $\left(C^{\prime}, \partial\right)=\left(\mathbb{Z}\left[x^{\prime}, y^{\prime}\right], \partial\right), \partial y^{\prime}=x^{\prime}, \partial x^{\prime}=$ $0, \operatorname{deg} x^{\prime}=1$, and let $D^{\prime}=\mathbb{Z}\left[2 x^{\prime}, y^{\prime}\right]$ be a free \mathbb{Z}-module generated by $2 x^{\prime}, y^{\prime}$. Then we have

$$
\operatorname{Inf}_{*}(D, C) \otimes \operatorname{Inf}_{*}\left(D^{\prime}, C^{\prime}\right)=\mathbb{Z}[2 x, 2 y] \otimes \mathbb{Z}\left[2 x^{\prime}, 2 y^{\prime}\right]
$$

A straightforward calculation shows that

$$
\operatorname{Inf}_{*}\left(D \otimes D^{\prime}, C \otimes C^{\prime}\right)=\mathbb{Z}\left[2 x \otimes 2 x^{\prime}, 2 x \otimes 2 y^{\prime}, 2 y \otimes 2 x^{\prime}, 2 y \otimes y^{\prime}\right]
$$

Thus the result in Theorem 3.1 also depends on the condition that D, D^{\prime} are free R-modules generated by subsets of X, X^{\prime}, respectively.

Theorem 3.2 (see [7, Theorem 3B.5]) Let R be a principal ideal domain, and let C, C^{\prime} be chain complexes of free R-modules. Then there is a natural exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(C) \otimes H_{q}\left(C^{\prime}\right) \rightarrow H_{n}\left(C \otimes C^{\prime}\right) \rightarrow \bigoplus_{p+q=n} \operatorname{Tor}_{R}\left(H_{p}(C), H_{q-1}\left(C^{\prime}\right)\right) \rightarrow 0
$$

Proof of Theorem 1.1 Note that $R[Y] \otimes R\left[Y^{\prime}\right] \cong R\left[Y \times Y^{\prime}\right]$. The theorem follows from Theorems 3.1-3.2.

Acknowledgement The authors would like to thank Prof. Yong Lin and Prof. Jie Wu for their supports, discussions and encouragements. The authors also would like to express their deep gratitude to the reviewer(s) for their careful reading, valuable comments and helpful suggestions.

References

[1] Berge, C., Graphs and Hypergraphs, North-Holland Mathematical Library, Amsterdam, 1973.
[2] Bressan, S., Li, J., Ren, S. and Wu, J., The embedded homology of hypergraphs and applications, Asian J. Math., 23(3), 2019, 479-500.
[3] Emtander, E., Betti numbers of hypergraphs, Commun. Algebra, 37(5), 2009, 1545-1571.
[4] Grigor'yan, A., Lin, Y., Muranov, Y. and Yau, S. T., Homologies of path complexes and digraphs, arXiv:1207.2834, 2012.
[5] Grigor'yan, A., Muranov, Y., Vershinin V. and Yau, S. T., Path homology theory of multigraphs and quivers, Forum Math., 30(5), 2018, 1319-1337.
[6] Grigor'yan, A., Muranov, Y. and Yau, S. T., Homologies of digraphs and Künneth formulas, Commun. Anal. Geom., 25(5), 2017, 969-1018.
[7] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2001.
[8] Newman, M., Integral Matrices, pure Applied Mathematics, Vol. 45, Academic Press, New York and London, 1972.
[9] Parks, A. D. and Lipscomb, S. L., Homology and hypergraph acyclicity: A combinatorial invariant for hypergraphs, Naval Surface Warfare Center, 1991.

[^0]: Manuscript received February 26, 2021. Revised June 2, 2021.
 ${ }^{1}$ School of Mathematics, Renmin University of China, Beijing 100872, China; Department of Mathematics and Statistics, Cangzhou Normal University, Cangzhou 061000, Hebei, China.
 E-mail: wangchong_618@163.com
 ${ }^{2}$ School of Mathematics and Statistics, Henan University, Kaifeng 475001, Henan, China.
 E-mail: srenmath@126.com
 ${ }^{3}$ Corresponding author. School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China. E-mail: liujian2@mail.nankai.edu.cn
 *This work was supported by the National Natural Science Foundation of China (No. 12001310), Science and Technology Project of Hebei Education Department (No. QN2019333), the Natural Fund of Cangzhou Science and Technology Bureau (No. 197000002) and a Project of Cangzhou Normal University (No. xnjjl1902), China Postdoctoral Science Foundation (No. 2020M680494).

