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Abstract Motivated by the work of Birman about the relationship between mapping
class groups and braid groups, the authors discuss the relationship between the orbit braid
group and the equivariant mapping class group on the closed surface M with a free and
proper group action in this paper. Their construction is based on the exact sequence given
by the fibration F

G
0 M → F (M/G,n). The conclusion is closely connected with the braid
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is a big difference when the quotient space is T2.
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1 Introduction

Braid groups of the plane were defined by Artin [1] in 1925, and further studied in [2–

3]. Braid groups of surfaces were studied by Zariski [21], and were later generalized using the

definition from Fox [9]. Bellingeri simplified presentations of braid groups and pure braid groups

on surfaces and showed some propertities of surface pure braid groups in [4].

LetM be a closed surface, with a finite set P of n distinguished points in M . BnM (respec-

tively, FnM) denotes all homeomorphisms between M which preserve the set P (respectively,

each point in P) and preserve the orientation if M is oriented. π0(FnM) is the set of all path

connected components of FnM, and the n-th mapping class group denoted by Mod(M,n) is

the set of all path connected components of BnM . The algebraic structure of the mapping

class group is of great importance in the theory of Riemann surfaces. Connections between the

mapping class group and the braid group of closed surfaces have been studied, in order to help

to find the generators and relations of their mapping class groups.

The (pure) braid group ofM on n strands is denoted by BnM (PnM). Let Sg be an oriented

closed surface of genus g, with g ≥ 0. In 1969, Birman [5–6] gave the basic relationship between

mapping class groups and braid groups on Sg.
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Theorem 1.1 (see [5]) Let i∗ : π0(FnSg) → π0(F0Sg) be the homomorphism induced by

inclusion FnSg ⊂ F0Sg. Then

ker i∗ ∼= PnSg if g ≥ 2;

ker i∗ ∼= PnSg/Z(PnSg) if g = 1, n ≥ 2 or g = 0, n ≥ 3.

Theorem 1.2 (see [5]) Let i∗ : Mod(Sg, n) → Mod(Sg, 0) be the homomorphism induced

by inclusion BnSg ⊂ B0Sg. Then

ker i∗ ∼= BnSg if g ≥ 2;

ker i∗ ∼= BnSg/Z(BnSg) if g = 1, n ≥ 2 or g = 0, n ≥ 3.

Using above results, Birman obtained a full set of generators for the mapping class groups

of n-punctured oriented 2-manifolds. Then she computed the mapping class group of the n-

punctured sphere and gave relations in the mapping class group of torus in a new way.

Denote the nonorientable closed surface of genus k as Nk with k ≥ 1. Sk−1 is its orientable

double covering and π : Sk−1 → Nk is a covering map. The induced homomorphism between

braid group ϕn : Bn(Nk) → B2n(Sk−1) is injective (see [13]) on the level of fundamental group.

The homomorphism between mapping class groups φn : Mod(Nk, n) → Mod(Sk−1, 2n) induced

by π is also injective. Furthermore, if k ≥ 3, then we have a commutative diagram of the

following form:

1 // Bn(Nk)

ϕn

��

// Mod(Nk, n)

φn

��

ψn
// Mod(Nk, 0)

φ0

��

// 1

1 // B2n(Sk−1) // Mod(Sk−1, 2n)
ψ̃n

// Mod(Sk−1, 0) // 1

where ψn and ψ̃n are the homomorphisms induced by inclusions BnNk ⊂ B0Nk and B2nSk−1 ⊂

B0Sk−1 (see [14]).

In this paper, we study the relationship between the orbit braid group and the equivariant

mapping class group on the closed surface M which admits a group action. Let G be a discrete

group and act onM freely and properly. Consider a finite set P = {x1, · · · ,xn} of n arbitrarily

chosen points on M with different orbits. Define BGnM (respectively, FG
nM) to be the group

of all G-homeomorphisms f : M → M which satisfy f(GP) = GP (respectively, f(Gxi) =

Gxi, i = 1, · · · , n) and preserve the orientation if M is oriented. These two groups are endowed

with compact-open topology. π0(FG
nM, id) is the set of all path connected components of FG

nM .

The equivariant mapping class group denoted by MG(M,n) is defined to be the set of all path

connected components BGnM.

Let M be a connected topological manifold of dimension at least 2 with an effective action

of a finite group G. The orbit configuration space of n ordered points in the G-space M is

defined as

FG(M,n) = {(x1, · · · ,xn) ∈Mn : G(xi) ∩G(xj) = ∅ if i 6= j}
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with subspace topology and G(x) denotes the orbit of x. The notion of the orbit configuration

space was first defined in [20]. Since then, this subject, with respect to the algebraic topolo-

gy (especially cohomology) and relative topics of orbit configuration spaces, has been further

developed.

The following concept of the orbit braid group has been discussed in [16]. The action of

G on M induces a natural action of Gn on FG(M,n). There is also a canonical free action of

the symmetric group Σn on FG(M,n). Generally, these two actions are not commutative. Let

πE1 (FG(M,n), x, xorb) be the set consisting of the homotopy classes relative to ∂I of all paths α :

I → FG(M,n) with α(0) = x and α(1) ∈ xorb, where xorb = {gxorb : g ∈ Gn, σ ∈ Σn}, which is

the orbit set at x under two actions of Gn and Σn. The orbit braid group Borb
n (M,G) bijectively

corresponds to πE1 (FG(M,n), x, xorb). And the pure orbit braid group P orb
n (M,G) bijectively

corresponds to πE1 (FG(M,n), x,Gn(x)). If the action G on M is free, then P orb
n (M,G) ∼=

Pn(M/G) and Borb
n (M,G) ∼= Bn(M/G). Thus the orbit braid group Borb

n (M,G) (respectively,

P orb
n (M,G)) we will discuss later corresponds to Bn(M/G) (respectively, Pn(M/G)), where

M/G is an oriented or nonorientable closed surface (see [15]).

We prove the following results in this article.

Theorem 1.3 (Theorems 3.1–3.3) Let iG
∗
: π0(FG

nM) → π0(FG
0 M) be the homomorphism

induced by inclusion FG
nM ⊂ FG

0 M . Then

ker iG
∗
∼= Pn(M/G) if M/G is Sg, g ≥ 2 or Nk, k ≥ 2;

ker iG
∗
∼= Pn(M/G)/Z(Pn(M/G)) if M/G is S2 or RP 2.

When M/G is T2,

M = T2, G = Z/qZ
⊕

Z/rZ, q, r ≥ 1 and

ker iG
∗
∼= Pn(M/G)/〈ãq, b̃r : ãq b̃r = b̃rãq〉.

Theorem 1.4 (Theorem 3.4) Let M be a closed surface. Let

jG
∗
: ModG(M,n) → ModG(M, 0)

be the homomorphism induced by inclusion BGnM ⊂ BG0 M . Then

ker jG
∗

∼= Bn(M/G) if M/G is Sg, g ≥ 2 or Nk, k ≥ 2;

ker jG
∗

∼= Bn(M/G)/Z(Pn(M/G)) if M/G is S2 or RP 2.

When M/G is T2,

M = T2, G = Z/qZ
⊕

Z/rZ, q, r ≥ 1 and

ker jG
∗

∼= Bn(M/G)/〈ãq, b̃r : ãq b̃r = b̃rãq〉.

This paper is organized as follows. In Section 2, we introduce the centers of pure braid groups

on oriented and nonorientable closed surfaces. Section 3 is the main part of this paper. We
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establish the relationship between the orbit braid group and the equivariant mapping class group

on the closed surface which admits a free and proper group action. The proofs of Theorems

1.3–1.4 are given in this section. The conclusion is closely connected with the quotient space.

And comparing with the situation without the group action, there is a big difference when the

quotient space is T2.

2 The Centers of Pure Braid Groups on Closed Surfaces

First, we will briefly recall the definition and properties of braid groups. LetM be a smooth

manifold. The configuration space of n ordered points in M , denoted by F (M,n) is defined as:

F (M,n) := {(x1, · · · ,xn) ∈Mn : xi 6= xj if i 6= j}.

There is a natural action of the symmetric group Σn on the space F (M,n), given by permuting

the coordinates. The configuration space of n unordered points in M is the quotient space:

C(M,n) := F (M,n)/Σn.

Following Fox and Neuwirth [9], the n-th pure braid group Pn(M) (respectively, the n-th braid

group Bn(M)) is defined to be the fundamental group of F (M,n) (respectively, of C(M,n)).

If m,n (m > n) are positive integers, we can define a homomorphism θ∗ : Pm(M) → Pn(M)

induced by the projective θ : F (M,m) → F (M,n) defined by

θ((x1, · · · ,xm)) = (x1, · · · ,xn).

In [8], Fadell and Neuwirth study the map θ, and show that it is a locally trivial fibration. The

fiber over a point (x1, · · · ,xn) of the base space is F (M − {x1, · · · ,xn},m− n). Applying the

associated long exact homotopy sequence, we obtain the pure braid group exact sequence of

Fadell and Neuwirth:

· · ·π2(F (M,n)) → Pm−n(M − {x1, · · · ,xn})
δ∗−→ Pm(M)

θ∗−→ Pn(M) → 1.

The following short exact sequence is proved to be true where n ≥ 3 if M = S2, n ≥ 2 if

M = RP 2 and n ≥ 1 referred to [7]:

1 → Pm−n(M − {x1, · · · ,xn})
δ∗−→ Pm(M)

θ∗−→ Pn(M) → 1.

Let Sg be the oriented closed surface of genus g. Birman computed all the centers of pure

braid groups on oriented closed surface in the following theorem.

Theorem 2.1 (see [5–6])

Z(Pn(Sg)) = 1, g ≥ 2;

Z(Pn(T
2)) = 〈ã, b̃ | ãb̃ = b̃ã〉;

Z(Pn(S
2)) = Z

2
2, n ≥ 3;

Z(P1(S
2)) = Z(P2(S

2)) = 1.
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Let Nk be the nonorientable closed surface of genus k. Paris and Rolfsen obtained the

following theorem.

Theorem 2.2 (see [18]) If k ≥ 2, then Z(Pn(Nk)) = 1.

Proof We apply an induction on the number n of strands. For n = 1,

P1(Nk) = π1(Nk) =
〈
ρ1, · · · , ρk

∣∣∣
k∏

j=1

ρ2j = 1
〉
,

which is a finitely generated group with a single defining relation. Thus we obtain that

Z(P1(Nk)) = 1, if k ≥ 2 (see [17]). The Fadell-Neuwirth fibration gives us the exact sequence

1 → π1(Nk − {x1, · · · ,xn})
δ∗−→ Pn+1(Nk)

θ∗−→ Pn(Nk) → 1,

where π1(Nk − {x1, · · · ,xn}) is a free group for n ≥ 1. Suppose Z(Pn(Nk)) = 1. Since p∗

is surjective, θ∗(Z(Pn+1(Nk))) ⊂ Z(Pn(Nk)) = 1. Hence Z(Pn+1(Nk)) lies in the group of

ker θ∗ = im δ∗, which is a free group. Thus Z(Pn+1(Nk)) = 1.

The pure braid group of the projective plane possesses non-trivial center. In [10] and [11],

the following theorem has been proved.

Theorem 2.3 If n ≥ 2, then Z(Pn(RP 2)) is cyclic of order 2.

For the proofs of the main theorems, we have to describe the generator of Z(Pn(RP 2))

geometrically and algebraically. Next we will give the generator in a different way. The specific

presentation of Pn(RP 2) is given as follows.

Theorem 2.4 (see [12]) The group Pn(RP 2) admits the following presentation:

• Generators: Bij , 1 ≤ i < j ≤ n; ρk, 1 ≤ k ≤ n.

• Relations:

(a) BrsBijB
−1
rs =





Bij , i < r < s < j,
B−1
ij B

−1
rj BijBrjBij , r < i = s < j,

B−1

sj BijBsj , i = r < s < j,

B−1
sj B

−1
rj BsjBrjBijB

−1
rj B

−1
sj BrjBsj , r < i < s < j;

(b) ρiρjρ
−1
i = ρ−1

j B−1
ij ρ

2
j , 1 ≤ i < j ≤ n;

(c) ρ2i = B1i · · ·Bi−1,iBi,i+1 · · ·Bin, 1 ≤ i ≤ n;

(d) for 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k 6= j,

ρkBijρ
−1

k






Bij , j < k or k < i.
ρ−1

j B−1

ij ρj , k = i.

ρ−1

j B−1

kj ρjB
−1

kj BijBkjρ
−1

j Bkjρj , i < k < j.

We view the projective plane as the quotient space of the sphere. Then the sketches of Bij

and ρi are given in Figures 1–2.

From the relations (b) and (d), each generator Bij in Pn(RP 2) can be presented by ρi and

ρj :

Bij = ρjρ
−1
i ρ−1

j ρi, 1 ≤ i < j ≤ n.
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Figure 1 Figure 2

With this presentation and relation (b), we obtain

ρiρjρiρj = ρjρiρjρi, 1 ≤ i, j ≤ n.

When n = 1, P1(RP 2) = π1(RP 2) = Z2, which is an Abelian group. Next we consider

n ≥ 2.

Lemma 2.1 For n ≥ 2, τn = τn1 · · · τnn lies in the center of Pn(RP 2), where

τni = Bi,i+1Bi,i+2 · · ·Bin = B−1

i−1,i · · ·B
−1

1i ρ
2
i , i = 1, · · · , n.

Proof According to relation (d), τniρk = ρkτni for k < i. For any i 6= k, we have

B−1

ik ρkBik = (ρ−1
i ρkρiρ

−1

k )ρk(ρkρ
−1
i ρ−1

k ρi)

= ρ−1

i (ρkρiρkρ
−1

i )ρ−1

k ρi

= ρ−1
i (ρ−1

i ρkρi)ρkρ
−1

k ρi

= ρ−2

i ρkρ
2
i .

Thus we obtain

τnkρkτ
−1

nk = B−1

k−1,k · · ·B
−1

1k ρk · · ·B1k · · ·Bk−1,k

= ρ−2
1 · · · ρ−2

k−1
ρkρ

2
k−1 · · · ρ

2
1.
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From the above results, we obtain

τnρk = τn1 · · · τnnρk

= τn1 · · · τn,k−1ρ
−2
1 · · · ρ−2

k−1
ρkρ

2
k−1 · · · ρ

2
1τnk · · · τnn

= (τn2ρ
−2
2 ) · · · (τn,k−1ρ

−2

k−1
)ρkρ

2
k−1 · · · ρ

2
1τnk · · · τnn

= B−1
12 (B−1

23 B
−1
13 ) · · · (B−1

k−2,k−1
· · ·B−1

1,k−1
)ρkρ

2
k−1 · · · ρ

2
1τnk · · · τnn

= ρkB
−1
12 (B−1

23 B
−1
13 ) · · · (B−1

k−2,k−1
· · ·B−1

1,k−1
)ρ2k−1 · · · ρ

2
1τnk · · · τnn

= ρkB
−1
12 (B−1

23 B
−1
13 ) · · · (B−1

k−3,k−2
· · ·B−1

1,k−2
)τn,k−1ρ

2
k−2 · · · ρ

2
1τnk · · · τnn

= ρkB
−1
12 (B−1

23 B
−1
13 ) · · · (B−1

k−3,k−2
· · ·B−1

1,k−2
)ρ2k−2 · · · ρ

2
1τn,k−1 · · · τnn

= ρkτn.

Lemma 2.2 For n ≥ 2, the center of Pn(RP 2) is generated by τn.

Proof We apply an induction on the number n of strands. For n = 2, P2(RP 2) is the

quaternion group with the presentation

〈ρ1, ρ2 | ρ21 = ρ22, ρ
4
1 = 1, ρ1ρ2ρ

−1
1 = ρ−1

2 〉.

Then Z(P2(RP 2)) = 〈ρ21 = ρ22 | ρ41 = 1〉, where τ21 = B12 = ρ21 and τ22 = B−1
12 ρ

2
2 = 1. The

Fadell-Neuwirth fibration gives us the exact sequence

1 → π1(RP
2 − {x1, · · · ,xn})

δ∗−→ Pn+1(RP
2)

θ∗−→ Pn(RP
2) → 1,

where π1(RP 2 − {x1, · · · ,xn}) is a free group for n ≥ 2. Suppose the center of Pn(RP 2) is

generated by τn. Since θ∗ is surjective and θ∗(τn+1) = τn, Z(Pn+1(RP 2)) is generated by τn+1

and generators of ker θ∗ = im δ∗, which is a free group. Thus the center of Pn+1(RP 2) is just

generated by τn+1.

τn can be represented by h(t) for t ∈ [0, 1]:

h(t) = (h1(t), · · · , hn(t)).

The components of h(t) are plotted in Figure 3.

3 The Relationship Between Orbit Braid Groups and Equivariant

Mapping Class Groups on Compact Closed Surfaces

Let M be a compact closed surface and G be a discrete group acting on M freely and

properly. Since M is compact, G is finite. Let x1, · · · ,xn denote n fixed but arbitrarily chosen

points on M , satisfying Gxi
⋂
Gxj = ∅ for 1 ≤ i 6= j ≤ n.

• Denote FG
nM as the group of all G-homeomorphisms h :M →M which satisfy h(Gxi) =

Gxi, for each i and preserve orientation if M is oriented.

• Denote BGnM as the group of all G-homeomorphisms h : M →M which satisfy

h(G{x1, · · · ,xn}) = G{x1, · · · ,xn}
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Figure 3

and preserve orientation if M is oriented.

These two groups are to be endowed with compact-open topology. We define equivariant

mapping class groups as follows:

• Denote π0(FG
nM, id) as the group of all path connected components of FG

nM .

• Denote ModG(M,n) as the group of all path connected components of BGnM and

ModG(M,n) is called the n-th G-equivariant mapping class group of M .

Remark 3.1 The group structures on π0(FG
nM, id) and ModG(M,n) inherit the group

structures on FG
nM and BGnM .

Since the action of G on M is free, the (pure) orbit braid group of M is isomorphic to the

(pure) braid group of the quotient space (see [16]), which is an oriented or nonorientable closed

surface. Hence we only need to consider the (pure) braid group of the quotient space. Similar

to the situation without group actions, we define the pure evaluation map as follows.

Definition 3.1

εG : FG
0 M → F (M/G, n)

f 7→ ([f(x1)], · · · , [f(xn)]).

Observe that we endow FG
0 M with compact-open topology and F (M/G, n) with subspace

topology of M × · · · ×M . Then εG is continuous.

Lemma 3.1 The pure evaluation map εG has a local cross section.

Proof Let a = ([a1], · · · , [an]) be an arbitrary point in F (M/G, n) and ai be the represen-

tative of each coordinate for i = 1, · · · , n. Since the action of G on M is free and proper, there

exist disjoint open sets {Ui : ai ∈ Ui, i = 1, · · · , n} such that Ui
⋂
gUj = ∅ for every g 6= e ∈ G.

We consider an open neighborhood U(a) of the point a ∈ F (M/G, n), where U(a) is defined

by

U(a) = {([u1], · · · , [un]) : ui ∈ Ui}.

Let u = ([u1], · · · , [un]) be an arbitrary point in U(a). Choose λu to be a G-equivariant

homeomorphism from M to M such that
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(i) λu(x) = x, when x /∈
⋃
g∈G

n⋃
i=1

gUi.

(ii) λu maps each gUi into itself homeomorphically.

(iii) λu fixes the points on the boundary of gUi.

(iv) λu(ai) and ui are in the same orbit.

Then the map

χ : U(a) → FG
0 M

defined by χ(u) = λu is the required cross section.

Lemma 3.2 The pure evaluation map εG is a locally trivial fiber bundle with fiber FG
nM .

Proof FG
nM is a closed subgroup of FG

0 M and F (M/G, n) is a paracompact space. Thus

we only need to show that the spaces FG
0 M/FG

nM and F (M/G, n) are homeomorphic (see

[19]). If h(x) and h′(x) belong to the same right coset of FG
0 M in FG

nM , they must have the

property Gh(xi) = Gh′(xi) for i = 1, · · · , n. On one hand, each point [h] ∈ FG
0 M/FG

nM can

be associated in a unique manner with a single point ([h(x1)], · · · , [h(xn)]) ∈ F (M/G, n). On

the other hand, for each point

([a1], · · · , [an]) ∈ F (M/G, n),

there is a G-equivariant homeomorphism h ∈ FG
0 M such that h(Gai) = Gxi for i = 1, · · · , n.

Finally, it can be established that the topology of FG
0 M/FG

nM coincides with the topology of

F (M/G, n). This completes the proof.

Using Lemma 3.2, we obtain an exact sequence as follows:

· · · → π1(F
G
0 M)

εG
∗−−→ Pn(M/G)

dG
∗−−→ π0(F

G
nM)

iG
∗−→ π0(F

G
0 M) → π0(F (M/G, n) = 1 (3.1)

Lemma 3.3 ker dG
∗
⊂ Z(Pn(M/G)).

Proof For any element α ∈ ker dG
∗

= im εG
∗
, there exists an H ∈ π1(FG

0 M) such that

εG
∗
(H) = α. Now, H can be represented by some loop Ht : M →M, where each Ht is in FG

0 M

and H0 and H1 are both identity maps. Then α is represented by εG
∗
(H) such that

εG
∗
(H)(t) = ([Ht(x1)], · · · , [Ht(xn)]).

Moreover, each Ht can induce the unique map from M/G to M/G, since it preserves G-action.

There is no harm in denoting the induced map by Ht. Choose any element β ∈ Pn(M/G) which

can be represented by a loop (β1, · · · , βn) with βi(0) = βi(1) = xi for each i = 1, · · · , n. Use

Ht and β to construct ψ : I2 → Fn(M/G) by

ψ(s, t) = ([Ht(β1(s)], · · · , [Ht(βn(s)]).

Thus, H(0, t) = H(1, t) represents α, while H(s, 0) = H(s, 1) represents β. So H |∂I2 represents

αβα−1β−1. Therefore,

αβα−1β−1 = 1.
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Since β ∈ Pn(M/G) is arbitrary, it follows

α ∈ Z(Pn(M/G)).

The proof of Lemma 3.3 is completed.

Suppose G is a finite group of order l, acting freely and properly on M . The natural

projection map p :M →M/G is a regular covering map with the exact sequence

1 → π1(M)
p∗
−→ π1(M/G) → G→ 1

and G is naturally isomorphic to the group of covering transformation. Furthermore, M/G is

a closed compact surface whose Euler characteristic χ(M/G) satisfies the formula

lχ(M/G) = χ(M). (3.2)

If M is the oriented surface Sg,

M/G ∼= S g−1
l

+1
or N 2(g−1)

l
+2

for g ≥ 1.

If M is the nonorientable surface Nk,

M/G ∼= S k−2
2l +1

or N k−2
l

+2
for k ≥ 2.

When M/G ∼= Sg, g ≥ 2 or M/G ∼= Nk, k ≥ 2, M can be Sg, g ≥ 1 or Nk, k ≥ 2 and we have

ker dG
∗
⊂ Z(Pn(M/G)) = 1.

We conclude the following theorem.

Theorem 3.1 Let iG
∗
: π0(FG

nM) → π0(FG
0 M) be the homomorphism induced by inclusion

FG
nM ⊂ FG

0 M . Then

ker iG
∗
∼= Pn(M/G) if M/G is Sg, g ≥ 2 or Nk, k ≥ 2.

Consider M is S2. Because of (3.2), the only nontrivial group G 6= 1 that acts freely on the

sphere is Z2. When G is trivial and n ≥ 3, the discussion is the same as that of [5] and [6].

And since Z(P1(S2)) = Z(P2(S2)) = 1, ker iG
∗

∼= Pn(S2). We only discuss the situation where

the orbit space is RP 2.

Lemma 3.4 If G = Z2 acts on S2 antipodally, then for n ≥ 1,

Z(Pn(RP
2)) ⊂ ker dG

∗
.

Proof Since Z(Pn(RP 2)) is generated by τn from Theorem 2.4, we only need to prove

dG
∗
(τn) = 1. Define Ht : S2 → S2 by

Ht : (α, θ) 7→ (α+ 2πt, θ),

where the ith component of τn can be represented by [Ht(xi)], i = 1, · · · , n. Clearly τn =

εG
∗
([Ht]). Thus we obtain τn ∈ ker dG

∗
.

As for the nonorientable surface RP 2, G must be trivial because of (3.2).
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Lemma 3.5 If G is trivial and M is RP 2, then Z(Pn(RP 2)) ⊂ ker dG
∗
.

Proof Since Z(Pn(RP 2)) is generated by τn from Theorem 2.4, we only need to prove

dG
∗
(τn) = 1. View RP 2 as the quotient space of S2. Define Ht : RP 2 → RP 2 by

Ht : [(α, θ)] 7→ [(α + 2πt, θ)],

where the ith component of τn can be represented by Ht(xi), i = 1, · · · , n. Clearly τn =

εG
∗
([Ht]). Thus we obtain τn ∈ ker dG

∗
.

We conclude the situation where the quotient space is S2 or RP 2.

Theorem 3.2 Let iG
∗
: π0(FG

nM) → π0(FG
0 M) be the homomorphism induced by inclusion

FG
nM ⊂ FG

0 M . Then

ker iG
∗
∼= Pn(M/G)/Z(Pn(M/G)) if M/G is S2 or RP 2.

Next we consider the situation where the quotient space M/G is T2. From (3.2), M can be

T2 or Klein bottle N1. The following lemma rules out one situation.

Lemma 3.6 The Klein bottle N1 can not be a cover of the torus T2.

Proof π1(N1) is isomorphic to the non-abelian group 〈x, y | x2 = y2〉 while π1(T2) is

isomorphic to the Abelian group Z
⊕

Z. Suppose N1 is a cover of T2, there exists an injective:

π1(N1) → π1(T
2).

Since the subgroup of an Abelian group is also an Abelian group, the injective map is impossible.

Remark 3.2 This lemma is well known and we just give a proof here.

Thus when M/G is T2, M can only be T2. In order to distinguish the original space and

the orbit space, we denote the orbit space by T
2
. Unlike the non-equivariant case, it is possible

that Z(Pn(T
2
)) * ker dG

∗
. There exist examples where Z(Pn(T

2
)) * ker dG

∗
.

Example 3.1 We view the torus as R/Z×R/Z and denote a point in T2 by its rectangular

coordinates ([u], [v]), where [u], [v] are real numbers module 1. Denote each fixed point xi by

([ui], [vi]) for i = 1, · · · , n. Then ã and b̃ can be represented by f(t) and g(t) for t ∈ [0, 1] :

f(t) = ([u1 − t], [v1]), · · · , ([un − t], [vn]);

g(t) = ([u1], [v1 − t]), · · · , ([un], [vn − t]).

We can plot the components of f(t) and g(t) in Figures 4–5 when n is 4.

Define Z2-action on T2 by

−1 : T2 → T2

([u], [v]) 7→
([
u−

1

2

]
, [v]

)
.
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Figure 4 Figure 5

We will compute dZ2
∗
(ã). Denote ãi to be the ith component of ã. Construct the homeomor-

phism Ht for t ∈ [0, 1] by

Ht : T
2 → T2

([u], [v]) 7→
([
u−

1

2
t
]
, [v]

)
,

which satisfies H0 = id and Ht(xi) = ãi. Since d
Z2
∗
(ã) = H1 6= id, Z(Pn(T

2
)) * kerdZ2

∗
.

In general, Z(Pn(T
2
)) * kerdZ2

∗
. However, we can construct the isomorphism between

kerdG
∗

and im p∗.

Lemma 3.7

ker dG
∗
∼= im p∗.

Proof Since kerdG
∗
⊂ Z(Pn(T

2
)) = 〈ã, b̃ : ãb̃ = b̃ã〉 and im p∗ ⊂ π1(T

2
) = 〈a, b : ab = ba〉,

we can define ϕ : ker dG
∗
→ π1(T

2
) by

ϕ(ãmb̃r) = ambr.

ã and b̃ can be represented by loops

f : I → F (T
2
, n)

t 7→ ([u1 − t], [v1]), · · · , ([un − t], [vn])

and

g : I → F (T
2
, n)

t 7→ ([u1], [v1 − t]), · · · , ([un], [vn − t]),

where f(0) = f(1) = g(0) = g(1) = (x1, · · · ,xn). According to the construction of dG
∗
, there

exists the G-homeomorphism Ht : T2 → T2 for t ∈ [0, 1], such that H0 = H1 = id and

(p(Ht(x1)), · · · , p(Ht(xn))) = fmgr(t)

Define the mapH(xi) : I → T2 byH(xi)(t) = Ht(xi). Then we obtain that p∗([H(xi)]) = ambr.

Thus ambr ∈ im p∗.
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Conversely, construct ψ : im p∗ → Z(Pn(T
2
)) by

ψ(ambr) = ãmb̃r.

So there exists a homotopy class C ∈ π1(T2) such that p∗(C) = ambr. Now, C can be repre-

sented by some loop c = ([c1], [c2]) : I → T2, where c(0) = c(1) = ([0], [0]). Then construct the

G-homeomorphism Ht : T2 → T2 by

Ht([u], [v]) = ([u + c1], [v + c2]),

which satisfies H0 = H1 = id and (p(Ht(x1)), · · · , p(Ht(xn))) = fmgr(t). Thus ãmb̃r ∈ ker dG
∗
.

Since T2 is the covering space of T
2
and π1(T

2
) is an Abelian group, each im p∗ is uniquely

corresponding to the subgroup of π1(T
2
) ∼= Z

⊕
Z. And because G is finite, there exist positive

integers q, r such that ãq, b̃r generate im p∗. In this case, G = Z/qZ
⊕

Z/rZ and im p∗ =

〈aq, br : aqbr = braq〉. We conclude this situation as follows.

Theorem 3.3 Let G be a discrete group acting on M freely and properly with the quo-

tient space T
2
. Then M must be T2 and each G satisfying the condition is in the form of

Z/qZ
⊕

Z/rZ for positive integers q, r. Let iG
∗
: π0(FG

nM) → π0(FG
0 M) be the homomorphism

induced by inclusion. Then

ker iG
∗
∼= Pn(M/G)/〈ãq, b̃r : ãq b̃r = b̃rãq〉.

Finally we study the relationship between surface orbit braid groups and equivariant map-

ping class groups. Similarly, we define the evaluation map between BG0 (M) = FG
0 (M) and

F (M/G, n)/Σn.

Definition 3.2

ηG : BG0 M → F (M/G, n)/Σn

f 7→ {[f(x1)], · · · , [f(xn)]}

is called the evaluation map.

Since the evaluation map ηG is the pure evaluation εG associated with the projective map

F (M/G, n) → F (M/G, n)/Σn, we obtain the following lemma.

Lemma 3.8 ηG is a locally trivial fiber bundle with fiber BGnM .

Let jG
∗

: π0(BGnM) → π0(BG0 M) be the homomorphism induced by inclusion BGnM ⊂ BG0 M .

Then there is a long exact sequence

· · · → π1(B
G
0 M)

ηG
∗−−→ Bn(M/G)

ζG
∗−−→ π0(B

G
nM)

jG
∗−−→ π0(B

G
0 M) → π0(F (M/G)/Σn) = 1. (3.3)

By observing the exact sequence (3.1) and (3.3), we obtain:

ker ζG
∗

= im ηG
∗
= im εG

∗
= kerdG

∗
.

From the previous discussion about kerdG
∗

before, we can conclude the following theorem.
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Theorem 3.4 Let jG
∗

: π0(B
G
nM) → π0(B

G
0 M) be the homomorphism induced by inclusion

BGnM ⊂ BG0 M . Then

ker jG
∗

∼= Bn(M/G) if M/G is Sg, g ≥ 2 or Nk, k ≥ 2;

ker jG
∗

∼= Bn(M/G)/Z(Pn(M/G)) if M/G is S2 or RP 2.

When M/G is T2,

M = T2, G = Z/qZ
⊕

Z/rZ, q, r ≥ 1 and

ker jG
∗

∼= Bn(M/G)/〈ãq, b̃r : ãq b̃r = b̃rãq〉.
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