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Abstract The speeding-up and slowing-down (SUSD) direction is a novel direction, which
is proved to converge to the gradient descent direction under some conditions. The authors
propose the derivative-free optimization algorithm SUSD-TR, which combines the SUSD
direction based on the covariance matrix of interpolation points and the solution of the
trust-region subproblem of the interpolation model function at the current iteration step.
They analyze the optimization dynamics and convergence of the algorithm SUSD-TR. De-
tails of the trial step and structure step are given. Numerical results show their algorithm’s
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1 Introduction and Motivation

1.1 Introduction

Most mathematical optimization methods need to use the derivative of the objective func-

tion. However, in practice, the objective function is sometimes costly to compute, and its

derivatives are not available. The optimization of this type is called derivative-free optimiza-

tion. Derivative-free optimization methods are numerical optimization methods in which no

derivatives are required. For more details, one can refer to the paper of Zhang [26] and the

review of Larson, Menickelly and Wild [11], the book of Conn, Scheinberg and Vicente [5]

and Audet and Hare’s book [2] for the introduction and review of derivative-free optimization.

Derivative-free methods can be of different types, which mainly contain direct-search methods

(see [10, 13, 21–22]), model-based methods (see [4, 15–18, 24–25]), line-search methods (see [6–

7, 19–20]), hybrid methods [8] and heuristic algorithms (see [3, 23]). Derivative-free methods

have a deep impact on the development of many problems raised in both of the theoretical and

practical fields.
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1.2 Problem formulation and motivation

Consider the unconstrained optimization problem

min
x∈ℜn

f(x), (1.1)

where f : ℜn → ℜ is a scalar objective function without any derivative information. As we

know, both line-search and trust-region methods are widely used for optimization problems.

The line-search method looks for an (optimal) stepsize along the current search direction (the

stepsizes for each of the group of points for algorithms based on SUSD direction). However,

when the search direction is not very effective, the line-search method may result in slow

convergence. In contrast, the trust-region method can adapt better to different search directions

by constructing a local quadratic model function in a trust region to find a model’s minimizer.

This approach can mitigate the problem of ineffective search directions in the line-search method

and perform better for some problems. However, solving the trust-region subproblem requires

higher computational cost. Nocedal and Yuan [14] discussed the combination of the line-search

method and trust-region method in the optimization using the gradient information of the

objective functions.

Observing the flow of the moving and iteration of a group of queried points along the PCA-

based speeding-up and slowing-down (SUSD for short) direction (see [1]), we prefer to call the

iteration process of a group of points the large-scale step. The interior structure of the iteration

points does not obtain a modification, especially in the large-scale step.

Our motivation is to modify the structure of the group of iteration points and look for a

minimizer of a local interpolation model before the next step going along the SUSD direction

by selecting a better point in the trust region and dropping one. This new point can modify

or even reverse the iteration direction of the group of points, especially in the case where such

a direction is deviated. We consider modifying points according to the interpolation model in

addition to the large-scale moving, which combines the line-search and trust-region techniques.

1.3 Organization

This article is organized as follows. We give our algorithm of the combination of SUSD

direction and trust-region interpolation in Section 2. Section 3 gives the convergence analysis of

SUSD-TR by giving the optimization dynamics and the convergence of the line-search direction

in the algorithm SUSD-TR. In Section 4, we show more details of the trial step and the structure

step contained in the trust-region step in our algorithm. At the end, we give the conclusions.

2 Combination of SUSD Direction and Trust-Region Interpolation

The proposed algorithm mainly has two steps to update the iteration points: The trust-

region step and the line-search step. The trust-region step is derived by solving the trust-region

subproblem of the interpolation model function determined by the interpolation agents at each

step. The line-search step is designed to push the agents along the SUSD direction, chosen

as v1 in the following discussion. Notice that we use the notation agent, which is exactly the

sample/iteration point.
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Suppose that there arem virtual search agents, where each agent acts as a candidate solution

xi ∈ ℜn. We request that m ≥ n, where n is the dimension of the optimization problem (1.1).

We define the covariance matrix C ∈ ℜn×n as

C =
m∑

i=1

(xi − xc)(xi − xc)
⊤, (2.1)

where xc = 1
m

m∑
i=1

xi is the center of the agents. Let v1, · · · ,vn denote the eigenvectors of

the covariance matrix C associated with the eigenvalues µ1, · · · , µn, ordered from the smallest

eigenvalue µ1 to the largest eigenvalue µn (suppose that µ1 6= 0). The vector v1 is the SUSD

direction (see [1]). Algorithm 1 gives the pseudocode description of the derivative-free opti-

mization algorithm SUSD-TR, which is based on the SUSD direction and the interpolation and

trust-region techniques. In Algorithm 1, f
(k)

is the smallest function value from the interpola-

tion points/agents at the k-th step. In Algorithm 1, k is applied to express the iteration, and

we write some parameters as the function of k.

SUSD-TR is a derivative-free optimization algorithm based on the combination of line-search

and trust-region techniques, since the group of points will go along the direction v1, which is

line-search type, and then the algorithm will solve the trust-region subproblem to obtain the

modification, which forms the loop of the algorithm.

There are some advantages of SUSD-TR. Firstly, it can be calculated distributedly or par-

allelly if we transport the data (including the function values and so on) among different com-

putational nodes, since the algorithm evaluates the function values at different m points simul-

taneously at the line-search step. This reduces the time cost in the function evaluation and is

especially efficient for time-cost evaluation problems. Secondly, Algorithm 1 is not based on the

traditional gradient estimation, so it can still be used without the explicit gradient estimation.

Thirdly, we can give the optimization dynamics, which is not usual in derivative-free optimiza-

tion but is novel and important. Last but not the least, the points can be in a more flexible

region than those providing the traditional finite difference estimation.

Figure 1 Illustration of the general framework of SUSD-TR for a 2-dimensional problem.

Figure 1 illustrates the process of the algorithm SUSD-TR, where the white point denotes the

dropped point xd at each step. At the k-th step, the under-determined quadratic interpolation
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Algorithm 1 SUSD-TR

1: input: Number of agents m, initials x
(0)
i , i = 1, · · · ,m, obtain the stepsize coefficient β,

termination parameters P, ε; k = 0

2: while
∣∣f (k) − 1

P

P∑
h=1

f
(k−h)∣∣ < ε do

3: compute C(k) and v
(k)
1 by the traditional PCA algorithm

4: for i = 1, · · · ,m do

5: evaluate α
(k)
i = f

(k)
i , note: f

(k)
i := f(x

(k)
i )

6: end for

7: ∆k = maxi(‖x
(k)
i − x

(k)
c ‖2).

8: if ∆k > κ∆k−1 then

9: structure step: Replace the farthest point x
(k)
d by x

(k)
new according to Algorithm 2

10: else

11: model improvement step: Check and improve the interpolation poisedness of the
interpolation set by calling the model impovement step, i.e., Algorithm 6.3 in the book
of Conn, Scheinberg and Vicente [5]

12: generate the current interpolation set Xk based on the m newest agents, and construct
the linear interpolation model function Lk(x) or the quadratic model Qk(x) according
to (2.2) or (2.3)

13: trial step: Replace x
(k)
d by x

(k)
new after obtaining x

(k)
new by solving the trust-region

subproblem

min
x

Lk(x) or Qk(x),

subject to ‖x− x(k)
c ‖2 ≤ ∆k

by the truncated conjugate gradient method and update the radius of the trust region

∆k. Notice that x
(k)
d here is the point that has the largest function value among the

iteration points at the current step, and it is exactly replaced by x
(k)
new

14: end if

15: compute f
(k)

:= mini f
(k)
i

16: for i = 1, · · · ,m do

17: compute α(x
(k)
i ) = β[1− exp(f − f(x

(k)
i ))]

18: line-search step: Update x
(k+1)
i = x

(k)
i + α(x

(k)
i )v

(k)
1

19: end for

20: k := k + 1
21: end while

22: return x∗ = xi, where f(xi) is the smallest function value of the iteration points at the
last step
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model Qk is obtained by solving the subproblem

min
Q∈Q

‖∇2Q‖2F

subject to Q(xi) = f(xi), ∀ xi ∈ Xk, (2.2)

where the k-th set of interpolation points is Xk = {x
(k)
1 , · · · ,x

(k)
m }, if the number of the a-

gents/sample points at each iteration is less than (n+1)(n+2)
2 ; and the k-th model function Lk

or Qk is obtained by solving the equations

f(xi) = Lk(xi), ∀ xi ∈ Xk,

or f(xi) = Qk(xi), ∀ xi ∈ Xk,
(2.3)

if we obtain and use the determined linear or quadratic interpolation model separately. In

the numerical experiment, we present the result of the SUSD-TR corresponding to the under-

determined quadratic model, since it performs better than using the linear model or determined

quadratic model numerically for the test problems. Notice that we omit using the notation (k)

here and in the following to express the k-th iteration for simplicity.

3 Convergence Analysis of SUSD-TR

3.1 Optimization dynamics

The dynamic, or we say the gradient flow, of the optimization process in Algorithm 1 can

be transformed to
{
ẋi = α(xi)v1, i = 1, · · · , d− 1, d+ 1, · · · ,m,
ẋd = (α(xd) + ε1)(v1 + ε2),

(3.1)

where ε1 ∈ ℜ and ε2 ∈ ℜn are disturbance parameters of xd, which denotes to be updated by

xnew using the trust-region technique. The dot in (3.1) denotes the derivative with respect to

the continuous time t, which refers to the iteration k. The stepsize α : ℜ → ℜ is an exponential

mapping1 (see [1]), i.e.,

α(xi) = β[1 − exp(f − f(xi))], i = 1, · · · ,m, (3.2)

where β ∈ ℜ is a positive constant, and f is the smallest function value from the interpolation

points/agents at the current step. Denote α(xi) as αi for simplicity.

Figure 2 explains the dynamic (3.1) with the discrete iteration (time), where x
(k)
d is replaced

by the x̂
(k)
d in the trust-region step, and then x̂

(k)
d goes to the x

(k+1)
d at the line-search step.

Therefore, the new iteration point can be expressed as

x
(k+1)
d = x

(k)
d + (α(x

(k)
d ) + ε1)(v1 + ε2),

where ε1 denotes the disturbance of the stepsize and ε2 denotes the disturbance of the direction

of x
(k)
d . This corresponds to the dynamic (3.1). In the following, we use the continuous dynamics

to give the analysis.

1The stepsize can also be chosen as a linear mapping, and this paper analyzes the exponential mapping case.
The corresponding result of the linear mapping stepsize is the same as the one of the exponential mapping case,
so we do not present more details.
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Figure 2 The disturbance parameters ε1 and ε2 in (3.1).

Remark 3.1 For the exponential mapping stepsize designed as (3.2), the point owing the

smallest function value from the current step has a zero stepsize, which is different with the

linear mapping stepsize. Figure 1 aims to be a demo of the general framework of SUSD-TR.

Lemma 3.1 Using (3.1), the dynamic of the SUSD-TR direction is

v̇1 =
( n∑

j=2

1

µ1 − µj

vjv
⊤
j

)[ m∑

i=1

(αi − αa)(xi − xc) + ε1(xd − xc) + Φv1

]
, (3.3)

where vj is the j-th eigenvector of the matrix C defined above,

αa =
1

m

m∑

i=1

αi +
ε1

m
,

αi = α(xi), and

Φ = (αdε2 + ε1ε2)(xd − xc)
⊤ + (xd − xc)(αdε2 + ε1ε2)

⊤.

Proof Notice that xc =
1
m

m∑
i=1

xi. From the dynamic (3.1), we obtain that

ẋc = αav1 +
1

m
(αdε2 + ε1ε2),

where αa = 1
m

m∑
i=1

αi +
ε1
m
. Taking the time derivative of (2.1), we derive that

Ċ =

m∑

i=1

(αi − αa)[v1(xi − xc)
⊤ + (xi − xc)v

⊤
1 ]−

αd + ε1

m

m∑

i=1

[ε2(xi − xc)
⊤ + (xi − xc)ε

⊤
2 ]

+ (ε1v1 + αdε2 + ε1ε2)(xd − xc)
⊤ + (xd − xc)(ε1v1 + αdε2 + ε1ε2)

⊤

=

m∑

i=1

(αi − αa)[v1(xi − xc)
⊤ + (xi − xc)v

⊤
1 ] + (ε1v1 + αdε2 + ε1ε2)(xd − xc)

⊤

+ (xd − xc)(ε1v1 + αdε2 + ε1ε2)
⊤. (3.4)

Besides, it holds that

Ċv1 +Cv̇1 = µ̇1v1 + µ1v̇1
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based on Cv1 = µ1v1. We have

v⊤
j Ċv1 + v⊤

j Cv̇1 = µ̇1v
⊤
j v1 + µ1v

⊤
j v̇1 (3.5)

and the matrix Ċ is symmetric. This implies that v⊤
j Cv̇1 = (Cvj)

⊤v̇1 = µjv
⊤
j v̇1. In addition,

v⊤
j v1 = v⊤

1 vj = 0, we obtain from (3.5) that

v⊤
j v̇1 =

1

µ1 − µj

v⊤
j Ċv1. (3.6)

Since the matrix C is symmetric, we have

v̇1 =

n∑

j=2

v⊤
j v̇1vj . (3.7)

Substituting (3.4) in (3.6), and using (3.7) and v⊤
j v1(xi − xc)

⊤v1 = 0, we obtain the result.

Let αc = α(f(xc)) and define the gradient ∇α = ∇α(xc). Then we approximate αi = α(xi)

using Taylor expansion with respect to the center xc, as

αi − αc = (xi − xc)
⊤∇α + ri, (3.8)

where αc = α(xc) and ri = O(‖xi − xc‖
2
2). Assume that fc = f(xc). Let ∇f = ∇f(xc) be the

gradient of the function f at the center xc. We obtain the following lemma.

Lemma 3.2 According to (3.1) and the Taylor expansion, we obtain that

v̇1 =

n∑

j=2

µj

µ1 − µj

vjv
⊤
j ∇α+ r +

n∑

j=2

ε1

µ1 − µj

vjv
⊤
j (xd − xc)

+

n∑

j=2

1

µ1 − µj

vjv
⊤
j (Φv1), (3.9)

where

r =
( n∑

j=2

1

µ1 − µj

vjv
⊤
j

)[ m∑

i=1

ri(xi − xc)
]
.

Proof Suppose that ra = 1
m

m∑
i=1

ri. The definition of αa and (3.8) imply that αa =

αc + ra +
ε1
m
. Then we obtain that

m∑

i=1

(αi − αa)(xi − xc) = C∇α+

m∑

i=1

ri(xi − xc), (3.10)

according to (3.8). Substituting (3.10) into (3.3), and using v⊤
j C = µjv

⊤
j , we obtain (3.9).

Consequently, we give the following lemma, and we denote ∇f(xc) by ∇f as above.
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Lemma 3.3 According to (3.1) and the exponential mapping, we obtain the search dynamics





ḟc =
{ε1
m

+
β

m

m∑

i=1

[1− exp(f − f(xi(t)))]
}
(∇f)⊤v1

+
{ β
m
[1− exp(f − f(xd))] +

ε1

m

}
(∇f)⊤ε2,

v̇1 = βexp(f − fc)

n∑

j=2

µj

µ1 − µj

vjv
⊤
j ∇f + r +

n∑

j=2

ε1

µ1 − µj

vjv
⊤
j (xd − xc)

+
n∑

j=2

1

µ1 − µj

vjv
⊤
j (Φv1).

(3.11)

Proof According to the basic computation, it holds that

ẋc =
1

m

m∑

i=1

αiv1 +
1

m
(αdε2 + ε1ε2 + ε1v1)

=
{ε1
m

+
β

m

m∑

i=1

[1− exp(f − f(xi))]
}
v1 +

{ β
m
[1− exp(f − f(xd))] +

ε1

m

}
ε2.

We substitute the above in ḟ(xc) = (∇f(xc))
⊤ẋc, and then we obtain the first equation of

(3.11). Besides, it holds that

∇α(xc) =
dα

df
∇f(xc) = β exp(f − f(xc))∇f(xc).

Hence we derive the second equation of (3.11) by substituting the above for ∇α(xc) in (3.9).

The above analyzes the optimization dynamics of our algorithm.

3.2 Convergence of the SUSD-TR Direction

We will first provide the basic definitions of stable, asymptotically stable in the control and

dynamic theory, and input-to-state stable, which will be used in our convergence analysis.

Definition 3.1 (Stable) η is stable, if for any ε > 0, there exists a δ(t, ε) such that |η(t0)| <

δ, implying |η(t)| < ε for all t > t0.

Definition 3.2 (Asymptotically stable) η is asymptotically stable, if it is stable and locally

attractive, i.e., there exists a δ(t0) such that |η(t0)| < δ, implying that lim
t→∞

η(t) = 0.

Definition 3.3 (Class K function) A scalar continuous function g1(r), defined for r ∈ [0, a),

is said to belong to class K if it is strictly increasing and g1(0) = 0.

Definition 3.4 (Class KL function) A scalar continuous function g2(r, s), defined for r ∈

[0, a) and s ∈ [0,∞), is said to belong to class KL if, for each fixed s, the mapping g2(r, s)

belongs to class K with respect to r and, for each fixed r, the mapping g2(r, s) is decreasing with

respect to s and g2(r, s) → 0 as s→ ∞.

Definition 3.5 (Input-to-state stable) If there exists a class KL function f1 and a class K

function f2 such that for any initial state η(t0) ∈ [0, 2) and any bounded input δ(t) satisfying
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|δ(t)| ≤ U , the solution η(t) of the system η̇ = ψ(t, η, δ) is defined for all t > t0 and satisfies

the inequality

|η(t)| ≤ f1(|η(t0)|, t− t0) + f2 sup
t0≤τ≤t

|δ(τ)|,

then the system is input-to-state stable with respect to the equilibrium η∗ = 0, the neighborhood

η ∈ [0, 2), and a bound on the input U .

The theorem below will be used to establish the input-to-state stability property related to

our algorithm.

Theorem 3.1 (see [9, Theorem 4.19]) Let V(t, η) : [0,∞) × [0, 2) → ℜ be a continuously

differentiable function. Let α1(η), α2(η) be class K functions on [0, 2), and ρ(|δ|) be a class K

function on [0, U ], and α3(η) be a continuous positive definite function on [0, 2). Suppose for

all (t, η, δ) ∈ [0,∞)× [0, 2)× [−U,U ], the function V satisfies

α1(|η|) ≤ V(t, η) ≤ α2(|η|)

and whenever |η| ≥ ρ(|δ|) > 0, the total derivative of V satisfies

∂V

∂t
+
∂V

∂η
ψ(t, η, δ) ≤ −α3(η).

Then the system η̇ = ψ(t, η, δ) is input-to-state stable with α−1
2 ◦ α2 ◦ ρ.

The notations in the definitions and theorem above are independent with the following, and

some are only used for simplicity. Assume that g = ∇f
‖∇f‖2

. We now give the convergence of the

SUSD-TR direction v1 to −g. Define η = 1 + v⊤
1 g, where η = 0 if and only if v1 = −g. Then

we obtain the following corollary about η.

Corollary 3.1 According to (3.1) and the exponential mapping stepsize, we obtain the

search dynamic

η̇ = βexp(f − fc)‖∇f‖2

n∑

j=2

µj

µ1 − µj

(g⊤vj)
2 + δ := ψ(t, η, δ), (3.12)

where

δ = r⊤g + g⊤
( n∑

j=2

vjv
⊤
j

µ1 − µj

)
[ε1(xd − xc) + Φv1] + v⊤

1 ġ.

Proof The result (3.11) directly derives (3.12) by calculating v̇⊤
1 g.

The parameter δ is an external disturbance to the state η caused by the nonlinearity of the

function that cannot be controlled by the swarm, which contains the higher order components

of the function. Notice that δ = r⊤g + v⊤
1 ġ in the case where ε1 = 0 and ε2 = 0, which refers

to the SUSD case.

The following result shows more details about when and how v1 converges to −g.

Theorem 3.2 Suppose that ‖∇f(xc)‖2 > ξ, where ξ is a positive constant. Then, for

(3.12), the equilibrium η = 0 of the system η̇ = ψ(t, η, 0) is asymptotically stable in which
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whenever η(0) ∈ [0, 2), then η(t) → 0 as t → ∞, where t refers to the continuous iteration

(time). In addition, for the disturbance satisfying |δ| < βexp(f − fc)M
µ1

µn−µ1

ξ for M ∈ (0, 1),

the equilibrium η = 0 of system ψ(t, η, δ) is locally input-to-state stable.

Proof The proof is as same as that of [1, Theorem 1], and we omit more details here.

4 Trial Step and Structure Step

In this section, we will introduce more details about the trial step and structure step con-

tained in the trust-region step in the implementation of Algorithm 1.

4.1 Trial step

The trial step is designed as a small-scale modification for SUSD-TR. Furthermore it denotes

obtaining the new point by solving the subproblem of the interpolation model in the trust

region, and replacing the one owning the largest function value among the iteration points at

the current step.

min
x

Lk(x) or Qk(x)

subject to ‖x− x(k)
c ‖2 ≤ ∆k.

In the convergence theory, the direction v1 holds the probability of not converging. In this

case, we say that v1 is failed. The following proposition shows the advantage of the trial step,

in the failed case where v1 goes to the gradient ascent direction g.

Proposition 4.1 Assume that them iteration points at a given step satisfy that the dynamic

of the current iteration is

{
ẋi = g, i = 1, · · · , d− 1, d+ 1, · · · ,m,
ẋd = −αdg,

(4.1)

and αd > m− 1. Then the center point is moving towards the gradient descent direction.

Proof We obtain the dynamics of xc according to (4.1):

ẋc =
m− 1− αd

m
g,

and then we directly obtain the conclusion.

The above shows that the trial step can pull the center of the group of points away from the

gradient ascent direction, into the gradient descent direction. Figure 3 provides an illustration.

We also need to check and improve the interpolation poisedness of the interpolation set

before using the model. We aim to consider the posedness of the position or distribution of

the iteration/interpolation points to obtain a good interpolation model function by calling the

model improvement step, i.e., Algorithm 6.3 in the book of Conn, Scheinberg and Vicente [5].

One can also see [4] for a more general discussion.
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Figure 3 The “antidromic” points leading a gradient descent direction.

4.2 Structure step

In addition to the trial step we discussed above, we also design the structure improvement

step. The motivation is to enlarge the attraction region of the locally input-to-state stable

equilibrium. Recall that when we give the convergence theorem, there is an assumption that

the norm of the function’s gradient at the center point should be larger than ξ. There is a lower

bound of ξ in Theorem 3.2.

Figure 4 Attraction region (ξ >
|δ|(µn−µ1)

βexp(f−fc)Mµ1

).

Remark 4.1 Figure 4 uses the shadow area to denote the attraction region for the locally

input-to-state stable equilibrium of Theorem 3.2 (µ1 6= 0).

One can see that such lower bound decreases when the condition number of the matrix C is

small. In the implementation of the algorithm, we heuristically try to make the eigenvalues close

to each other by reducing the largest eigenvalue. As we say, this step is a heuristical step with

good numerical results and we do not aim to guarantee the covariance matrix well-conditioned

strictly by this step of the algorithm. For the covariance matrixC here, it holds that the radially

distributed agents can make µ1 and µn close to each other, which usually happens in the case

where the interpolation set is well-poised, and this is considered in the model improvement

step. Besides, suppose that v ∈ ℜn is a nonzero eigenvector of C, corresponding to the largest

eigenvalue µ, then we obtain that

µ = max
‖v‖2=1

v⊤Cv = max
‖v‖2=1

v⊤
[ m∑

i=1

(xi − xc)(xi − xc)
⊤
]
v = max

‖v‖2=1

m∑

i=1

[(xi − xc)
⊤v]2.
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Then we can obtain its upper bound and lower bound as

m∑

i=1

‖xi − xc‖
2
2 ≥ max

‖v‖2=1

m∑

i=1

[(xi − xc)
⊤v]2 ≥ max

i
‖xi − xc‖

2
2.

Accordingly, Agorithm 2 can reduce both the upper bound and the lower bound of the largest

eigenvalue of the covariance matrix C. We omit the iteration index k here.

Algorithm 2 Structure step

1: drop the farthest point xfar := argmax
xi

‖xi − xct‖
2
2.

2: add the new point xnew = 1
m−1

∑
i6=far

xi (replace xfar).

The above discusses the trial step and structure step in the algorithm.

5 Numerical Results

This section presents the numerical results, which include the results of solving two test

problems, and the performance profile of solving test problems compared with other derivative-

free optimization algorithms. The codes of SUSD-TR can be downloaded from the online

repository2.

5.1 Solving two test problems

We implement the Matlab codes3 to minimize the 2-dimensional Rosenbrock problem

f(x1, x2) = 100(x2 − x21)
2 + (1 − x1)

2

and its variant

f(x1, x2) = (x2 − x21)
2 + (1− x1)

2,

which simulate SUSD and SUSD-TR, where (x1, x2)
⊤ denotes the variable x ∈ ℜ2. Figure 5

illustrates the iteration trajectory for solving the two problems above with SUSD and SUSD-

TR. The hollow circle points denote the center points during the iteration. We observe that

the SUSD direction is not robust, and v1 does not converge, and finally it misses the minimizer

(1, 1)⊤. However, if we replace the bad point by xnew on a small scale (applying the SUSD-TR

method), we find that it converges to the minimizer. In this example, κ = 1.2 and we choose 5

points starting from

x
(0)
1 = (20, 0)⊤, x

(0)
2 = (23, 4)⊤, x

(0)
3 = (23,−4)⊤, x

(0)
4 = (17, 4)⊤, x

(0)
5 = (17,−4)⊤,

and the model functions in SUSD-TR are the under-determined quadratic interpolation models.

For SUSD, the iteration sometimes does not converge, and the points sometimes go along the

gradient ascent direction. However, our SUSD-TR efficiently converges to the minimizer with

points basically following the gradient descent direction and using less than half of the function

evaluations required by SUSD. A reason is that there will always exist a point going along the

2https://github.com/PengchengXieLSEC/SUSD-TR
3https://github.com/PengchengXieLSEC/Test-codes-for-SUSD-TR



A DFO Algorithm Combining Line-Search and Trust-Region Techniques 731

Figure 5 Solving the 2-dimensional test problems by SUSD and SUSD-TR methods.

gradient descent direction of the quadratic interpolation model at the current iteration, which

is also a gradient descent direction of the objective function when the model is accurate (the

model is as least fully linear).

The classical examples above show the advantages of our algorithm.

5.2 Performance profile

To obtain a further comparison, we compare our algorithm with the derivative-free opti-

mization algorithm based on the SUSD direction (see [1]), Nelder-Mead method (see [13]) and

NEWUOA (see [18]). The test problems are taken from classical unconstrained optimization

test functions collections, with the performance profile shown in Figure 6.

Figure 6 Performance profile



732 P. C. Xie and Y.-X. Yuan

Table 1 Test problems

ARGLINA ARGLINA4 ARGLINB ARGLINC ARGTRIG ARWHEAD BDQRTIC BDQRTICP
BDALUE BROWNAL BROYDN3D BROYDN7D BRYBND CHAINWOO CHEBQUAD CHNROSNBZ
CHPOWELLB CHPOWELLS CHROSEN COSINECUBE CURLY10 CURLY20 CURLY30 DIXMAANE
DIXMAANF DIXMAANG DIXMAANH DIXMAANI DIXMAANJ DIXMAANK DIXMAANL DIXMAANM
DIXMAANN DIXMAANO DIXMAANP DQRTIC EDENSCH ENGVAL1 ERRINROS EXPSUM
EXTROSNB EXTTET FIROSE FLETCBV2 FLETCBV3 FLETCHCR FMINSRF2 FREUROTH
GENBROWN GENHUMPS GENROSE INDEF INTEGREQ LIARWHD LILIFUN3 LILIFUN4
MOREBV MOREBVL NCB20 NCB20B NONCVXU2 NONCVXUNNONDIA NONDQUAR
PENALTY1 PENALTY2 PENALTY3 PENALTY3P POWELLSG POWER ROSENBROCK SBRYBND
SBRYBNDL SCHMVETT SCOSINE SCOSINEL SEROSE SINQUAD SPARSINE SPARSQUR
SPHRPTS SPMSRTLS SROSENBR STMOD TOINTGSS TOINTTRIG TQUARTIC TRIGSABS

The performance profile (see [12]) depends on the numbers of function evaluations taken by

all algorithms in an algorithm set A to achieve a given accuracy when solving the problems in

a given problem set. We define the value

fN
acc =

f(xN )− f(xint)

f(xbest)− f(xint)
∈ [0, 1],

and the tolerance τ̂ ∈ [0, 1], where xN denotes the best point found by the algorithm after

N function evaluations, xint denotes the initial input center point, and xbest denotes the best

known solution given by the compared derivative-free solvers. When fN
acc ≥ 1− τ̂ , we say that

the solution reaches the accuracy τ̂ .

We denote Ns,p = min{n ∈ N, fn
acc ≥ 1 − τ̂}. Ts,p = 1, if fN

acc ≥ 1 − τ̂ for some N ;

and Ts,p = 0, if the solution of solver s fails to reach the accuracy τ̂ on problem p before the

termination. Besides, we define

rs,p =





Ns,p

min{Ns̃,p : s̃ ∈ A, Ts̃,p = 1}
, if Ts,p = 1,

+∞, if Ts,p = 0,

where s is the corresponding solver or algorithm. For the given tolerance τ̂ and a certain

problem p in the problem set P , the parameter rs,p shows the ratio of the number of the function

evaluations using the solver s divided by that using the fastest algorithm on the problem p,

which exactly refers to the α. In Figure 6, NF denotes the number of function evaluations, and

NFmin denotes the smallest one corresponding to the fastest solver for the test problem.

In the performance profile, πs(α) =
1
|P| |{p ∈ P : rs,p ≤ α}|, where |·| denotes the cardinality.

Generally, πs(α) is the fraction of problems with a performance ratio rs,p bounded by α. A

higher value of πs(α) represents solving more problems successfully. All of the algorithms are

implemented in Python.

Our algorithm begins with m = 2n+1 randomly selected initial points, and the parameters

are set to β = 1, P = 5, ε = 10−6, κ = 1.2 and τ̂ = 0.1 separately. The model functions in SUSD-

TR are the under-determined quadratic interpolation models. We observe from Figure 6 that

SUSD-TR is much more efficient than the Nelder-Mead method and as robust as NEWUOA for

solving these test problems, and its performance is significantly better than that of the method

based on the SUSD direction (i.e., the pure line-search type).

In addition, SUSD-TR and SUSD can be parallelized for problems with high time-cost

evaluation, which is an advantage compared to NEWUOA (it can evaluate m points at the

same time at the line-search step). Figure 7 shows the ratio of the total time and the parallel

time during one complete loop (containing the trust-region step and the line-search step) of
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Figure 7 Parallel time ratio.

the algorithm4 of the implementation of the algorithm SUSD-TR, and we find that the ratio

is almost 1
2 for solving the test problems in Table 1. To reduce the computation time of the

non-parallel part, a possible approach is to solve the trust-region subproblem with a more

approximate method.

Based on the numerical results above, it is evident that our algorithm’s performance is

improved by combining the SUSD direction with the trust-region technique, compared to only

using the SUSD direction.

6 Conclusion and Future Work

We propose the algorithm SUSD-TR, which combines both the process of solving the trust-

region subproblem with the approximation objective function and the points transporting along

the SUSD direction. We present the dynamics and the convergence of the direction of the al-

gorithm SUSD-TR. We implement a simple numerical version of the SUSD-TR. The numerical

results show the advantage of our algorithm SUSD-TR. More efficient stepsizes, better com-

bination ways and different SUSD directions will be considered. Furthermore, the small-scale

modification on multiple points can also be studied on. The corresponding method for con-

strained problems is also a future work.
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