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Abstract The quotient space of a K3 surface by a finite group is an Enriques surface

or a rational surface if it is smooth. Finite groups where the quotient space are Enriques

surfaces are known. In this paper, by analyzing effective divisors on smooth rational

surfaces, the author will study finite groups which act faithfully on K3 surfaces such that

the quotient space are smooth. In particular, he will completely determine effective divisors

on Hirzebruch surfaces such that there is a finite Abelian cover from a K3 surface to a

Hirzebrunch surface such that the branch divisor is that effective divisor. Furthermore,

he will decide the Galois group and give the way to construct that Abelian cover from

an effective divisor on a Hirzebruch surface. Subsequently, he studies the same theme for

Enriques surfaces.

Keywords K3 surface, Finite Abelian group, Abelian cover of a smooth rational

surface
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1 Introduction

In this paper, we work over C. A K3 surface X is a smooth surface with h1(OX) = 0 and

OX(KX) ∼= OX , where KX is the canonical divisor of X . In particular, a K3 surface is simply

connected. Finite groups acting faithfully on K3 surfaces are well studied. Let ω be a non-

degenerated two holomorphic form. An automorphism f of a K3 surface is called symplectic

if f∗ω = ω. A finite subgroup G of automorphisms of a K3 surface is called symplectic if G

is generated by symplectic automorphisms. The minimal resolution Xm of the quotient space

X/G is one of a K3 surface, an Enriques surface and a rational surface. The surface Xm is

a K3 surface if and only if G is a symplectic group. Symplectic groups are classified (see [10,

13, 16]). If the quotient space of X/G is smooth, then it is an Enriques surface or a rational

surface. The quotient space X/G is an Enriques surface if and only if G is isomorphic to Z/2Z

as a group and the fixed locus of G is an empty set. It is not well-known what kind of rational

surface is realized as the quotient space of a K3 surface by a finite subgroup of Aut(X). In this

paper, we will consider the case where X/G is a smooth rational surface. The minimal model

of smooth rational surfaces is the projective plane P2 or a Hirzebruch surfaces Fn where n 6= 1,

and F1 is isomorphic to P2 blow-up at a point. In other words, all smooth rational surfaces

which are not minimal are F1 or given by blowups of Fn for 0 ≤ n. Therefore, if X/G is not
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P2, then there is a birational morphism f : X/G → Fn. Our first main results are to analyze

the quotient space X/G and G when X/G is smooth.

Theorem 1.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that

X/G is smooth. For a birational morphism f : X/G → Fn from the quotient space X/G to a

Hirzebruch surface Fn, we get that n = 0, 1, 2, 3, 4, 6, 8 or 12. Furthermore, if n = 6, 8, 12, then

f is an isomorphism.

Let X be a K3 surface, and ω be a non-degenerated holomorphic two form of X . For a

finite group G of Aut(X), we write Gs as a set of symplectic automorphisms of G. Then there

is a short exact sequence: 1 → Gs → G
ϕ

−→ Cn → 1, where Cn is a cyclic group of order n, and

ϕ(g) := ξg ∈ C∗ such that g∗ω = ξgω in H2,0(X) for g ∈ G.

Theorem 1.2 Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is

smooth. Then the above exact sequence is split, i.e., there is a purely non-symplectic automor-

phism g ∈ G such that G is the semidirect product Gs ⋊ 〈g〉 of Gs and 〈g〉.

Next, we will classify finite Abelian groups which act faithfully on K3 surfaces and the

quotient space is smooth.

Definition 1.1 We will use the following notations:

AG :=





Z/2Z⊕a, Z/3Z⊕b, Z/4Z⊕c, Z/2Z⊕d ⊕ Z/3Z⊕e, Z/2Z⊕f ⊕ Z/4Z⊕g,

Z/2Z⊕ Z/3Z⊕h ⊕ Z/4Z, Z/2Z⊕ Z/4Z⊕ Z/8Z

: 1 ≤ a ≤ 5, 1 ≤ b, c ≤ 3,

(d, e) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2),

(f, g) = (1, 1), (1, 2), (2, 1), (3, 1), h = 1, 2





,

AG∞ :=

{
Z/2Z⊕a, Z/4Z⊕c, Z/2Z⊕d ⊕ Z/3Ze, Z/2Z⊕2 ⊕ Z/4Z

: a = 1, 2, 3, 4, 5, c = 1 or 3, (d, e) = (1, 1), (1, 2) or (3, 2)

}
,

AG0 :=

{
Z/2Z⊕a, Z/3Z⊕b, Z/2Z⊕f ⊕ Z/4Z⊕g

: a = 1, 2, 3, 4, 5, b = 1, 2, 3, (f, g) = (1, 1), (1, 2), (2, 1), (3, 1)

}
,

AG1 :=





Z/2Z⊕a, Z/4Z⊕2, Z/2Z⊕ Z/3Z⊕e, Z/2Z⊕f ⊕ Z/4Z,

Z/2Z⊕ Z/3Z⊕2 ⊕ Z/4Z, Z/2Z⊕ Z/4Z⊕ Z/8Z

: a = 1, 2, 3, 4, 5, e = 1, 2, 3, f = 1, 2, 3





,

AG2 :=

{
Z/2Z⊕a, Z/3Zb, Z/2Z2 ⊕ Z/3Z⊕2, Z/2Z⊕f ⊕ Z/4Z⊕g

: a = 1, 2, 3, 4, b = 1, 2, 3, (f, g) = (1, 1), (1, 2), (2, 1), (3, 1)

}
,

AG3 :=

{
Z/2Z⊕d ⊕ Z/3Z⊕e, Z/2Z⊕ Z/3Z⊕ Z/4Z

: (d, e) = (1, 1), (1, 2), (3, 1)

}
,

AG4 :=

{
Z/2Z⊕a, Z/4Z, Z/2Z⊕ Z/3Z⊕2, Z/2Z⊕f ⊕ Z/4Z

: a = 1, 2, 3, f = 1, 2

}
,

AG6 :=
{
Z/3Z⊕b, Z/2Z⊕2 ⊕ Z/3Z : b = 1, 2

}
,

AG8 :=
{
Z/2Z⊕ Z/4Z

}
,

AG12 :=
{
Z/2Z⊕ Z/3Z

}
.

Notice that AG =
⋃

n=0,1,2,3,4,6,8,12,∞
AGn. In [15], Uludağ classified finite Abelian groups

for the case X/G is P2. Furthermore, he gave the way to construct the pair (X,G) where X is
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a K3 surface and G is a finite subgroup of Aut(X) such that X/G ∼= P2. We have the following

theorem.

Theorem 1.3 (see [15]) Let X be a K3 surface and G be a finite Abelian subgroup of

Aut(X) such that the quotient space X/G is isomorphic to P2. Then G is one of AG∞ as a

group. Conversely, for every G ∈ AG∞, there is a K3 surface X ′ and a finite Abelian subgroup

G′ of Aut(X ′) such that X ′/G′ ∼= P2 and G′ ∼= G as a group.

By analyzing the irreducible components of the branch locus of the quotient map p : X →

X/G, we will study a pair (X,G) consisting of a K3 surface X and a finite Abelian subgroup

G of Aut(X) such that the quotient space X/G is smooth. More precisely, the preimage of

the branch locus of p is
⋃

g∈G\{idX}

Fix(g) where Fix(g) := {x ∈ X : g(x) = x}. Recall that for

an automorphism f of finite order of a K3 surface, if Fix(f) contains a curve, then f is non-

symplectic. The fixed locus of a non-symplectic automorphism is well-known, e.g. [1–2, 14].

By analyzing the fixed locus of non-symplectic automorphisms of G from the branch divisor

of the quotient map, we will reconstruct G from the branch divisor of the quotient map. In

Section 4, we will investigate the relationship between a branch divisor and exceptional divisors

of blowups. Based on the above results, we will obtain our second main result.

Theorem 1.4 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such

that the quotient space X/G is smooth. Then G is one of AG as a group. Conversely, for every

G ∈ AG, there is a K3 surface X ′ and a finite Abelian subgroup G′ of Aut(X ′) such that X ′/G′

is smooth and G′ ∼= G as a group.

Furthermore, in Section 3, for a Hirzebruch surface Fn and an effective divisor B on Fn,

we will give a necessary and sufficient condition for the existence of a finite Abelian cover

f : X → Fn such that X is a K3 surface and the branch divisor of f is B. In other words, we

will solve a part of the Fenchel’s problem for Hirzebruch surfaces. In addition, we will decide

the Galois group and give the way to construct f : X → Fn from the pair Fn and B.

Theorem 1.5 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such

that the quotient space X/G is isomorphic to Fn. Then G is one of AGn as a group. Conversely,

for every G ∈ AGn, there is a K3 surface X ′ and a finite Abelian subgroup G′ of Aut(X ′) such

that X ′/G′ is isomorphic to Fn and G′ ∼= G as a group.

Subsequently, we will get a similar result for Enriques surfaces.

Definition 1.2 We use the following notations:

AG(E) :=

{
Z/2Z⊕a, Z/4Z⊕2, Z/2Z⊕f ⊕ Z/4Z, Z/4Z⊕ Z/8Z

: a = 2, 3, 4, f = 1, 2

}
,

AG∞(E) :=
{
Z/2Z⊕a : a = 2, 3, 4

}
,

AG0(E) :=

{
Z/2Z⊕a, Z/4Z⊕2, Z/2Z⊕f ⊕ Z/4Z

: a = 2, 3, 4, f = 1, 2

}
,

AG1(E) :=

{
Z/2Z⊕a, Z/2Z⊕f ⊕ Z/4Z, Z/4Z⊕ Z/8Z

: a = 2, 3, 4, f = 1, 2

}
,

AG2(E) :=
{
Z/2Z⊕a, Z/4Z⊕2, Z/2Z⊕2 ⊕ Z/4Z : a = 2, 3

}
,

AG4(E) :=
{
Z/2Z⊕ Z/4Z

}
.
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Then AG(E) =
⋃

n=0,1,2,4,∞
AGn(E). Let E be an Enriques surface and H be a finite

Abelian subgroup of Aut(E) such that E/H is smooth. Let X be the K3-cover of E, and

G := {s ∈ Aut(X) : s is a lift of some h ∈ H}. Then G is a finite Abelian subgroup of Aut(X),

G has a non-symplectic involution whose fixed locus is empty, and X/G = E/H . The case of

E/H ∼= P2 was studied in [7]. By analyzing the groups of Theorem 1.4, we get the following

theorems.

Theorem 1.6 Let E be an Enriques surface and H be a finite subgroup of Aut(E) such that

the quotient space E/H is smooth. If there is a birational morphism from E/H to a Hirzebruch

surface Fn, then 0 ≤ n ≤ 4. In particular, if the quotient space E/H is a Hirzebruch surface

Fn, then n = 0, 1, 2, 4.

Theorem 1.7 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E)

such that the quotient space E/H is isomorphic to Fn. Then H is one of AGn(E) as a group.

Conversely, for every H ′ ∈ AGn(E), there is an Enriques surface E′ and a finite Abelian

subgroup H ′ of Aut(E′) such that E′/H ′ is smooth and H ′ ∼= H as a group.

Theorem 1.8 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E)

such that the quotient space E/H is smooth. Then H is one of AG(E) as a group. Conversely,

for every H ∈ AG(E), there is an Enriques surface E′ and a finite Abelian subgroup H ′ of

Aut(E′) such that E′/H ′ is smooth and H ′ ∼= H as a group.

Section 2 is preliminaries. In Subsection 3.1, we will give examples for pairs (X ′, G′)

described in Theorem 1.4. In other words, we will show that for each G ∈ AGn where

n = 0, 1, 2, 3, 4, 6, 8, 12, there is a pair (X ′, G′), where X ′ is a K3 surface and G′ is a finite A-

belian subgroup of Aut(X ′) such that G ∼= G′ as a group and X ′/G′ ∼= Fn. Furthermore, we will

give the way to construct (X ′, G′), and we will show that the way to construct (X ′, G′) is unique-

ly determined up to isomorphism from the branch divisor of the quotient map p : X ′ → X ′/G′.

In Subsection 3.2, we will describe branch divisors and Abelian groups for the case where the

quotient space is a Hirzebruch surface. In Section 4, first, we will show Theorems 1.1–1.2. Next,

we will show that for a pair (X,G) where X is a K3 surface and G is a finite Abelian subgroup,

if X/G is smooth, then G is isomorphic to one of AG as a group. In Section 5, we will show

Theorems 1.6–1.8.

2 Preliminaries

We recall the properties of the Galois cover.

Definition 2.1 Let f : X → M be a branched covering, where M is a complex manifold

and X is a normal complex space. We call f : X → M the Galois cover if there is a subgroup

G of Aut(X) such that X/G ∼= M and f : X → M is isomorphic to the quotient map p : X →

X/G ∼= M . We call G the Galois group of f : X → M . Furthermore, if G is an Abelian group,

then we call f : X → M the Abelian cover.

Definition 2.2 Let f : X → M be a finite branched covering, where M is a complex

manifold and X is a normal complex space and ∆ be the branch locus of f . Let B1, · · · , Bs be

irreducible hypersurfaces of M and positive integers b1, · · · , bs, where bi ≥ 2 for i = 1, · · · , s.

If ∆ = B1 ∪ · · · ∪ Bs and for every j and for any irreducible component D of f−1(Bj) the
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ramification index at D is bj, then we call an effective divisor B :=
s∑

i=1

biBi the branch divisor

of f .

Let X be a normal projective variety and G be a finite subgroup of Aut(X). Let Y := X/G

be the quotient space and p : X → Y be the quotient map. The branch locus, denoted by ∆

is a subset of Y given by ∆ := {y ∈ Y | |p−1(y)| < |G|}. It is known that ∆ is an algebraic

subset of dimension dim (X) − 1 if Y is smooth (see [19]). Let {Bi}ri=1 be the irreducible

components of ∆ whose dimension is 1. Let D be an irreducible component of D of p−1(Bj)

and GD := {g ∈ G : g|D = idD}. Then the ramification index at D is bj := |GD|, and the

positive integer bj is independent of an irreducible component of p−1(Bj). Then b1B1+· · ·+brBr

is the branch divisor of G. We state the facts (Theorems 2.1–2.2) of the Galois cover theory

which we need.

Theorem 2.1 (see [12]) For a complex manifold M and an effective divisor B on M , if

there is a branched covering map f : X → M where X is a simply connected complex manifold

X and the branch divisor of f is B, then there is a subgroup G of Aut(X) such that X/G ∼= M

and f : X → M is isomorphic to the quotient map p : X → X/G ∼= M . Furthermore, a pair

(X,G) is a unique up to isomorphism.

Theorem 2.2 (see [12]) For a complex manifold M and an effective divisor B :=
n∑

i=1

biBi

on M , where Bi is an irreducible hypersurface for i = 1, · · · , n. Let f : X → M be a branched

cover whose branch divisor is B and where X is a simply connected complex manifold. Then

for a branched cover g : Y → M whose branch divisor is
m∑
j=1

b′jBj and b′j is divisible by bi and

m ≤ n, there is a branched cover h : X → Y such that f = g ◦ h.

Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G is smooth.

Since K3 surfaces are simply connected, G is determined by the branch divisor of the quotient

map p : X → X/G from Theorem 2.1. In order to classify finite Abelian groups G which act on

K3 surfaces and the quotient space is smooth, we will search a smooth rational surface S and

an effective divisor B on S such that there is a K3 surface and a finite subgroup G of Aut(X)

such that X/G ∼= S and the branch divisor of the quotient map p : X → X/G is B. There is

the problem which is called Fenchel’s problem.

Problem 2.1 Let M be a projective manifold. Give a necessary and sufficient condition on

an effective divisor D on M for the existence of a finite Galois (resp. Abelian) cover π : X → M

whose branch divisor is D.

The Fenchel’s problem was originally for compact Riemann surfaces and was answered by

Bundgaard-Nielsen [4] and Fox [5].

Theorem 2.3 (see [4–5]) Let k ≥ 1 and let D :=
k∑

i=1

mixi be a divisor on a compact

Riemann surface M where xi ∈ M and mi ∈ Z for i = 1, · · · , k. Then there is a finite Galois

cover p : X → M such that the branch divisor of p is D except for

(i) M = P1 and k = 1, and

(ii) M = P1, k = 2 and m1 6= m2.

Furthermore, for the case M = P1, there exists a finite Abelian cover P1 → P1 whose branch
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divisor is D if and only if

(i) k = 2 and m1 = m2 or

(ii) k = 3 and m1 = m2 = m3 = 2.

In order to study the cover of the Galois cover X → X/G, the following theorem is useful.

Theorem 2.4 Let X be a smooth projective variety, and G be a finite subgroup of Aut(X)

such that X/G is smooth. Let p : X → X/G be the quotient map, and B := b1B1 + · · ·+ brBr

be the branch divisor of p. Then

KX = p∗KX/G +

r∑

i=1

bi − 1

bi
p∗Bi,

where KX (resp. KX/G) is the canonical divisor of X (resp. X/G).

Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G is smooth,

and B be the branch divisor of the quotient map p : X → X/G. The canonical line bundle of

a K3 surface is trivial. By Theorem 2.4, the branch divisor is restricted in the Picard group of

the smooth rational surface X/G, i.e., B must satisfy

KX/G +

r∑

i=1

bi − 1

bi
Bi = 0 in PicQ(X/G).

In Subsection 3.1, we will show that for a Hirzebruch surface Fn, if Fn has an effective divisor

B =
k∑

i=1

biBi, where Bi is an irreducible curve and bi ≥ 2 for i = 1, · · · , k, such that
k∑

i=1

bi−1
bi

Bi+

KS = 0 in PicQ(Fn), then 0 ≤ n ≤ 12. In Section 4, we will show Theorem 1.1 by using Theorem

2.4.

The following theorem is important for checking the structure of G from the branch divisor.

Theorem 2.5 (see [17]) For a K3 surface X and a finite subgroup G of Aut(X) such that

X/G is smooth. Let B :=
k∑

i=1

biBi be the branch divisor of the quotient map p : X → X/G.

We put p∗Bi =
l∑

j=1

biCi,j where Ci,j is an irreducible curve for j = 1, · · · , l. Let GCi,j
:= {g ∈

G : g|Ci,j
= idCi,j

}, and Gi be a subgroup of G, which is generated by GCi,1
, · · · , GCi,l

, and

I ⊂ {1, · · · , k} be a subset. Then, the following holds.

(i) If (X/G)\ ∪i∈I Bi is simply connected, then G is generated by {Gj}j∈{1,··· ,k}\I .

(ii) GCi,j
∼= Z/biZ and GCi,j

is generated by a purely non-symplectic automorphism of order

bi.

(iii) If G is Abelian, then there is an automorphism g ∈ G such that
l⋃

j=1

Ci,j ⊂ fix(g), and

hence Ci,j are pairwise disjoint.

(iv) If the self-intersection number (Bi · Bi) of Bi is positive, then l = 1, and hence Gi is

generated by a purely non-symplectic automorphism of order bi.

Proof We will show (i). We assume that (X/G)\
⋃
i∈I

Bi is simply connected. Let H be the

subgroup of G which is generated by {Gj}j∈{1,··· ,k}\I , and X0 := X\
⋃
i∈I

p−1(Bi). Then G and

H act on X0. We assume that G 6= H . Let Y := X0/H be the quotient space, and G′ := G/H .
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Then G′ acts faithfully on Y , Y/G′ ∼= (X/G)\
⋃
i∈I

Bi, and the branch locus of Y → Y/G′

is a finite set. Since (X/G)\
⋃
i∈I

Bi is smooth and simply connected, this is a contradiction.

Therefore, G is generated by {Gj}j∈{1,··· ,k}\I .

Since X is a K3 surface, an automorphism whose fixed locus contains a curve can only be

purely non-symplectic. Therefore, by the definition of the ramification index bi, we get (ii).

We will show (iii) and (iv). Since Bi is contained in the branch locus, we get p−1(Bi) =
l⋃

j=1

Ci,j ⊂
⋃

g∈G

fix(g). Since G is finite, for each j, there is sj ∈ G such that Ci,j ⊂ fix(sj). Since

Bi is irreducible, we get that p(Ci,j) = p(Ci,k) for 1 ≤ j < k ≤ l. Therefore, there is t ∈ G such

that t(Ci,j) = Ci,k. Since Ci,j ⊂ fix(sj) and t(Ci,j) = Ci,k, we obtain that Ci,k ⊂ fix(t◦sj ◦t−1).

Since G is Abelian, we have sj = t◦sj ◦t−1. We get (iii). If the self intersection number (Bi ·Bi)

of Bi is positive, then by Hodge index theorem, we get l = 1. By (ii), Gi
∼= Z/biZ is generated

by a purely non-symplectic automorphism of order bi.

Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such that X/G is

smooth and B :=
k∑

i=1

biBi be the branch divisor of the quotient map p : X → X/G. If k = 1,

then by Theorem 2.5, G = GB1

∼= Z/b1Z. We assume that k = 2. By Theorem 2.5, G is

generated by GB1

∼= Z/b1Z and GB2

∼= Z/b2Z. Moreover, we assume that the intersection

B1 ∩ B2 of B1 and B2 is not an empty set. Since B1 ∩ B2 6= ∅, p−1(B1) ∩ p−1(B2) 6= ∅.

Since the fixed locus of an automorphism is a pairwise disjoint set of points and curves, we get

GB1
∩ GB2

= {idX}. Therefore, G = GB1
⊕ GB2

, but in the case of k ≥ 3 it is not necessary

G =
k⊕

i=1

GBi
even if Bi ∩Bj 6= ∅ for 1 ≤ i < j ≤ k.

For an irreducible component Bi of B we write p∗Bi =
l∑

j=1

biCj where Cj is a smooth

curve for j = 1, · · · , l. Since the degree of p is |G|, by (iv) of Theorem 2.5, we get that

|G|(Bi ·Bi) = b2i l(Cj ·Cj) for j = 1, · · · , l. If the self-intersection number (Bi)
2 of Bi is positive,

then by (iv) of Theorem 2.5, we get that l = 1 and the genus of C1 is 2 or more. If (Bi)
2

is zero, then C1, · · · , Cl are elliptic curves. If (Bi)
2 is negative, then C1, · · · , Cl are rational

curves. Recall that there is g ∈ G such that g is a non-symplectic automorphism of order

bi and C1, · · · , Cl are contained in Fix(g). There are many results on the number of curves,

the genus of curves, and the number of isolated points of the fixed locus of a non-symplectic

automorphism. We use them to search B such that there is a Galois cover f : X → S such

that X is a K3 surface and the branch divisor of f is B and we use them to restore G from B.

Here S is a smooth rational surface and B is an effective divisor on S.

3 Abelian Groups of K3 Surfaces with Hirzebruch Surfaces

Here, we give the list of a numerical class of an effective divisor B =
k∑

i=1

biBi on Fn such

that Bi is a smooth curve for each i = 1, · · · , k and KFn
+

k∑
i=1

bi−1
bi

Bi = 0 in PicQ(Fn).

Definition 3.1 For a Hirzebruch surface Fn where n ∈ Z≥0, we take two irreducible curves

C and F such that Pic(Fn) = ZC ⊕ ZF , (C · F ) = 1, (F · F ) = 0, (C · C) = −n and
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KFn
= −2C − (n + 2)F in Pic(Fn) = ZC ⊕ ZF . Notice that for n = 0, C = pr∗1OP1(1) and

F = pr∗2OP1(1), and for n ≥ 1, C is the unique curve on Fn such that the self-intersection

number is negative, and F is the fibre class of the conic bundle of Fn.

Lemma 3.1 Let Fn be a Hirzebruch surface where n 6= 0 and C′ ⊂ Fn be an irreducible

curve. Then one of the following holds:

(1) C′ = C.

(2) C′ = F in Pic(Fn).

(3) C′ = aC + bF where a ≥ 1 and b ≥ na.

Definition 3.2 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that

X/G ∼= Fn. Let B :=
l∑

i=1

biBi be the branch divisor of the quotient map p : X → X/G. For

each Bi, there are integers αi, βi such that Bi = αiC + βiF in Pic(Fn). We call

l∑

i=1

bi(αiC + βiF )

as the numerical class of B.

Proposition 3.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that

X/G ∼= Fn. Then 0 ≤ n ≤ 12.

Proof We assume that X/G ∼= Fn where n ≥ 1. Let B be the branch divisor of the quotient

map p : X → X/G. We write B :=
k∑

i=1

biBi+
l∑

j=1

b′jB
′
j such that Bi 6= F and B′

j = F in Pic(Fn)

for i = 1, · · · , k and j = 1, · · · , l. Since the canonical line bundle of a K3 surface is trivial and

Pic(Fn) is torsion free, by Theorem 2.4, we get that

0 = KFn
+

k∑

i=1

bi − 1

bi
Bi +

l∑

j=1

b′j − 1

b′j
B′

j in Pic(Fn).

Since Bi is an irreducible curve for i = 1, · · · , k, there are integers ci, di such that Bi = ciC+diF

in Pic(Fn) and (ci, di) = (1, 0) or di ≥ nci > 0. ByKFn
= −2C−(n+2)F in Pic(Fn) = ZC⊕ZF ,

we get that 



2 =

k∑

i=1

bi − 1

bi
ci,

n+ 2 =

k∑

i=1

bi − 1

bi
di +

l∑

j=1

b′j − 1

b′j
.

Since bi ≥ 2, 1
2 ≤ bi−1

bi
< 1. Since 2 =

k∑
i=1

bi−1
bi

ci,
k∑

i=1

ci = 3 or 4. By a simple calculation,

we get that (i)
k∑

i=1

ci = 4 if and only if b1 = · · · = bk = 2, and (ii) if
k∑

i=1

ci = 3, then

(b1, · · · , bk; c1, · · · , ck) where c1 ≤ · · · ≤ ck is one of (3; 3), (2, 4; 1, 2), (3, 3; 1, 2), (2, 3, 6; 1, 1, 1),

(2, 4, 4; 1, 1, 1) and (3, 3, 3; 1, 1, 1).

We assume that (ci, di) 6= (1, 0) for i = 1, · · · , k, i.e., C is not an irreducible component of

B. Since di ≥ nci for i = 1, · · · , k, by 2 =
k∑

i=1

bi−1
bi

ci and n+ 2 =
k∑

i=1

bi−1
bi

di +
l∑

j=1

b′j−1

b′
j

, we get
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that n+ 2 ≥ 2n+
l∑

j=1

b′j−1

b′
j

. Since
b′i−1
b′
i

≥ 0, we get 0 ≤ n ≤ 2.

We assume that (ci, di) = (1, 0) for some 1 ≤ i ≤ k, i.e., C is an irreducible component of B.

For simplify, we assume that i = 1. In the same way as above, we get that n+2 ≥ n
(
2− b1−1

b1

)
.

Since 2 ≤ b1 ≤ 6, we obtain 0 ≤ 12 ≤ n.

Notice that by simple calculations, there are not a K3 surface X and a finite subgroup G

of Aut(X) such that X/G ∼= Fl for l = 10, 11.

In Section 6, we will give the list of a numerical class of an effective divisor B =
k∑

i=1

biBi on

Fn such that Bi is a smooth curve for each i = 1, · · · , k and KFn
+

k∑
i=1

bi−1
bi

Bi = 0 in Pic(Fn).

3.1 Abelian covers of a Hirzebruch surface by a K3 surface

Let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G is a

Hirzebruch surface Fn, and B be the branch divisor of the quotient map p : X → X/G. In

this section, we will decide the numerical class of B. Notice that since G is Abelian and the

quotient space X/G is smooth, the support of B and that of p∗B are simple normal crossing.

Furthermore, we will show that the structure as a group of G depends only on the numerical

class of B by Theorem 2.5, and we will give the way to construct X and G which depends only

on the numerical class of B by Theorem 2.1 and the cyclic cover. As a result the following will

follow. For each G ∈ AGn where n = 0, 1, 2, 3, 4, 6, 8, 12, there is a pair (X,G′) where X is a

K3 surface and G′ is a finite Abelian subgroup of Aut(X) such that G ∼= G′ as a group and

X/G′ ∼= Fn. In [9], the case where G ∼= Z/2Z is studied.

Theorem 3.1 (see [3,Chapter I, Section 17]) Let M be a smooth projective variety, and

D be a smooth effective divisor on M . Then if the class OM (D)/n ∈Pic(M), then there is the

Galois cover f : X → M whose branch divisor is nD and the Galois group is isomorphic to

Z/nZ as a group.

For n ≥ 0, a Hirzebruch surface Fn is isomorphic to a variety Fn in P1 × P2,

Fn := {([X0 : X1], [Y0 : Y1 : Y2]) ∈ P1 × P2 : Xn
0 Y0 = Xn

1 Y1}.

From here, we assume that Fn = Fn. The first projection gives the fibre space structure

f : Fn → P1 such that the numerical class of the fibre of f is F , and

C = {([X0 : X1], [Y0 : Y1 : Y2]) ∈ Fn : Y0 = Y1 = 0}

is the unique irreducible curve on Fn such that the self-intersection number is negative. Let a

and b be positive integers such that b ≥ na. Furthermore, we put

F (X0, X1, Y0, Y1, Y2) :=
∑

0≤i≤b−na,0≤j,k≤a,j+k≤a

ti,j,kX
i
0X

b−na−i
1 Y j

0 Y
k
1 Y

a−j−k
2 ,

where ti,j,k ∈ C, and

BF := {([X0 : X1], [Y0 : Y1 : Y2]) ∈ Fn : F (X0, X1, Y0, Y1, Y2) = 0}.

If BF is an irreducible curve of Fn, then BF = aC + bF in Pic(Fn).
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Let g1 and gm be automorphisms of P1 which are induced by matrixes

g1 :=

(
0 1
1 0

)
, gm :=

(
1 0
0 ζm

)
,

where ζm is an m-th root of unity m ≥ 2. Then 〈g1, g2〉 ∼= Z/2Z⊕2, and 〈gm〉 ∼= Z/mZ for

m ≥ 2. Here for a subset S of group G, 〈S〉 is the subgroup of G which is generated by S. Then

P1 ∼= P1/〈g1, g2〉 and P1 ∼= P1/〈gm〉,

and the quotient maps are isomorphic to

P1 ∋ [z0 : z1] 7→ [(z20 + z21)
2 : (z20 − z21)

2] ∈ P1 and P1 ∋ [z0 : z1] 7→ [zm0 : zm1 ] ∈ P1

for m ≥ 2, and the branch divisors are

2x0 + 2x1 + 2x2 and mx0 +mx1,

where x0 := [1 : 0], x1 := [0 : 1] and x2 := [1 : 1].

The above Galois covers P1 → P1/〈g1, g2〉 ∼= P1 and P1 → P1/〈gm〉 ∼= P1 naturally induce

the Galois covers of P1 ×P1 and Fn whose Galois groups are induced by gm for m ≥ 2. We will

explain in a bit more detail for Fn. For P
1 → P1/〈g1, g2〉, let P1 ×P1 Fn be the fibre product of

P1 → P1/〈g1, g2〉 and f : Fn → P1. Let p : P1 ×P1 Fn → Fn be the natural projection of the

fibre product. Then

P1 ×P1 Fn
∼= F4n,

and p : P1 ×P1 Fn → Fn is the Galois cover such that the branch divisor of p is

2F + 2F + 2F in Pic(Fn),

and the Galois group is isomorphic to Z/2Z⊕2 as a group, which is induced by 〈g1, g2〉. Let Cm

be the irreducible curve on Fm such that the self-intersection number is negative and Fm is the

numerical class of the fibre Fm → P1 for m ≥ 1. Then

p∗Cn = C4n and p∗Fn = 4F4n in Pic(F4n).

For P1 → P1/〈gm〉, let P1 ×P1 Fn be the fibre product of P1 → P1/〈gm〉 and f : Fn → P1. Let

p : P1 ×P1 Fn → Fn be the natural projection of the fibre product. Then

P1 ×P1 Fn
∼= Fmn,

p : P1 ×P1 Fn → Fn is the Galois cover such that the branch divisor of p is

mF +mF in Pic(Fn),

and the Galois group is isomorphic to Z/mZ as a group, which is induced by 〈gm〉, and

p∗Cn = Cmn and p∗Fn = mFmn in Pic(Fmn).

Definition 3.3 From here, we use the notation that Bk
i,j (or simply Bi,j) is a smooth curve

on Fn such that Bk
i,j = iC + jF in Pic(Fn) for n ≥ 0, where k ∈ N.



Finite Abelian Groups of K3 Surfaces 109

Proposition 3.2 For each numerical classes (6.1)–(6.3) of the list in Section 6, there is a

K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= P1 × P1 and the

numerical class of the branch divisor B of the quotient map p : X → X/G is (6.1)–(6.3).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of

Aut(X), if X/G ∼= P1×P1 and the numerical class of the branch divisor B of the quotient map

p : X → X/G is (6.1)–(6.3), then G is isomorphic to Z/3Z, Z/3Z⊕2, Z/3Z⊕3, in order, as a

group.

Proof Let B3,3 be a smooth curve on P1 × P1. Then the numerical class of 3B3,3 is (6.1).

By Theorem 3.1, there is the Galois cover p : X → P1 × P1 such that the branch divisor is

3B3,3 and the Galois group is Z/3Z as a group. By Theorem 2.4, the canonical divisor of X is a

numerically trivial. By [18], X is not a bi-ellitptic surface. By [8], X is not an Abelian surface.

If X is an Enriques surface, then there is the Galois cover q : X ′ → P1 × P1 such that X ′ is a

K3 surface, the Galois group is Z/2Z⊕ Z/3Z as a group, and the branch divisor is 3B3,3. By

Theorem 2.5, this is a contradiction. Therefore, X is a K3 surface.

In addition, let (X ′, G′) be a pair of a K3 surface X ′ and a finite Abelian subgroup G′ of

Aut(X ′) such that X ′/G′ ∼= P1 × P1 and the numerical class of the branch divisor B′ of the

quotient map p′ : X ′ → X ′/G′ is (6.1). By Theorem 2.5, G′ ∼= Z/3Z as a group. Since the

support of B′ is smooth, there is a smooth curve B′
3,3 such that B′ = 3B′

3,3. Then by the

above discussion, there is the Galois cover f : X → P1 × P1 such that X is a K3 surface, the

branch divisor is B′, and the Galois group G is Z/3Z as a group. Since a K3 surface is simply

connected, by Theorem 2.1, the pair (X ′, G′) is isomorphic to the pair (X,G).

Let B1
1,0, B

2
1,0 and B1,3 be smooth curves on P1 × P1 such that B1

1,0 +B2
1,0 +B1,3 is simple

normal crossing. Then the numerical class of 3B1
1,0 + 3B2

1,0 + 3B1,3 is (6.2). Let p : P1 × P1 →

P1×P1 be the Galois cover such that the branch divisor is 3B1
1,0 +3B2

1,0, and the Galois group

is Z/3Z as a group, which is induced by the Galois cover P1 ∋ [z0 : z1] 7→ [z30 : z31 ] ∈ P1. Since

B1
1,0 + B2

1,0 + B1,3 is simple normal crossing, p∗B1,3 is a reduced divisor on P1 × P1 such that

whose support is a union of pairwise disjoint smooth curves, and p∗B1,3 = (3, 3) in Pic(P1×P1).

As for the case of (6.1), there is the Galois cover q : X → P1 × P1 such that X is a K3 surface,

the Galois group is Z/3Z as a group, and the branch divisor is 3p∗B1,3. Then the branched

cover p ◦ q : X → P1 × P1 has 3B1
1,0 + 3B2

1,0 + 3B1,3 as the branch divisor. Since X is simply

connected, by Theorem 2.1, p ◦ q is the Galois cover. Since the degree of p ◦ q is 9, by Theorem

2.5, the Galois group of p ◦ q is Z/3Z⊕2 as a group.

Conversely, for a K3 surface X and a finite Abelian subgroup G of Aut(X) such that

X/G ∼= P1×P1 and the numerical class of the branch divisorB of the quotient map p : X → X/G

is (6.2). By the above discussion, G isomorphic to Z/3Z⊕2 as a group, and X → X/G is given

by the composition of the Galois cover X → P1 × P1 whose numerical class of the branch

divisor is (6.1) and the Galois cover p : P1×P1 → P1 ×P1 which is induced by the Galois cover

P1 ∋ [z0 : z1] 7→ [z30 : z31 ] ∈ P1.

As for the case of (6.2), we get the claim for (6.3). In this case, the Galois group is Z/3Z⊕3

as a group. Furthermore, let X be a K3 surface and G be a finite Abelian subgroup of Aut(X)

such that X/G ∼= P1 × P1 and the numerical class of the branch divisor B of G is (6.3). As for

the case of (6.2), X → X/G is given by the composition of the Galois cover X → P1×P1 whose

numerical class of the branch divisor is (6.1) and the Galois cover p : P1×P1 → P1×P1 which is

isomorphic to the Galois cover p : P1×P1 ∋ ([z0 : z1], [w0 : w1]) 7→ ([z30 : z31 ], [w
3
0 : w3

1 ]) ∈ P1×P1.
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For (6.1), we obtain an example if we use a curve B3,3 in P1 × P1 given by the equation

B3,3 : z30w
3
0 + z30w

3
1 + z31w

3
0 + 2z31w

3
1 = 0.

For (6.2), we obtain an example if we use curves B1
1,0, B

2
1,0, B1,3 in P1×P1 given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B1,3 : z0w
3
0 + z0w

3
1 + z1w

3
0 + 2z1w

3
1 = 0.

For (6.3), we obtain an example if we use curves B1
1,0, B

2
1,0, B1,1, B

1
0,1, B

2
0,1 in P1 × P1 given by

the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B1,1 : z0w0 + z0w1 + z1w0 + 2z1w1 = 0,

B1
0,1 : w0 = 0, B2

0,1 : w1 = 0.

Corollary 3.1 For each numerical classes (6.194), (6.83) and (6.302), (6.251), (6.201),

(6.84) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G of

Aut(X) such that X/G ∼= Fn and the numerical class of the branch divisor B of the quotient

map p : X → X/G is (6.194), (6.83) and (6.302), (6.251), (6.201), (6.84).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.194), (6.83) and (6.302), (6.251), (6.201), (6.84), then G is Z/3Z, Z/2Z ⊕ Z/3Z, Z/3Z,

Z/2Z⊕ Z/3Z, Z/3Z⊕2, Z/2Z⊕ Z/3Z⊕2, in order, as a group.

Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X

be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn, and B be the

branch divisor of the quotient map p : X → X/G. Then we get the following.

i) If the numerical class of B is one of (6.194), (6.302), then X → X/G is given by Theorem

3.1.

ii) If the numerical class of B is (6.83), then X → X/G is given by the composition of the

Galois cover X ′ → F2 whose numerical class of the branch divisor is (6.194) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

iii) If the numerical class of B is one of (6.251), (6.201), (6.84), then X → X/G is given

by the composition of the Galois cover X ′ → F6 whose numerical class of the branch divisor is

(6.302) and the Galois cover F6 → Fm which is induced by the Galois cover P1 → P1 of degree
6
m .

For (6.194), we obtain an example if we use a curve B3,6 in F2 given by the equation

B3,6 : Y 3
0 + Y 3

1 + Y 3
2 = 0.

For (6.83), we obtain an example if we use curves B3,3, B
1
0,1, B

2
0,1 in F1 given by the equations

B3,3 : Y 3
0 + Y 3

1 + Y 3
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.302), we obtain an example if we use a section C and a curve B2,12 in F6 given by the

equation

B2,12 : Y 2
0 + Y 2

1 + Y 2
2 = 0.
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For (6.251), we obtain an example if we use a section C and curves B2,6, B
1
0,1, B

2
0,1 in F3 given

by the equations

B2,6 : Y 2
0 + Y 2

1 + Y 2
2 = 0, cB1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.201), we obtain an example if we use a section C and curves B2,4, B
1
0,1, B

2
0,1 in F2 given

by the equations

B2,4 : Y 2
0 + Y 2

1 + Y 2
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.84), we obtain an example if we use a section C and curves B2,2, B
1
0,1, B

2
0,1 in F1 given

by the equations

B2,2 : Y 2
0 + Y 2

1 + Y 2
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

Proposition 3.3 For each numerical classes (6.4)–(6.13) of the list in Section 6, there are

a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the

numerical class of the branch divisor B of the quotient map p : X → X/G is (6.4)–(6.13).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of

Aut(X), if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map

p : X → X/G is (6.4)–(6.13), then G is Z/2Z, Z/2Z⊕2, Z/2Z⊕3, Z/2Z⊕Z/4Z, Z/2Z⊕Z/4Z⊕2,

Z/2Z⊕2 ⊕ Z/4Z, Z/2Z⊕3, Z/2Z⊕5, Z/2Z⊕4, Z/2Z3 ⊕ Z/4Z, in order, as a group.

Proof In the same way as Proposition 3.2, we get this proposition. More specifically, let

X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn, and B be

the branch divisor of the quotient map p : X → X/G. Then we get the following.

(i) If the numerical class of B is (6.4), then X → X/G is given by Theorem 3.1.

(ii) If the numerical class of B is one of (6.5)–(6.13), then X → X/G is given by the

composition of the Galois cover X → P1 × P1 whose numerical class of the branch divisor is

(6.4) and the Galois cover P1 × P1 → P1 × P1 which is induced by the Galois cover P1 → P1.

For (6.4), we obtain an example if we use a curve B4,4 in P1 × P1 given by the equation

B4,4 : (z40 + z41)(w
4
0 + w4

1) + 2z20z
2
1w

2
0w

2
1 = 0.

For (6.5), we obtain an example if we use curves B1
1,0, B

2
1,0, B2,4 in P1×P1 given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B2,4 : (z20 + z21)(w
4
0 + w4

1) + 2z0z1w
2
0w

2
1 = 0.

For (6.6), we obtain an example if we use curves B1
1,0, B

2
1,0, B2,2, B

1
0,1, B

2
0,1 in P1 × P1 given by

the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B2,2 : (z20 + z21)(w
2
0 + w2

1) + 2z0z1w0w1 = 0,

B1
0,1 : w0 = 0, B2

0,1 : w1 = 0.

For (6.7), we obtain an example if we use curves B1
1,0, B

2
1,0, B2,4 in P1×P1 given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B2,4 : (z0 + z1)(w
4
0 + w4

1) + (z0 − z1)w
2
0w

2
1 = 0.
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For (6.8), we obtain an example if we use curves B1
1,0, B

2
1,0, B1,1, B

1
0,1, B

2
0,1 in P1 × P1 given by

the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B1,1 : (z0 + z1)(w0 + w1) + 2(z0 − z1)(w0 − w1) = 0,

B1
0,1 : w0 = 0, B2

0,1 : w1 = 0.

For (6.9), we obtain an example if we use curves B1
1,0, B

2
1,0, B1,2, B

1
0,1, B

2
0,1 in P1 × P1 given by

the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B1,2(z0 + z1)(w
2
0 + w2

1) + (z0 − z1)w0w1,

B1
0,1 : w0 = 0, B2

0,1 : w1 = 0.

For (6.10), we obtain an example if we use curves B1
1,0, B

2
1,0, B

3
1,0, B1,4 in P1 × P1 given by the

equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B3
1,0 : z0 − z1 = 0,

B1,4 : (z0 + z1)(w
4
0 + w4

1) + 2(z0 − z1)(w
4
0 − w4

1) = 0.

For (6.11), we obtain an example if we use curves B1
1,0, B

2
1,0, B

3
1,0, B1,1, B

1
0,1, B

2
0,1, B

3
0,1 in P1×P1

given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B3
1,0 : z0 − z1 = 0,

B1,1 : (z0 − 2z1)w0 + (2z0 + z1)w1 = 0,

B1
0,1 : w0 = 0, B2

0,1 : w1 = 0, B3
0,1 : w0 − w1 = 0,

For (6.12), we obtain an example if we use curves B1
1,0, B

2
1,0, B

3
1,0, B1,2, B

1
0,1, B

2
0,1 in P1 × P1

given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B3
1,0 : z0 − z1 = 0,

B1,2 : (z0 − 2z1)w
2
0 + (2z0 + z1)w

2
1 = 0, B1

0,1 : w0 = 0, B2
0,1 : w1 = 0.

For (6.13), we obtain an example if we use curves B1
1,0, B

2
1,0, B

3
1,0, B1,1, B

1
0,1, B

2
0,1 in P1 × P1

given by the equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B3
1,0 : z0 − z1 = 0,

B1,2 : (z0 − 2z1)w0 + (2z0 + z1)w1 = 0, B1
0,1 : w0 = 0, B2

0,1 : w1 = 0.

Corollary 3.2 For each numerical classes (6.79) and (6.195), (6.85) and (6.277), (6.202),

(6.86), (6.87) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G

of Aut(X) such that X/G ∼= Fn and the numerical class of the branch divisor B of the quotient

map p : X → X/G is (6.79) and (6.195), (6.85) and (6.277), (6.202), (6.86), (6.87).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of

Aut(X), if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map

p : X → X/G is (6.79) and (6.195), (6.85) and (6.277), (6.202), (6.86), (6.87), then G is Z/2Z,

Z/2Z, Z/2Z⊕2, Z/2Z, Z/2Z⊕2, Z/2Z⊕ Z/4Z, Z/2Z⊕3, in order, as a group.
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Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X

be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn, and B be the

branch divisor of the quotient map p : X → X/G. Then we get the following.

i) If the numerical class of B is one of (6.79), (6.195), (6.277), then X → X/G is given by

Theorem 3.1.

ii) If the numerical class of B is one of (6.85), then X → X/G is given by the composition of

the Galois cover X → F2 whose numerical class of the branch divisor is (6.195) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

iii) If the numerical class of B is one of (6.202) , (6.86), (6.87), then X → X/G is given

by the composition of the Galois cover X → F4 whose numerical class of the branch divisor is

(6.277) and the Galois cover F4 → Fm which is induced by the Galois cover P1 → P1 of degree
4
m .

For (6.79), we obtain an example if we use a curve B4,6 in F1 given by the equation

B4,6 : X2
0Y

4
1 +X2

1Y
4
0 +X0X1Y

4
2 = 0.

For (6.195), we obtain an example if we use a curve B4,8 in F2 given by the equation

B4,8 : Y 4
0 + Y 4

1 + Y 4
2 = 0.

For (6.85), we obtain an example if we use curves B4,4, B
1
0,1, B

2
0,1 in F1 given by the equations

B4,4 : Y 4
0 + Y 4

1 + Y 4
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.277), we obtain an example if we use a section C and a curve B3,12 in F4 given by the

equation

B3,12 : Y 3
0 + Y 3

1 + Y 3
2 = 0.

For (6.202), we obtain an example if we use a section C and curves B3,6, B
1
0,1, B

2
0,1 in F2 given

by the equations

B3,6 : Y 3
0 + Y 3

1 + Y 3
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.86), we obtain an example if we use a section C and curves B3,3, B
1
0,1, B

2
0,1 in F1 given

by the equations

B3,3 : Y 3
0 + Y 3

1 + Y 3
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.87), we obtain an example if we use a section C and curves B3,3, B
1
0,1, B

2
0,1, B

3
0,1 in F1

given by the equations

B3,3 : Y 3
0 + Y 3

1 + Y 3
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0, B3

0,1 : X0 −X1 = 0.

Proposition 3.4 For each numerical classes (6.14)–(6.16) of the list in Section 6, there

are a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the

numerical class of the branch divisor B of the quotient map p : X → X/G is (6.14)–(6.16).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.14)–(6.16), then G is Z/2Z⊕2, Z/2Z⊕3, Z/2Z⊕4, in order, as a group.
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Proof Let B1
2,2, B

2
2,2 be smooth curves on P1 × P1 such that B1

2,2 +B2
2,2 is simple normal

crossing. Then the numerical class of 2B1
2,2 + 2B2

2,2 is (6.14). Since Bi
2,2 = (2C + 2F ) in

Pic(P1×P1), by Theorem 3.1, there are the Galois covers pi : Xi → P1×P1 such that the branch

divisor of pi is 2B
i
2,2 for i = 1, 2 and the Galois group of pi is isomorphic to Z/2Z as a group

for i = 1, 2. Since B1
2,2 +B2

2,2 is simple normal crossing, the fibre product X := X1 ×P1×P1 X2

of p1 and p2 is smooth. Therefore, there is the Galois cover p : X → P1 × P1 such that X is

a K3 surface, the Galois group is isomorphic to Z/2Z⊕2 as a group, and the branch divisor

is 2B1
2,2 + 2B2

2,2. The rest of this proposition is proved in the same way as Proposition 3.2.

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that

X/G ∼= Fn, and B be the branch divisor of G. Then we get the following.

(i) If the numerical class of B is (6.14), then X → X/G is given by Theorem 3.1 and the

fibre product.

(ii) If the numerical class of B is one of (6.15)–(6.16), then X → X/G is given by the

composition of the Galois cover X → P1 × P1 whose numerical class of the branch divisor is

(6.14) and the Galois cover P1 × P1 → P1 × P1 which is induced by the Galois cover P1 → P1.

For (6.14), we obtain an example if we use curves B1
2,2, B

2
2,2 in P1×P1 given by the equations

B1
2,2 : z20w

2
0 + z21w

2
1 = 0, B2

2,2 : z20w
2
1 + z21w

2
0 = 0.

For (6.15), we obtain an example if we use curves B1
1,0, B

2
1,0, B

1
1,2, B

2
1,2 in P1 × P1 given by the

equations

B1
1,0 : z0 = 0, B2

1,0 : z1 = 0, B1
1,2 : z0w

2
0 + z1w

2
1 = 0, B2

1,2z0w
2
1 + z1w

2
0 = 0.

For (6.16), we obtain an example if we use curves B1
1,0, B

2
1,0, B

1
1,1, B

2
1,1, B

1
0,1, B

2
0,1 in P1 × P1

given by the equations

B1
1,0 : z0 = 0, B2

1,0z1 = 0, B1
1,1 : (z0 − 2z1)w0 + (2z0 + z1)w1 = 0,

B2
1,1 : z0(w0 − 2w1) + z1(2w0 + w1) = 0, B1

0,1 : w0 = 0, B2
0,1 : w1 = 0.

Corollary 3.3 For each numerical classes (6.80) and (6.196), (6.89) and (6.197), (6.88)

and (6.279), (6.203), (6.90), (6.91) of the list in Section 6, there is are a K3 surface X and a

finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the numerical class of the branch

divisor B of the quotient map p : X → X/G is (6.80) and (6.196), (6.89) and (6.197), (6.88)

and (6.279), (6.203), (6.90), (6.91).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.80) and (6.196), (6.89) and (6.197), (6.88) and (6.279), (6.203), (6.90), (6.91), then G is

Z/2Z⊕2, Z/2Z⊕2, Z/2Z⊕3, Z/2Z⊕2, Z/2Z⊕3, Z/2Z⊕2, Z/2Z⊕3, Z/2Z⊕2 ⊕ Z/4Z, Z/2Z⊕4, in

order, as a group.

Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X

be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn, and B be the

branch divisor of the quotient map p : X → X/G. Then we get the following.

(i) If the numerical class of B is one of (6.80), (6.196), (6.197), (6.279), then X → X/G is

given by Theorem 3.1 and the fibre product.
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(ii) If the numerical class of B is (6.89), then X → X/G is given by the composition of

the Galois cover X → F2 whose numerical class of the branch divisor is (6.196) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

(iii) If the numerical class of B is (6.88), then X → X/G is given by the composition of

the Galois cover X → F2 whose numerical class of the branch divisor is (6.197) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

(iv) If the numerical class of B is one of (6.203), (6.90), (6.91), then X → X/G is given

by the composition of the Galois cover X → F4 whose numerical class of the branch divisor is

(6.279) and the Galois cover F4 → F1 which is induced by the Galois cover P1 → P1 of degree

4.

For (6.80), we obtain an example if we use curves B2,4, B2,2 in F1 given by the equations

B2,4 : X2
0Y

2
1 +X2

1Y
2
0 +X0X1Y

2
2 = 0, B2,2 : Y 2

0 + Y 2
1 + Y 2

2 = 0.

For (6.196), we obtain an example if we use curves B1
2,4, B

2
2,4 in F2 given by the equations

B1
2,4 : 2Y 2

0 + Y 2
1 + Y 2

2 = 0, B2
2,4 : Y 2

0 + Y 2
1 + 2Y 2

2 = 0.

For (6.89), we obtain an example if we use curves B1
2,2, B

2
2,2, B

1
0,1, B

2
0,1 in F1 given by the

equations

B1
2,2 : 2Y 2

0 + Y 2
1 + Y 2

2 = 0, B2
2,2 : Y 2

0 + Y 2
1 + 2Y 2

2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.197), we obtain an example if we use a section C and curves B1,2, B2,6 in F2 given by

the equations

B1,2 : Y0 + Y2 = 0, B2,6 : X2
0Y

2
1 +X2

1Y
2
0 + (X2

0 + 2X2
1 )Y

2
2 = 0.

For (6.88), we obtain an example if we use a section C and curves B1,1, B2,3, B
1
0,1, B

2
0,1 in F1

given by the equations

B1,1 : Y0 + Y2 = 0, B2,3 : X0Y
2
1 +X1Y

2
0 + (X0 + 2X1)Y

2
2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.279), we obtain an example if we use a section C and curves B1,4, B2,8 in F4 given by

the equations

B1,4 : Y0 + Y2 = 0, B2,8 : Y 2
0 + Y 2

1 + Y 2
2 = 0.

For (6.203), we obtain an example if we use a section C and curves B1,2, B2,4, B
1
0,1, B

2
0,1 in F2

given by the equations

B1,2 : Y0 + Y2 = 0, B2,4 : Y 2
0 + Y 2

1 + Y 2
2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.90), we obtain an example if we use a section C and curves B1,1, B2,2, B
1
0,1, B

2
0,1 in F1

given by the equations

B1,1 : Y0 + Y2 = 0, B2,2 : Y 2
0 + Y 2

1 + Y 2
2 = 0,
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B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.91), we obtain an example if we use a section C and curves B1,1, B2,2, B
1
0,1, B

2
0,1, B

3
0,1 in

F1 given by the equations

B1,1 : Y0 + Y2 = 0, B2,2 : Y 2
0 + Y 2

1 + Y 2
2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0, B3 : X0 −X1 = 0.

A lattice is a pair (L, b) of a free Abelian group L := Z⊕n of rank n and a symmetric

non-degenerate bilinear form b : L× L → Z taking values in Z. The discriminant group of L is

L∨/L, where the dual L∨ := {m ∈ L ⊗Q | b(m, l) ∈ Z for all l ∈ L} (here we denote by b the

Q linear extension of b). Let U be the hyperbolic lattice, and An and let En be the negative

definite lattices of rank n associated to the corresponding root systems.

Proposition 3.5 For each classes (6.17)–(6.18) of the list in Section 6, there is a K3

surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the numerical

class of the branch divisor B of the quotient map p : X → X/G is (6.17)–(6.18).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.17)–(6.18), then G is Z/3Z⊕2, Z/3Z⊕2, in order, as a group.

Proof Let B1
1,1, B

2
1,1 and B3

1,1 be smooth curves such that B1
1,1 + B2

1,1 + B3
1,1 is simple

normal crossing. Since B1
1,1 +B2

1,1 +B3
1,1 = (3C + 3F ) in Pic(P1 × P1), by Theorem 3.1, there

is the Galois cover p′ : X ′ → P1 × P1 such that the branch divisor is 3B1
1,1 + 3B2

1,1 + 3B3
1,1 and

the Galois group is isomorphic to Z/3Z as a group. Since B1
1,1 + B2

1,1 + B3
1,1 is simple normal

crossing, singular points of X ′ are rational double points. More precisely, the singular locus of

X ′ consists of six A2 points. Let pm : X ′
m → X ′ be the minimal resolution of X ′. Then the

canonical divisor of X ′
m is numerical trivial. Since X ′

m has a curve such that the self-intersection

number is negative, X ′
m is a K3 surface or Enriques surface. Since X ′

m has an automorphism

s of order 3 such that the curves of Fix(s) are three rational curves Ci for i = 1, 2, 3, by [11],

X ′
m is a K3 surface. By [1, Theorem 2.8 and Proposition 3.2] or [14, Table 2], we get that

Pic(X ′
m)s

∗

:= {α ∈ Pic(X ′
m) : s∗α = α} ∼= U ⊕ E6 ⊕A3

2.

Let z1, · · · , z6 be singular points of X ′, and e1, · · · , e12 be the exceptional divisors of pm, where

zi = pm(e2i−1) = pm(e2i) for i = 1, · · · , 6. Notice that (e2i−1 · e2i) = 1, (e2i−1 · e2i−1) = −2

and (e2i · e2i) = −2. Since Ci ⊂ Fix(s) for i = 1, 2, 3, we get that (e2i−1 ∪ e2i)∩Fix(s) contains

at least 2 points. Since s(e2i−1 ∪ e2i) = (e2i−1 ∪ e2i) and e2i−1 ∩ e2i is one point, we get that

e2i−1 ∩ e2i ⊂ Fix(s). Therefore, s(e2i−1) = e2i−1 and s(e2i) = e2i, and hence e2i−1, e2i ∈

Pic(X ′
m)s

∗

for i = 1, · · · , 6. Since Pic(X ′
m)s

∗

is a primitive sublattice, the minimal primitive

sublattice which contains (p′ ◦ pm)∗Pic(P1 × P1) and e1, · · · , e12 of Pic(X ′
m) is Pic(X ′

m)s
∗

.

Let f := p′ ◦ pm : X ′
m → P1 × P1. Since f∗Ci = Bi

1,1, we get (Ci · f∗F ) = ((C + F ) · F ) = 1

for i = 1, 2, 3. Let

C′
1 := C1 +

6∑

i=1

(C1 · e2i−1)

2
e2i−1 +

6∑

i=1

(C1 · (e2i−1 + 2e2i))

6
(e2i−1 + 2e2i).
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Then (C′
1 · ei) = 0 for i = 1, · · · , 12. Since (e2i−1 · e2i−1) = −2, (e2i−1 · e2i−1 + 2e2i) = 0 and

(e2i−1 + 2e2i · e2i−1 + 2e2i) = −6, we get 6C′
1 ∈ Pic(X ′

m). Therefore, the minimal primitive

sublattice K of Pic(X ′
m)s

∗

, which contains f∗C and 6C′
1 is a unimodular lattice. Let M be

the minimal primitive sublattice of Pic(X ′
m), which contains the curves e1, · · · , e12. Then

M ⊂ U⊥. Since U is a unimodular lattice and M and U are sublattice of Pic(X ′
m)s

∗

, we

get U ⊕ M = Pic(X ′
m)s

∗

. Therefore, the rank of M is 12 and M∨/M ∼= Z/3Z⊕4. Thus, by

[6,Theorem 5.2] there is a K3 surface X and a symplectic automorphism t of order 3 of X

such that X ′ = X/〈t〉, and hence there is a finite Abelian subgroup G ⊂ Aut(X) such that

X/G ∼= P1 × P1, G ∼= Z/3Z⊕2, and the branch divisor is 3B1
1,1 + 3B2

1,1 + 3B3
1,1. In the same

way, we get the claim for (6.18).

More specifically, let X be a K3 surface X , G be a finite Abelian subgroup G of Aut(X)

such that X/G ∼= P1 × P1, and the numerical class of the branch divisor B of G is (6.17) or

(6.18). By Theorem 3.1, there is the Galois cover p′ : X ′ → P1 × P1 such that the branch

divisor is B and the Galois group is isomorphic to Z/3Z as a group. Then we get that X is the

universal cover of X ′ of degree 3.

For (6.17), we obtain an example if we use curves B1
1,1, B

2
1,1, B

3
1,1 in P1 × P1 given by the

equations

B1
1,1 : z0w0 + z1w1 = 0, B2

1,1 : z0w0 − z1w1 = 0, B3
1,1 : z0w1 + z1w0 = 0.

For (6.18), we obtain an example if we use curves B1,0, B1,1, B1,2 in P1 × P1 given by the

equations

B1,0 : z0 = 0, B1,1 : z0w1 + z1w0 = 0, B1,2 : z0w
2
1 + z1w

2
0 + z1w

2
1 = 0.

Corollary 3.4 For each numerical classes (6.198), (6.92) and (6.204) and (6.303), (6.252),

(6.205), (6.93) of the list in Section 6, there are a K3 surface X and a finite Abelian subgroup G

of Aut(X) such that X/G ∼= Fn and the numerical class B of the branch divisor of the quotient

map p : X → X/G is (6.198), (6.92) and (6.204) and (6.303), (6.252), (6.205), (6.93).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of

Aut(X), if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map

p : X → X/G is (6.198), (6.92) and (6.204) and (6.303), (6.252), (6.205), (6.93), then G is

Z/3Z⊕2, Z/2Z ⊕ Z/3Z⊕2, Z/3Z⊕2, Z/3Z⊕2, Z/2Z ⊕ Z/3Z⊕2, Z/3Z⊕3, Z/2Z ⊕ Z/3Z⊕3, in

order, as a group.

Proof In the same way as Proposition 3.5, we get this corollary. More specifically, let X

be a K3 surface X , G be a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn, and B

be the branch divisor of the quotient map p : X → X/G. Let p′ : X ′ → P1 × P1 be the Galois

cover such that the branch divisor is B and which is given by Theorem 3.1. Then we get the

following.

(i) If the numerical class of B is one of (6.198), (6.204), (6.303), then X is the universal

cover of X ′ of degree 3.

(ii) If the numerical class of B is (6.92), then X → X/G is given by the composition of the

Galois cover X ′ → F2 whose numerical class of the branch divisor is (6.92) and the Galois cover

F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

(iii) If the numerical class of B is one of (6.252), (6.205), (6.93), then X → X/G is given

by the composition of the Galois cover X ′ → F6 whose numerical class of the branch divisor is
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(6.303) and the Galois cover F6 → Fm which is induced by the Galois cover P1 → P1 of degree
6
m .

For (6.198), we obtain an example if we use curves B1
1,2, B

2
1,2, B

3
1,2 in F2 given by the

equations

B1
1,2 : Y0 + Y2 = 0, B2

1,2 : Y1 + Y2 = 0, B3
1,2 : Y0 + Y1 + Y2 = 0.

For (6.92), we obtain an example if we use curves B1
1,1, B

2
1,1, B

3
1,1, B

1
0,1, B

2
0,1 in F1 given by the

equations

B1
1,1 : Y0 + Y2 = 0, B2

1,1 : Y1 + Y2 = 0, B3
1,1 : Y0 + Y1 + Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.204), we obtain examples if we use a section C and curves B1
1,3, B

2
1,3 in F2 given by the

equations

B1
1,3 : X0Y0 +X0Y1 +X1Y2 = 0, B2

1,3 : X1Y0 +X1Y1 + 2X0Y2 = 0.

For (6.303), we obtain examples if we use a section C and curves B1
1,6, B

2
1,6 in F6 given by the

equations

B1
1,6 : Y0 + 2Y2 = 0, B2

1,6 : Y1 + 2Y2 = 0.

For (6.252), we obtain examples if we use a section C and curves B1
1,3, B

2
1,3, B

1
0,1, B

2
0,1 in F3

given by the equations

B1
1,3 : Y0 + 2Y2 = 0, B2

1,3 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.205), we obtain examples if we use a section C and curves B1
1,2, B

2
1,2, B

1
0,1, B

2
0,1 in F2

given by the equations

B1
1,2 : Y0 + 2Y2 = 0, B2

1,2 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.93), we obtain examples if we use a section C and curves B1
1,1, B

2
1,1, B

1
0,1, B

2
0,1 in F1 given

by the equations

B1
1,1 : Y0 + 2Y2 = 0, B2

1,1 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

Proposition 3.6 For each numerical classes (6.19)–(6.20) of the list in Section 6, there

is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the

numerical class of the branch divisor B of the quotient map p : X → X/G is (6.19)–(6.20).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.19)–(6.20), then G is Z/2Z⊕3, Z/2Z⊕3, in order, as a group.

Proof Let Bi
1,1 be a smooth curve on P1 × P1 for i = 1, 2, 3, 4 such that

4∑
i=1

Bi
1,1 is simple

normal crossing. Then the numerical class of
4∑

i=1

2Bi
1,1 is (6.19). We set {x1, x2} := B1

1,1 ∩B2
1,1
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and {x3, x4} := B3
1,1 ∩ B3

1,1. Let Z := Blow{x1,x2,x3,x4}P
1 × P1. Let Ei be the exceptional

divisor for i = 1, 2, 3, 4. Then Pic(Z) = Pic(P1 × P1)
4⊕

i=1

ZEi. Let Ci be the proper transform

of Bi
1,1 for i = 1, 2, 3, 4. Then for i = 1, 2, j = 3, 4,

Ci = (C + F )− E1 − E2 and Cj = (C + F )− E3 − E4 in Pic(Z).

By Theorem 3.1, there are the Galois covers p1 : Y1 → Z and p2 : Y2 → Z such that the branch

divisor of p1 is 2C1+2C2, and that of p2 is 2C3+2C4. Since C1∩C2 and C3∩C4 are empty sets,

Y1 and Y2 are smooth. Since
4∑

i=1

Ci
1,1 is simple normal crossing, Y := Y1 ×Z Y2 is smooth and

a K3 surface. Therefore, there is the Galois cover f : Y → Z whose branch divisor is
4∑

i=1

2Ci

and Galois group is Z/2Z⊕2 as a group. Let C′
i be a smooth curve on Y such that f∗Ci = 2C′

i

for i = 1, 2, 3, 4. Then

C′
1 = f∗

((C
2
,
F

2

)
−

1

2
E1 −

1

2
E2

)
and C′

3 = f∗
((C

2
,
F

2

)
−

1

2
E3 −

1

2
E4

)
in Pic(Y ).

Thus, we get
4∑

i=1

f∗Ei = 2f∗(C + F )− 2C′
1 − 2C′

2 in Pic(Y ).

By Theorem 3.1, there is the Galois cover g : W → Y whose branch divisor is
4∑

i=1

2f∗Ei. Let

E′
i be a smooth curve on W such that g∗f∗Ei = 2E′

i. Since (f∗Ei · f∗Ei) = −2, (E′
i ·E

′
i) = −1

for i = 1, 2, 3, 4. Let f : W → X be a contraction of E′
1, · · · , E

′
4. Since Y is a K3 surface, X is

a K3 surface. Since W is a double cover of Y , there is a symplectic involution s of X such that

X/〈s〉 → P1×P1 is a Galois cover whose branch divisor is 2B1
1,1+2B2

1,1+2B3
1,1+2B4

1,1. Therefore,

there is a finite Abelian subgroup G ⊂ Aut(X) such that X/G ∼= P1 × P1, G ∼= Z/2Z⊕3, and

the branch divisor is 2B1
1,1 + 2B2

1,1 + 2B3
1,1 + 2B4

1,1.

Next, let B1,0, B1,2, B
1
1,1, B

2
1,1 be smooth curves on P1×P1 such that B1,0+B1,2+B1

1,1+B2
1,1

is simple normal crossing. Then the numerical class of 2B1,0 + 2B1,2 + 2B1
1,1 + 2B2

1,1 is (6.20).

We set {x1, x2} := B1,0 ∩B1,2 and {x3, x4} := B1
1,1 ∩B2

1,1. Let Z := Blow{x1,x2,x3,x4}P
1 × P1.

Let Ei be the exceptional divisor for i = 1, 2, 3, 4. Then Pic(Z) = Pic(P1 × P1)
4⊕

i=1

ZEi. Let

C1,0, C1,2, C
1
1,1, C

2
1,1 be the proper transform of B1,0, B1,2, B

1
1,1, B

2
1,1 in order. Then

C1,0 = C − E1 − E2 and C1,2 = (C + F )− E1 − E2 in Pic(Z)

and

C1
1,1 = (C + F )− E3 − E4 and C2

1,1 = (C + F )− E3 − E4 in Pic(Z).

Let p1 : Y1 → Z be a cyclic cover whose branch divisor is 2C1,0 + 2C1,2, and p2 : Y2 → Z be a

cyclic cover whose branch divisor is 2C1
1,1+2C2

1,1. Then as for the case of (6.19), Y := Y1×Z Y2

is a K3 surface, and there is the Galois cover f : Y → Z whose branch divisor is
4∑

i=1

2Ci and

Galois group is to Z/2Z⊕2 as a group. Since
f∗C1,0

2 ∈ Pic(Y ) and
f∗C1,2

2 ∈ Pic(Y ), we get
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f∗(C1,2−C1,1)
2 = f∗(0, 1

2 ) ∈ Pic(Y ). As for the case of (6.19), we get

4∑

i=1

f∗Ei

2 ∈ Pic(Y ), and

hence we get the claim for (6.20).

More specifically, let X be a K3 surface X , G be a finite Abelian subgroup G of Aut(X)

such that X/G ∼= P1 ×P1, and the numerical class of the branch divisor B of the quotient map

p : X → X/G is (6.19) or (6.20). By Theorem 3.1 and the fibre product, there is the Galois

cover p′ : X ′ → P1 × P1 such that the branch divisor is B and the Galois group is Z/2Z⊕2 as a

group. Then we get that X is the universal cover of X ′ of degree 2.

For (6.19), we obtain an example if we use curves B1
1,1, B

2
1,1, B

3
1,1, B

4
1,1 in P1 × P1 given by

the equations

B1
1,1 : z0w0 + z1w1 = 0, B2

1,1 : z0w0 − z1w1 = 0,

B3
1,1 : z0w1 + z1w0 = 0, B4

1,1 : z0w1 − z1w0 = 0.

For (6.20), we obtain an example if we use curves B1,0, B
1
1,1, B

2
1,1, B1,2 in P1 × P1 given by the

equations

B1,0 : z0 = 0, B1
1,1 : z0w0 + z1w1 = 0,

B2
1,1 : z0w1 + z1w0 = 0, B1,2 : z0w

2
1 + 3z1w

2
0 = 0.

Corollary 3.5 For each numerical classes (6.81) and (6.82) and (6.199), (6.94) and (6.200),

(6.96) and (6.282), (6.206), (6.97), (6.98) of the list in Section 6, there is a K3 surface X and

a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the numerical class of the

branch divisor B of the quotient map p : X → X/G is (6.81) and (6.82) and (6.199), (6.94) and

(6.200), (6.96) and (6.282), (6.206), (6.97), (6.98).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X →

X/G is (6.81) and (6.82) and (6.199), (6.94) and (6.200), (6.96) and (6.282), (6.206), (6.97),

(6.98), then G is Z/2Z⊕3, Z/2Z⊕3, Z/2Z⊕3, Z/2Z⊕4, Z/2Z⊕3, Z/2Z⊕4, Z/2Z⊕3, Z/2Z⊕4,

Z/2Z⊕3 ⊕ Z/4Z, Z/2Z⊕5, in order, as a group.

Proof In the same way as Proposition 3.6, we get this corollary. More specifically, let X

be a K3 surface X , G be a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn, and B

be the branch divisor of the quotient map p : X → X/G. Then we get the following.

(i) We assume that the numerical class of B is one of (6.81), (6.82), (6.199), (6.200), (6.282).

By Theorem 3.1 and the fibre product, there is the Galois cover p′ : X ′ → Fn such that the

branch divisor is B and the Galois group is Z/2Z⊕2 as a group. Then X is the universal cover

of X ′ of degree 2.

(ii) If the numerical class of B is (6.94), then X → X/G is given by the composition of

the Galois cover X → F2 whose numerical class of the branch divisor is (6.199) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

(iii) If the numerical class of B is (6.96), then X → X/G is given by the composition of

the Galois cover X → F2 whose numerical class of the branch divisor is (6.200) and the Galois

cover F2 → F1 which is induced by the Galois cover P1 → P1 of degree 2.

(iv) If the numerical class of B is one of (6.206), (6.98), (6.97), then X → X/G is given

by the composition of the Galois cover X → F4 whose numerical class of the branch divisor is
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(6.303) and the Galois cover F4 → Fm which is induced by the Galois cover P1 → P1 of degree
4
m .

For (6.81), we obtain an example if we use a section C and curves B1
1,2, B

2
1,2, B

3
1,2 in F1

given by the equations

B1
1,2 : X0Y1 +X1Y0 + (X0 +X1)Y2 = 0, B2

1,2 : X0Y1 + 2X1Y0 + (2X0 +X1)Y2 = 0,

B3
1,2 : 2X0Y1 +X1Y0 + (X0 + 2X1)Y2 = 0.

For (6.82), we obtain an example if we use curves B1,3, B
1
1,1, B

2
1,1, B

3
1,1 in F1 given by the

equations

B1,3 : X2
0Y1 +X2

1Y0 +X0X1Y2 = 0, B1
1,1 : Y0 + Y1 + Y2 = 0,

B2
1,1 : Y0 + 2Y1 + Y2 = 0, B3

1,1 : 2Y0 + Y1 + Y2 = 0.

For (6.199), we obtain an example if we use a section C and curves B2,4, B
1
1,2, B

2
1,2 in F2 given

by the equations

B2,4 : X2
0Y1 + (X2

0 +X2
1 )Y2 = 0, B1

1,2 : Y0 + Y2 = 0, B2
1,2 : 2Y0 + 2Y1 = 0.

For (6.94), we obtain an example if we use a section C and curves B1,2, B
1
1,1, B

2
1,1, B

1
0,1, B

2
0,1

in F1 given by the equations

B1,2 : X0Y1 + (X0 +X1)Y2 = 0, B1
1,1 : Y0 + Y2 = 0, B2

1,1 : 2Y0 + 2Y1 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.200), we obtain an example if we use curves B1
1,2, B

2
1,2, B

3
1,2, B

4
1,2 in F2 given by the

equations

B1
1,2 : Y0 + 2Y2 = 0, B2

1,2 : Y1 + 2Y2 = 0,

B3
1,2 : 3Y0 + Y1 + Y2 = 0, B4

1,2 : Y0 + Y1 + 3Y2 = 0.

For (6.96), we obtain an example if we use curves B1
1,1, B

2
1,1, B

3
1,1, B

4
1,1, B

1
0,1, B

2
0,1 in F1 given

by the equations

B1
1,1 : Y0 + 2Y2 = 0, B2

1,1 : Y1 + 2Y2 = 0,

B3
1,1 : 3Y0 + Y1 + Y2 = 0, B4

1,1 : Y0 + Y1 + 3Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.282), we obtain an example if we use a section C and curves B1
1,4, B

2
1,4, B

3
1,4 in F4 given

by the equations

B1
1,4 : Y0 + 2Y2 = 0, B2

1,4 : Y1 + 2Y2 = 0, B3
1,4 : 3Y0 + Y1 + Y2 = 0.

For (6.206), we obtain examples if we use a section C and curves B1
1,2, B

2
1,2, B

3
1,2, B

1
0,1, B

2
0,1 in

F2 given by the equations

B1
1,2 : Y0 + 2Y2 = 0, B2

1,2 : Y1 + 2Y2 = 0, B3
1,2 : 3Y0 + Y1 + Y2 = 0.

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.
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For (6.97), we obtain examples if we use a section C and curves B1
1,1, B

2
1,1, B

3
1,1, B

1
0,1, B

2
0,1 in

F1 given by the equations

B1
1,1 : Y0 + 2Y2 = 0, B2

1,1 : Y1 + 2Y2 = 0, B3
1,1 : 3Y0 + Y1 + Y2 = 0.

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.98), we obtain an example if we use a section C and curves B1
1,1, B

2
1,1, B

3
1,1, B

1
0,1, B

2
0,1,

B3
0,1 in F1 given by the equations

B1
1,1:Y0 + 2Y2 = 0, B2

1,1 : Y1 +2Y2 = 0, B3
1,1 : 3Y0 + Y1 + Y2 = 0, B4

1,1 : Y0 + Y1 + 3Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0, B3
0,1 : X0 −X1 = 0.

Proposition 3.7 For numerical classes (6.278), (6.207), (6.99), (6.100) of the list in Section

6, there is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn

and the numerical class of the branch divisor B of the quotient map p : X → X/G is (6.278),

(6.207), (6.99), (6.100).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.278), (6.207), (6.99), (6.100), then G is Z/4Z, Z/2Z⊕Z/4Z, Z/4Z⊕2, Z/2Z2 ⊕ Z/4Z, in

order, as a group.

Proof Let B2,8 be a smooth curve on F4. Then the numerical class of 2C+4B2,8 is (6.278).

Since B2,8 = 2C + 8F in Pic(F4), by Theorem 3.1, there is the Galois cover p1 : X1 → F4 such

that the branch divisor is 2B2,8 and the Galois group is Z/2Z as a group. Let E2,8 be a smooth

curve on X1 such that p∗1B2,8 = 2E2,8. Since C + B2,8 is simple normal crossing, p∗1C is a

reduced divisor on X1, whose support is a union of pairwise disjoint smooth curves. Since

p∗1C +E2,8 = p∗1(2C + 4F ) = 2p∗1(C + 2F ) in Pic(X1), by Theorem 3.1, there is a Galois cover

p2 : X2 → X1 such that the branch divisor is p∗1C + E2,8 and the Galois group is Z/2Z as a

group. Then p := p1 ◦ p2 : X2 → F4 is the branched cover such that p has 2C + 4B2,8 as the

branch divisor. In the same way of Proposition 3.2, X is a K3 surface, and p : X → F4 is the

Galois cover whose Galois group is Z/4Z as a group. In the same way of Proposition 3.2, we

get the claim for (6.207), (6.99), (6.100).

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such

that X/G ∼= Fn, and B be the branch divisor of the quotient map p : X → X/G. Then we get

the following.

(i) If the numerical class of B is (6.278), then X → X/G is given by the above way.

(ii) If the numerical class of B is one of (6.207), (6.99), (6.100), then X → X/G is given

by the composition of the Galois cover X ′ → F4 whose numerical class of the branch divisor is

(6.278) and the Galois cover F4 → Fm which is induced by the Galois cover P1 → P1 of degree
m
4 .

For (6.278), we obtain an example if we use a section C and a curve B2,8 in F4 given by the

equation

B2,8 : Y 2
0 + Y 2

1 + Y 2
2 = 0.

For (6.207), we obtain examples if we use a section C and curves B2,4, B
1
0,1, B

2
0,1 in F2 given

by the equations

B2,4 : Y 2
0 + Y 2

1 + Y 2
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.
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For (6.99), we obtain examples if we use a section C and curves B2,2, B
1
0,1, B

2
0,1 in F1 given by

the equations

B2,2 : Y 2
0 + Y 2

1 + Y 2
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0.

For (6.100), we obtain examples if we use a section C and curves B2,2, B
1
0,1, B

2
0,1, B

3
0,1 in F1

given by the equations

B2,2 : Y 2
0 + Y 2

1 + Y 2
2 = 0, B1

0,1 : X0 = 0, B2
0,1 : X1 = 0, B3

0,1 : X0 −X1 = 0.

Proposition 3.8 For numerical classes (6.280), (6.208) of the list in Section 6, there is

a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G ∼= Fn and the

numerical class of the branch divisor B of the quotient map p : X → X/G is (6.280), (6.208).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.280), (6.208), then G is Z/2Z⊕ Z/4Z, Z/2Z⊕2 ⊕ Z/4Z, in order, as a group.

Proof Let B1,6 and B1,4 be smooth curves on F4 such that C+B1,6+B1,4 is simple normal

crossing. Then the numerical class of 4C+2B1,6+4B1,4 is (6.280). Since C+B1,4 = 2C+2F in

Pic(F8), by Theorem 3.1, there is the Galois cover p1 : X1 → F4 such that the branch divisor is

2C+2B1,4 and the Galois group is Z/2Z as a group. Let EC , E1,4 be two smooth curves on X1

such that p∗1C = 2EC and p∗1B1,4 = 2E1,4. Since C+B1,6+B1,4 is simple normal crossing, p∗1B1,6

is a reduced divisor on X1, whose support is a union of pairwise disjoint smooth curves. Since

p∗1B1,6 = p∗1(C+6F ) = p∗1(C+4F )+p∗1(2F ) = 2E1,4+2p∗1F in Pic(X1), by Theorem 3.1, there

is the Galois cover p2 : X2 → X1 such that the branch divisor is 2p∗1B1,6 and the Galois group is

Z/2Z. Notice that
p∗
2
p∗
1
B1,6

2 ∈ Pic(X2). Since C+B1,6+B1,4 is simple normal crossing, p∗2EC and

p∗2E1,4 are reduced divisors on X2, whose support are unions of pairwise disjoint smooth curves.

Since p∗2(EC +E1,4) = p∗2p
∗
1(C+2F ) = p∗2p

∗
1(C+6F )−p∗2p

∗
14F = p∗2p

∗
1B1,6−4p∗2p

∗
1F in Pic(X2)

and
p∗
2
p∗
1
B1,6

2 ∈ Pic(X2), by Theorem 3.1, there is the Galois cover p3 : X → X2 such that the

branch divisor is p∗2(EC +E1,4) and the Galois group is Z/2Z. Then p := p1 ◦ p2 ◦ p3 : X → F4

is the branched cover such that p has 4C + 2B1,6 + 4B1,4 as the branch divisor. In the same

way of Proposition 3.2, X is a K3 surface, and p : X → F4 is the Galois cover whose Galois

group is Z/2Z ⊕ Z/4Z as a group. In the same way of Proposition 3.2, we get the claim for

(6.208).

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such

that X/G ∼= Fn, and B be the branch divisor of the quotient map p : X → X/G. Then we get

the following.

(i) If the numerical class of B is (6.280), then X → X/G is given by the above way.

(ii) If the numerical class of B is (6.208), then X → X/G is given by the composition of

the Galois cover X ′ → F4 whose numerical class of the branch divisor is (6.280) and the Galois

cover F4 → F2 which is induced by the Galois cover P1 → P1 of degree 2.

For (6.280), we obtain an example if we use a section C and curves B1,6, B1,4 in F4 given

by the equations

B1,6 : X2
0Y1 +X2

1Y0 + (X2
0 + 2X2

1 )Y2 = 0, B1,4 : 2Y0 + Y2 = 0.

For (6.208), we obtain an example if we use a section C and curves B1,3, B1,2, B
1
0,1, B

2
0,1 in F2

given by the equations

B1,3 : X0Y1 +X1Y0 + (X0 + 2X1)Y2 = 0, B1,2 : 2Y0 + Y2 = 0,
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B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

Corollary 3.6 For each numerical classes (6.311), (6.281), (6.210), (6.209), (6.101) of the

list in Section 6, there is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that

X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X → X/G

is (6.311), (6.281), (6.210), (6.209), (6.101).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),

if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p : X →

X/G is (6.311), (6.281), (6.210), (6.209), (6.101), then G is Z/2Z ⊕ Z/4Z, Z/2Z⊕2 ⊕ Z/4Z,

Z/2Z⊕3 ⊕ Z/4Z, Z/2Z⊕ Z/4Z⊕2, Z/2Z⊕ Z/4Z⊕ Z/8Z, in order, as a group.

Proof In the same way Proposition 3.8, we get the claim. More specifically, let X be a K3

surface, G be a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn, and B be the branch

divisor of the quotient map p : X → X/G. Then we get the following.

(i) If the numerical class of B is (6.311), then X → X/G is given by the above way.

(ii) If the numerical class of B is one of (6.101), (6.209), (6.210), (6.281), then X → X/G

is given by the composition of the Galois cover X → F8 whose numerical class of the branch

divisor is (6.311) and the Galois cover F8 → Fm which is induced by the Galois cover P1 → P1

of degree 8
m .

For (6.311), we obtain examples if we use a section C and curves B1
1,8, B

2
1,8 in F8 given by

the equations

B1
1,8 : Y0 + Y1 + Y2 = 0, B2

1,8 : Y0 + Y1 + 2Y2 = 0.

For (6.281), we obtain examples if we use a section C and curves B1
1,4, B

2
1,4, B

1
0,1, B

2
0,1 in F4

given by the equations

B1
1,4 : Y0 + Y1 + Y2 = 0, B2

1,4 : Y0 + Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2 : X1 = 0.

For (6.209), we obtain examples if we use a section C and curves B1
1,2, B

2
1,2, B

1
0,1, B

2
0,1 in F2

given by the equations

B1
1,2 : Y0 + Y1 + Y2 = 0, B2

1,2 : Y0 + Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2 : X1 = 0.

For (6.101), we obtain examples if we use a section C and curves B1
1,1, B

2
1,1, B

1
0,1, B

2
0,1 in F1

given by the equations

B1
1,1 : Y0 + Y1 + Y2 = 0, B2

1,1 : Y0 + Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2 : X1 = 0.

For (6.210), we obtain an example if we use a section C and curves B1
1,2, B

2
1,2, B

1
0,1, B

2
0,1, B

3
0,1

in F2 given by the equations

B1
1,2 : Y0 + Y1 + Y2 = 0, B2

1,2 : Y0 + Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0, B3
0,1 : X0 −X1 = 0.
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Proposition 3.9 For each numerical classes (6.316), (6.304), (6.283), (6.254), (6.253),

(6.211), (6.95) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G

of Aut(X) such that X/G ∼= Fn and the numerical class of the branch divisor B of the quotient

map p : X → X/G is (6.316), (6.304), (6.283), (6.254), (6.253), (6.211), (6.95).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of

Aut(X), if X/G ∼= Fn and the numerical class of the branch divisor B of the quotient map p :

X → X/G is (6.316), (6.304), (6.283), (6.254), (6.253), (6.211), (6.95), then G is Z/2Z⊕Z/3Z,

Z/2Z⊕2 ⊕ Z/3Z, Z/2Z⊕ Z/3Z⊕2, Z/2Z⊕3 ⊕ Z/3Z, Z/2Z⊕ Z/3Z⊕ Z/4Z, Z/2Z⊕2 ⊕ Z/3Z⊕2,

Z/2Z⊕ Z/3Z⊕2 ⊕ Z/4Z, in order, as a group.

Proof Let Bi
1,12 be a smooth curve on F12 for i = 1, 2 such that C + B1

1,12 + B2
1,12 is

simple normal crossing. Then the numerical class of 6C + 2B1
1,12 + 3B2

1,12 is (6.316). Since

C + B1
1,12 = 2C + 12F in Pic(F12), by Theorem 3.1, there is the Galois cover p1 : X1 → F12

such that the branch divisor is 2C + 2B1
1,12 and the Galois group is Z/2Z as a group. Since

C +B1
1,12 +B2

1,12 is simple normal crossing, p∗1B
2
1,12 is a reduced divisor on X1, whose support

is a union of pairwise disjoint smooth curves. Since C and B1
1,12 are smooth curves, there

are smooth curves EC , E1
1,12 on X1 such that p∗1C = 2EC and p∗1B

1
1,12 = 2E1

1,12. Since

EC+p∗1B
2
1,12 = EC+p∗1(C+12F ) = EC+p∗1C+12p∗1F = 3EC+12p∗1F in Pic(X1), by Theorem

3.1, there is the Galois cover p2 : X → X1 such that the branch divisor is 3EC + 3p∗1B
2
1,12 and

the Galois group is Z/3Z as a group. Then p := p1 ◦ p2 : X → F12 is the branched cover such

that p has 6C + 2B1
1,12 + 3B2

1,12 as the branch divisor. In the same way as Proposition 3.2, X

is a K3 surface, and p : X → F12 is the Galois cover whose Galois group is G ∼= Z/2Z⊕ Z/3Z

as a group.

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such

that X/G ∼= Fn, and B be the branch divisor of the quotient map p : X → X/G. Then we get

the following.

(i) If the numerical class of B is (6.316), then X → X/G is given by the above way.

(ii) If the numerical class of B is one of (6.304), (6.283), (6.254), (6.253), (6.211), (6.95),

then X → X/G is given by the composition of the Galois cover X ′ → F12 whose numerical

class of the branch divisor is (6.316) and the Galois cover F12 → Fm which is induced by the

Galois cover P1 → P1 of degree 12
m .

For (6.316), we obtain an example if we use a section C and curves B1
1,12, B

2
1,12 in F12 given

by the equations

B1
1,12 : Y0 + 2Y2 = 0, B2

1,12 : Y1 + 2Y2 = 0.

For (6.304), we obtain examples if we use a section C and curves B1
1,6, B

2
1,6, B

1
0,1, B

2
0,1 in F6

given by the equations

B1
1,6 : Y0 + 2Y2 = 0, B2

1,6 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.283), we obtain examples if we use a section C and curves B1
1,4, B

2
1,4, B

1
0,1, B

2
0,1 in F4

given by the equations

B1
1,4 : Y0 + 2Y2 = 0, B2

1,4 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.
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For (6.253), we obtain examples if we use a section C and curves B1
1,3, B

2
1,3, B

1
0,1, B

2
0,1 in F3

given by the equations

B1
1,3 : Y0 + 2Y2 = 0, B2

1,3 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.211), we obtain examples if we use a section C and curves B1
1,2, B

2
1,2, B

1
0,1, B

2
0,1 in F2

given by the equations

B1
1,2 : Y0 + 2Y2 = 0, B2

1,2 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.95), we obtain examples if we use a section C and curves B1
1,1, B

2
1,1, B

1
0,1, B

2
0,1 in F1

given by the equations

B1
1,1 : Y0 + 2Y2 = 0, B2

1,1 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0.

For (6.254), we obtain an example if we use a section C and curves B1
1,3, B

2
1,3, B

1
0,1, B

2
0,1, B

3
0,1

in F3 given by the equations

B1
1,3 : Y0 + 2Y2 = 0, B2

1,3 : Y1 + 2Y2 = 0,

B1
0,1 : X0 = 0, B2

0,1 : X1 = 0, B3
0,1 : X0 −X1 = 0.

3.2 Complete proof of Theorem 1.5

In this section, we will show that there is no numerical class such that it has an Abelian K3

cover except the numerical classes which are mentioned in Subsection 3.1. Then by Subsection

3.1, we will get Theorem 1.5. From here, we use the notations that

(i) X is a K3 surface,

(ii) G is a finite Abelian subgroup of Aut(X) such that X/G ∼= Fn,

(iii) p : X → X/G is the quotient map, and

(iv) B :=
k∑

i=1

biBi is the branch divisor of p.

Furthermore, we use the notation that Bk
i,j (or simply Bi,j) is a smooth curve on Fn such

that Bk
i,j = iC + jF in Pic(Fn) if n ≥ 0 where k ∈ N.

For the branch divisor B =
m∑
i=1

n(i)∑
j=1

bijB
j
si,ti where m,n(i) ∈ N, we use the notation that

Gj
si,ti := {g ∈ G : g|p−1(Bj

si,ti
) = idp−1(Bj

si,ti
)}.

Recall that by Theorem 2.5, Gj
si,ti is a cyclic group of order bij which is generated by a non-

symplectic automorphism of order bij. Since G is Abelian, the support of B and the support of

p∗B are simple normal crossing.

Lemma 3.2 We assume that X/G ∼= Fn for n ≥ 1. If B = aC+
k∑

i=1

bi(ciC+nciF )+
l∑

j=1

djFj

in Pic(Fn), where a, bi, dj ≥ 2 and ci, l ≥ 1, then 3 ≥ l ≥ 2 and d1 = · · · = dl.
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Proof By Theorem 2.5, there are pairwise disjoint smooth curves C1, · · · , Cm such that

p∗C =
m∑
i=1

aCi. Since C1, · · · , Cm are pairwise disjoint, we get that
( m∑
i=1

Ci ·
m∑
i=1

Ci

)
=

m∑
i=1

(Ci ·

Ci) = m(Ci ·Ci) for i = 1, · · · ,m. Since (C ·C) = −n < 0, (Ci ·Ci) < 0 for i = 1, · · · ,m. Since

X is a K3 surface, Ci is a smooth rational curve for i = 1, · · · ,m. Let p|Ci
: Ci → C be the

finite map. Let Bci,nci be an irreducible curve on Fn. Since Bci,nci = ciC + nciF in Pic(Fn),

we get that C ∩Bci,nci is an empty set. Since the support of B is simple normal crossing , p|Ci

is the Galois covering whose branch divisor is
l∑

j=1

dj(C ∩ Fj). If di 6= dj , then p|Ci
must be

non-trivial. Since G is an Abelian group, p|Ci
is the Abelian cover, however by Theorem 2.3,

this is a non-Abelian cover. This is a contradiction. Therefore, d1 = · · · = dl.

By Lemma 3.2, the numerical class of B is not one of (6.128), (6.129), (6.132), (6.137),

(6.143), (6.150), (6.151), (6.152), (6.154), (6.159), (6.160), (6.162), (6.170), (6.171), (6.172),

(6.173), (6.174), (6.175), (6.179), (6.188), (6.193), (6.220), (6.227), (6.230), (6.235), (6.247),

(6.248), (6.255), (6.256), (6.257), (6.264), (6.269), (6.271), (6.274), (6.276), (6.285), (6.288),

(6.290), (6.295), (6.297), (6.301), (6.307), (6.310), (6.313), (6.315) of the list in Section 6.

Lemma 3.3 We assume that X/G ∼= Fn for n ≥ 1. If B = aC+
k∑

i=1

biBi+
l∑

j=1

djB
j
0,1 where

a, bi, dj ≥ 2, then d1 = · · · = dl, 2 ≤
k∑

i=1

(C ·Bi) +
l∑

j=1

(C ·Bj
0,1) ≤ 3, and bi = d1 if (C ·Bi) 6= 0

for i = 1, · · · , k.

Proof In the same way of Lemma 3.2, we get that for p∗C =
m∑
i=1

Ci, the finite map

p|Ci
: Ci → C is the Abelian cover between P1 whose branch divisor is

l∑
j=1

dj(C ∩ Fj) and

Galois group is {g ∈ G : | g(C1) = C1}. By Theorem 2.3, we get the claim.

By Lemma 3.3, the numerical class of B is not one of (6.127), (6.133), (6.134), (6.135),

(6.145), (6.146), (6.156), (6.157), (6.158), (6.161), (6.163), (6.164), (6.165), (6.166), (6.167),

(6.168), (6.169), (6.223), (6.224), (6.225), (6.236), (6.237), (6.238), (6.239), (6.240), (6.261),

(6.262), (6.263), (6.268), (6.270), (6.272), (6.273), (6.275), (6.284), (6.289), (6.292), (6.296),

(6.298), (6.299), (6.300), (6.306), (6.312), (6.314) of the list in Section 6.

Lemma 3.4 If there are irreducible curves B1 and B2 and positive even integers b1, b2 ≥ 2

such that B = b1B1 + b2B2 and (B1 ·B2) 6= 0, then (B1 · B2) = 8.

Proof By Theorem 2.5, G = GB1
⊕ GB2

and GBi
∼= Z/biZ for i = 1, 2. Let si ∈ GBi

be

a generator for i = 1, 2. Since G is Abelian, s
bi
2

1 ◦ s
b2
2

2 is a symplectic automorphism of order

2. Since X/G is smooth, Fix(s
bi
2

1 ◦ s
b2
2

2 ) = p−1(B1)∩ p−1(B2). Since the support of B is simple

normal crossing and |G| = b1b2, we get that |p−1(B1) ∩ p−1(B2)| = (B1 · B2). By the fact

that the fixed locus of a symplectic automorphism of order 2 are 8 isolated points, we get that

(B1 ·B2) = 8.

By Lemma 3.4, the numerical class of B is not one of (6.21), (6.25), (6.26), (6.28), (6.103),

(6.112), (6.130), (6.176), (6.213), (6.216), (6.241) of the list in Section 6.

Lemma 3.5 If there are irreducible curves B1 and B2 such that B = 3B1 + 3B2 and
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(B1 ·B2) 6= 0, then (B1 · B2) = 3.

Proof By Theorem 2.5, G = GB1
⊕ GB2

and GBi
∼= Z/3Z for i = 1, 2. Let si ∈ GBi

be

a generator for i = 1, 2. Since G is Abelian, we may assume that s1 ◦ s2 is a non-symplectic

automorphism of order 3. By Theorem 2.5, Fix(s1 ◦ s2) does not contain a curve. Then by [1,

Theorem 2.8] or [14, Table 2], Fix(s1 ◦ s2) is only three isolated points. Since X/G is smooth,

Fix(s1 ◦s2) = p−1(B1)∩p−1(B2). Since B1+B2 is simple normal crossing and G = GB1
⊕GB2

,

we get that |p−1(B1) ∩ p−1(B2)| = (B1 · B2). Therefore, we get (B1 · B2) = 3.

By Lemma 3.5, the numerical class of B is not one of (6.22), (6.23), (6.212), (6.218) of the

list in Section 6.

Lemma 3.6 If there are irreducible curves Bi and positive integers bi ≥ 2 for i = 1, · · · , k

such that B =
k∑

i=1

biBi and G = GBi
for some i, then (Bi · Bj) = 0 for j 6= i.

Proof Recall that by Theorem 2.5, GBm
is generated by a non-symplectic automorphism

of order bm and Fix(GBm
) ⊃ p−1(Bm) for m = 1, · · · , k. If (Bi · Bj) 6= 0 for j 6= 0, then

p−1(Bi) ∩ p−1(Bj) is not an empty set. By the fact that the fixed locus of an automorphism is

a pairwise set of points and curves, this is a contradiction.

By Lemma 3.6, the numerical class of B is not one of (6.24), (6.131), (6.177), (6.219), (6.242)

of the list in Section 6.

Lemma 3.7 If there are irreducible curves B1 and B2 such that B = 2B1 + 2B2 and

(B1 ·B2) 6= 0, then Bi

2 ∈ Pic(Fn) for i = 1, 2.

Proof By Theorem 2.5, G = GB1
⊕ GB2

and GBi
∼= Z/2Z for i = 1, 2. Since the fixed

locus of a non-symplectic automorphism of order 2 is a set of pairwise set of smooth curves or

empty set, X/GBi
is smooth. Then there is a double cover X/GBi

→ X/G ∼= Fn whose branch

divisor is 2Bj for i, j = 1, 2 and i 6= j. By Theorem 3.1, Bi

2 ∈ Pic(Fn) for i = 1, 2.

By Lemma 3.7, the numerical class of B is not one of (6.27), (6.113), (6.117) of the list in

Section 6.

Lemma 3.8 If there are irreducible curves B1, B2, B3 such that B = 2B1 +3B2 +6B3 and

(B2 ·B2) ≥ 1 and (Bi · Bj) 6= 0 for 1 ≤ i < j ≤ 3, then (B2 ·B2) = 1.

Proof Theorem 2.5, GB1

∼= Z/2Z, GB2

∼= Z/3Z, GB3

∼= Z/6Z. Since (Bi · Bj) 6= 0 for

1 ≤ i < j ≤ 3, we get GB1
⊕ GB2

∩ GB3
= {idX}. Therefore, G = GB1

⊕ GB2
⊕ GB3

. Since

(B2 ·B2) > 0, we get that p∗B2 = 3C2 and the only curve of Fix(GB2
) is C2.

We assume that (B2 ·B2) ≥ 2. Since |G| = 36, (C2
1,1 ·C

2
1,1) ≥ 8, and hence the genus of C2

1,1

is at least 5. By [1,14] and the only curve of Fix(GB2
) is C2, this is a contradiction.

By Lemma 3.8, the numerical class of B is not one of (6.29), (6.214) of the list in Section 6.

Lemma 3.9 If there are irreducible curves B1, B2, B3 such that B = 2B1 +4B2 +4B3 and

(Bi ·Bj) 6= 0 for 1 ≤ i < j ≤ 3, then (B1 ·B2) = 1.

Proof Theorem 2.5, GB1

∼= Z/2Z and GBi
∼= Z/4Z for i = 2, 3. Since (Bi · Bj) 6= 0 for

1 ≤ i < j ≤ 3, we get GB1
∩ (GB2

⊕ GB3
) = {idX}. Therefore, G = GB1

⊕ GB2
⊕ GB3

. Let

s ∈ GB1
and t ∈ GB2

be generators. Then s ◦ t is a non-symplectic automorphism of order 4
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and p−1(B1) ∩ p−1(B2) ⊂ Fix(s ◦ t). By Theorem 2.5 and G = GB1
⊕ GB2

⊕ GB3
, Fix(s ◦ t)

does not contain a curve. By [2, Proposition 1], the number of isolated points of Fix(s ◦ t) is 4.

If (B1 ·B2) ≥ 2, then |p−1(B1) ∩ p−1(B2)| ≥ 8. This is a contradiction.

By Lemma 3.9, the numerical class of B is not (6.30), (6.109), (6.155), (6.215) of the list in

Section 6.

Lemma 3.10 We assume that X/G ∼= P1 × P1. Then B 6= a({q} × P1) + bC1 + cC2 where

C1 and C2 are smooth curves on P1 × P1, C1 ∩ C2 6= ∅, and a, b, c are even integers.

Proof We assume that B = a({q} × P1) + bC1 + cC2 where C1 and C2 are smooth curves

on P1 × P1, C1 ∩ C2 6= ∅, and a, b, c are even integers. Since C1 ∩ C2 6= ∅, by Theorem 2.5,

G = GC1
⊕GC2. Since b, c are even integers, GC1

, GC2
are cyclic groups, and G = GC1

⊕GC2,

the number of non-symplectic involution of G is 2. Since (B1,0 ·Ci) 6= 0 and a is even, G must

have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.10, the numerical class of B is not one of (6.31), (6.32), (6.33), (6.35), (6.36),

(6.37), (6.38) of the list in Section 6.

Lemma 3.11 If there are irreducible curves Bi and positive integers bi ≥ 2 for i = 1, · · · , k

such that B =
k∑

i=1

biBi, G = GB1
⊕ GB2

and b1 and b2 are coprime, then for each i = 1, 2,

j = 3, · · · , k, we get that bi and bj are coprime if (Bi · Bj) 6= 0.

Proof Let s ∈ GB1
and t ∈ GB2

be generators. By Theorem 2.5, the order of s is b1 and

that of t is b2. Since G = GB1
⊕GB2

, there are integers u and v such that GBj
is generated by

su ◦ tv.

We assume that (B1 · Bj) 6= 0 and b1 and bj are not coprime. Since b1 and b2 are coprime,

there is an integer l such that (su ◦ tv)l 6= idX and (su ◦ tv)l = sm or tm. Since b1 and bj are not

coprime, we assume that (su ◦ tv)l = sm. Then p−1(B1) and p−1(Bj) are contained in Fix(sm).

By the fact that the fixed locus of an automorphism is a pairwise set of points and curves, this

is a contradiction.

By Theorem 2.5 and Lemma 3.11, the numerical class of B is not one of (6.34), (6.40),

(6.265), (6.266), (6.293), (6.294), (6.308), (6.309) of the list in Section 6.

We assume that the numerical class of B is (6.39) of the list in Section 6. We denote B

by 3B1,0 + 3B2,2 + 3B0,1. By Theorem 2.5, G = G2,2. Since G2,2
∼= Z/3Z, G has 1 subgroups

generated by a non-symplectic automorphism of order 3. Since (B1,0 ·B2,2) 6= 0, G contains at

least 2 such a subgroup from Theorem 2.5. This is a contradiction.

Lemma 3.12 If there are irreducible curves B1, B2, B3 such that B = 2B1 + 2B2 + 2B3,

and (Bi · Bj) 6= 0 for 1 ≤ i < j ≤ 3, then we get that B3

2 ∈ Pic(Fn) if (B1 ·B2) = 4.

Proof By Theorem 2.5, GBi
∼= Z/2Z for i = 1, 2, 3. Since (Bi · Bj) 6= 0 for 1 ≤ i < j ≤ 3,

by Theorem 2.5, G = GB1
⊕GB2

⊕GB3
.

We assume that (B1 ·B2) = 4. Then p−1(B1)∩ p−1(B2) is a set of 8 points. Since the fixed

locus of a symplectic automorphism of order 2 is a set of 8 isolated points, X/GB1
⊕ GB2

is

smooth. Then there is a double cover X/GB1
⊕GB2

→ X/G ∼= Fn whose branch divisor is 2B3.

Thus, B3

2 ∈ Pic(Fn) for i = 1, 2.
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By Lemma 3.12, the numerical class of B is not one of (6.41), (6.119), (6.122), (6.217) of

the list in Section 6.

Lemma 3.13 If there are irreducible curves B1, B2, B3 such that B = 2B1 + 2B2 + 2B3,

and (Bi · Bj) 6= 0 for 1 ≤ i < j ≤ 3, then (Bi · Bj) ≤ 4 for 1 ≤ i < j ≤ 3.

Proof By Theorem 2.5, GBi
∼= Z/2Z for i = 1, 2, 3 and G = GB1

⊕ GB2
⊕ GB3

. Let

s, t ∈ G be generators of GBi
and GBj

, respectively, where 1 ≤ i < j ≤ 3. Then s ◦ t is a

symplectic automorphism of order 2 and p−1(Bi) ∩ p−1(Bj) ⊂ Fix(s ◦ t). Since |G| = 8, we get

2(Bi · Bj) = |p−1(Bi) ∩ p−1(Bj)|. Thus, we have that (Bi · Bj) ≤ 4.

By Lemma 3.13, the numerical class of B is not one of (6.42), (6.120) of the list in Section

6.

Lemma 3.14 We assume that X/G ∼= P1 ×P1. Then B 6= a1({q1}×P1)+ a2({q2}×P1)+

bC′+c(P1×{q3}), where C′ is an irreducible curve, C′ = (nC+mF ) in Pic(P1×P1), n,m > 0,

and a1a2, b, c are even integers.

Proof We assume that B = a1({q1}×P1)+a2({q2}×P1)+ bC′+ c(P1×{q3}), where C′ is

an irreducible curve, C′ = (nC +mF ), n,m > 0, and a1a2, b, c are even integers. By Theorem

2.5, G = G2
1,0 ⊕GC′ . By a1a2 and b are even integers, the number of non-symplectic involution

of G is 2. Since (B0,1 · C′) 6= 0 and (B0,1 · Bi
1,0) 6= 0 for i = 1, 2 and c is an even integer, G

must have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.14, the numerical class of B is not one of (6.43), (6.44) of the list in Section 6.

Lemma 3.15 We assume that X/G ∼= P1 × P1. Then B 6= a1({q1} × P1) + b1C1 + b2C2 +

a2(P
1 × {q2}), where Ci is an irreducible curve, Ci = (niC +miF ) in Pic(P1 × P1), ni,mi > 0

for i = 1, 2, and a1, a2, b1b2 are even integers.

Proof We assume that B = a1({q1} × P1) + b1C1 + b2C2 + a2(P
1 × {q2}), where Ci is

an irreducible curve, C = (ni,mi) in Pic(P1 × P1), ni,mi > 0 for i = 1, 2, and a1, a2, b1b2 are

even integers. By Theorem 2.5, G = GC1
⊕ GC2

. By b1b2 is an even integer, the number of

non-symplectic involutions of G is at most 2. Since (B1,0 · Ci) 6= 0 and (B0,1 · Ci) 6= 0 for

i = 1, 2, and a1 and a2 are even integers, G must have at least 3 non-symplectic involutions.

This is a contradiction.

By Lemma 3.15, the numerical class of B is not one of (6.47)–(6.52) of the list in Section 6.

We assume that the numerical class of B is (6.53) of the list in Section 6. We denote

B by 3B1,0 + 2B1
1,1 + 6B2

1,1 + 3B0,1. By Theorem 2.5, G1
1,1

∼= Z/2Z and G2
1,1

∼= Z/6Z and

G = G1
1,1 ⊕G2

1,1. Then the number of subgroups of G which is generated by a non-symplectic

automorphism of order 3 is 1. By Theorem 2.5 and (B1,0 · B2
1,1) 6= 0, G must have at least 2

such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.54) of the list in Section 6. We denote B by

3B1,0+3B1
1,1 +3B2

1,1 +3B0,1. By Theorem 2.5, Gi
1,1

∼= Z/3Z for i = 1, 2, and G = G1
1,1 ⊕G2

1,1.

Then the number of subgroups of G which is generated by a non-symplectic automorphism of

order 3 is 3. By Theorem 2.5, (B1,0 · B
i
1,1) 6= 0 and (B1,0 · B0,1) 6= 0, G must have at least 4

such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.56) of the list in Section 6. We denote B
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by 2B1
1,0 + 6B2

1,0 + 3B1,2 + 3B0,1. By Theorem 2.5, G1
1,0

∼= Z/2Z and G1,2
∼= Z/3Z, and

G = G1
1,0 ⊕G1,2. Then the number of subgroups of G which is generated by a non-symplectic

automorphism of order 3 is 1. By Theorem 2.5 and (B0,1 · B1,2) 6= 0, G must have at least 2

such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.58) of the list in Section 6. We denote B

by 2B1,0 + 2B1
1,1 + 2B2

1,1 + 2B3
1,1 + 2B0,1. By Theorem 2.5, Gi

1,1
∼= Z/2Z for i = 1, 2, 3. Since

(Bi
1,1 · B

j
1,1) 6= 0 for 1 ≤ i < j ≤ 3 and Gi

1,1
∼= Z/2Z for i = 1, 2, 3, G = G1

1,1 ⊕ G2
1,1 ⊕ G3

1,1.

Then the number of non-symplectic involutions of G is 4. Since (B1,0 ·B0,1) 6= 0, (B0,1 ·Ci) 6= 0

and (B1,0 · Ci) 6= 0 for i = 1, 2, 3, G must have at least 5 non-symplectic involutions. This is a

contradiction.

Lemma 3.16 We assume that X/G ∼= P1×P1. If B =
2∑

i=1

ai({pi}×P1)+ bC′+
2∑

j=1

cj(P
1×

{qj}), where C′ is an irreducible curve, {pi}×P1∩C′ 6= ∅, C∩P1×{qi} 6= ∅, ai, c1, c2, b ∈ N≥2,

then a1 = a2 and c1 = c2.

Proof Let Cp1
be one of irreducible components of p∗({p1} × P1). Since ({p1} × P1 ·

{p1} × P1) = 0, Cp1
is an elliptic curve. Let π : X → Y := X/GC′ be the quotient map, and

G′ := G/GC′ be a finite Abelian subgroup of Aut(Y ). Since {pi} × P1 ∩ C 6= ∅, the finite map

π|Cp1
: Cp1

→ C′
p1

:= π(Cp1
) is a branched cover. Since Cp1

is an elliptic curve, C′
p1

is P1 Since

the branch divisor of the quotient map π′ : Y → Y/G′ ∼= P1 ×P1 is
2∑

i=1

ai{pi}×P1 +
2∑

j=1

cjP
1 ×

{qj}, the branch divisor of πC′
p1

: C′
p1

→ p1 × P1 is c1q1 + c2q2. By Theorem 2.3, we get that

c1 = c2. In the same way, we obtain that a1 = a2.

By Lemma 3.16, the numerical class of B is not one of (6.61)–(6.64) of the list in Section 6.

We assume that the numerical class of B is one of (6.69)–(6.78) of the list in Section 6. By

Theorem 2.3, there are an Abelian surface and a finite group G such that A/G = P1 × P1 and

the branch divisor is B. By Theorem 2.2, there is a surjective morphism from a K3 surface to

an Abelian surface. This is a contradiction.

Lemma 3.17 If X/G ∼= Fn where n ≥ 1, then B 6= aC + bBs,t + cBu,v + dB0,1, where

a, d ≥ 0 are even integers, a = 0 or a ≥ 2, and b, c > 0 are even integers.

Proof We assume that B = aC + bBs,t + cBu,v + dB0,1 where a, d ≥ 0 are even integers,

a = 0 or a ≥ 2, and b, c > 0 are even integers. By Theorem 2.5 and (Bs,t · Bu,v) 6= 0, we

get that G = Gs,t ⊕ Gu,v. Then the number of non-symplectic involution of G is 2. Since

(Bs,t ·B0,1) 6= 0 and (Bu,v ·B0,1) 6= 0, G must have at least 3 non-symplectic involutions. This

is a contradiction.

By Lemma 3.17, the numerical class of B is not one of (6.104), (6.114), (6.115), (6.118),

(6.141), (6.148), (6.184), (6.185), (6.187), (6.232), (6.234), (6.245), (6.246), (6.259), (6.291) of

the list in Section 6.

Lemma 3.18 For the branch divisor B =
k∑

i=1

biBi, we get that
|G|
b2i

(Bi ·Bi) is an even integer

for 1 ≤ i ≤ k.

Proof For i = 1, · · · , k, we put p∗Bi =
l∑

j=1

biCj where Cj is a smooth curve for j = 1, · · · , l.
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By Theorem 2.5, C1, · · · , Cl are pairwise disjoint. Then we get that |G|
b2
i

(Bi ·Bi) =
l∑

j=1

(Cj ·Cj).

Since X is a K3 surface, (Cj ·Cj) is an even integer, and hence |G|
b2
i

(Bi ·Bi) is an even integer.

By Lemma 3.18, the numerical class of B is not one of (6.106), (6.107), (6.140), (6.147),

(6.180), (6.183), (6.231), (6.233), (6.258) of the list in Section 6.

We assume that the numerical class of B is (6.110) of the list in Section 6. We denote

B by 2B1,2 + 4B1
1,1 + 4B2

1,1 + 2B0,1. By Theorem 2.5, G1,2
∼= Z/2Z and Gi

1,1
∼= Z/4Z for

i = 1, 2 Since (B1,2 · Bi
1,1) 6= 0 for i = 1, 2, by Theorem 2.5, G = G1,2 ⊕ G1

1,1 ⊕ G2
1,1, and

hence |G| = 36. Let s ∈ G1,2 and t ∈ G1
1,1 be generators. Then s ◦ t is a non-symplectic

automorphism of order 4 and p−1(B1,2) ∩ p−1(B1
1,1) ⊂ Fix(s ◦ t). Since G = G1,2 ⊕G1

1,1 ⊕G2
1,1

and B = 2B1,2 + 4B1
1,1 + 4B2

1,1 + 2B0,1, by Theorem 2.5, Fix(s ◦ t) does not contain a curve.

By [2, Proposition 1], the number of isolated points of Fix(s ◦ t) is 4. Since (B1,2 · B1
1,1) = 2,

we get that |p−1(B1,2) · p−1(B1
1,1)| ≥ 8. This is a contradiction.

We assume that the numerical class of B is (6.121) of the list in Section 6. We denote B

by 2B2,3 + 2B1
1,1 + 2B2

1,1 + 2B0,1. By Theorem 2.5, G2,3
∼= G1

1,1
∼= G2

1,1
∼= Z/2Z. Since an

intersection of two ofB2,3, B
1
1,1, B

2
1,1 is not an empty set, by Theorem 2.5, G = G2,3⊕G1

1,1⊕G2
1,1,

and hence |G| = 8. Let s ∈ G2,3 and t ∈ G0,1 be generators. Since s and t are non-symplectic

involutions, Fix(s) and Fix(t) are sets of curves and Fix(s ◦ t) is a set of 8 isolated points.

Since (B2,3 · B0,1) = 2, |p−1(B2,3) ∩ p−1(B1
1,1)| = 4. Since Fix(s ◦ t) ⊃ p−1(B2,3) ∩ p−1(B0,1),

X/(G2,3 ⊕ G0,1) has 2 singular points, however, since the branch divisor of the double cover

X/(G2,3 ⊕G0,1) → X/G is 2B1
1,1 + 2B2

1,1 and (B1
1,1 · B

2
1,1) = 1, the number of singular points

of X/(G2,3 ⊕G0,1) must be 1. This is a contradiction.

As for the case of (6.121), the numerical class of B is not one of (6.191)–(6.192) of the list

in Section 6.

We assume that the numerical class of B is (6.123) of the list in Section 6. We denote B

by 2B2,2 + 2B1,2 + 2B1,1 + 2B0,1. By Theorem 2.5, G2,2
∼= G1,2

∼= G1,1
∼= Z/2Z. Since an

intersection of two ofB2,2, B1,2, B1,1 is not an empty set, by Theorem 2.5, G = G2,2⊕G1,2⊕G1,1.

Since (B2,2 ·B1,2) = 4, X/(G2,2⊕G1,2) is smooth. Then there is a double coverX/G2,2⊕G1,2 →

X/G ∼= F1 whose branch divisor is 2B1,1 + 2B0,1. Since
B1,1+B0,1

2 6∈ Pic(F1), by Theorem 3.1,

this is a contradiction.

We assume that the numerical class of B is (6.125) of the list in Section 6. We denote

B by 2B1
1,2 + 2B2

1,2 + 2B1
1,1 + 2B2

1,1. By Theorem 2.5, Gi
1,2

∼= Gi
1,1

∼= Z/2Z for i = 1, 2.

Since an intersection of two of B1
1,2, B

2
1,2, B

1
1,1, B

2
1,1 is not an empty set, by Theorem 2.5, G =

G1
1,2⊕G2

1,2⊕G1
1,1⊕G2

1,1 or G = G1
1,2⊕G2

1,2⊕G1
1,1. We assume that G = G1

1,2⊕G2
1,2⊕G1

1,1⊕G2
1,1.

Since |G| = 16 and (B1
1,2 · B2

1,2) = 3, |p−1(B1
1,2 ∩ B2

1,2)| ≥ 12. Since the number of isolated

points of symplectic involution is 8, this is a contradiction. Therefore, G = G1
1,2 ⊕G2

1,2 ⊕G1
1,1.

By Theorem 3.1, there are the Galois covers p1 : Y1 → F1 and p2 : Y2 → F1 such that the

branch divisor of p1 is 2B1
1,2+2B2

1,2 and that of p2 is 2B1
1,1+2B2

1,1. Let X
′ := Y1×F1

Y2. Then

there is the Galois cover q : X ′ → F1 whose branch divisor is 2B1
1,2 + 2B2

1,2 + 2B1
1,1 + 2B2

1,1

and Galois group is isomorphic to Z/2Z⊕2 as a group. By Theorem 2.1, there is a symplectic

automorphism of order 2, s ∈ G such that X ′ = X/〈s〉. Since s is symplectic, the minimal

resolution f : X ′
m → X ′ is a K3 surface. Let e1, · · · , e8 be the exceptional divisors of f . We

set {p1, p2, p3} := B1
1,2 ∩ B2

1,2 and {p4} := B1
1,1 ∩ B2

1,1. Let π : Blow{p1,p2,p3,p4}F1 → F1 be

the blow-up of P1 × P1 at points p1, p2, p3, p4, and Ei := π−1(pi) be an exceptional divisor
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of π for i = 1, 2, 3, 4. Since the support of B is simple normal crossing, in the same way of

Proposition 3.6, there is a Galois cover q : X ′
m → Blow{p1,p2,p3,p4}F1 whose branch divisor is

2C1
1,2 + 2C2

1,2 + 2C1
1,1 + 2C2

1,1 and Galois group is isomorphic to Z/2Z⊕2 as a group, where

C1
1,2, C

2
1,2, C

1
1,1, C

2
1,1 are proper transforms of B1

1,2, B
2
1,2, B

1
1,1, B

2
1,1 by the birational map π−1 in

order. Notice that q∗
( 4∑
i=1

Ei

)
=

8∑
j=1

ej and there is the commutative diagram:

X ′ // F1

X ′
m

f

OO

q
// Blow{p1,p2,p3,p4}F1.

π

OO

Furthermore, we put {x1, · · · , x8} := Fix(s). Then Blow{x1,··· ,x8}
X/〈s〉 = X ′

m, the branch

divisor of the double cover Blow{x1,··· ,x8}X → X ′
m is

8∑
j=1

ej, and there is the commutative

diagram:

X // X ′

Blow{x1,··· ,x8}X

OO

// X ′
m.

OO
.

In the same way of Proposition 3.6, we get that

4∑

i=1

q∗Ei = 2(π ◦ q)∗
(
C +

3

2
F
)
− 2C1

1,2 − 2C1
1,1 in Pic(X ′

m).

Since Blow{x1,··· ,x8}X and X ′
m are smooth, and q∗

( 4∑
i=1

Ei

)
=

8∑
j=1

ej , we get that

4∑

i=1

q∗Ei

2 ∈

Pix(X ′
m), and hence F

2 ∈ Pic(X ′
m).

Since C1
1,2 ∩C2

1,2 is an empty set and
C1

1,2+C2

1,2

2 ∈ Pic(Blow{p1,p2,p3,p4}F1), by Theorem 3.1,

there is the Galois cover g : Z → Blow{p1,p2,p3,p4}F1 such that Z is smooth, the branch divisor

is 2C1
1,2+2C2

1,2, and the Galois group is isomorphic to Z/2Z as a group. By Theorem 2.1, there

is a non-symplectic automorphism of order 2ρ of X ′
m such that X ′

m/〈ρ〉 = Z. Let h : X ′
m → Z

be the quotient map. Then q = g ◦ h, and hence F
2 ∈ Pic(X ′

m)ρ. Since the degree of g is 2 and

(C1
1,2 ·

F
2 ) =

1
2 and

g∗C1

1,2

2 ∈ Pic(Z), we get that g∗ F
2 6∈ Pic(Z). Recall that Ci

1,1 = C + F − e4
in Pic(Blow{p1,p2,p3,p4}F1) for i = 1, 2. Since the branch divisor of h is 2g∗C1

1,1 + 2g∗C2
1,1,

we get that q∗
(
1
2C + 1

2F − e4
)
∈ Pic(X ′

m). By [2], Pic(X ′
m)ρ is generated by h∗Pic(Z) and

q∗
(
1
2C + 1

2F − e4
)
over Z. Since g∗ F

2 6∈ Pic(Z) and 2q∗
(
1
2C + 1

2F − e4
)
∈ h∗Pic(Z), we may

assume that there is α ∈ Pic(Z) such that

q∗
F

2
= h∗α+ q∗

(1
2
C +

1

2
F − e4

)
.

Then g∗
(
−1
2 C+ e4

)
∈ Pic(Z). Since the degree of g is 2 and (C1

1,2 ·
−1
2 C+ e4) =

3
2 and

g∗C1

1,2

2 ∈

Pic(Z), we get that
( g∗C1

1,2

2 · g∗
(
−1
2 C + e4

))
= 3

2 . By the assumption that
g∗C1

1,2

2 ∈ Pic(Z)

and g∗
(
−1
2 C + e4

)
∈ Pic(Z), this is a contradiction. Therefore, the numerical class of B is not

(6.125) of the list in Section 6.
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We assume that the numerical class of B is (6.126) of the list in Section 6. We denote B

by 2B1,2 + 2B1
1,1 + 2B2

1,1 + 2B3
1,1 + 2B0,1. By Theorem 2.5, G1,2

∼= Gi
1,1

∼= G0,1
∼= Z/2Z where

i = 1, 2, 3. Since an intersection of two of B1,2, B
1
1,1, B

2
1,1, B

3
1,1, B0,1 is not an empty set, by

Theorem 2.5, G = G1,2 ⊕ G1
1,1 ⊕ G2

1,1 ⊕ G3
1,1. Let Gs be the subgroup of G which consists

of symplectic automorphisms of G. Then Gs
∼= Z/2Z⊕3. By [16], the number of singular

points of X/Gs is 14, however, since the branch divisor of the double cover X/Gs → X/G is

B = 2B1,2 + 2B1
1,1 + 2B2

1,1 + 2B3
1,1 + 2B0,1 and the support of B is simple normal crossing,

the number of singular points of X/Gs is 13. This is a contradiction. Therefore, the numerical

class of B is not (6.126) of the list in Section 6.

Lemma 3.19 If X/G ∼= Fn where n ≥ 1, then B 6= aC + bBs,t+ cBu,v where a, b, c > 0 are

even integers, and (C ·Bs,t) 6= 0 and (C · Bu,v) 6= 0, i.e., s 6= t or u 6= v.

Proof We assume that B = aC + bBs,t + cBu,v where a, b, c > 0 are even integers, and

(C ·Bs,t) 6= 0 and (C ·Bu,v) 6= 0 By Theorem 2.5 and (Bs,t ·Bu,v) 6= 0, G = Gs,t ⊕Gu,v. Then

the number of non-symplectic involutions of G is 2. Since (C · Bs,t) 6= 0 and (C · Bu,v) 6= 0, G

must have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.19, the numerical class of B is not one of (6.139), (6.181), (6.182), (6.244) of

the list in Section 6.

We assume that the numerical class of B is (6.189) of the list in Section 6. We denote B

by 2B1,0 + 2B1,4 + 2B1
1,1 + 2B2

1,1. By Theorem 2.5, G1,0
∼= G1,4

∼= Gi
1,1

∼= Z/2Z where i = 1, 2.

Since (B1,4 · B
i
1,1) 6= 0 for i = 1, 2, by Theorem 2.5, G = G1,4 ⊕G1

1,1 ⊕G2
1,1. Let s ∈ G1

1,1 and

t ∈ G2
1,1 be generators. Since the number of non-symplectic automorphisms of order 2 of G is 4

and Theorem 2.5, we may assume that Fix(s) is the support of p∗B1
1,1. Since the support of B

is simple normal crossing and (B1,4 · B1
1,1) = 4, X/(G1,4 ⊕ G1

1,1) is smooth. Then there is the

Galois cover X/G1,4 ⊕G1
1,1 → F1 such that the branch divisor is 2B1,0 + 2B2

1,1 and the Galois

group is isomorphic to Z/2Z as a group. Since
B1,0+B2

1,1

2 6∈ Pic(F1), this is a contradiction.

As for the case of (6.189), the numerical class of B does not (6.190) of the list in Section 6.

We assume that the numerical class of B is (6.228) of the list in Section 6. We denote B by

3B1,0 +3B1,2 +3B1,4. By Theorem 2.5 and (B1,2 ·B1,4) 6= 0, G = G1,2 ⊕G1,4. Let s ∈ G1,4 be

a generator of G1,4. Then the only curve of Fix(s) is C1,4. Since (B1,4 · B1,4) = 6, the genus

of C1,4 is 4. By [1,14], Fix(s) does not have isolated points, and hence X/G1,4 is smooth. Let

q : X/G1,4 → X/G be the quotient map. Then the degree of q is 3, and the branch divisor of q

is 3B1,0 + 3B1,2. Since the degree of q is 3 and X/G1,4 is smooth, 3
32 (B1,0 ·B1,0) is an integer.

Since (B1,0 · B1,0) = −2, 3
32 (B1,0 ·B1,0) = − 2

3 . This is a contradiction.

We assume that the numerical class of B is (6.229) of the list in Section 6. We denote

B by 3B1,0 + 3B1,2 + 3B1,3 + 3B0,1. By Theorem 2.5, G1,0
∼= G1,2

∼= G1,3
∼= G0,1

∼= Z/3Z.

Since (B1,2 · B1,3) 6= 0, by Theorem 2.5, G = G1,2 ⊕ G1,3. Let s, t ∈ G be generators of

G1,2 and G1,3 respectively such that s ◦ t is a non-symplectic automorphism of order 3. Since

G = G1,2 ⊕ G1,3, the number of subgroups of G which are generated by a non-symplectic

automorphism of order 3 is 3. Since (B1,2 · B0,1) 6= 0 and (B1,3 · B0,1) 6= 0, we get that

p−1(B0,1) is contained in Fix(s ◦ t), and hence p−1B1,0 is contained in Fix(s). Since |G| = 9,

there is an elliptic curve C0,1 on X such that p∗B0,1 = 3C0,1. By [1,14], the number of

isolated points of Fix(s ◦ t) is 3. Since (B1,0 · B1,3) = 1 and (B1,2 · B1,3) = 3, we have

|p−1(B1,0 ∪ B1,2) ∩ p−1(B1,3)| = 4. Since p−1(B1,0 ∪ B1,2) ⊂ Fix(s) and p−1(B1,3) ⊂ Fix(t),
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we get that p−1(B1,0 ∪B1,2) ∩ p−1(B1,3) ⊂ Fix(s ◦ t). By the fact that the number of isolated

points of Fix(s ◦ t) is 3, this is a contradiction.

We assume that the numerical class of B is (6.243) of the list in Section 6. We denote B

by 2B1,0 + 2B1,4 + 2B2,4. By Theorem 2.5, G = G1,4 ⊕ G2,4. Let s ∈ G be a generator of

G1,4. Since (B1,0 · B1,4) 6= 0 and (B1,4 · B2,4) 6= 0, the only curve of Fix(s) is C1,4. Since the

fixed locus of a non-symplectic involution does not have isolated points, X/G1,4 is smooth. Let

q : X/G1,4 → X/G ∼= F2 be the quotient map. The degree of q is 2 and the branch divisor of q

is 2B1,0 + 2B2,2. Since
B1,0+B2,2

2 6∈ Pic(F2), by Theorem 3.1, this is a contradiction.

We assume that the numerical class of B is (6.249) of the list in Section 6. We denote B

by 2B1,0 + 2B1
1,3 + 2B2

1,3 + 2B1,2. By Theorem 2.5, Gi
1,3

∼= G1,2
∼= Z/2Z where i = 1, 2. Since

an intersection of two of B1
1,3, B

2
1,3, B1,2 is not an empty set, G = G1

1,3 ⊕ G2
1,3 ⊕ G1,2. Since

|G| = 8 and (B1
1,3 · B

2
1,3) = 4, Y := X/(G1

1,3 ⊕G2
1,3) is smooth. Then there is the Galois cover

q : Y → X/G such that the branch divisor is 2B1,0 + 2B1,2, and the Galois group is Z/2Z

as a group. Since the fixed locus of a non-symplectic automorphism of order 2 does not have

isolated points, X/G1
1,3 is smooth, and there is the Galois cover q′′ : X/G1

1,3 → Y such that

the branch divisor of q′′ is 2q∗B1
1,3 and the Galois group of q′′ is Z/2Z as a group. Since Y and

X/G1
1,3 are smooth, and the degree of q′′ is two, we get that

q∗B1

1,3

2 ∈ Pic(Y ). Recall that the

branch divisor of q is 2B1,0 + 2B1,2, and the degree of q is two. Since
q∗B1,2

2 ∈ Pic(Y ), we get

that q∗F
2 =

q∗B1

1,3

2 − q∗B1,2

2 ∈ Pic(Y ). Since (B1,0 ·F ) = 1, we get that
( q∗B1,0

2 · q
∗F
2

)
= 1

2 . Since
q∗B1,0

2 ∈ Pic(Y ) and q∗F
2 ∈ Pic(Y ), this is a contradiction. Therefore, the numerical class of B

is not (6.249).

We assume that the numerical class of B is (6.250) of the list in Section 6. We denote

B by 2B1,0 + 2B1,3 + 2B1
1,2 + 2B2

1,2 + 2B0,1. By Theorem 2.5, G1,3
∼= Gi

1,2
∼= Z/2Z where

i = 1, 2. Since an intersection of two of B1,3, B
1
1,2, B

2
1,2 is not an empty set, by Theorem 2.5,

G = G1,3 ⊕ G1
1,2 ⊕ G2

1,2. Let s ∈ G1
1,2 be a generator. Since the number of non-symplectic

automorphisms of order 2 of G is 4 and Theorem 2.5, we may assume that p−1(B1
1,3) and

p−1(B1,0) are contained in Fix(s). Since the support of B is simple normal crossing and (B1,3 ·

B1,0+B1
1,2) = 4, X/(G1,3⊕G1

1,2) is smooth and there is the Galois cover X/(G1,3⊕G1
1,2) → F2

such that the branch divisor is 2B2
1,2 + 2B0,1 and the Galois group is Z/2Z as a group. Since

B2

1,2+B0,1

2 6∈ Pic(F2), this is a contradiction.

We assume that the numerical class of B is (6.286) of the list in Section 6. We denote B

by 2B1,0 + 3B1
1,4 + 6B2

1,4. By Theorem 2.5, G1,0
∼= Z/2Z, G1

1,4
∼= Z/3Z, G2

1,4
∼= Z/6Z and

G = G1
1,4 ⊕ G2

1,4. Let s be a generator of G1
1,4. Since (B1

1,4 · B
1
1,4) = 4, the genus of C1

1,4 is

5 where p∗B1
1,4 = 3C1

1,4. Since G1,0
∼= Z/2Z and (B1

1,4 · B
2
1,4) 6= 0, the only curve of Fix(s) is

C1
1,4. By [1,14], this is a contradiction.

We assume that the numerical class of B is (6.287) of the list in Section 6. We denote B

by 2B1,0 + 4B1
1,4 + 4B2

1,4. By Theorem 2.5, Gi
1,4

∼= Z/4Z for i = 1, 2. Since (B1
1,4 · B

2
1,4) 6= 0,

by Theorem 2.5, G = G1
1,4 ⊕ G2

1,4. Let s ∈ G1
1,4 and t ∈ G2

1,4 be generators. Then non-

symplectic involutions of G are s2 and t2. By Theorem 2.5, we may assume that Fix(s2) =

p−1(B1,0) ∪ p−1(B1
1,4) and Fix(t2) = p−1(B2

1,4). For a symplectic involution s2 ◦ t2, since X/G

is smooth, Fix(s2 ◦ t2) ⊂ Fix(s2) ∩ Fix(t2). Since (C · Bi
1,4) = 0 and (B1

1,4 · B
1
1,4) = 4, we get

that p−1(B1,0 ∪B1
1,4)∩ p−1(B2

1,4) are 4 points. By the fact that the fixed locus of a symplectic

involution of a K3 surface are 8 isolated points, this is a contradiction.
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We assume that the numerical class of B is (6.305) of the list in Section 6. We denote B by

3B1,0 + 2B1
1,6 + 6B2

1,6. By Theorem 2.5 and (B1
1,6 · B

2
1,6) 6= 0, G = G1

1,6 ⊕G2
1,6. Let ρ1, ρ2 ∈ G

be generators of GB1

1,6
and GB2

1,6
, respectively. Then ρ22 is a non-symplectic automorphism of

order 3 and a generator of G1,0. Since (C · C) = −6 and |G| = 12, we get that p∗C =
4∑

j=1

3Cj

where Cj is a smooth rational curve. Then C1, · · · , C4, C
2
1,6 ⊂ Fix(ρ22) where p∗B2

1,6 = 6C2
1,6.

By [1,14], this is a contradiction.

We assume that the type ofB is (6.45) of the list in Section 6. We denoteB by 4B1
1,0+4B2

1,0+

2B1,3 +2B0,1. We take the Galois cover q : P1 × P1 → P1 × P1 whose branch divisor is 4B1
1,0 +

4B2
1,0. Since the support of B is simple normal crossing, q∗(2B1,3 + 2B0,1) = 2B4,3 + 2B0,1.

By Theorem 2.2, there is the Galois morphism g : X → P1 × P1 such that the branch divisor

is 2B4,3 + 2B0,1 and the Galois group is Abelian. Since the numerical class of 2B4,3 + 2B0,1 is

(6.25), this is a contradiction.

As for the case of (6.45), the numerical class of B is not one of (6.46), (6.55), (6.57), (6.59),

(6.60), (6.65), (6.66), (6.67), (6.68), (6.102), (6.105), (6.108), (6.111), (6.116), (6.124), (6.136),

(6.138), (6.142), (6.144, (6.149), (6.153), (6.178), (6.186), (6.221), (6.222), (6.226), (6.260),

(6.267) of the list in Section 6 by (6.25), (6.24), (6.27), (6.25), (6.37), (6.34), (6.40), (6.34),

(6.34), (6.212), (6.213), (6.214), (6.215), (6.216), (6.217), (6.286), (6.286), (6.287), (6.287),

(6.305), (6.228), (6.241), (6.243), (6.286), (6.287), (6.303), (6.305), (6.308) in order.

Therefore, we get Theorem 1.5.

4 Abelian Groups of K3 Surfaces with Smooth Quotient

In this section, first of all, we will show Theorems 1.1–1.2. Next, we will show Theorem 1.4.

By Section 3, we had that if X/G is P2 or Fn, then G is one of AG as a group.

Proposition 4.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that

X/G is a smooth rational surface. For a birational morphism f : X/G → Fn, we get that

0 ≤ n ≤ 12.

Proof Let f : X/G → Fn be a birational morphism, ei be the exceptional divisors for

i = 1, · · · ,m, and B =
k∑

i=1

biBi be the branch divisor. Since X/G and Fn are smooth and f is

a birational morphism, we get Pic(X/G) = f∗Pic(Fn)
m⊕
i=1

Zei and there are positive integers ai

for i = 1, · · · ,m such that KX/G = f∗KFn
+

m∑
i=1

aiei. By Theorem 2.4,

0 = f∗KFn
+

m∑

i=1

aiei +

k∑

i=1

bi − 1

bi
Bi.

Since Pic(X/G) = f∗Pic(Fn)
m⊕
i=1

Zei, at least one of B1, · · · , Bk is not an exceptional divisor

of f . By rearranging if necessary, we assume that Bi is not an exceptional divisor of f for

1 ≤ i ≤ u, and Bj is an exceptional divisor of f for u+ 1 ≤ j ≤ k. Then f∗Bi is an irreducible

curve on Fn for 1 ≤ i ≤ u. Therefore, for 1 ≤ i ≤ u, there are non-negative integers ci, di, g
i
j
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such that

Bi = f∗(ciC + diF )−
m∑

j=1

gijej in Pic(X/G),

where (ci, di) = (1, 0), (0, 1), or di ≥ cin > 0. Since KFn
= −2C − (n + 2)F in Pic(Fn), by

Theorem 2.4, we get that 2 =
∑
i

bi−1
bi

ci and n+2 =
∑
i

bi−1
bi

di. In the same way as Proposition

3.1, we get this proposition.

Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is smooth, and

f : X/G → Fn be a birational morphism. By Proposition 4.1, we get 0 ≤ n ≤ 12. By

the proof of Proposition 4.1, the numerical class of f∗B is one of the list on Section 3. Let

B =
k∑

i=1

biBi +
l∑

j=k+1

bjBj , where Bi is not an exceptional divisor of f for i = 1, · · · , k and

Bj is an exceptional divisor of f for j = k + 1, · · · , l. Since (X/G)\
l⋃

j=k+1

Bj is isomorphic to

Fn\
l⋃

j=k+1

f(Bj) and f(Bj) is a point for j = k+ 1, · · · l, (X/G)\
l⋃

j=k+1

Bj is simply connected.

By Theorem 2.5, G is generated by G1, · · · , Gk. Therefore, as for the case of Hirzebruch surface,

we will guess G from the numerical class of f∗B. Recall that if G is Abelian, then Gi is a cyclic

group, which is generated by a purely non-symplectic automorphism of order bi. If f∗B1 = C,

or F , then G is generated by G2, · · · , Gk, and if (f∗B1, f∗B2) = (C,F ), then G is generated by

G3, · · · , Gk.

Recall that since X/G is a smooth rational, X/G is given by blowups of Fn. Next, we will

investigate the relationship between a branch divisor and exceptional divisors of blow-ups.

Lemma 4.1 Let X be a K3 surface, and G ⊂ Aut(X) a finite subgroup such that X/G

is a smooth rational surface, and B be the branch divisor of the quotient map p : X → X/G.

For a birational morphism h : X/G → T where T is a smooth projective surface, let ei be

the exceptional divisor of h for i = 1, · · · ,m. Then for i = 1, · · · ,m we have that h(ei) ∈

Supp(h∗B).

Proof Let e1, · · · , em be the exceptional divisors of h. Since X/G and T are smooth and

h is birational, Pic(X/G) = h∗Pic(T )
m⊕
j=1

Zej and there are positive integers ai such that

KX/G = h∗KT +

m∑

i=1

aiei.

We assume that h(ei) 6∈ Supp(h∗B) for some 1 ≤ i ≤ m. For simply, we assume that i = 1,

i.e., h(e1) 6∈ Supp(h∗B). Let B1, · · · , Bk be irreducible components of B such that Bj is not

an exceptional divisor of h for j = 1, · · · , k. Since h(e1) 6∈ Supp(h∗B), there are integers cj,s

such that Bj = h∗Cj +
m∑
s=2

cj,ses, where Cj is an irreducible curve in T . By Theorem 2.4, we

get that

0 =
(
h∗KT +

m∑

i=1

aiei

)
+

k∑

j=1

bj − 1

bj

(
h∗Cj +

m∑

s=2

cj,ses

)
+

m∑

j=1

ljej in Pic(X/G),
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where lj = 0 or lj =
dj−1
dj

for some an integer dj ≥ 2. Since ai ≥ 1, cj,1 = 0, lj ≥ 0 and

Pic(X/G) = h∗Pic(T )
m⊕
j=1

Zej , this is a contradiction.

Proposition 4.2 Let X be a K3 surface, G ⊂ Aut(X) be a finite subgroup such that the

quotient space X/G is smooth, and B be the branch divisor of the quotient morphism p : X →

X/G. Let f : X/G → T be a birational morphism where T is a smooth surface, e1, · · · , em be

the exceptional divisors of f , and f∗B :=
u∑

i=1

biB̃i where B̃i is an irreducible curves on U for

i = 1, · · · , u. If B̃i is smooth for each 1 ≤ i ≤ u, then for 1 ≤ j ≤ m there are 1 ≤ s < t ≤ u

such that f(ej) ∈ B̃s ∩ B̃t.

Proof We set B =
u∑

i=1

biBi +
k∑

j=u+1

bjBj , where Bi is not an exceptional divisor of f for

i = 1, · · · , u, and Bj is an exceptional divisor of f for j = u+1, · · · , k. Then f∗B =
u∑

i=1

bif∗Bi.

We assume that f∗Bi is a smooth curve for i = 1, · · · , u. By Lemma 4.1, f(ei) ∈ supp(f∗B) for

i = 1, · · · ,m.

Let S := X/G, Z := {f(e1), · · · , f(em)} := {z1, · · · , zv} ⊂ T where

v := |{f(e1), · · · , f(em)}|, q : BlowZT → T

be the blow-up, and Ei := q−1(zi) be the exceptional divisor of q for 1 ≤ i ≤ v. Then there

is a birational morphism g : S → BlowZT such that f = q ◦ g, i.e., the following diagram is

commutative:

BlowZT
q

// T

S.

g

OO

f

;;
v
v
v
v
v
v
v
v
v
v

By changing the number if necessary, we assume that g(ei) = Ei for 1 ≤ i ≤ v. Then the

exceptional divisors of g are ev+1, · · · , em. Since Pic(BlowZT ) = q∗Pic(T )
v⊕

j=1

ZEj and f = q◦g,

Pic(S) = g∗Pic(BlowZT )

m⊕

j=v+1

Zej =
(
f∗Pic(T )

v⊕

i=1

Zg∗Ei

) m⊕

j=v+1

Zej .

Since KBlowZT = q∗KT +
v∑

j=1

Ej ,

KS = g∗KBlowZT +

m∑

i=v+1

a′iei =
(
f∗KT +

v∑

j=1

g∗Ei

)
+

m∑

i=v+1

a′iei,

where a′i is a positive integer for i = v + 1, · · · ,m.

We assume that for some 1 ≤ i ≤ m, f(ei) 6∈ f∗Bs ∩ f∗Bt for each 1 ≤ s < t ≤ u. Since

Z = {f(e1), · · · , f(ev)}, we assume that 1 ≤ i ≤ v. For simplicity, we assume that i = 1.

In addition, since f(ej) ∈ supp(f∗B) for j = 1, · · · ,m, by changing the number if necessary,

we assume that f(e1) ∈ supp(f∗B1), and f(e1) 6∈ supp(f∗Bj) for 2 ≤ j ≤ u. Recall that the

exceptional divisors of q are E1, · · · , Ev, the exceptional divisors of g are ev+1, · · · , em, and
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g(ei) = Ei for 1 ≤ i ≤ v. Since f = q ◦ g, for j = 1, · · · , u there are non-negative integers

cj,s, c
′
j,t such that

Bj = f∗f∗Bj −
v∑

s=1

cj,sg
∗Es −

m∑

t=v+1

c′j,tet in Pic(S).

Since f(e1) 6∈ f∗Bj for 2 ≤ j ≤ u, we get that cj,1 = 0 for 2 ≤ j ≤ u. Since f∗B1 is smooth,

c1,1 = 1. Since KS = f∗KT +
v∑

j=1

g∗Ei +
m∑

i=v+1

a′iei and 0 = KS +
k∑

i=1

bi−1
bi

Bi in Pic(S),

0 =
(
f∗KT +

v∑

j=1

g∗Ei +

m∑

i=v+1

a′iei

)

+

u∑

i=1

bi − 1

bi

(
f∗f∗Bj −

v∑

s=1

cj,sg
∗Es −

m∑

t=v+1

c′j,tet

)

+
k∑

j=u+1

bj − 1

bj
Bj in Pic(S).

From the coefficient of g∗E1, we get that 1 = b1−1
b1

. Since b1 ≥ 2, this is a contradiction.

Let X be aK3 surface, G be a finite subgroup of Aut(X) such that X/G is a smooth rational

surface, and B be the branch divisor of the quotient map p : X → X/G. Let h : X/G → T be a

birational morphism where T is a smooth projective surface, and e1, · · · , em be the exceptional

divisors of h. We set h∗B :=
l∑

j=1

bjB
′
j . We write B =

l∑
i=1

biBi+
k∑

j=l+1

bjBj such that h∗Bi = B′
i

for i = 1, · · · , l. Then Bj is one of the exceptional divisor of h for j = l + 1, · · · , k, and for

i = 1, · · · , l there are non-negative integers ci,1, · · · , ci,m such that Bi = h−1
∗ B′

i −
m∑
t=1

ci,tet.

Remark 4.1 In the above situation, for eu and ev where 1 ≤ u < v ≤ m and h(eu) = h(ev),

we get that ci,u = 0 if and only if ci,v = 0.

Remark 4.2 In the situation of Proposition 4.2, we assume that T = Fn. Then there are

positive integers a1, · · · , am such that KX/G = h∗KFn
+

m∑
i=1

aiei. By the proof of Proposition

4.2, we get that a1 = · · · = au = 1 and

1 +
βi − 1

βi
=

k∑

j=1

bj − 1

bj
ci,j for i = 1, · · · , u,

where βi = 1 if ei is not an irreducible component of B, and βi is the ramification index at ei
if ei is an irreducible component of B.

Furthermore, we assume that X/G 6= Blow{h(e1),··· ,h(eu)}Fn. For the birational morphis-

m g : X/G → Blow{h(e1),··· ,h(eu)}Fn in the proof of Proposition 4.2, we rearrange the order

so that {g(eu+1), · · · , g(eu+v)} = {g(eu+1), · · · , g(em)}, where v := |{g(eu+1), · · · , g(em)}|.

Like the proof of Proposition 4.2, by considering the blow-up of Blow{h(e1),··· ,h(eu)}Fn at

{g(eu+1), · · · , g(eu+v)}, we get that au+1 = · · · = au+v = 2 and

2 +
βi − 1

βi
=

k∑

j=1

bj − 1

bj
ci,j for i = u+ 1, · · · , u+ v,
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where βi = 1 if ei is not an irreducible component of B, and βi is the ramification index at ei
if ei is an irreducible component of B.

Recall that by Theorem 2.5, GBi
is generated by a non-symplectic automorphism of order

bi. As a corollary of Theorem 2.5 and Proposition 4.2, we get the following Theorem 4.1.

Theorem 4.1 Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is

smooth, and B be the branch divisor of the quotient map p : X → X/G. Let f : X → S be the

birational morphism where S is minimal rational surface. We put f∗B :=
k∑

i=1

biBi where Bi is

an irreducible curve for i = 1, · · · , k. We denote by Gs the subgroup of G, which consists of

symplectic automorphisms of G, and b the least common multiple of b1, · · · , bk. Then there is

a purely non-symplectic automorphism g ∈ G of order b such that G is the semidirect product

Gs ⋊ 〈g〉 of Gs and 〈g〉.

Proof Since Gs is a normal subgroup of G and G/Gs is a cyclic group, in order to show

Theorem 4.1, we only show that there is a purely non-symplectic automorphism g ∈ G of order

b.

First of all, we assume that X/G ∼= P2. We put B :=
k∑

i=1

biBi where Bi is an irreducible

curve for i = 1, · · · , k. By Theorem 2.4, 0 =
k∑

i=1

bi−1
bi

degBi + degKP2 , in which KP2 is the

canonical line bundle of P2. Since the degree of KP2 is −3 and 1
2 ≤ l−1

l < 1 for any positive

integer l, we get that 4 ≤
k∑

i=1

degBi ≤ 6. If
k∑

i=1

degBi = 6, then b1 = · · · = bk = 2. By Theorem

2.5, in this case the statement of theorem is established. We assume that
k∑

i=1

degBi ≤ 5. By

[15, Theorem 2], b = bi for some 1 ≤ i ≤ k or b = l.c.m(bi, bj) for i < j. By Theorem 2.5, in

the former case, we get this theorem.

For the latter, i.e., if b 6= bi for 1 ≤ i ≤ k, then B is one of (i) 3L1+3L2 +3L3+2L4 +2L5,

where L3 passes through the points L1∩L2 and L4∩L5 (see [15, pp. 408]), (ii) 3L1+3L2+3L3+

2Q, where L1, L2 are the tangent to Q and L3 is in general position with respect to L1∪L2∪Q

(see [15, pp. 408]), and (iii) 2L1 + 2L2 + 3L3 + 3Q, where L1, L2, L3 are three distinct tangent

lines to Q (see [15, pp. 410]). Here, Li and Q are smooth curves on P2 with degLi = 1 and

degQ = 2 for i = 1, · · · , 5. Then there are 1 ≤ i < j ≤ k such that b = l.c.m(bi, bj), Bi +Bj is

simple normal crossing, and (Bi∩Bj)\
⋃

s6=i,j

Bs is not an empty set. For clarity, we may assume

that i = 1, j = 2. We take one point y ∈ (B1 ∩B2)\
k⋃

i=3

Bi. Let x ∈ p−1(y). By the assumption

for y and Theorem 2.1, there are open subset V ⊂ P2 and U ⊂ X such that y ∈ V , x ∈ U ,

p|U : U → V is isomorphic to {z ∈ C2 : |z| < 1} ∋ (z1, z2) 7→ (zb11 , zb22 ) ∈ {z ∈ C2 : |z| < 1},

and hence Gx := {g ∈ G | g(x) = x} ∼= Z/b1Z⊕Z/b2Z. Since b = l.c.m(b1, b2), there is a purely

non-symplectic automorphism g ∈ G with order b.

Next, we assume that X/G ∼= Fn. By the list of the numerical class of B in Section 6, if the

numerical class of B is not one of (6.65), (6.70), (6.73), (6.77), (6.83), (6.92), (6.102), (6.127),

(6.128), (6.132), (6.136), (6.143), (6.153), (6.154), (6.170), (6.235), (6.251), (6.252), (6.253),

then b = bi for some 1 ≤ i ≤ k. Therefore, by Theorem 2.5, we get this theorem. If the numerical
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class of B is one of (6.65), (6.70), (6.73), (6.77), (6.92), (6.127), (6.128), (6.132), (6.136), (6.143),

(6.153), (6.154), (6.170), (6.235), (6.251), (6.252), (6.253), then there are 1 ≤ i < j ≤ k such

that b = l.c.m(bi, bj), Bi+Bj is simple normal crossing, and (Bi∩Bj)\
⋃

s6=i,j

Bs is not an empty

set. As for the case of P2, we get this theorem.

We assume that the numerical class of B is (6.83). We write B = 3B3,3 + 2B1
0,1 + 2B2

0,1.

Since B1
0,1 ∩B2

0,1 is an empty set, if B3,3 ∩B1
0,1 is not one point, then by (B3,3 ·B1

0,1) = 3, there

is a point y ∈ B3,3∩B1
0,1 such that the support of B is simple normal crossing at y. Since b = 6,

by Theorem 2.5, we get this theorem. Therefore, we assume that B3,3 ∩ B1
0,1 and B3,3 ∩ B2

0,1

are one point. Let q : X/Gs → X/G be the quotient map. Then the singular locus of X/Gs is

q−1(B3,3 ∩ B1
0,1) ∪ q−1(B3,3 ∩ B2

0,1). Since the Galois group of q is G/Gs
∼= Z/6Z, the branch

divisor of q is B, and B3,3 ∩ B1
0,1 and B3,3 ∩ B2

0,1 are one point, X/Gs has just two singular

point. By [16, Theorem 3], this is a contradiction. Therefore, if the numerical class of B is

(6.83), then we get this theorem. As for the case of (6.83), we get this theorem for (6.102).

Finally, we assume that X/G is not P2 or Fn. We take a birational morphism f : X/G → Fn

where 0 ≤ n. Let e1, · · · , em be the exceptional divisors of f . In the same way of the case where

X/G ∼= P2 or Fn, we only consider the case that the numerical class of f∗B is one of (6.65),

(6.70), (6.73), (6.77), (6.83), (6.92), (6.102), (6.127), (6.128), (6.132), (6.136), (6.143), (6.153),

(6.154), (6.170), (6.235), (6.251), (6.252), (6.253).

We assume that the numerical class of f∗B is (6.65). By Remark 4.2, there are positive

integers a1, · · · , a5, b such that

1 +
b− 1

b
=

2

3
a1 +

5

6
a2 +

1

2
a3 +

3

4
a4 +

3

4
a5.

Since the numerical class of f∗B is (6.65), we may assume that a1 or a2 is 0, and either a4 or

a5 is 0. However, there are not such positive integers. Therefore, the numerical class of f∗B

is not (6.65). As for the case of (6.65), the numerical class of B is not one of (6.73), (6.77),

(6.128), (6.132), (6.170), (6.235), (6.251), (6.253).

We assume that the numerical class of f∗B is (6.70). By Remark 4.2, there are positive

integers a1, · · · , a6, b such that

1 +
b− 1

b
=

1

2
a1 +

2

3
a2 +

5

6
a3 +

1

2
a4 +

3

4
a5 +

3

4
a6.

Since the numerical class of f∗B is (6.70), we may assume that two of a1, a2 and a3 are 0, and

two of a4, a5 and a6 are 0. The integers satisfying the above conditions is only (a1, · · · , a6, b) =

(1, 0, 0, 1, 0, 0, 12). Therefore, for B :=
l∑

j=1

BjBj , bi = 12 for some 1 ≤ i ≤ l. By Theorem 2.5,

if the numerical class of f∗B is (6.65), then we get this theorem. As for the case of (6.70), if

the numerical class of B is one of (6.136), (6.143), then we get this theorem.

We assume that the numerical class of B is (6.83). By Remark 4.2, there are positive integers

a1, · · · , a6, b such that

1 +
b− 1

b
=

2

3
a1 +

1

2
a2 +

1

2
a3.

Since the numerical class of f∗B is (6.83), we may assume that either a2 or a3 is 0. The integers

satisfying the above conditions is (a1, a2, a3, b) = (2, 1, 0, 6) or (2, 0, 1, 6). Therefore, we get

this of theorem. As for the case of (6.83), if the numerical class of B is one of (6.92), (6.102),

(6.127), (6.153), (6.154), (6.252), then we get this theorem.
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Theorem 4.2 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G

is smooth. For a birational morphism f : X/G → Fn where 0 ≤ n, we get that n is not one of

5, 7, 9, 10, 11.

Proof Let p : X → X/G be the quotient map, and B :=
k∑

i=1

biBi be the branch divisor of

p. Let f : X/G → Fn be a birational morphism where 0 ≤ n, and e1, · · · , em be the exceptional

divisors of f .

First we will show this theorem for the cases where f is an isomorphism, i.e., X/G ∼= Fn.

By Theorem 2.4, n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 12. We assume that n = 5, 7 or 9. Then the

numerical class of B is one of (6.296), (6.297), (6.298), (6.299), (6.300), (6.301), (6.310), (6.314),

(6.315) of the list in Section 6.

We assume that the numerical class of B is (6.296). We denote B by 4B1,0 +2B1,5 +4B1,6.

Let p∗B1,0 =
m∑
i=1

4Ci where Ci is a smooth curve for i = 1, · · · ,m. Since (B1,0 · B1,0) < 0,

(Ci · Ci) < 0. Since X is a K3 surface, and Ci is irreducible, we get that (Ci · Ci) = −2. Since

the degree of p is |G| and (B1,0 · B1,0) = −5, we get that −5|G|
16 = −2m + 2

∑
1≤i<j≤m

(Ci · Cj),

and hence 5|G|
32 ≤ m. Let p∗B1,6 =

l∑
j=1

4C′
j where C′

j is a smooth curve for j = 1, · · · , l. Since

(B1,0 · B1,6) = 1, |G|
16 = m

(
C1 ·

l∑
j=1

C′
j

)
. Since

(
C1 ·

l∑
j=1

C′
j

)
≥ 1, we get that m ≤ |G|

16 . By

5|G|
32 ≤ m and m ≤ |G|

16 , we get that the numerical class of B is not (6.296). As for the case

of (6.296), the numerical class of f∗B is not one of (6.297), (6.298), (6.299), (6.300), (6.301),

(6.310), (6.314), (6.315). Therefore, if X/G ∼= Fn, then n 6= 5, 7, 9, 10, 11.

Next, we assume that f is not an isomorphism, i.e., X/G is not a Hirzebruch surface Fn.

By the proof of Proposition 4.1, the numerical class of f∗B is one of the list in Section 6. As a

result, n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 12. We assume that n = 5, 7 or 9. The numerical class of

f∗B is one of (6.296), (6.297), (6.298), (6.299), (6.300), (6.301), (6.310), (6.314), (6.315).

We assume that the numerical class of f∗B is (6.296). Let p∗B1,0 = 4
m∑
i=1

Ci, where Ci is

a smooth curve for i = 1, · · · ,m. Since the degree of p is |G|, by (C · F ) = 1, we get that

|G| = 4m(C1 · p∗f∗F ), and hence |G| is a multiple of 4m. Since f∗B1,0 = C, (B1,0, B1,0) ≤

(C ·C) = −5. By |G|
16 (B1,0 ·B1,0) = −2m+ 2

∑
1≤i<j≤m

(Ci · Cj), we get that m = |G|
4 . Since the

numerical class of f∗B is (6.296), there must be positive integers a1, a2, a3, b such that

1 +
b− 1

b
=

3

4
a1 +

1

2
a2 +

3

4
a3,

and either a1 or a2 is 0. The integers satisfying the above conditions are only (a1, a2, a3, b) =

(1, 0, 1, 2), and hence f(ei) ∈ f∗B1,5 ∩ f∗B1,6 for each i = 1, · · · , l. Since (f∗B1,5 · f∗B1,6) = 1,

f∗B1,5∩f∗B1,6 is one point. We put x := f∗B1,5∩f∗B1,6. Let q : BlowxF5 → F5 be the blow-up

of F5 at x. Then there is a birational morphism g : X/G → BlowxF5 such that f = q ◦ g. Let

C′ := g∗B1,0. Let E be the exceptional divisor of q. Since f(ei) = x for each i = 1, · · · , l,

g(ei) ∈ E for each i = 1, · · · , l. Since g∗B = 4C′ + 2g∗B1,5 + 4g∗B1,6 + 2E, if g is not an

isomorphism, then there must be integers a1, a2, a3, a4, b such that

2 +
b− 1

b
=

3

4
a1 +

1

2
a2 +

3

4
a3 +

1

2
a4,
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and if a1 is not 0, then either a2 = a3 = 0. However, there are not such positive integers.

Therefore, g is an isomorphism, i.e., X/G = BlowxF5, and hence B = 4B1,0+2B1,5+4B1,6+2E

and (B1,0 · E) = 1. We put p∗E = 2
u∑

j=1

C′
j where C′

j is a smooth curve for j = 1, · · · , u. Since

m = |G|
4 , |G|

2 = |G|
(
C1 ·

u∑
j=1

C′
j

)
. This is a contradiction. Therefore, the numerical class of B is

not (6.296). As for the case of (6.296), the numerical class of B is not one of (6.310), (6.314).

We assume that the numerical class of f∗B is (6.297). Then there must be integers a1, a2, a3,

a4, b such that

1 +
b− 1

b
=

3

4
a1 +

1

2
a2 +

3

4
a3 +

3

4
a4,

and if a1 is not zero, then a2 = a3 = 0. The integers satisfying the above condition is

(a1, a2, a3, a4, b) = (1, 0, 0, 1, 2) or (0, 0, 1, 1, 2). Therefore, for each i = 1, · · · , l, we get that

f(ei) ∈ f∗B1,0∩f∗B0,1 or f(ei) ∈ f∗B
2
1,5∩f∗B0,1. If f(ei) ∈ f∗B

2
1,5∩f∗B0,1 for all i = 1, · · · , l,

then (B1,0 ·B1,0) = −5 and (B1,0 ·B0,1) = 1. However, as for the case of X/G ∼= Fn, we can see

that such things can not happen. Therefore, f(ei) ∈ f∗B1,0 ∩ f∗B0,1 for some i = 1, · · · , l. By

using the blow-up of F5 at x := f∗B1,0∩f∗B0,1, as for the case of (6.296), this is a contradiction.

Therefore, the numerical class of B is not (6.297). As for the case of (6.297), the numerical

class of B is not (6.315).

We assume that the numerical class of f∗B is (6.298). Then there must be integers a1, a2, a3, b

such that

1 +
b− 1

b
=

5

6
a1 +

1

2
a2 +

2

3
a3.

The integers satisfying the above condition are only (a1, a2, a3, b) = (1, 0, 1, 2), and hence f(ei) ∈

f∗B1,5 ∩ f∗B1,6 for each i = 1, · · · , l. Since (f∗B1,5 · f∗B1,6) = 1, f∗B1,5 ∩ f∗B1,6 is one point.

We put x := f∗B1,5 ∩ f∗B1,6. Let q : BlowxF5 → F5 be the blow-up of F5 at x. As for the case

of (6.296), since there are no integers a1, a2, a3, a4, b such that

2 +
b− 1

b
=

3

4
a1 +

1

2
a2 +

3

4
a3 +

1

2
a4,

we get that X/G = BlowxF5, and hence B = 6B1,0 + 2B1,6 + 3B1,6 + 2E, and (B1,0 · E) = 1.

We put p∗E = 2
u∑

j=1

C′
j , where C′

j is a smooth curve for j = 1, · · · , u. Since (E · E) = −1, we

get that u = |G|
4 +

∑
1≤i<j≤u

(C′
i · C

′
j), and hence u ≥ |G|

4 . Since (B1,0 · E) = 1, |G|
12 is a multiple

of u. This is a contradiction. Therefore, the numerical class of B is not (6.298).

We assume that the numerical class of f∗B is (6.299). Then there must be positive integers

a1, a2, a3, a4, b such that

1 +
b− 1

b
=

5

6
a1 +

1

2
a2 +

2

3
a3 +

2

3
a4

and a1a3 = 0. The integers satisfying the above conditions are (a1, a2, a3, a4, b) = (1, 0, 0, 1, 2)

or (0, 1, 1, 1, 6). Therefore, for each i = 1, · · · , l, we get that f(ei) ∈ f∗B1,0 ∩ f∗B0,1 or f(ei) ∈

f∗B1,6∩f∗B1,5∩f∗B0,1. If f(ei) ∈ f∗B1,6∩f∗B1,5∩f∗B0,1 for all i = 1, · · · , l, then (B1,0 ·B1,0) =

−5 and (B1,0 · B0,1) = 1. We get that this is not established in the same way as in the case of

X/G ∼= Fn. By using the blow-up of F5 at x := f∗B1,0 ∩ f∗B0,1, as for the case of (6.298), we
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get that there is no case where f(ei) ∈ f∗B1,0 ∩ f∗B0,1 for some i = 1, · · · , l. Therefore, the

numerical class of B is not (6.299). As for the case of (6.299), the numerical class of B is not

one of (6.300)–(6.301).

Corollary 4.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that

X/G is smooth. If there is a birational morphism f : X/G → Fn from the quotient space X/G

to a Hirzebruch surface Fn where n = 6, 8 or 12, then f is an isomorphism, i.e., X/G is a

Hirzebruch surface.

Proof Let n ≥ 1 and C−n ⊂ Fn be the unique irreducible curve such that (C−n ·C−n) = −n.

Since for x ∈ Fn, if x ∈ C−n, then BlowxFn = BlowyFn+1 where y ∈ Fn+1\C−(n+1), and if

x 6∈ C−n, then BlowxFn = BlowyFn−1 where y ∈ C−(n−1), by Theorem 4.2, we get this corollary.

Theorem 4.3 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X). If

X/G is smooth, then G is isomorphic to one of AG as groups.

Proof Since X/G is smooth, the quotient space X/G is an Enriques surface or a rational

surface. If X/G is Enriques, then G ∼= Z/2Z as a group and Z/2Z ∈ AG. By Section 3, if

X/G ∼= Fn, then G is isomorphic to one of AG as a group. By [15], if X/G ∼= P2, then G is

isomorphic to one of AG as a group. Therefore, we assume that X/G is rational, and X/G 6= P2

or Fn.

Let f : X/G → Fn be a birational morphism where 0 ≤ n ≤ 12, and B be the branch divisor

of G. By Theorem 4.2 and Corollary 4.1, we may assume that 0 ≤ n ≤ 4. By the proof of

Proposition 4.1, the numerical class of f∗B is one of the list in Section 6.

We assume that the numerical class of f∗B is one of (6.4), (6.5), (6.6), (6.10), (6.11), (6.12),

(6.14), (6.15), (6.16), (6.19), (6.20), (6.25), (6.26), (6.27), (6.28), (6.32), (6.33), (6.36), (6.37),

(6.38), (6.41), (6.42), (6.46), (6.51), (6.52), (6.57), (6.58), (6.59), (6.60), (6.79), (6.80), (6.81),

(6.82), (6.85), (6.87), (6.88), (6.89), (6.91), (6.94), (6.96), (6.98), (6.112), (6.113), (6.114),

(6.115), (6.116), (6.117), (6.118), (6.119), (6.120), (6.121), (6.122), (6.123), (6.124), (6.125),

(6.126), (6.176), (6.177), (6.178), (6.180), (6.181), (6.182), (6.183), (6.184), (6.185), (6.186),

(6.187), (6.189), (6.190), (6.191), (6.192), (6.195), (6.196), (6.197), (6.199), (6.200), (6.202),

(6.203), (6.206), (6.216), (6.217), (6.241), (6.242), (6.243), (6.244), (6.245), (6.246), (6.249),

(6.250), (6.270), (6.271), (6.272), (6.273), (6.274), (6.275), (6.276), (6.277), (6.279), (6.282) of

the list in Section 6. By Theorem 2.5, G is generated by automorphisms g1, · · · , gm, where

1 ≤ m ≤ 5 and the order of gi is two for i = 1, · · · ,m. Therefore, G is Z/2Z⊕a where 1 ≤ a ≤ 5

as a group.

We assume that the numerical class of f∗B is one of (6.1), (6.2), (6.3), (6.17), (6.18), (6.22),

(6.23), (6.24), (6.39), (6.54), (6.55), (6.194), (6.198), (6.201), (6.204), (6.205), (6.212), (6.218),

(6.219), (6.228), (6.229), (6.284), (6.285), (6.289), (6.290) of the list in Section 6. By Theorem

2.5, G is generated by automorphisms g1, · · · , gm, where 1 ≤ m ≤ 3 and the order of gi is 3 for

i = 1, · · · ,m. Therefore, G is Z/3Z⊕b where 1 ≤ b ≤ 3 as a group.

We assume that the numerical class of f∗B is one of (6.29), (6.34), (6.40), (6.44), (6.49),

(6.50), (6.53), (6.56), (6.62), (6.63), (6.64), (6.66), (6.67), (6.68), (6.69), (6.71), (6.77), (6.83),

(6.84), (6.92), (6.93), (6.102), (6.106), (6.107),(6.108), (6.127), (6.128), (6.133), (6.134), (6.135),

(6.137), (6.138), (6.145), (6.146), (6.147), (6.148), (6.149), (6.151), (6.153), (6.154), (6.163),
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(6.164), (6.165), (6.166), (6.167), (6.168), (6.169), (6.174), (6.175), (6.179), (6.188), (6.193),

(6.211), (6.214), (6.220), (6.221), (6.223), (6.224), (6.225), (6.226), (6.227), (6.230), (6.236),

(6.237), (6.238), (6.239), (6.240), (6.248), (6.251), (6.252), (6.254), (6.256), (6.258), (6.259),

(6.260), (6.265), (6.266), (6.267), (6.268), (6.269), (6.283), (6.286), (6.288), (6.292), (6.293),

(6.294), (6.295) of the list in Section 6. By Theorem 2.5, G is generated by automorphisms

gi, · · · , gm, h1, · · ·hn, where 1 ≤ m ≤ 3, 1 ≤ n ≤ 2, the order of gi is 2 for i = 1, · · · ,m, and

the order of hj is 3 for j = 1, · · · , n. Therefore, G is Z/2Z⊕d ⊕ Z/3Z⊕e, where (d, e) = (1, 1),

(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2) as a group.

We assume that the numerical class of f∗B is one of (6.7), (6.8), (6.9), (6.13), (6.21),

(6.30), (6.31), (6.35), (6.43), (6.45), (6.47), (6.48), (6.61), (6.86), (6.90), (6.97), (6.99), (6.100),

(6.103), (6.104), (6.105), (6.109), (6.110), (6.130), (6.131), (6.139), (6.140), (6.141), (6.142),

(6.155), (6.156), (6.157), (6.158), (6.161), (6.162), (6.207), (6.208), (6.209), (6.210), (6.213),

(6.215), (6.222), (6.231), (6.232), (6.233), (6.234), (6.255), (6.257), (6.261), (6.262), (6.263),

(6.264), (6.278), (6.280), (6.281), (6.287), (6.291) of the list in Section 6. By Theorem 2.5, G is

generated by automorphisms gi, · · · , gm, h1, · · · , hn, where the order of gi is 2 for i = 1, · · · ,m,

the order of hj is 4 for j = 1, · · · , n, and (n,m) is one of (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1),

(3, 1). Therefore, G is Z/2Z⊕f ⊕Z/4Z⊕g, where (f, g) = (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1),

(3, 1) as a group.

We assume that the numerical class of f∗B is (6.65) of the list in Section 6. We denote

B by 3B1
1,0 + 6B2

1,0 + 2B1,1 + 4B1
0,1 + 4B2

0,1 +
l∑

j=1

b′iB
′
i, where f∗B

i
1,0 = (1, 0), f∗B

i
0,1 = (0, 1)

in Pic(P1 × P1), and B′
j is an exceptional divisor of f for j = 1, · · · , l. By Theorem 2.5,

G ∼= Z/2Z⊕i⊕Z/3Z⊕Z/4Z where i =0 or 1. If G ∼= Z/2Z⊕Z/3Z⊕Z/4Z, then G is one of AG

as a group. We assume that G ∼= Z/3Z ⊕ Z/4Z. By Remark 4.2, there are integers β, aj ≥ 0

such that

1 +
β − 1

β
=

5

6
a1 +

1

2
a2 +

2

3
a3 +

11

12
a4 +

11

12
a5.

Since G ∼= Z/3Z⊕Z/4Z, β=1, 2, 3, 4, 6 or 12. Since f∗B = 3(1, 0)+6(1, 0)+2(1, 1)+4(0, 1)+

4(0, 1), the support of f∗B is simple normal crossing. Since each irreducible component of f∗B

is smooth, aj = 0 or 1 for each 1 ≤ j ≤ 5. Since f∗B = 3(1, 0)+6(1, 0)+2(1, 1)+4(0, 1)+4(0, 1),

the non-zero element of {a1, a2} is just one, and the non-zero element of {a4, a5} is just one. The

integers which satisfy the above condition are (β, a1, a2, a3) = (12, 1, 0, 1) and (a4, a5) = (1, 0)

or (0,1). Therefore, f(ei) 6∈ f∗B
2
1,0 for i = 1, · · · , l. By the fact that f∗B

2
1,0 = (1, 0) and

f∗B1,1 = (1, 1) in Pic(P1 × P1) and the fact that f(ei) 6∈ f∗B
2
1,0 for i = 1, · · · , l, we get

that B2
1,0 ∩ B1,1 is not an empty set, and hence p−1(B2

1,0) ∩ p−1(B1,1) is an empty set. Since

G ∼= Z/3Z ⊕ Z/4Z, the number of subgroup of G which is generated by a non-symplectic

automorphism of order 2 is one. Since each ramification index ofB2
1,0 and B1,1 is divided by 2, by

Theorem 2.5, there is a non-symplectic automorphism g of order 2 such that Fix(g) ⊃ f−1B2
1,0

and Fix(g) ⊃ f−1B1,1. Since p−1(B2
1,0) ∩ p−1(B1,1) 6= ∅, this is a contradiction. Therefore, if

the numerical class of f∗B is (6.65), then G is one of AG as a group.

As for the case of (6.65), if the numerical class of f∗B is one of (6.95), (6.136), (6.150),

(6.159), (6.235), (6.247), (6.253) of the list in Section 6, then G is one of AG as a group.

We assume that the numerical class of f∗B is (6.70) of the list in Section 6. We denote B by

2B1
1,0+3B2

1,0+6B3
1,0+2B1

0,1+4B2
0,1+4B3

0,1+
l∑

j=1

b′iB
′
i, where f∗B

i
1,0 = (1, 0), f∗B

i
0,1 = (0, 1), and
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B′
j is an exceptional divisor of f for j = 1, · · · , l. By Theorem 2.5, G ∼= Z/2Z⊕i⊕Z/3Z⊕Z/4Z

where i = 0, 1 or 2. There are some integers β, aj such that

1 +
β − 1

β
=

1

2
a1 +

2

3
a2 +

5

6
a3 +

1

2
a4 +

3

4
a5 +

3

4
a6.

Since G ∼= Z/2Z⊕i ⊕ Z/3Z ⊕ Z/4Z where i = 0, 1 or 2, we get β=1, 2, 3, 4, 6 or 12. Since

f∗B = 2(1, 0)+ 3(1, 0)+6(1, 0)+ 2(0, 1)+4(0, 1)+ 4(0, 1), the support of f∗B is simple normal

crossing. Since each irreducible component of f∗B is smooth, aj = 0 or 1 for each 1 ≤ j ≤

6, and by Proposition 4.2 the non-zero element of {a1, a2, a3} is just one, and the non-zero

element of {a4, a5, a6} is just one. From the above, (β, a1, a2, a3, b1, b2, b3) = (1, 1, 0, 0, 1, 0, 0).

Therefore, f(ej) ∈ f∗(B
1
1,0) ∩ f∗(B

1
0,1) for j = 1, · · · , l. Since ((1, 0) · (1, 0)) = 0, we get that

(p∗Bi
1,0 · p

∗Bi
1,0) = 0 for i = 2, 3. Since X is a K3 surface, the support of p∗Bi

1,0 is a union of

elliptic curves for i = 2, 3. Since G ∼= Z/2Z⊕i⊕Z/3Z⊕Z/4Z where i = 0, 1 or 2, the number of

subgroups of G which are generated by a non-symplectic automorphism of order 3 is one, and

hence there is a non-symplectic automorphism g of order 3 such that Fix(g) has at least two

elliptic curves. By [1,14], this is a contradiction. Therefore, the numerical class of f∗B is not

(6.70).

As for the case of (6.70), the numerical class of f∗B is not one of (6.75), (6.143) of the list

in Section 6.

If the numerical class of f∗B is (6.72) of the list in Section 6, then by Theorem 2.5, G ∼=

Z/2Z⊕i ⊕ Z/4Z⊕j where (i, j) is one of (0,1), (0,2), (1,1), (1,2), (2,1), (2,2), (3,1). We assume

that G ∼= Z/2Z⊕2 ⊕ Z/4Z⊕2. Since G is generated by non-symplectic automorphism of order

2 and 4, Gs := {g ∈ G : g is symplectic} ∼= Z/2Z⊕2 ⊕ Z/4Z. By the classification of finite

symplectic groups (see [13, 10, 16]), we see that there is no Gs where Gs
∼= Z/2Z⊕2 ⊕ Z/4Z.

Therefore, G ∼= Z/2Z⊕i ⊕ Z/4Z⊕j where (i, j) is one of (0,1), (0,2), (1,1), (1,2), (2,1), (3,1),

and if the numerical class of f∗B is (6.72), then G is one of AG as a group.

As for the case of (6.72), if the numerical class of f∗B one of (6.74), (6.78), (6.111), (6.144)

of the list in Section 6, then G is one of AG as a group.

We assume that the numerical class of f∗B is (6.73) of the list in Section 6. We denote B

by 2B1
1,0 + 4B2

1,0 + 4B3
1,0 + 3B1

0,1 + 3B2
0,1 + 3B3

0,1 +
l∑

j=1

b′iB
′
i By Theorem 2.5, G ∼= Z/2Z⊕i ⊕

Z/3Z⊕ Z/4Z where i = 0, 1 or 2. As for the case of (6.68), there are integers β, aj such that

1 +
β − 1

β
=

1

2
a1 +

3

4
a2 +

3

4
a3 +

2

3
a4 +

2

3
a5 +

2

3
a6,

and aj = 0 or 1 for each 1 ≤ j ≤ 6, β = 1, 2, 3, 4, 6 or 12, the non-zero element of {a1, a2, a3} is

only one, and the non-zero element of {a4, a5, a6} is only one, however, integers which satisfy

the above condition do not exist. Therefore, the numerical class of f∗B is not (6.73).

As for the case of (6.73), the numerical class of f∗B is not one of (6.101), (6.129), (6.132),

(6.152), (6.160), (6.170), (6.171), (6.172), (6.173) of the list in Section 6.

We assume that the numerical class of f∗B is (6.76) of the list in Section 6. We denote

B by 2B1
1,0 + 4B2

1,0 + 4B3
1,0 + 2B1

0,1 + 2B2
0,1 + 2B3

0,1 + 2B4
0,1 +

n∑
i=1

b′iB
′
i, where f∗B

i
1,0 = (1, 0),

f∗B
i
0,1 = (0, 1) in Pic(P1 × P1) and f∗B

′
i = 0. By Theorem 2.5, G ∼= Z/2Z⊕i ⊕ Z/4Z, where



Finite Abelian Groups of K3 Surfaces 147

i = 0, 1, 2, 3 or 4. We assume that G ∼= Z/2Z⊕4 ⊕ Z/4Z. By Theorem 2.5, G = G1
1,0 ⊕G2

1,0 ⊕

G1
0,1⊕G2

0,1⊕G3
0,1. As for the case of (6.70), we get that f(ei) ∈ B1

1,0∩B
j
0,1 for each i = 1, · · · ,m

where j = 1, 2, 3, 4. Therefore, we get (B2
1,0 · B

j
0,1) = 1. Let s ∈ G2

1,0 be a generator. Since

G = G1
1,0⊕G2

1,0⊕G1
0,1⊕G2

0,1⊕G3
0,1, by Theorem 2.5, there is a non-symplectic automorphism

t ∈ Gj
0,1 for some j = 1, 2, 3 such that Fix(t ◦ s) does not have a curve. Since (B2

1,0 · B
j
0,1) = 1

and |G| = 234, we get that |p−1(B2
1,0) ∩ p−1(Bj

0,1)| = 8. By [2, Proposition 1], the number of

isolated points of Fix(t ◦ s) is 4. This is a contradiction. Therefore, if the numerical class of

f∗B is (6.76), then G ∼= Z/2Z⊕i ⊕ Z/4Z where i = 0, 1, 2 or 3, and hence G is one of AG as a

group.

We assume that the numerical class of f∗B is (6.150) of the list in Section 6. We denote B

by 3B1,0 + 2B1
1,1 + 6B2

1,1 + 4B1
0,1 + 12B2

0,1 +
l∑

j=1

b′iB
′
i where f∗B

i
s,t = sC + tF in Pic(F1), and

B′
j is an exceptional divisor of f for j = 1, · · · , l. By Theorem 2.5, G ∼= Z/2Z⊕i⊕Z/3Z⊕Z/4Z

where i = 0 or 1. Then the number of subgroup of G which is generated by a non-symplectic

automorphism of order 3 is one. By the above, for ei, there are integers β, aj ≥ 0 such that

1 +
β − 1

β
=

2

3
a1 +

1

2
a2 +

5

6
a3 +

3

4
a4 +

11

12
a5.

Since G ∼= Z/3Z⊕Z/4Z, β=1, 2, 3, 4, 6 or 12. Since f∗B = 3(1, 0)+6(1, 0)+2(1, 1)+4(0, 1)+

4(0, 1), the support of f∗B is simple normal crossing. Since each irreducible component of f∗B

is smooth, aj = 0 or 1 for each 1 ≤ j ≤ 5. The integers which satisfy the above condition

are (β, a1, a2, a3, a4, a5) = (4, 0, 0, 1, 0, 1). Therefore, f(ei) 6∈ f∗B1,0 ∩ f∗B
2
0,1 for i = 1, · · · , l

and hence p−1(B1,0) ∩ p−1(B2
0,1) is not an empty set. Since G1,0

∼= Z/3Z, G2
0,1

∼= Z/12Z, and

p−1(B1,0) ∩ p−1(B2
0,1) is not an empty set, we get that the number of subgroup of G which is

generated by a non-symplectic automorphism of order 3 is at least two. This is a contradiction.

Therefore, the numerical class of f∗B is not (6.150).

As for the case of (6.150), the numerical class of f∗B is not (6.159) of the list in Section 6.

5 Abelian Groups of Enriques Surfaces with Smooth Quotient

Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E) such that E/H

is smooth. Let X be the K3-cover of E, and G := {s ∈ Aut(X) : s is a lift of some h ∈ H}.

Then G is a finite Abelian group, G has a non-symplectic involution whose fixed locus is empty,

X/G = E/H , and the branch divisor of G is that of H .

Theorem 5.1 Let E be an Enriques surface and H be a finite subgroup of Aut(E). We

assume that the quotient space E/H is smooth and there is a birational morphism from E/H

to a Hirzebruch surface Fn, where 0 ≤ n. Then 0 ≤ n ≤ 4.

Proof Let f : E/H → Fn be a birational morphism, and B :=
k∑

i=1

biBi be the branch

divisor of the quotient map E → E/H . Since the canonical line bundle of an Enriques surface

is numerically trivial, by Theorem 2.4, the numerical class of f∗B is one of Section 3. By

[11, Proposition 4.5], G does not have a non-symplectic automorphism whose order is odd.

Therefore, bi is even number for each i = 1, · · · , k by Theorem 2.5. By the list of the numerical

class of Section 3, we get the claim.
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Theorem 5.2 For each numerical classes (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16),

(6.89), (6.90), (6.91), (6.94), (6.96), (6.97), (6.98), (6.101), (6.203), (6.206), (6.209), (6.210),

(6.281) of the list in Section 6, there is an Enriques surface E and a finite Abelian subgroup

H of Aut(E) such that E/H is a Hirzebruch surface Fn, and the numerical class of the branch

divisor B of the quotient map E → E/H is (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16),

(6.89), (6.90), (6.91), (6.94), (6.96), (6.97), (6.98), (6.101), (6.203), (6.206), (6.209), (6.210),

(6.281).

Furthermore, for a pair (E,H) of an Enriques surface E and a finite Abelian subgroup H

of Aut(E), if E/H ∼= Fn and the numerical class of the branch divisor B of the quotient map

E → E/H is (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16), (6.89), (6.90), (6.91), (6.94),

(6.96), (6.97), (6.98), (6.101), (6.203, (6.206), (6.209), (6.210), (6.281), then H is Z/2Z⊕2,

Z/4Z⊕2, Z/2Z ⊕ Z/4Z, Z/2Z⊕4, Z/2Z⊕3, Z/2Z⊕2 ⊕ Z/4Z, Z/2Z⊕3, Z/2Z⊕2, Z/2Z ⊕ Z/4Z,

Z/2Z⊕3, Z/2Z⊕3, Z/2Z⊕3, Z/2Z⊕2⊕Z/4Z, Z/2Z⊕4, Z/4Z⊕Z/8Z, Z/2Z⊕2, Z/2Z⊕3, Z/4Z⊕2,

Z/2Z⊕2 ⊕ Z/4Z, Z/4Z⊕ Z/8Z, in order, as a group.

Proof Let X be the K3-cover of E, G := {s ∈ Aut(X) : s is a lift of some h ∈ H}, and

p : X → X/G be the quotient map. Then G is a finite Abelian group, X/G ∼= Fn, and the

branch divisor of p is B. Since bi is power of two for each i = 1, · · · , k, G ∼= Z/2Z⊕s⊕Z/4Z⊕t⊕

Z/8Z⊕u where s, t, u ≥ 0. By Theorem 2.5, and the assumption that G has a non-symplectic

automorphism of order 2 such that whose fixed locus is an empty set, we get s+ t+ u ≥ 3, and

hence the numerical class of B is one of (6.6), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.15),

(6.16), (6.19), (6.20), (6.81), (6.82), (6.87), (6.88), (6.89), (6.90), (6.91), (6.94), (6.96), (6.97),

(6.98), (6.100), (6.101), (6.199), (6.200), (6.203), (6.206), (6.208), (6.209), (6.210), (6.281),

(6.282) of the list in Section 6.

We assume that the numerical class of B is (6.6). We denote B by 2B1
1,0 + 2B2

1,0 + 2B2,2 +

2B1
0,1 + 2B2

0,1. By Proposition 3.3, G = G1
1,0 ⊕ G2,2 ⊕ G1

0,1
∼= Z/2Z⊕3. Let s, t, u,∈ G be

generators of G1
1,0, G

1
0,1 and G2,2, respectively. Then the non-symplectic automorphisms of G

are s, t, u, and s ◦ t ◦ u.

From here, we will show that Fix(s ◦ t ◦ u) is an empty set. We assume that the curves of

Fix(s) are only p−1(B1
1,0). Since s is a non-symplectic automorphism of order 2, the quotient

space X/〈s〉 is a smooth rational surface. The quotient map q : X/〈s〉 → X/G ∼= P1 ×P1 is the

Galois cover such that the branch divisor is 2B2
0,1+2B2,2+2B1

0,1+2B2
0,1, and the Galois group

is isomorphic to Z/2Z⊕2 as a group. By Theorem 3.1, there is the Galois cover g : Y → X/G

whose branch divisor is 2B2,2 + 2B1
0,1 + 2B2

0,1 and Galois group is isomorphic to Z/2Z⊕2 as a

group. Since Fix(s) is not an empty set and the order of s is 2, X/〈s〉 is a smooth rational

surface. By Theorem 2.2, there is the Galois cover h : X/〈s〉 → Y such that q = g ◦ h. Since

the degree of q is 4 and that of g is 4, h is an isomorphism. Since the branch divisor of q is not

that of g, this is a contradiction. Therefore, Fix(s) is p−1(B1
1,0) ∪ p−1(B2

1,0). In the same way,

Fix(t) is p−1(B1
0,1) ∪ p−1(B2

0,1). Therefore, by Theorem 2.5, Fix(s ◦ t ◦ u) is an empty set, and

hence E := X/〈s ◦ t ◦ u〉 is an Enriques surface. Let H := G/〈s ◦ t ◦ u〉. Then E/H ∼= P1 × P1,

H ∼= Z/2Z⊕2, and the branch divisor of H is B. It is easy to show that for an Enriques surface

E and a finite Abelian subgroup H of Aut(E) such that E/H ∼= P1 × P1 if the numerical class

of H is (6.6), then H ∼= Z/2Z⊕2.

As for the case of (6.6), the claim is established for (6.89).

We assume that the numerical class of B is (6.8). We denote B by 4B1
1,0 + 4B2

1,0 + 2B1,1 +
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4B1
0,1 + 4B2

0,1. By Proposition 3.3, G = G1
1,0 ⊕G1,1 ⊕G1

0,1
∼= Z/2Z⊕ Z/4Z⊕2. Let s, t, u ∈ G

be generators of G1
1,0, G

1
0,1 and G1,1, respectively. By Theorem 2.5, s and t are non-symplectic

automorphism of order 4 and u is a non-symplectic automorphism of order 2. By Theorem 2.5,

G2
1,0 is generated by s ◦ t2x ◦ uy where x, y = 0 or 2. Since (s ◦ t2x ◦ uy)2 = s2 for x, y = 0 or

2, we get that Fix(s2) is p−1(B1
1,0) ∪ p−1(B2

1,0). As for the case of (6.6), we get the claim for

(6.8).

As for the case of (6.8), the claim is established for (6.101).

We assume that the numerical class of B is (6.9). We denote B by 4B1
1,0 + 4B2

1,0 + 2B1,2 +

2B1
0,1 + 2B2

0,1. By Proposition 3.3, G = G1
1,0 ⊕G1,2 ⊕G1

0,1
∼= Z/2Z⊕2 ⊕ Z/4Z. Let s, t, u ∈ G

be generators of G1
1,0, G

1
0,1 and G1,2, respectively. As for the case of (6.6), Fix(t) is p

−1(B1
0,1)∪

p−1(B2
0,1). As for the case of (6.8), Fix(s) is the support of p−1(B1

1,0) ∪ p−1(B2
1,0). As for the

case of (6.6), we get the claim for (6.101).

We assume that the numerical class of B is (6.10). We denote B by 2B1
1,0+2B2

1,0+2B3
1,0+

2B1,4. Let s1, s2, t ∈ G be generators of G1
1,0, G

2
1,0 and G1,4, respectively. By Proposition 3.3,

G = G1
1,0 ⊕G2

1,0 ⊕G1,4
∼= Z/2Z⊕3. Then the non-symplectic involutions of G are s1, s2, t and

s1 ◦ s2 ◦ t.

We assume that Fix(s1) is p
−1(B1

1,0)∪p−1(B3
1,0). Then X/〈s1〉 is a smooth rational surface,

and the quotient map q : X/〈s1〉 → X/G ∼= P1 × P1 is the Galois cover such that the branch

divisor is 2B2
0,1 + 2B1,4, and the Galois group is isomorphic to Z/2Z⊕2 as a group. Since

P1 × P1\B2
1,0 is simply connected, in the same way of the proof of Theorem 2.5, this is a

contradiction. Therefore, Fix(si) is p
−1(Bi

1,0) for i = 1, 2, and hence Fix(s1 ◦s2◦ t) is p−1(B3
1,0).

There is not an Enriques surface E and a finite Abelian subgroup H of Aut(E) such that

E/H ∼= P1 × P1 and the numerical class of the branch divisor of H is (6.10).

As for the case of (6.10), we get the claim for (6.87), (6.100).

We assume that the numerical class of B is (6.11). We denote B by 2B1
1,0+2B2

1,0+2B3
1,0+

2B1,1 + 2B1
0,1 + 2B2

0,1 + 2B3
0,1. By Proposition 3.3, G = ⊕2

i=1G
i
1,0 ⊕G1,1 ⊕2

i=1 G
i
0,1, and hence

the number of non-symplectic automorphisms of order 2 of G is 16. By Theorem 2.5, G has a

non-symplectic automorphism of order 2 whose fixed locus is an empty set. Furthermore, it is

easy to show that for an Enriques surface E and a finite Abelian subgroup H of Aut(E) such

that E/H ∼= P1 × P1 if the numerical class of H is (6.11), then H ∼= Z/2Z⊕4.

As for the case of (6.11), the claim is established for (6.12), (6.13), (6.16), (6.91), (6.94),

(6.96), (6.97), (6.98), (6.206), 6.210).

We assume that the numerical class of B is (6.15). We denote B by 2B1
1,0+2B2

1,0+2B1
1,2+

2B2
1,2. By Proposition 3.4, G = G1

1,0 ⊕G1
1,2 ⊕G2

1,2. Let s, t, u ∈ G be generators of G1
1,0, G

1
1,2

and G2
1,2, respectively. Then the non-symplectic automorphisms of order 2 of G are s, t, u and

s ◦ t ◦ u. We assume that Fix(s ◦ t ◦ u) is an empty set. Since (Bi
1,0 · B

j
1,2) 6= 0 for i, j = 1, 2,

Fix(s) is p−1(B1
1,0)∪p−1(B2

1,0). Since (B
1
1,0+B2

1,0 ·B
1
1,2) = 4, X/(G1

1,0⊕G1
1,2) is smooth. Since

G = G1
1,0 ⊕G1

1,2 ⊕G2
1,2, the branch divisor of the quotient map X/(G1

1,0 ⊕G1
1,2) → X/G ∼= F2

is 2B2
1,0 and its degree is 2. Since

B2

1,0

2 6∈ Pic(P1 × P1) and X/(G1
1,0 ⊕G1

1,2) is smooth, this is a

contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup H

of Aut(E) such that E/H ∼= F1 and the numerical class of branch divisor of H is (6.15).

As for the case of (6.15), we get that there is not an Enriques surface E and a finite Abelian

subgroup H of Aut(E) such that E/H ∼= Fn and the numerical class of the branch divisor of

H is (6.88).
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We assume that the numerical class of B is (6.19). We denote B by 2B1
1,1+2B2

1,1+2B3
1,1+

2B4
1,1. By Proposition 3.6, G = G1

1,1 ⊕ G2
1,1 ⊕ G3

1,1. Let si ∈ Gi
1,1 be a generator of Gi

1,1 for

i = 1, 2, 3, 4. By Theorem 2.5, Fix(si) is not an empty set for i = 1, 2, 3, 4. Since G ∼= Z/2Z⊕3,

s4 = s1 ◦ s2 ◦ s3, and hence G does not have a non-symplectic automorphism of order 2 whose

fixed locus is an empty set. Therefore, there is not an Enriques surface E and a finite Abelian

subgroup H of Aut(E) such that E/H ∼= F1 and the numerical class of the branch divisor of

H is (6.19).

As for the case of (6.19), we get that there is not an Enriques surface E and a finite Abelian

subgroup H of Aut(E) such that E/H ∼= Fn and the numerical class of the branch divisor of

H is (6.19), (6.20), (6.81), (6.82), (6.200).

We assume that the numerical class of B is (6.90). We denote B by 2B1,0+2B1,1+2B2,2+

4B1
0,1 + 4B2

0,1. By Corollary 3.3, G = G1,1 ⊕ G2,2 ⊕ G1
0,1. Let q : X/〈G1,0, G1,1, G2,2〉 →

X/G ∼= F1 be the quotient map. Then the branch divisor of q is 4B1
0,1 + 4B2

0,1. By Theorem

2.2, X/〈G1,0, G1,1, G2,2〉 ∼= F4, and the branch divisor of 〈G1,0, G1,1, G2,2〉 is 2B1,0 + 2q∗B1,1 +

2q∗B2,2. Let s, t, u ∈ G be generators of G1,1, G2,2 and G1
0,1, respectively. Then Fix(s) is the

support of p∗B1,0 and that of p∗B1,1. Then as for the case of (6.6), we get the claim.

As for the case of (6.90), the claim is established for (6.203), (6.209), (6.281).

We assume that the numerical class of B is (6.199). We denote B by 2B1,0+2B1,4+2B1
1,2+

2B2
1,2. By Corollary 3.5, G = G1,4⊕G1

1,2⊕G2
1,2. Let s, t, u ∈ G be generators of G1,4, G

1
1,2 and

G2
1,2, respectively. Then the non-symplectic automorphisms of G are s, t, u and s ◦ t ◦ u. Since

each fixed locus of s, t and u is not an empty set, by Theorem 2.5, if G has a non-symplectic

automorphism of order 2 whose fixed locus is an empty set, then that is s◦t◦u. We assume that

Fix(s ◦ t ◦ u) is an empty set. Then we may assume that Fix(t) is p−1(B1,0)∪ p−1(B1
1,2). Since

(B1,0 +B1
1,2 · B1,4) = 6, we get |p−1(B1,0 ∪B1

1,2) ∩ p−1(B1,4)| = 12. Since s ◦ t is a symplectic

automorphism of order 2 and p−1(B1,0 ∪ B1
1,2) ∩ p−1(B1,4) is contained in Fix(s ◦ t), this is a

contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup H

of Aut(E) such that E/H ∼= F1 and the numerical class of the branch divisor of H is (6.199).

We assume that the numerical class of B is (6.208). We denote B by 4B1,0+2B1,3+4B1,2+

2B1
0,1 + 2B2

0,1. By Proposition 3.8, G = G1,3 ⊕ G1,2 ⊕ G1
0,1. Let s, t, u ∈ G be generators of

G1,3, t ∈ G1,2 and u ∈ G1
0,1, respectively. Then the non-symplectic automorphisms of G are s,

t2, u and s ◦ t2 ◦ u. Since each fixed locus of s, t2 and u is not an empty set by Theorem 2.5, if

G has a non-symplectic automorphism of order 2 whose fixed locus is an empty set, then that

is s ◦ t2 ◦ u.

We assume that Fix(s ◦ t2 ◦ u) is an empty set. Then Fix(t2) is p−1(B1,0) ∪ p−1(B1,2) and

Fix(u) is p−1(B1
1,0) ∪ p−1(B2

1,0). Since (B1,3 · B1
0,1 + B2

0,1) = 4, we get that X/(G1,3 ⊕ G1
0,1)

is smooth, and the branch divisor of the quotient map f : X/(G1,3 ⊕ G1
0,1) → X/G ∼= F2

is 4B1,0 + 4B1,2, and the Galois group is Z/4Z, which is induced by t. Furthermore, since

(B1,3 · B1,0 + B1,2) = 4 and (B1,3 · B1
0,1 + B2

0,1) = 4, G/〈s, t2, u〉 is smooth, and the branch

divisor of the quotient map g : X/〈s, t2, u〉 → X/G ∼= F2 is 2B1,0 + 2B1,2, and the Galois

group is isomorphic to Z/2Z as a group. Let E1,0 and E1,2 be the support of g∗B1,0 and

g∗B1,2, respectively. Then g∗B1,0 = 2E1,0 and g∗B1,2 = 2E1,2. Moreover, by Theorem 3.1,

there is the double cover h : X/(G1,3 ⊕ G1
0,1) → X/〈s, t2, u〉 such that f = g ◦ h and the

branch divisor is 2E1,0 + 2E1,2. Since X/(G1,3 ⊕ G1
0,1) and X/〈s, t2, u〉 are smooth, we get
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E1,0+E1,2

2 ∈ Pic(X/〈s, t2, u〉). Since g∗B1,2 = g∗B1,0 + 2g∗F in Pic(X/〈s, t2, u〉),

2E1,2 = 2E1,0 + 2g∗F in Pic(X/〈s, t2, u〉).

Since X/〈s, t2, u〉 is a smooth rational surface, Pic(X/(G1,3 ⊕G1
0,1)) is torsion free. Therefore,

we get

E1,2 = E1,0 + g∗F in Pic(X/〈s, t2, u〉),

and hence

E1,2 + E1,0 = 2E1,0 + g∗F in Pic(X/〈s, t2, u〉).

Since
E1,2+E1,0

2 ∈ Pic(X/〈s, t2, u〉), we get

g∗F

2
∈ Pic(X/〈s, t2, u〉).

Since (B1,0 ·F ) = 1, the degree of g is two,
g∗B1,0

2 and g∗F
2 are elements of Pic(X/〈s, t2, u〉), this

is a contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup

H of Aut(E) such that E/H ∼= F1 and the numerical class of the branch divisor of H is (6.208).

We assume that the numerical class of B is (6.282). We denote B by 2B1,0+2B1
1,4+2B2

1,4+

2B3
1,4. By Corollary 3.5, G = ⊕3

i=1G
i
1,4. Let si ∈ Gi

1,4 be a generator for i = 1, 2, 3. Then the

non-symplectic automorphisms of G are si and s1 ◦ s2 ◦ s3 where i = 1, 2, 3. Since each fixed

locus of si is not an empty set for each i = 1, 2, 3 by Theorem 2.5, if G has a non-symplectic

automorphism of order 2 whose fixed locus is an empty set, then that is s1 ◦ s2 ◦ s3. We assume

that Fix(s1◦s2◦s3) is an empty set. Then we may assume that Fix(s1) is p
−1(B1,0)∪p−1(B1

1,4).

Since (B1,0 +B1
1,4 ·B1,4) = 4, we get that X/(G1

1,4 ⊕G2
1,4) is smooth, and the branch divisor of

the quotient map X/(G1
1,4 ⊕G1

1,4) → X/G ∼= F4 is 2B3
1,4. This is a contradiction as the degree

of the quotient map is 2. Therefore, there is not an Enriques surface E and a finite Abelian

subgroup H of Aut(E) such that E/H ∼= F4 and the numerical class of the branch divisor of

H is (6.282).

By Theorem 5.2, we get Theorem 1.7.

Theorem 5.3 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E).

If E/H is smooth, then H is isomorphic to one of AG(E) as a group.

Proof Let X be the K3-cover of E, G := {s ∈ Aut(X) : s is a lift of some h ∈ H},

and p : X → X/G be the quotient map. Then G is a finite Abelian group, X/G = E/H ,

and the branch divisor of p is B. We classified H for the case of E/H ∼= Fn in Theorem

5.2. From here, we assume that E/H is smooth and E/H 6∼= Fn or P2. Since G does not

have a non-symplectic automorphism whose order is odd (see [11]), by Theorems 2.5 and 1.4,

G ∼= Z/2Z⊕s ⊕ Z/4Z⊕t ⊕ Z/8Z⊕u where s, t, u ≥ 0. By the assumption that G has a non-

symplectic automorphism of order 2 such that whose fixed locus is an empty set, and the fact

that G is generated by non-symplectic automorphisms whose fixed locus have a curve, we get

s+ t+ u ≥ 3. Therefore, G is one of the following as a group:

{Z/2Z⊕a, Z/4Z⊕3, Z/2Z⊕f ⊕ Z/4Z⊕g, Z/2Z⊕ Z/4Z⊕ Z/8Z :

3 ≤ a ≤ 5, (f, g) = (1, 2), (2, 1), (3, 1)}.
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If G is one of

{Z/2Z⊕a, Z/2Z⊕f ⊕ Z/4Z⊕g : 3 ≤ a ≤ 5, (f, g) = (1, 2), (2, 1), (3, 1)}

as a group, then quotient group G/K of G by a subgroup K ∼= Z/2Z is one of

{Z/2Z⊕a, Z/4Z⊕2, Z/2Z⊕f ⊕ Z/4Z : a = 2, 3, 4 f = 1, 2} ⊂ AG(E)

as a group. Let f : X/G → Fn be the birational morphism. We assume that G ∼= Z/4Z⊕3.

By the assumption that G ∼= Z/4Z⊕3 and Theorem 2.5, the numerical class of f∗B is only

(6.142). We denote B by 2B1,0 + 4B1
1,4 + 4B2

1,4 + 4B1
0,1 + 4B2

0,1 +
n∑

i=1

b′iB
′
i, where f∗B1,0 = C,

f∗B
i
1,4 = C+4F , f∗B

i
0,1 = F and f∗B

′
i = 0 in Pic(F4). Since G ∼= Z/4Z⊕3, by Theorem 2.5, we

get that G = G1
1,4⊕G2

1,4⊕G1
0,1. Let s ∈ G1

1,4, t ∈ G2
1,4 and u ∈ G1

0,1 be generators respectively.

The non-symplectic involutions of G are s2, t2, u2 and s2 ◦ t2 ◦ u2. Since each fixed locus of s2,

t2 and u2 is not an empty set, if G has a non-symplectic automorphism of order 2 whose fixed

locus is an empty set, then that is s2 ◦ t2 ◦ u2. If the fixed locus of s2 ◦ t2 ◦ u2 is an empty set,

then the fixed locus of s ◦ t ◦ u is an empty set. By [2], this is a contradiction. Therefore, G is

not Z/4Z⊕3 as a group.

We assume that G ∼= Z/2Z⊕ Z/4Z⊕ Z/8Z. By Theorem 2.5, the numerical class of f∗B is

only (6.101). By the proof of Theorem 4.3, f is an isomorphism, i.e., X/G ∼= F1. By Theorem

5.2, we get the claim.

By Theorems 5.2–5.3, we get Theorem 1.8.

6 The List of a Numerical Class

Here, we will give the list of a numerical class of an effective divisor B =
k∑

i=1

biBi on Fn

such that Bi is a smooth curve for each i = 1, · · · , k and KFn
+

k∑
i=1

bi−1
bi

Bi = 0 in Pic(Fn).

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = F0
∼= P1×P1,

then by Theorem 2.4 the numerical class of B is one of the following:

3(3C + 3F ) Z/3Z (6.1)

3C + 3C + 3(C + 3F ) Z/3Z⊕2 (6.2)

3C + 3C + 3(C + F ) + 3F + 3F Z/3Z⊕3 (6.3)

2(4C + 4F ) Z/2Z (6.4)

2C + 2C + 2(2C + 4F ) Z/2Z⊕2 (6.5)

2C + 2C + 2(2C + 2F ) + 2F + 2F Z/2Z⊕3 (6.6)

4C + 4C + 2(C + 4F ) Z/2Z⊕ Z/4Z (6.7)

4C + 4C + 2(C + F ) + 4F + 4F Z/2Z⊕ Z/4Z⊕2 (6.8)

4C + 4C + 2(C + 2F ) + 2F + 2F Z/2Z⊕2 ⊕ Z/4Z (6.9)

2C + 2C + 2C + 2(C + 4F ) Z/2Z⊕3 (6.10)

2C + 2C + 2C + 2(C + F ) + 2F + 2F + 2F Z/2Z⊕5 (6.11)

2C + 2C + 2C + 2(C + 2F ) + 2F + 2F Z/2Z⊕4 (6.12)
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2C + 2C + 2C + 2(C + F ) + 4F + 4F Z/2Z⊕3 ⊕ Z/4Z (6.13)

2(2C + 2F ) + 2(2C + 2F ) Z/2Z⊕2 (6.14)

2C + 2C + 2(C + 2F ) + 2(C + 2F ) Z/2Z⊕3 (6.15)

2C + 2C + 2(C + F ) + 2(C + F ) + 2F + 2F Z/2Z⊕4 (6.16)

3(C + F ) + 3(C + F ) + 3(C + F ) Z/3Z⊕2 (6.17)

3C + 3(C + F ) + 3(C + 2F ) Z/3Z⊕2 (6.18)

2(C + F ) + 2(C + F ) + 2(C + F ) + 2(C + F ) Z/2Z⊕3 (6.19)

2C + 2(C + F ) + 2(C + F ) + 2(C + 2F ) Z/2Z⊕3 (6.20)

2(C + F ) + 4(2C + 2F ) (6.21)

3(C + F ) + 3(2C + 2F ) (6.22)

3(C + 2F ) + 3(2C + F ) (6.23)

3C + 3(2C + 3F ) (6.24)

2C + 2(3C + 4F ) (6.25)

2(C + F ) + 2(3C + 3F ) (6.26)

2(C + 2F ) + 2(3C + 2F ) (6.27)

2(C + 3F ) + 2(3C + F ) (6.28)

2(C + F ) + 3(C + F ) + 6(C + F ) (6.29)

2(C + F ) + 4(C + F ) + 4(C + F ) (6.30)

2C + 4(2C + 2F ) + 2F (6.31)

4C + 2(2C + 2F ) + 4F (6.32)

2C + 2(3C + 3F ) + 2F (6.33)

3C + 6C + 2(C + 4F ) (6.34)

4C + 2(C + F ) + 4(C + 2F ) (6.35)

2C + 2(C + F ) + 2(2C + 3F ) (6.36)

2C + 2(C + 2F ) + 2(2C + 2F ) (6.37)

2C + 2(C + 3F ) + 2(2C + F ) (6.38)

3C + 3(2C + 2F ) + 3F (6.39)

2C + 6C + 3(C + 3F ) (6.40)

2(C + F ) + 2(C + F ) + 2(2C + 2F ) (6.41)

2(C + 2F ) + 2(C + F ) + 2(2C + F ) (6.42)

2C + 4C + 4(C + 2F ) + 2F (6.43)

3C + 6C + 2(C + 3F ) + 2F (6.44)

4C + 4C + 2(C + 3F ) + 2F (6.45)

2C + 2C + 2(2C + 3F ) + 2F (6.46)

2C + 4(C + F ) + 4(C + F ) + 2F (6.47)

4C + 2(C + F ) + 4(C + F ) + 4F (6.48)
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2C + 3(C + F ) + 6(C + F ) + 2F (6.49)

6C + 2(C + F ) + 3(C + F ) + 6F (6.50)

2C + 2(C + F ) + 2(2C + 2F ) + 2F (6.51)

2C + 2(C + 2F ) + 2(2C + F ) + 2F (6.52)

3C + 2(C + F ) + 6(C + F ) + 3F (6.53)

3C + 3(C + F ) + 3(C + F ) + 3F (6.54)

3C + 3C + 3(C + 2F ) + 3F (6.55)

2C + 6C + 3(C + 2F ) + 3F (6.56)

2C + 2C + 2(C + F ) + 2(C + 3F ) (6.57)

2C + 2(C + F ) + 2(C + F ) + 2(C + F ) + 2F (6.58)

2C + 2C + 2C + 2(C + 3F ) + 2F (6.59)

2C + 2C + 2(C + F ) + 2(C + 2F ) + 2F (6.60)

2C + 4C + 4(C + F ) + 2F + 4F (6.61)

2C + 3C + 6(C + F ) + 2F + 3F (6.62)

2C + 6C + 3(C + F ) + 2F + 6F (6.63)

3C + 6C + 2(C + F ) + 3F + 6F (6.64)

3C + 6C + 2(C + F ) + 4F + 4F (6.65)

2C + 6C + 3(C + F ) + 3F + 3F (6.66)

3C + 6C + 2(C + 2F ) + 2F + 2F (6.67)

3C + 6C + 2(C + F ) + 2F + 2F + 2F (6.68)

2C + 3C + 6C + 2F + 3F + 6F (6.69)

2C + 3C + 6C + 2F + 4F + 4F (6.70)

2C + 3C + 6C + 3F + 3F + 3F (6.71)

2C + 4C + 4C + 2F + 4F + 4F (6.72)

2C + 4C + 4C + 3F + 3F + 3F (6.73)

3C + 3C + 3C + 3F + 3F + 3F (6.74)

2C + 3C + 6C + 2F + 2F + 2F + 2F (6.75)

2C + 4C + 4C + 2F + 2F + 2F + 2F (6.76)

3C + 3C + 3C + 2F + 2F + 2F + 2F (6.77)

2C + 2C + 2C + 2C + 2F + 2F + 2F + 2F. (6.78)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F1, then by

Theorem 2.4 the numerical class of B is one of the following:

2(4C + 6F ) Z/2Z (6.79)

2(2C + 4F ) + 2(2C + 2F ) Z/2Z⊕2 (6.80)

2C + 2(C + 2F ) + 2(C + 2F ) + 2(C + 2F ) Z/2Z⊕3 (6.81)

2(C + 3F ) + 2(C + F ) + 2(C + F ) + 2(C + F ) Z/2Z⊕3 (6.82)
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3(3C + 3F ) + 2F + 2F Z/2Z⊕ Z/3Z (6.83)

3C + 3(2C + 2F ) + 6F + 6F Z/2Z⊕ Z/3Z⊕2 (6.84)

2(4C + 4F ) + 2F + 2F Z/2Z⊕2 (6.85)

2C + 2(3C + 3F ) + 4F + 4F Z/2Z⊕ Z/4Z (6.86)

2C + 2(3C + 3F ) + 2F + 2F + 2F Z/2Z⊕3 (6.87)

2C + 2(C + F ) + 2(2C + 3F ) + 2F + 2F Z/2Z⊕3 (6.88)

2(2C + 2F ) + 2(2C + 2F ) + 2F + 2F Z/2Z⊕3 (6.89)

2C + 2(C + F ) + 2(2C + 2F ) + 4F + 4F Z/2Z⊕2 ⊕ Z/4Z (6.90)

2C + 2(C + F ) + 2(2C + 2F ) + 2F + 2F + 2F Z/2Z⊕4 (6.91)

3(C + F ) + 3(C + F ) + 3(C + F ) + 2F + 2F Z/2Z⊕ Z/3Z⊕2 (6.92)

3C + 3(C + F ) + 3(C + F ) + 6F + 6F Z/2Z⊕ Z3Z⊕3 (6.93)

2C + 2(C + 2F ) + 2(C + F ) + 2(C + F ) + 2F + 2F Z/2Z⊕4 (6.94)

6C + 2(C + F ) + 3(C + F ) + 12F + 12F Z/2Z⊕ Z/3Z⊕2 ⊕ Z/4Z (6.95)

2(C + F ) + 2(C + F ) + 2(C + F ) + 2(C + F ) + 2F + 2F Z/2Z⊕4 (6.96)

2C + 2(C + F ) + 2(C + F ) + 2(C + F ) + 4F + 4F Z/2Z⊕3 ⊕ Z/4Z (6.97)

2C + 2(C + F ) + 2(C + F ) + 2(C + F ) + 2F + 2F + 2F Z/2Z⊕5 (6.98)

2C + 4(2C + 2F ) + 4F + 4F Z/4Z⊕2 (6.99)

2C + 4(2C + 2F ) + 2F + 2F + 2F Z/2Z⊕2 ⊕ Z/4Z (6.100)

4C + 2(C + F ) + 4(C + F ) + 8F + 8F Z/2Z⊕ Z/4Z⊕ Z/8Z (6.101)

3(2C + 2F ) + 3(C + F ) + 2F + 2F (6.102)

4(2C + 2F ) + 2(C + 3F ) (6.103)

4(2C + 2F ) + 2(C + 2F ) + 2F (6.104)

4(2C + 2F ) + 2(C + F ) + 2F + 2F (6.105)

2(C + 3F ) + 3(C + F ) + 6(C + F ) (6.106)

2(C + 2F ) + 3(C + F ) + 6(C + F ) + 2F (6.107)

2(C + F ) + 3(C + F ) + 6(C + F ) + 2F + 2F (6.108)

2(C + 3F ) + 4(C + F ) + 4(C + F ) (6.109)

2(C + 2F ) + 4(C + F ) + 4(C + F ) + 2F (6.110)

2(C + F ) + 4(C + F ) + 4(C + F ) + 2F + 2F (6.111)

2(4C + 5F ) + 2F (6.112)

2(3C + aF ) + 2(C + (6− a)F ), a ≥ 3 (6.113)

2(3C + 4F ) + 2(C + F ) + 2F (6.114)

2(3C + 3F ) + 2(C + 2F ) + 2F (6.115)

2(3C + 3F ) + 2(C + F ) + 2F + 2F (6.116)

2(2C + 3F ) + 2(2C + 3F ) (6.117)

2(2C + 3F ) + 2(2C + 2F ) + 2F (6.118)
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2(2C + 4F ) + 2(C + F ) + 2(C + F ) (6.119)

2(2C + 3F ) + 2(C + 2F ) + 2(C + F ) (6.120)

2(2C + 3F ) + 2(C + F ) + 2(C + F ) + 2F (6.121)

2(2C + 2F ) + 2(C + 2F ) + 2(C + 2F ) (6.122)

2(2C + 2F ) + 2(C + 2F ) + 2(C + F ) + 2F (6.123)

2(2C + 2F ) + 2(C + F ) + 2(C + F ) + 2F + 2F (6.124)

2(C + 2F ) + 2(C + 2F ) + 2(C + F ) + 2(C + F ) (6.125)

2(C + 2F ) + 2(C + F ) + 2(C + F ) + 2(C + F ) + 2F (6.126)

3C + 3(2C + 3F ) + 2F + 2F (6.127)

3C + 3(2C + 2F ) + 2F + 2F + 3F (6.128)

3C + 3(2C + 2F ) + 4F + 12F (6.129)

2C + 4(2C + 4F ) (6.130)

2C + 4(2C + 3F ) + 4F (6.131)

2C + 4(2C + 2F ) + 3F + 6F (6.132)

2C + 3(C + 2F ) + 6(C + 2F ) (6.133)

2C + 3(C + 2F ) + 6(C + F ) + 6F (6.134)

2C + 3(C + F ) + 6(C + 2F ) + 3F (6.135)

2C + 3(C + F ) + 6(C + F ) + 4F + 4F (6.136)

2C + 3(C + F ) + 6(C + F ) + 3F + 6F (6.137)

2C + 3(C + F ) + 6(C + F ) + 2F + 2F + 2F (6.138)

2C + 4(C + 2F ) + 4(C + 2F ) (6.139)

2C + 4(C + F ) + 4(C + 3F ) (6.140)

2C + 4(C + F ) + 4(C + 2F ) + 4F (6.141)

2C + 4(C + F ) + 4(C + F ) + 4F + 4F (6.142)

2C + 4(C + F ) + 4(C + F ) + 3F + 6F (6.143)

2C + 4(C + F ) + 4(C + F ) + 2F + 2F + 2F (6.144)

3C + 2(C + 3F ) + 6(C + F ) + 3F (6.145)

3C + 2(C + 2F ) + 6(C + F ) + 2F + 3F (6.146)

3C + 2(C + F ) + 6(C + 3F ) (6.147)

3C + 2(C + F ) + 6(C + 2F ) + 6F (6.148)

3C + 2(C + F ) + 6(C + F ) + 6F + 6F (6.149)

3C + 2(C + F ) + 6(C + F ) + 4F + 12F (6.150)

3C + 2(C + F ) + 6(C + F ) + 2F + 2F + 3F (6.151)

3C + 3(C + F ) + 3(C + F ) + 4F + 12F (6.152)

3C + 3(C + 2F ) + 3(C + F ) + 2F + 2F (6.153)

3C + 3(C + F ) + 3(C + F ) + 2F + 2F + 3F (6.154)
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4C + 2(C + 3F ) + 4(C + 2F ) (6.155)

4C + 2(C + 3F ) + 4(C + F ) + 4F (6.156)

4C + 2(C + 2F ) + 4(C + 2F ) + 2F (6.157)

4C + 2(C + 2F ) + 4(C + F ) + 2F + 4F (6.158)

4C + 2(C + F ) + 4(C + F ) + 6F + 12F (6.159)

4C + 2(C + F ) + 4(C + F ) + 5F + 20F (6.160)

4C + 2(C + F ) + 4(C + 2F ) + 2F + 2F (6.161)

4C + 2(C + F ) + 4(C + F ) + 2F + 2F + 4F (6.162)

6C + 2(C + 3F ) + 3(C + F ) + 6F (6.163)

6C + 2(C + 2F ) + 3(C + 3F ) (6.164)

6C + 2(C + 2F ) + 3(C + 2F ) + 3F (6.165)

6C + 2(C + 2F ) + 3(C + F ) + 3F + 3F (6.166)

6C + 2(C + 2F ) + 3(C + F ) + 2F + 6F (6.167)

6C + 2(C + F ) + 3(C + 3F ) + 2F (6.168)

6C + 2(C + F ) + 3(C + 2F ) + 2F + 3F (6.169)

6C + 2(C + F ) + 3(C + F ) + 10F + 15F (6.170)

6C + 2(C + F ) + 3(C + F ) + 9F + 18F (6.171)

6C + 2(C + F ) + 3(C + F ) + 8F + 24F (6.172)

6C + 2(C + F ) + 3(C + F ) + 7F + 42F (6.173)

6C + 2(C + F ) + 3(C + F ) + 2F + 3F + 3F (6.174)

6C + 2(C + F ) + 3(C + F ) + 2F + 2F + 6F (6.175)

2C + 2(3C + 6F ) (6.176)

2C + 2(3C + 5F ) + 2F (6.177)

2C + 2(3C + 4F ) + 2F + 2F (6.178)

2C + 2(3C + 3F ) + 3F + 6F (6.179)

2C + 2(C + 4F ) + 2(2C + 2F ) (6.180)

2C + 2(C + 3F ) + 2(2C + 3F ) (6.181)

2C + 2(C + 2F ) + 2(2C + 4F ) (6.182)

2C + 2(C + F ) + 2(2C + 5F ) (6.183)

2C + 2(C + 3F ) + 2(2C + 2F ) + 2F (6.184)

2C + 2(C + 2F ) + 2(2C + 3F ) + 2F (6.185)

2C + 2(C + 2F ) + 2(2C + 2F ) + 2F + 2F (6.186)

2C + 2(C + F ) + 2(2C + 4F ) + 2F (6.187)

2C + 2(C + F ) + 2(2C + 2F ) + 3F + 6F (6.188)

2C + 2(C + 4F ) + 2(C + F ) + 2(C + F ) (6.189)

2C + 2(C + 3F ) + 2(C + 2F ) + 2(C + F ) (6.190)
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2C + 2(C + 3F ) + 2(C + F ) + 2(C + F ) + 2F (6.191)

2C + 2(C + 2F ) + 2(C + 2F ) + 2(C + F ) + 2F (6.192)

2C + 2(C + F ) + 2(C + F ) + 2(C + F ) + 3F + 6F. (6.193)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F2, then by

Theorem 2.4 the numerical class of B is one of the following:

3(3C + 6F ) Z/3Z (6.194)

2(4C + 8F ) Z/2Z (6.195)

2(2C + 4F ) + 2(2C + 4F ) Z/2Z⊕2 (6.196)

2C + 2(C + 2F ) + 2(2C + 6F ) Z/2Z⊕2 (6.197)

3(C + 2F ) + 3(C + 2F ) + 3(C + 2F ) Z/3Z⊕2 (6.198)

2C + 2(C + 4F ) + 2(C + 2F ) + 2(C + 2F ) Z/2Z⊕3 (6.199)

2(C + 2F ) + 2(C + 2F ) + 2(C + 2F ) + 2(C + 2F ) Z/2Z⊕3 (6.200)

3C + 3(2C + 4F ) + 3F + 3F Z/3Z⊕2 (6.201)

2C + 2(3C + 6F ) + 2F + 2F Z/2Z⊕2 (6.202)

2C + 2(C + 2F ) + 2(2C + 4F ) + 2F + 2F Z/2Z⊕3 (6.203)

3C + 3(C + 3F ) + 3(C + 3F ) Z/3Z⊕2 (6.204)

3C + 3(C + 2F ) + 3(C + 2F ) + 3F + 3F Z/3Z⊕3 (6.205)

2C + 2(C + 2F ) + 2(C + 2F ) + 2(C + 2F ) + 2F + 2F Z/2Z⊕4 (6.206)

2C + 4(2C + 4F ) + 2F + 2F Z/2Z⊕ Z/4Z (6.207)

4C + 2(C + 3F ) + 4(C + 2F ) + 2F + 2F Z/2Z⊕2 ⊕ Z/4Z (6.208)

4C + 2(C + 2F ) + 4(C + 2F ) + 4F + 4F Z/2Z⊕ Z/4Z⊕2 (6.209)

4C + 2(C + 2F ) + 4(C + 2F ) + 2F + 2F + 2F Z/2Z⊕3 ⊕ Z/4Z (6.210)

6C + 2(C + 2F ) + 3(C + 2F ) + 6F + 6F Z/2Z⊕2 ⊕ Z/3Z⊕2 (6.211)

3(C + 2F ) + 3(2C + 4F ) (6.212)

2(C + 2F ) + 4(2C + 4F ) (6.213)

2(C + 2F ) + 3(C + 2F ) + 6(C + 2F ) (6.214)

2(C + 2F ) + 4(C + 2F ) + 4(C + 2F ) (6.215)

2(3C + 6F ) + 2(C + 2F ) (6.216)

2(2C + 4F ) + 2(C + 2F ) + 2(C + 2F ) (6.217)

3C + 3(2C + 6F ) (6.218)

3C + 3(2C + 5F ) + 3F (6.219)

3C + 3(2C + 4F ) + 2F + 6F (6.220)

2C + 3(C + 2F ) + 6(C + 2F ) + 2F + 2F (6.221)

2C + 4(C + 2F ) + 4(C + 2F ) + 2F + 2F (6.222)

3C + 2(C + 3F ) + 6(C + 3F ) (6.223)

3C + 2(C + 3F ) + 6(C + 2F ) + 6F (6.224)
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3C + 2(C + 2F ) + 6(C + 3F ) + 2F (6.225)

3C + 2(C + 2F ) + 6(C + 2F ) + 3F + 3F (6.226)

3C + 2(C + 2F ) + 6(C + 2F ) + 2F + 6F (6.227)

3C + 3(C + 2F ) + 3(C + 4F ) (6.228)

3C + 3(C + 2F ) + 3(C + 3F ) + 3F (6.229)

3C + 3(C + 2F ) + 3(C + 2F ) + 2F + 6F (6.230)

4C + 2(C + 5F ) + 4(C + 2F ) (6.231)

4C + 2(C + 4F ) + 4(C + 2F ) + 2F (6.232)

4C + 2(C + 2F ) + 4(C + 4F ) (6.233)

4C + 2(C + 2F ) + 4(C + 3F ) + 4F (6.234)

4C + 2(C + 2F ) + 4(C + 2F ) + 3F + 6F (6.235)

6C + 2(C + 4F ) + 3(C + 3F ) (6.236)

6C + 2(C + 4F ) + 3(C + 2F ) + 3F (6.237)

6C + 2(C + 3F ) + 3(C + 3F ) + 2F (6.238)

6C + 2(C + 3F ) + 3(C + 2F ) + 2F + 3F (6.239)

6C + 2(C + 2F ) + 3(C + 3F ) + 2F + 2F (6.240)

2C + 2(3C + 8F ) (6.241)

2C + 2(3C + 7F ) + 2F (6.242)

2C + 2(C + 4F ) + 2(2C + 4F ) (6.243)

2C + 2(C + 3F ) + 2(2C + 5F ) (6.244)

2C + 2(C + 3F ) + 2(2C + 4F ) + 2F (6.245)

2C + 2(C + 2F ) + 2(2C + 5F ) + 2F (6.246)

6C + 2(C + 2F ) + 3(C + 2F ) + 4F + 12F (6.247)

6C + 2(C + 2F ) + 3(C + 2F ) + 2F + 2F + 3F (6.248)

2C + 2(C + 3F ) + 2(C + 3F ) + 2(C + 2F ) (6.249)

2C + 2(C + 3F ) + 2(C + 2F ) + 2(C + 2F ) + 2F. (6.250)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F3, then by

Theorem 2.4 the numerical class of B is one of the following:

3C + 3(2C + 6F ) + 2F + 2F Z/2Z⊕ Z/3Z (6.251)

3C + 3(C + 3F ) + 3(C + 3F ) + 2F + 2F Z/2Z⊕ Z/3Z⊕2 (6.252)

6C + 2(C + 3F ) + 3(C + 3F ) + 4F + 4F Z/2Z⊕ Z/3Z⊕ Z/4Z (6.253)

6C + 2(C + 3F ) + 3(C + 3F ) + 2F + 2F + 2F Z/2Z⊕3 ⊕ Z/3Z (6.254)

2C + 4(2C + 6F ) + 2F (6.255)

2C + 3(C + 3F ) + 6(C + 3F ) + 2F (6.256)

2C + 4(C + 3F ) + 4(C + 3F ) + 2F (6.257)

3C + 2(C + 5F ) + 6(C + 3F ) (6.258)
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3C + 2(C + 4F ) + 6(C + 3F ) + 2F (6.259)

3C + 2(C + 3F ) + 6(C + 3F ) + 2F + 2F (6.260)

4C + 2(C + 4F ) + 4(C + 4F ) (6.261)

4C + 2(C + 4F ) + 4(C + 3F ) + 4F (6.262)

4C + 2(C + 3F ) + 4(C + 4F ) + 2F (6.263)

4C + 2(C + 3F ) + 4(C + 3F ) + 2F + 4F (6.264)

6C + 2(C + 6F ) + 3(C + 3F ) (6.265)

6C + 2(C + 5F ) + 3(C + 3F ) + 2F (6.266)

6C + 2(C + 4F ) + 3(C + 3F ) + 2F + 2F (6.267)

6C + 2(C + 3F ) + 3(C + 4F ) + 6F (6.268)

6C + 2(C + 3F ) + 3(C + 3F ) + 3F + 6F (6.269)

2C + 2(3C + 10F ) (6.270)

2C + 2(3C + 9F ) + 2F (6.271)

2C + 2(C + 4F ) + 2(2C + 6F ) (6.272)

2C + 2(C + 3F ) + 2(2C + 7F ) (6.273)

2C + 2(C + 3F ) + 2(2C + 6F ) + 2F (6.274)

2C + 2(C + 4F ) + 2(C + 3F ) + 2(C + 3F ) (6.275)

2C + 2(C + 3F ) + 2(C + 3F ) + 2(C + 3F ) + 2F. (6.276)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F4, then by

Theorem 2.4 the numerical class of B is one of the following:

2C + 2(3C + 12F ) Z/2Z (6.277)

2C + 4(2C + 8F ) Z/4Z (6.278)

2C + 2(C + 4F ) + 2(2C + 8F ) Z/2Z⊕2 (6.279)

4C + 2(C + 6F ) + 4(C + 4F ) Z/2Z⊕ Z/4Z (6.280)

4C + 2(C + 4F ) + 4(C + 4F ) + 2F + 2F Z/2Z⊕2 ⊕ Z/4Z (6.281)

2C + 2(C + 4F ) + 2(C + 4F ) + 2(C + 4F ) Z/2Z⊕3 (6.282)

6C + 2(C + 4F ) + 3(C + 4F ) + 3F + 3F Z/2Z⊕ Z/3Z⊕2 (6.283)

3C + 3(2C + 9F ) (6.284)

3C + 3(2C + 8F ) + 3F (6.285)

2C + 3(C + 4F ) + 6(C + 4F ) (6.286)

2C + 4(C + 4F ) + 4(C + 4F ) (6.287)

3C + 2(C + 4F ) + 6(C + 4F ) + 3F (6.288)

3C + 3(C + 4F ) + 3(C + 5) (6.289)

3C + 3(C + 4F ) + 3(C + 4F ) + 3F (6.290)

4C + 2(C + 5F ) + 4(C + 4F ) + 2F (6.291)

6C + 2(C + 5F ) + 3(C + 4F ) + 6F (6.292)
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6C + 2(C + 4F ) + 3(C + 6F ) (6.293)

6C + 2(C + 4F ) + 3(C + 5F ) + 3F (6.294)

6C + 2(C + 4F ) + 3(C + 4F ) + 2F + 6F. (6.295)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F5, then by

Theorem 2.4 the numerical class of B is one of the following:

4C + 2(C + 5F ) + 4(C + 6F ) (6.296)

4C + 2(C + 5F ) + 4(C + 5F ) + 4F (6.297)

6C + 2(C + 6F ) + 3(C + 6F ) (6.298)

6C + 2(C + 6F ) + 3(C + 5F ) + 3F (6.299)

6C + 2(C + 5F ) + 3(C + 6F ) + 2F (6.300)

6C + 2(C + 5F ) + 3(C + 5F ) + 2F + 3F. (6.301)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F6, then by

Theorem 2.4 the numerical class of B is one of the following:

3C + 3(2C + 12F ) Z/3Z (6.302)

3C + 3(C + 6F ) + 3(C + 6F ) Z/3Z⊕2 (6.303)

6C + 2(C + 6F ) + 3(C + 6F ) + 2F + 2F Z/2Z⊕2 ⊕ Z/3Z (6.304)

3C + 2(C + 6F ) + 6(C + 6F ) (6.305)

4C + 2(C + 7F ) + 4(C + 6F ) (6.306)

4C + 2(C + 6F ) + 4(C + 6F ) + 2F (6.307)

6C + 2(C + 8F ) + 3(C + 6F ) (6.308)

6C + 2(C + 7F ) + 3(C + 6F ) + 2F. (6.309)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F7, then by

Theorem 2.4 the numerical class of B is one of the following:

6C + 2(C + 7F ) + 3(C + 7F ) + 6F. (6.310)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F8, then by

Theorem 2.4 the numerical class of B is one of the following:

4C + 2(C + 8F ) + 4(C + 8F ) Z/2Z⊕ Z/4Z (6.311)

6C + 2(C + 8F ) + 3(C + 9F ) (6.312)

6C + 2(C + 8F ) + 3(C + 8F ) + 3F. (6.313)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F9, then by

Theorem 2.4 the numerical class of B is one of the following:

6C + 2(C + 10F ) + 3(C + 9F ) (6.314)

6C + 2(C + 9F ) + 3(C + 9F ) + 2F. (6.315)
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By Theorem 2.4 there is not a K3 surface X and a finite subgroup G of Aut(X) such that

X/G ∼= Fl for l = 10, 11.

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G ∼= F12, then

by Theorem 2.4 the numerical class of B is the following:

6C + 2(C + 12F ) + 3(C + 12F ) Z/2Z⊕ Z/3Z. (6.316)

References

[1] Artebani, M. and Sarti, A., Non-symplectic automorphisms of order 3 on K3 surfaces, Math. Ann., 342,
2008, 903.

[2] Artebani, M. and Sarti, A., Symmetries of order four on K3 surfaces, J. Math. Soc. Japan, 67(2), 2015,
503–533.

[3] Barth, W., Hulek, K., Peters, C and van de Ven, A., Compact Complex Surfaces, 2nd ed., Springer-Verlag,
Berlin, 2004.

[4] Bundgaard, S. and Nielsen, J., On normal subgroups with finite index in F-groups, Math. Tidsskrift B,
1951, 1951, 56–58.

[5] Fox, R., On Fenchel’s conjecture about F -groups, Math. Tidsskrift B, 1952, 1952, 61–65.

[6] Garbagnati, A., On K3 surface quotients of K3 or Abelian surfaces, Canadian Journal of Mathematics,
69, 2017, 338–372.

[7] Hayashi, T., Abelian coverings of the plane by Enriques surfaces, Beitr. Algebra Geom., 59(3), 2018,
445–451.

[8] Hayashi, T., Galois coverings of the product of projective lines by Abelian surfaces, Comm. in Alg., 47(1),
2019, 230–235.

[9] Hayashi, T., A double cover K3 surface of Hirzebruch surfaces, Advances in Geometry, 21(2), 2021, 221–
225.

[10] Mukai, S., Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94,
1988, 183–221.

[11] Mukai, S. and Ohashi, H., Finite groups of automorphisms of Enriques surfaces and the Mathieu group
M12, 2014, arXiv: 1410.7535.

[12] Namba, M., Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics Series,
161, Longman, New York, 1987.

[13] Nikulin, V. V., Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38, 1980,
71–135.

[14] Taki, S., Classification of non-symplectic automorphisms of order 3 on K3 surfaces, Math. Nachr., 284,
2011, 124–135.
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