
Chin. Ann. Math. Ser. B

43(4), 2022, 585–600
DOI: 10.1007/s11401-022-0347-0

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2022

Continuity of Almost Harmonic Maps with the

Perturbation Term in a Critical Space

Mati ur RAHMAN1 Yingshu LÜ1 Deliang XU2

Abstract The authors study the continuity estimate of the solutions of almost harmon-
ic maps with the perturbation term f in a critical integrability class (Zygmund class)
L

n
2 logq L, n is the dimension with n ≥ 3. They prove that when q > n

2
the solution

must be continuous and they can get continuity modulus estimates. As a byproduct of
their method, they also study boundary continuity for the almost harmonic maps in high
dimension.
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1 Introduction

Let B ⊂ Rn be an open ball and (N, h) be a smooth Riemannian manifold which is compact

and without boundary. We may assume that N is isometrically embedded into the Euclidean

space Rm by the Nash’s embedding theorem. Consider the Dirichlet functional

E(u) =
1

2

∫

B

|∇u|2dx.

Its critical points are called harmonic maps and satisfy the Euler-Lagrange equation

△u+A(u)(∇u,∇u) = 0, (1.1)

where A is the trace of second fundamental form of (N, h).

The study of regularity for harmonic maps has a long history which can be traced to Morrey

[12] for two dimension case and to Schoen and Unlenbeck [22] for higher dimensions. In the

two dimensional case, because of the conformal invariance property, the analysis for regularity

of weak solutions of harmonic maps was pioneered by Hélein [5–6] who proved that every

weakly harmonic map from a surface into a compact manifold is always smooth. Later, these

results were extended to higher dimensions by Evans [3] for the target manifold which is a

sphere, and Bethuel [1] for the general case, they proved partial regularity results for stationary

harmonic maps by using similar ideas of Hélein. Recently, Rivière [19] found a new approach

to study the regularity of the solution of conformally invariant two dimensional geometric
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variational problems, which include harmonic maps from two dimensional domain and the

famous Hildebrandt’s conjectures. In this new approach (see [19]), a key observation is that

system (1.1) can also be written as the following more general form

−∆u = Ω · ∇u, (1.2)

where Ω is an antisymmetric matrix and (1.2) is called as Rivière’s equation, please see [16] and

[24] for more details. In a similar way, Rivière and Struwe [20] extended this method to high

dimensional regularity of harmonic maps under the assumption of smallness of the solution in

some homogeneous Morrey space. This method also has some other applications (see [8, 16, 26]).

Another kind of elliptic systems sharing the structure like (1.2) are so called Dirac-harmonic

map, which is inspired by the supersymmetric nonlinear sigma model from the quantum field

theory, and is a natural and interesting extension of harmonic maps in an analytic literature.

Related studies for regularity of Dirac-harmonic map are referred to [2, 29].

Almost harmonic maps (Approximation of harmonic map), mean harmonic maps with a

perturbation (or a potential) term f :

−∆u = A(∇u,∇u) + f (1.3)

in B, a bounded domain of Rn. Here f : B → Rm is a vector function in some suitable

Euclidean space Rm. Actually, to compare with (1.2), we can study more general elliptic

systems as Rivière’s equation by adding a potential term f :

−∆u = Ω · ∇u+ f, (1.4)

where Ω is an antisymmetric one form valued matrix and belongs to L2.

The study of almost harmonic maps, to our knowledge, comes from two aspects.

On one hand, from the definition of the harmonic maps, it is natural to find critical points of

the Dirichlet energy. However, the classical variational methods cannot be used to the Dirichlet

energy because E(u) does not satisfy the Palais-Smale condition. Sacks and Uhlenbeck [21],

Lamm [7] introduced a regularization of the Dirichlet energy to overcome this difficulty. Later,

Lin and Wang [10–11] used a Ginzburg-Landau approximation to regularize the Dirichlet energy

and proved the energy monotonicity formula in this case. In this paper, we consider the equation

in a bounded domain B,

∆u+A(u)(∇u,∇u) = f.

The energy functional F (u) of this Euler-Lagrange equation is

F (u) = E(u) +

∫

B

V (u)dx

for some V ∈ C1(N), in this case, f = ∇V (u).

On the other hand, it is well-known that for the functional E(u), the harmonic map heat

flow is the L2 gradient flow. The corresponding equation is

ut −∆u = A(u)(∇u,∇u). (1.5)
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Due to its restriction of weak solution, we consider some class of weak solutions which

satisfies an energy identity. Then it holds

E(u(t2, ·)) +

∫ t2

t1

∫

B

∣

∣

∣

∂u

∂t

∣

∣

∣

2

dxdt ≤ E(u(t1, ·)).

If some solution of (1.5) satisfies this inequality and the initial data has finite energy, we

have that almost any time slice satisfies

∆u+A(u)(∇u,∇u) ∈ L2(B;Rn).

From this result, it is of our interest to study the almost harmonic maps with perturbation

in the different spaces. Moser [14] considered the perturbation term f ∈ Lp, p > n
2 , and proved

Hölder continuity for weak solutions under a suitable smallness condition. Similarly, for the

same case, Sharp and Topping [24] used a type of “geometric bootstrapping” and iteration

method which can show that the solutions have regularity property in two dimension. Also in

high dimensions, Sharp [23] used the coulomb gauge to show the improved regularity. For p = n
2 ,

Moser [15] obtained an inequality in an Orlicz space belonging to a function with exponential

growth. Later, the regularity results were extended to higher dimensions with p ∈ (1,∞), under

an appropriate smallness condition, a certain degree of regularity follows in [16]. Li and Zhu

[9] considered f ∈ L ln+ L and proved the compactness of mapping from Riemannian surface

with tension fields which are bounded in L ln+ L. Later, Sharp and Topping [24] extended the

results of Li and Zhu and showed the stronger compactness results under the condition of f

merely bounded in L lnL.

For the almost harmonic maps in high dimensions, the proof holds always with the help

of a suitable smallness conditions. We know that the well-known monotonicity formula (see

[18]) can be applied to prove the stationary condition changing to smallness of the energy of

solutions, this way would not have an influence on the expected results. In general, there

is no monotonicity formula for the almost harmonic maps, however, Struwe [25] found that

monotonicity formula can be viewed as a parabolic version for the harmonic map heat flow.

In this paper, we consider the regularity properties for the weak solutions of almost harmonic

maps with perturbation in a critical Zygmund class, or specific Orlicz space Lp logq L. We show

that we have this type of regularity which is similar to the regularity results of harmonic maps

under suitable smallness conditions.

Our main results are as follows.

Theorem 1.1 Let u ∈ W 1,2(B,N) be a solution of almost harmonic map systems (1.3) (in

the sense of distribution). B is a bounded domain of Rn and (N, h) is a compact Riemannian

manifold with f ∈ L
n
2 logq L, q > n

2 . There exists ε0 > 0 such that if ‖∇u‖M2,n−2(B) ≤ ε0, then

u is continuous in the interior of B.

We can also prove the following continuity regularity result up to the boundary.

Theorem 1.2 Let u ∈ W 1,2(B,N) be a solution of almost harmonic map systems (1.3) (in

the sense of distribution). B is a bounded domain of Rn and (N, h) is a compact Riemannian

manifold with f ∈ L
n
2 logq L, q > n

2 . Assume that the trace u|∂B = φ is continuous. There

exists ε0 > 0 such that whenever ‖∇u‖M2,n−2(B) ≤ ε0, u is continuous up to the boundary of B.
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Remark 1.1 Here the exponent n
2 is critical in the sense that even for linear equation,

∆u = f , we cannot expect the continuity of the solution. In this critical exponent level, we

consider continuity problem by assuming that f belongs to a Zygmund space L
n
2 logq L. Indeed,

we prove the related regularity result for system (1.4), see Theorems 2.1 and 3.1.

Throughout this paper, we use the convention of the summation. The standard Lebesgue

spaces are denoted by Lp(B) (p ≥ 1 and B is a domain of Rn). Br(x) denotes the ball of radius

r > 0 around the center x ∈ Rn and |Br(x)| denotes Lebesgue measure (volume). The mean

value of some function f(x) over Br(x) is defined as

[f ]Br(x) =
1

|Br(x)|

∫

Br(x)

f(x).

Various constants arise in our paper unless indicated otherwise, they are always absolute con-

stants. The symbol C denotes a generic constant and its value may change from line to line.

2 Interior Regularity and Proof of Theorem 1.1

At the analytical level, our motives, to derive the regularity property from the log part

integrability factor q, come from the following improved Morrey lemma.

Lemma 2.1 Suppose that p ≥ 1 and α > 1. There exists a constant C0, depending only on

n, α and A, such that the following holds. Suppose u ∈ W 1,p(B2R(x0)) satisfies

∫

Br(x1)

|∇u|pdV ≤ Arn−p 1

logpα 1
r

(2.1)

for every x1 ∈ BR(x0) and 0 < r ≤ R. Then for almost all y1, y2 ∈ BR(x0),

|u(y1)− u(y2)| ≤ C0

(

1 + log
1

|y1 − y2|

)1−α

, (2.2)

so u is continuous in BR
2
(x0).

Proof First noting that the Hölder inequality and (2.1) imply that

∫

Br(x1)

|∇u|dV ≤ Crn−1 1

logα 1
r

(2.3)

is true. Now for any given pair of points y1, y2 ∈ BR(x0), set r0 = 1
2 |y1−y2| and y = 1

2 (y1+y2).

Then from (2.3) and using the Poincaré inequality, it holds

∣

∣

∣

1

|Br0(y1)|

∫

Br0(y1)

u−
1

|Br0(y2)|

∫

Br0 (y2)

u
∣

∣

∣

≤ Cr1−n
0

∫

B2r0 (y)

|∇u|dV ≤ C
1

logα 1
2r0

. (2.4)

Now letting rk = 2−kr0, similarly we have

∣

∣

∣

1

|Brk(y1)|

∫

Brk
(y1)

u−
1

|Brk−1
(y1)|

∫

Brk−1
(y1)

u
∣

∣

∣
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≤ Cr1−n
k−1

∫

Brk−1
(y1)

|∇u| ≤ C
1

(

(k − 1)log2 + log 1
r0

)α , (2.5)

and similar estimates hold for y2 instead of y1. By Lebesgue’s differential theorem, we know

that for almost every y1 (and similarly for almost every y2)

1

|Brk(y1)|

∫

Brk
(y1)

u → u(y1) as k → ∞.

Then by summing up the above inequalities, we obtain

|u(y1)− u(y2)| = lim
k→∞

∣

∣

∣

1

|Brk(y1)|

∫

Brk
(y1)

u−
1

|Brk(y2)|

∫

Brk
(y2)

u
∣

∣

∣

≤ C

∞
∑

k=1

1
(

klog2 + log 1
r0

)α

≤ C
[

1 + log
1

2r0

]1−α

. (2.6)

This implies (2.2) and completes the proof.

Let p ≥ 1 and q ∈ R. We define the Orlicz norm as

‖f‖Lp logq L(Ω) = inf{λ > 0 : [λ−1f ]Lp logq L(Ω) ≤ 1}

and

[f ]Lp logq L(Ω) =

∫

Ω

|f |p logq(e + |f |).

Lemma 2.2 Let f ∈ L
n
2 logq L(BR), n > 2, q ≥ 0 and ϕ ∈ L∞(BR). Then there exists

R0 > 0 such that when 0 < R ≤ R0, we have

∫

BR

fϕ ≤ C
Rn−2

(

1 + log 1
R

)

2q
n

‖f‖
L

n
2 logq L(BR)

‖ϕ‖L∞. (2.7)

Proof By the well-known Hölder inequality for Lp logq L space (or the duality of Orlicz

space), we have

∫

BR

|fϕ| ≤ C‖f‖
L

n
2 logq L(BR)

‖ϕ‖
L

n
n−2 log

−
2q

n−2 L(BR)

≤ C‖χ(BR)‖
L

k n
n−2 log

−
2q

n−2 L(BR)
‖f‖

L
n
2 logq L(BR)

‖ϕ‖L∞ . (2.8)

here χ(BR) denotes the characteristics function of BR. Now we look for the solution of the

equation

t
n

n−2 log−
2q

n−2 (e + t) =
1

|BR|
. (2.9)

Let y(t) = t
n

n−2 log−
2q

n−2 (e + t), then

y′(t) = t
2

n−2 log−
2q

n−2 (e + t)
[ n

n− 2
−

2q

n− 2
log(e + t)

t

e + t

]

,
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it is easy to see that there exist numbers a, b, 0 < a < b < ∞ such that when t /∈ [a, b], it

holds that y′(t) > 0. Denote y0 = sup
t∈[a,b]

y(t), and R0 is chosen so that 1
|BR0 |

= y0. Then when

0 < R ≤ R0, (2.9) has only one solution t0. We claim that there exist C1 and C2 such that

C1

( 1

|BR|

)
n−2
n

log
2q
n

(

e +
1

|BR|

)

≤ t0 ≤ C2

( 1

|BR|

)
n−2
n

log
2q
n

(

e +
1

|BR|

)

. (2.10)

Denoting by t∗ = γ
(

1
|BR|

)

n−2
n log

2q
n

(

e + 1
|BR|

)

, γ is a positive number, then

y(t∗) = γ
n

n−2

( 1

|BR|

) log
2q

n−2
(

e + 1
|BR|

)

log
2q

n−2
(

e + γ
(

1
|BR|

)
n−2
n log

2q
n

(

e + 1
|BR|

))

,

however it is easy to see that

lim
R→0

γ
n

n−2 log
2q

n−2
(

e + 1
|BR|

)

log
2q

n−2
(

e + γ
(

1
|BR|

)

n−2
n log

2q
n

(

e + 1
|BR|

))

= γ
n

n−2

( n

n− 2

)

2q
n−2

,

so by using the intermediate value theorem, we conclude (2.10) is true. Then by (2.8) and the

definition of Orlicz norm for χ(BR), we have

∫

BR

|fϕ| ≤ C
Rn−2

(

1 + log 1
R

)

2q
n

‖f‖
L

n
2 logq L(BR)

‖ϕ‖L∞,

this completes the proof.

Let B be a bounded domain in Rn, recall that a function f ∈ L1
loc(R

n) belongs to the space

BMO(B) if

‖f‖BMO = sup
x0∈B,r>0

(

∫

Br(x0)∩B

|f − fBr(x0)∩B|dx
)

< ∞.

We need the following lemma by Unlenbeck [28] or Rivière and Struwe [20] (optimal gauge

transformation).

Lemma 2.3 There exist ε(n) > 0 and C(n) such that, for every Ω = (Ωαβ)1≤α,β≤m in

L2(B1, so(n)⊗Rm) satisfying

‖Ω‖M2,n−2(B) < ε(n),

there exist ξ ∈ W 1,2(B1, so(n)⊗ Λn−2Rn) and P ∈ W 1,2(B1, SO(n)) such that

1)

P−1ΩP + P−1dP = ∗dξ, (2.11)

2)

ξ = 0 on ∂B1,

3)

‖∇ξ‖M2,n−2(B1) + ‖∇P‖M2,n−2(B1) ≤ C(n)‖Ω‖M2,n−2(B1). (2.12)
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First we notice that the harmonic map equation (1.3) can be rewritten as the elliptic system

(1.4), the details of these deductions we refer to [20] for codimension one case and [16] for

general case. So we just focus on proving the regularity of elliptic system (1.4).

We have the following result.

Theorem 2.1 Let u ∈ W 1,2(B,N) be a weak solution of (1.4). B is a bounded domain of

Rn and (N, h) is a compact Riemannian manifold with ∇u ∈ M2,n−2(B) and f ∈ L
n
2 logq L(B),

q > n
2 . There exists ε0 > 0 such that if

sup
Br(x)⊂B

1

rn−2

∫

Br(x)

|Ω|2 ≤ ε0,

then u is continuous in the interior of B.

Proof The proof will be divided into several steps. Since the regularity is a local property,

we assume for simplicity that (B, g) = (B1, g0), where B1 ⊂ Rn is the unit ball with the

standard Euclidean metric g0 in Rn. Let u be a weak solution of (1.4),

−div(∇uα) =
∑

β

(Ωα
β) · ∇uβ + fα, (2.13)

here (Ωα
β) is an (m ×m) 1-form valued antisymmetric matrix. Let x0 ∈ B1 and R0 > 0 such

that BR0(x0) ⊂ B1. For any z ∈ B1 and R > 0 with B2R(z) ⊂ BR0(x0), and 0 < r < R,

applying the optimal gauge transformation on BR(z), then the Hodge decomposition implies

P−1du = dF + ∗dG+ h,

where F ∈ W 1,2
0 (BR(z)) and G ∈ W 1,2

0 (BR(z),R
m ⊗ Λn−2Rn) and with a harmonic 1-form

h ∈ L2(BR(z),R
m ⊗ Λ1Rn). From (2.13), it is easy to see that

{

−∆F = −div(P−1∇u) = ∗dξ · P−1du+ P−1f,
F |∂BR(z) = 0

and
{

−∆G = ∗d(P−1du) = ∗(dP−1 ∧ du),
G|∂BR(z) = 0.

(2.14)

Fix a number 1 < p < n
n−1 and let p′ > n be the conjugate exponent. Now we estimate the Lp

norm of ∇F , ∇G and ∇h, respectively. The estimate for G is similar to [20]. By duality one

has

‖dG‖Lp ≤ C sup

ϕ ∈ W 1,p′

0 (BR(z);∧
n−2Rn−2)

‖dϕ‖Lp′ ≤ 1

∫

BR(z)

〈dG, dϕ〉.

Note that W 1,p′

0 (BR(z)) →֒ C
1− 2

p′ (BR(z)) and for ϕ ∈ W 1,p′

0 (BR) there holds

‖ϕ‖L∞ ≤ CR1−
n
p′

‖ϕ‖W 1,p′ (BR(z)), (2.15)

and also the Hölder inequality implies

‖∇ϕ‖L2(BR(z)) ≤ CR
n
p
−n

2 ‖∇ϕ‖Lp′(BR(z)). (2.16)
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Then using integration by parts and the duality of Hardy space H and BMO space, we have
∫

BR(z)

〈dG, dϕ〉 = −

∫

BR(z)

ϕ∆G

=

∫

BR(z)

ϕdP−1 ∧ du

= −

∫

BR(z)

dP−1 ∧ dϕ(u− uBR(z))

≤ C‖dP‖L2‖dϕ‖Lp′‖u− uBR(z)‖Ls

≤ CR
n
p
−1ε0‖u‖BMO, (2.17)

here uBR(z) represents the average of u over BR(z), i.e., uBR(z) =
1

|BR(z)|

∫

BR(z) u, ε(n) is the

same number as in (2.3) and s satisfies 1
2 + 1

p′
+ 1

s
= 1. Hence

‖G‖W 1,p(BR(z)) ≤ Cε0R
n
p
−1‖u‖BMO(BR(z)). (2.18)

Now we proceed to estimate ‖F‖W 1,p(BR(z)). Using duality again, one has

‖F‖W 1,p(BR(z)) ≤ C sup
‖ϕ‖

Lp′≤1

∫

BR(z)

〈dF, dϕ〉,

then from (2.14),

∫

BR(z)

〈dF, dϕ〉

= −

∫

BR(z)

ϕ∆F

=

∫

BR(z)

ϕdξ ∧ P−1du +

∫

BR(z)

P−1fϕ

= I + II. (2.19)

By using the integration by parts and combining with (2.12), (2.15) and (2.16),

I =

∫

BR(z)

ϕdξ ∧ P−1du

=

∫

BR(z)

(u − uBR(z))dξ ∧ d(ϕP−1)

≤ C‖dξ ∧ d(ϕP−1)‖H1‖u‖BMO(BR(z))

≤ C‖dξ‖L2(‖dP‖L2‖ϕ‖L∞ + ‖dϕ‖L2)‖u‖BMO

≤ Cε0R
n
p
−1‖u‖BMO(BR(z)), (2.20)

and Lemma 2.2 implies that

II =

∫

BR(z)

P−1fϕ

≤ C
R

n−1− n
p′

(

1 + log 1
R

)

2q
n

‖f‖
L

n
2 logq L(BR(z))
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= C
R

n
p
−1

(

1 + log 1
R

)

2q
n

‖f‖
L

n
2 logq L(BR0(x0))

. (2.21)

Finally we establish the estimate for the harmonic 1-form h in a standard way by using the

Campanato estimates result for harmonic functions of Giaguinta, see [4, Theorem 2.1 on p. 78],

which yields for any 0 < r ≤ R,

∫

Br(z)

|h|p ≤ C
( r

R

)n
∫

BR(z)

|h|p. (2.22)

Then combining (2.18), (2.20) and (2.21) together, we obtain

∫

Br(z)

|∇u|p ≤ Cp

∫

Br(z)

|h|p + Cp

∫

Br(z)

(|df |p + |dg|p)

≤ C
( r

R

)n
∫

BR(z)

|h|p + Cp

∫

BR(z)

(|df |p + |dg|p)

≤ C
( r

R

)n
∫

BR(z)

|∇u|pdV + Cε0R
n−p‖u‖p

BMO(BR(z))

+ C
Rn−p

(

1 + log 1
R

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

. (2.23)

Multiplying by rp−n and, for brevity, denoting by

Φ(z, r) =
1

rn−p

∫

Br(z)

|∇u|p

and

‖∇u‖p
Mp,n−p(Br(x0))

= sup
z ∈ Br(x0)

ρ < r − |z − x0|

1

ρn−p

∫

Bρ(z)

|∇u|p,

then (2.23) implies that

Φ(z, r) ≤ C
( r

R

)p

Φ(z,R) + C
( r

R

)p−n

ε0‖u‖
p
BMO

+ C
( r

R

)p−n 1
(

1 + log 1
R

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

. (2.24)

On the other hand, we can estimate the term ‖u‖BMO(BR(z)) by a well-known fact, see [20],

sup
z
‖u‖BMO(BR(z)) ≤ C‖∇u‖Mp,n−p(BR0 (x0)). (2.25)

Hence we obtain

Φ(z, r) ≤ C
( r

R

)p

Φ(z,R) + C
( r

R

)p−n

ε0‖∇u‖p
Mp,n−p(BR0 (x0))

+ C
( r

R

)p−n 1
(

1 + log 1
R

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

. (2.26)
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Now, pick some 0 < θ0 < 1
2 to be fixed later and set r = θ0R, from (2.26) we have

Φ(z, θ0R) ≤ C1θ
p
0(1 + θ−n

0 ε0)‖∇u‖p
Mp,n−p(BR0 (x0))

+ Cθp−n
0

1
(

1 + log 1
R

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

. (2.27)

Choosing θ0 small enough to ensure C1θ
p
0 ≤ 1

4 , and then choosing ε0 small enough such that

ε0 ≤ θn0 , we get the estimate

Φ(z, θ0R) ≤
1

2
‖∇u‖p

Mp,n−p(BR0(x0))

+ C(p, θ0)
1

(

1 + log 1
R

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

(2.28)

for all z ∈ B1 and R > 0 with B2R(z) ⊂ BR0(x0) ⊂ B1. Taking the supremum over all those z,

r such that Br(z) ⊂ B θ0
2 R0

(x0), then from (2.28) we obtain

‖∇u‖p
Mp,n−p(B θ0

2
R0

(x0))
≤

1

2
‖∇u‖p

Mp,n−p(BR0(x0))

+ C(p, θ0)
1

(

1 + log 2
R0

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

(2.29)

for all x0, R0 with BR0(x0) ⊂ B1.

Now we proceed to get a decay type estimate by using a standard iteration tricks. For

brevity denoting by θ0
2 = σ0, for any 0 < r < R0, let i ∈ N (the set of all natural numbers) be

chosen such that

σi+1
0 R0 < r ≤ σi

0R0

is satisfied. Hence from (2.29) and the monotonicity property of ‖∇u‖p
Mp,n−p(Br(x0))

with the

variable r, it holds

‖∇u‖p
Mp,n−p(Br(x0))

≤
(1

2

)i

‖∇u‖p
Mp,n−p(Bσi

0
R0

(x0))

+ C‖f‖p
L

n
2 logq L(BR0(x0))

σi
l=1

1
(

1 + log 1

σi−l
0 R0

)

2pq
n

(1

2

)l−1

≤ 2(σα
0 )

i+1‖∇u‖p
Mp,n−p(BR0 (x0))

+ C
1

(

1 + log 1
R0

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

≤ 2
( r

R0

)α

‖∇u‖p
Mp,n−p(BR0(x0))

+ C
1

(

1 + log 1
R0

)

2pq
n

‖f‖p
L

n
2 logq L(BR0(x0))

, (2.30)

here the positive number α is chosen as α =
log 1

σ0

log 2 > 0.
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With this decay estimate (2.30) of the Morrey norm ‖∇u‖p
Mp,n−p(BR0(x0))

in hand, finally we

can conclude the continuity of the solution of (1.3) or (1.4). We cannot use the Morrey lemma

or Lemma 2.1 directly, because the right hand side of (2.30) consists of two ingredients with

different scales. However, this can be handled by the same argument as in the proof of Lemma

2.1. For any given pair of points x1, x2 ∈ B 1
2
, set r0 = 1

2 |x1 − x2| and x = 1
2 (x1 + x2). Then

from (2.30) and using the Poincaré inequality we have

∣

∣

∣

1

|Br0(x1)|

∫

Br0(x1)

u−
1

|Br0(x2)|

∫

Br0(x2)

u
∣

∣

∣

≤ Cr1−n
0

∫

B2r0(x)

|∇u|

≤ C
(

rp−n
0

∫

B2r0 (x)

|∇u|p
)

1
p

≤ 2C
(1

2

)
α
p

‖∇u‖Mp,n−p(B4r0 (x))

+ C
1

(

1 + log 1
2r0

)

2q
n

‖f‖
L

n
2 logq L(B4r0 (x))

. (2.31)

Similarly letting rk = 2−kr0, we have

∣

∣

∣

1

|Brk(x1)|

∫

Brk
(x1)

u−
1

|Brk−1
(x1)|

∫

Brk−1
(x1)

u
∣

∣

∣

≤ C
(

rp−n
k−1

∫

Brk−1
(x1)

|∇u|p
)

1
p

≤ 2C
(1

2

)
kα
p

‖∇u‖Mp,n−p(B4r0(x))

+ C
1

(

(k − 1) log 2 + log 1
r0

)

2q
n

‖f‖
L

n
2 logq L(B4r0(x))

, (2.32)

and similar estimates hold for x2 instead of x1. By Lebesgue’s differential theorem we know

that for almost every x1 (and similarly for almost every x2)

1

|Brk(x1)|

∫

Brk
(x1)

u → u(x1) as k → ∞.

Then summing up above inequalities together and using (2.30) again, we obtain

|u(x1)− u(x2)| = lim
k→∞

∣

∣

∣

1

|Brk(x1)|

∫

Brk
(x1)

u−
1

|Brk(x2)|

∫

Brk
(x2)

u
∣

∣

∣

≤ C‖∇u‖Mp,n−p(B4r0 (x))

∞
∑

k=1

(1

2

)
kα
p

+ C‖f‖
L

n
2 logq L(B4r0 (x))

∞
∑

k=1

1
(

k log 2 + log 1
r0

)

2q
n

≤ C(α, p)‖∇u‖Mp,n−p(B4r0 (x))

+ C
[

1 + log
1

2r0

]1− 2q
n

‖f‖
L

n
2 logq L(B1)
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≤ C‖∇u‖M2,n−2(BR1 (x))

( r0
R1

)α

+ C
[

1 + log
1

2r0

]1− 2q
n

‖f‖
L

n
2 logq L(B1)

. (2.33)

(2.33) is satisfied for all x1 x2 ∈ B1, 4r0 < R1, and BR1(
−
x) ⊂ B1. Because 2q

n
> 1, (2.33)

implies that u is continuous on B 1
2
and this completes the proof.

3 Continuity Estimate up to the Boundary and Proof of Theorem 1.2

In this section, we establish the regularity of the solution of (1.3) or (1.4) up to the boundary.

To derive the continuity of u up to boundary we first need to get the following variant Dirichlet

type growth theorem, which gives an appropriate estimate for the modulus of continuity for u.

Proposition 3.1 Let u ∈ W 1,2(B1, N) be a solution of (1.3) or (1.4) (in the sense of

distribution). B1 is the unit ball of Rn and (N, h) is a compact Riemannian manifold with

f ∈ L
n
2 logq L(B1), q > n

2 . Let x0 ∈ B1, 0 < r0 < 1 such that Br0(x0) ⊂ B1 and 1 < p < n
n−1 ,

then there exists ε0 > 0 such that if ∇u ∈ M2,n−2(B1) and ‖Ω‖M2,n−2 ≤ ε0, the inequality

|u(x)− u(y)| ≤ C(n, q)(‖∇u‖Mp,n−p(Br0(x0)) + ‖f‖
L

n
2 logq L(Br0(x0))

) (3.1)

holds true for any x y ∈ B r0
2
(x0).

Remark 3.1 Indeed, we can prove this result by using similar argument as in the proof

of (2.30) by combining with the argument for the proof of Lemma 2.1, however, here we use a

technique from Morrey in [13], which is also used by Müller and Schikorra [17] for proving the

boundary regularity result for similar problem in the two-dimensional case.

Proof For any z ∈ Br0(x0), we have

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(y)− u(z)|,

hence

|u(x)− u(y)|

≤
1

|Br0(x0)|

∫

Br0(x0)

|u(x)− u(z)|dz +
1

|Br0(x0)|

∫

Br0 (x0)

|u(y)− u(z)|dz.

Denoting by xt = x+ t(x0 − x) for t ∈ [0, 1], a direct calculation and using (2.30) we obtain

1

|Br0(x0)|

∫

Br0 (x0)

|u(x)− u(z)|dz

≤ C
1

rn−1
0

∫

Br0(x0)

∫ 1

0

|∇u(x+ t(z − x))|dtdz

≤ C
1

rn−1
0

∫ 1

0

(

∫

Br0 (x0)

|∇u(x+ t(z − x))|pdz
)

1
p

r
n(p−1)

p

0 dt

≤ C

∫ 1

0

r
1−n

p

0 t−
n
p

(

∫

Br0t(xt)

|∇u|p
)

1
p

dt
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≤ C

∫ 1

0

r
1−n

p

0 t−
n
p (r0t)

n−p
p ‖∇u‖Mp,n−p(Br0t(xt))dt

= C

∫ 1

0

t−1‖∇u‖Mp,n−p(Br0t(xt))dt

≤ C

∫ 1

0

t−1
( r0t

2r0tγ

)
α
p

‖∇u‖Mp,n−p(Br0(xt))dt

+ C

∫ 1

0

t−1 1
(

1 + log 1
2r0tγ

)

2q
n

‖f‖
L

n
2 logq L(B2r0tγ (xt))

dt

≤ C

∫ 1

0

t−1+α
p
(1−γ)dt‖∇u‖M2,n−2(B2r0tγ (x0))

+ C‖f‖
L

n
2 logq L(B2r0(x0))

∫ 1

0

t−1 1
(

1 + log 1
2r0tγ

)

2q
n

dt

≤ C‖∇u‖Mp,n−p(B2r0 (x0)) + C
1

(

1 + log 1
2r0

)

2q
n
−1

‖f‖
L

n
2 logq L(B2r0 (x0))

,

here we choose 0 < γ < 1, so r0t ≤ 2r0t
γ for all t ∈ [0, 1], which implies (3.1).

Now we are in a position to give the proof of Theorem 1.2. Similarly as for interior regularity,

we prove the following theorem for system (1.4), then Theorem 1.2 can be deduced as an

application.

Theorem 3.1 Let u ∈ W 1,2(B1, N) be a solution of almost harmonic map system (1.4)

(in the sense of distribution). B1 is the unit ball of Rn and (N, h) is a compact Riemannian

manifold, f ∈ L
n
2 logq L(B1), q > n

2 . Assume that ∇u ∈ M2,n−2(B1) and the trace u|∂B1 = φ

is continuous. Then there exists ε0 > 0 such that if for all x ∈ B1,

sup
Br(x)∩B

1

rn−2

∫

Br(x)∩B

|Ω|2 ≤ ε0,

then u is continuous up to the boundary of B1.

Proof We use the spherical coordinate, for any x ∈ B1 denoting x = (r,Θ), r = |x| and

Θ = x
|x| ∈ Sn−1, r ∈ [0, 1]. Let

u(x) = u(r,Θ).

By assumption of theorem, representation of the trace u|∂B1 = φ(Θ) is continuous. Let us fix

x0 = Θ0 ∈ ∂B1 and let x1 = (r1,Θ1) be an interior point in B1. Let x∗ = (r1,Θ
∗) ∈ Bδ2(x1),

where Θ∗ will be chosen later and δ = 1− r1. Denoting by

x∗
P =

x∗

|x∗|
= Θ∗ ∈ ∂B1,

then we have

|u(x1)− φ(x0)| ≤ |u(x1)− u(x∗)|+ |u(x∗)− φ(x∗
P )|+ |φ(Θ∗)− φ(x0)|

= I + II + III.
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It is easy to see that for small enough δ and small |Θ0−Θ1|, the term III becomes small. From

Proposition 3.1 and (2.30), we have

I = |u(x1)− u(x∗)|

≤ C(‖∇u‖Mp,n−p(B2δ2 (x1)) + ‖f‖
L

n
2 logq L(B2δ2 (x1))

)

≤ C
(

δα‖∇u‖M2,n−2(Bδ(x1)) +
1

(

1 + log 1
δ

)

2q
n
−1

‖f‖
L

n
2 logq L(B1)

)

,

this implies that, for small δ = 1 − r1, the term I also becomes small. Now we prove that II is

small when δ is small enough. First we need to choose specific point x∗ = (r1,Θ
∗), which can

be chosen in a similar way as for the two-dimensional case elliptic systems boundary regularity

problem, see for example [27]. Denoting by E(δ) =
∫

1−δ≤|x|≤1
|∇u|2, it is easy to see that

∫

Sn−1

∫ 1

1−δ

|ur|
2rn−1drdΘ ≤ E(δ),

so we have
∫

Sn−1

∫ 1

1−δ

|ur|
2drdΘ ≤

E(δ)

(1− δ)n−1
. (3.2)

Hence for any positive number 0 < η < ωn−1 =
∫

Sn−1 dΘ, we argue that there exists a set

U(η) ⊂ Sn−1 with positive (n− 1)-dimensional Lebesgue measure satisfying
∫ 1

1−δ

|ur|
2(r,Θ#)dr ≤

E(δ)

(1− δ)n−1η
(3.3)

for all Θ# ∈ U(η). This can be done by contradiction. Setting G(Θ) =
∫ 1

1−δ
|ur|

2(r,Θ)dr and

U(η) =
{

Θ ∈ Sn−1, G(Θ) ≤ E(δ)
(1−δ)n−1η

}

, otherwise, we have

∫

{Sn−1\U(η)}

∫ 1

1−δ

|ur|
2drdΘ >

E(δ)

(1 − δ)n−1η
ωn−1

>
E(δ)

(1 − δ)n−1
,

this contradicts with (3.2). Hence we have

II = |u(x∗)− φ(x∗
P )|

= |u(x∗)− u(x∗
P )|

≤

∫ 1

r1

|ur(r,Θ
∗)|dr

≤ δ
1
2

(

∫ 1

r1

|ur(r,Θ
∗)|2dr

)
1
2

≤ δ
1
2

( E(δ)

(1− δ)n−1η

)
1
2

. (3.4)

Setting η = δ
4 and choosing Θ∗ ∈ U

(

δ
4

)

, from (3.4) we obtain that

II ≤ 2
( E(δ)

(1− δ)n−1

)
1
2

→ 0 as δ → 0,

and this completes the proof.
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Remark 3.2 When dimension is two, similar problems for the study of (1.3) and (1.4) were

investigated widely, for example see [9, 17, 23], however we cannot use our results directly to

the case dim = 2, this is due to that in Lemma 2.2 we need the condition n
2 > 1. We study the

regularity up to boundary and its global compactness properties of (1.4) in two dimensional

case in a forthcoming paper.
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