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Abstract Let F be an algebraically closed field of prime characteristic, and W (m,n,1) be
the simple restricted Lie superalgebra of Witt type over F , which is the Lie superalgebra
of superderivations of the superalgebra A(m;1) ⊗ ∧(n), where A(m;1) is the truncated
polynomial algebra with m indeterminants and ∧(n) is the Grassmann algebra with n
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1 Introduction

Recall that Kac classified finite-dimensional simple Lie superalgebras over the field of com-

plex numbers (cf. [4]). They fall into two types: Classical type and Cartan type. Cartan type

Lie superalgebras consist of three families: The Witt type W (n), the special types S(n), S̃(n),

and the Hamiltonian type H(n). Serganova determined the simplicity of the so-called Kac

modules for W (n), S(n), H(n) in [6], and obtained their character formulas. Serganova’s results

have been extensively extended to modular case (cf. [8]).

Although until now, the classification of finite-dimensional simple Lie superalgebras over a

field of prime characteristic is unknown, one naturally expects that there would be some modular

version of the classification of iso-classes of finite-dimensional complex simple Lie superalgebras.

And Cartan type Lie superalgebras in prime characteristic would be main series of simple Lie

superalgebras, apart from classical series. Those Lie superalgebras can be referred to [9].

Let F be an algebraically closed field of characteristic p > 2. Let g = W (m,n,1) be the Lie

superalgebra of Witt type over F , which belongs to the first class of Lie superalgebras of Cartan

type (cf. [9]). Recall that simple restricted g-modules are homomorphic image of Kac modules

and parameterized by the “highest” weights (cf. [7, Corollary 3.16]). Those Kac modules with

typical weights are simple modules. And there are two classes of atypical weights, called type I

and type II (see Proposition 3.3). The aim of this paper is to present the character formulas for

a class of simple restricted g-modules with atypical weights of type I (see Theorem 3.4), based
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on the assumption that the corresponding ones are known for the general linear Lie superalgebra

gl(m | n).

2 Preliminaries

In this paper, we always assume that the ground field F is algebraically closed and of

characteristic p > 2, and that all modules (vector spaces) are over F . For a Z2-graded vector

space V = V0 ⊕ V1, we denote the parity of a homogeneous element x ∈ V by x.

2.1 Restricted Lie superalgebras and their restricted representations

The following definition is a generalization of the notion of restricted Lie algebras to the

case of Lie superalgebras.

Definition 2.1 (cf. [5]) A Lie superalgebra g = g0 ⊕ g1 is called a restricted one if g0
is a restricted Lie algebra and g1 is a restricted g0-module under the adjoint action. This is

equivalent to saying that there exists a so-called p-mapping [p] on g0 such that the following

properties hold:

(i) (adx)p = ad (x[p]), ∀x ∈ g0;

(ii) (ax)[p] = apx[p], ∀ a ∈ F, x ∈ g0;

(iii) (x+ y)[p] = x[p] + y[p] +
p−1∑
i=1

si(x, y), ∀x, y ∈ g0;

where si(x, y) ∈ g0 are defined via the following formula:

ad (tx+ y)p−1(x) =

p−1∑

i=1

isi(x, y)t
i−1, ∀x, y ∈ g0.

Here t is an indeterminant.

Let (g, [p]) be a restricted Lie superalgebra. As in the case of restricted Lie algebras, one

can define the so-called restricted enveloping superalgebra u(g) to be the quotient of U(g)

by the ideal generated by {xp − x[p] | x ∈ g0}, where U(g) denotes the universal enveloping

superalgebra of g. A representation (V, ρ) of g is said to be restricted if ρ satisfies

ρ(x)p − ρ(x[p]) = 0, ∀x ∈ g0.

All restricted g-modules constitute a full subcategory of the g-module category, which coincides

with the u(g)-module category denoted by u(g)-mod.

2.2 The Witt type Lie superalgebra W (m,n, 1)

Let m,n be two positive integers. Denote by A(m;1) the index set {α = (α1, · · · , αm) |

0 ≤ αi ≤ p− 1, i = 1, 2, · · · ,m}. Let ǫi (1 ≤ i ≤ m) be the m-tuple (0, 0, · · ·1, 0, 0, · · ·0) with

1 in the i-th position and 0 elsewhere. We have a truncated polynomial algebra A(m;1) =

F [x1, · · · , xm]/(xp
1, · · · , x

p
m) which has a basis {xα | α ∈ A(m;1)}, where we denote the canoni-

cal image of
m∏
i=1

xαi

i ∈ F [x1, · · · , xm] in A(m;1) by xα for α ∈ A(m;1). We make the convention

that xα = 0 if α /∈ A(m;1).

Let Λ(n) be the free commutative superalgebra with n odd generators ξ1, · · · , ξn. Then Λ(n)

is isomorphic to the Grassmann algebra. Let I denote the sequence i1, · · · , is where 1 ≤ i1 <

· · · < is ≤ n. Let J be the set of all such sequences including the empty one. For every I ∈ J ,
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let |I| denote the length of I. For I = {i1, · · · , is}, denote ξi1 · · · ξis ∈ Λ(n) by ξI for brevity.

Then Λ(n) is Z2-graded with Λ(n)0 =spanF{ξI | |I| is even} and Λ(n)1 =spanF{ξI | |I| is odd}.

Let Λ(m,n) := A(m;1) ⊗F Λ(n). Then Λ(m,n) is a superalgebra with the Z2-gradation

given as follows: Λ(m,n)0 = A(m,1)⊗F Λ(n)0 and Λ(m,n)1 = A(m,1)⊗F Λ(n)1. For brevity,

we denote the element f ⊗ g ∈ Λ(m,n) by fg, where f ∈ A(m;1), g ∈ Λ(n).

The restricted Witt type Lie superalgebraW (m,n,1) is by definition the superderivation al-

gebra of the superalgebra Λ(m,n). Then by [9], W (m,n,1) = spanF {x
αξIDi | α ∈ A(m;1), I ∈

J , 1 ≤ i ≤ n} ⊕ spanF {x
αξIdj | α ∈ A(m;1), I ∈ J , 1 ≤ j ≤ m} where the Di (1 ≤ i ≤ n) and

dj (1 ≤ j ≤ m) are superderivations on Λ(m,n) defined as follows:

Di(x
αξI) :=

{
(−1)|i<I|xαξI\i, if i ∈ I,

0, otherwise,

dj(x
αξI) :=

{
xα−ǫjξI , if αj > 0,

0, otherwise,

where |i < I| is the number of indices in I that are smaller than i. The Lie product inW (m,n,1)

is defined as follows:

[fD, gE] = fD(g)E − (−1)fD gEgE(f)D,

where f, g ∈ Λ(m,n);D,E ∈ {D1, · · · , Dn, d1, · · · , dm}.

The Z2-gradation on Λ(m,n) induces the Z2-gradation on W (m,n,1) :

W (m,n,1) = W (m,n,1)0 ⊕W (m,n,1)1,

where

W (m,n,1)0 = spanF {x
αξIDi, x

βξJdj | |I| is odd, |J | is even}

and

W (m,n,1)1 = spanF {x
αξIDi, x

βξJdj | |I| is even, |J | is odd}.

The Z-gradation of Λ(m,n) induced by deg xi = deg ξj = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

determines the Z-gradation of the Witt type Lie superalgebra W (m,n,1):

W (m,n,1) =

n+m(p−1)−1⊕

i=−1

W (m,n,1)[i],

where

W (m,n,1)[i] = spanF {x
αξIDk, x

βξJdj | 1 ≤ k ≤ n, 1 ≤ j ≤ m, |α|+ |I| = |β|+ |J | = i+ 1}.

Associated with this gradation, there is a natural filtration:

W (m,n,1) = W (m,n,1)−1 ⊇ W (m,n,1)0 ⊇ · · · ,

where W (m,n,1)i =
⊕
j≥i

W (m,n,1)[j]. It is easy to check that W (m,n,1) is a restricted Lie

superalgebra in the sense of Definition 2.1. The p-mapping on W (m,n,1)0 is just given as

the usual p-th power of superderivations. For xαξIDi, x
βξJdj ∈ W (m,n,1)0, a straightforward

calculation implies that

(xαξIDi)
[p] =

{
ξiDi, if α = 0 and I = {i},

0, otherwise,
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(xβξJdj)
[p] =

{
xjdj , if J = ∅ and β = ǫj ,

0, otherwise.

From now on, we always assume g = W (m,n,1), unless otherwise indicated.

By [7, Lemma 2.2], g[0] ∼= gl(m | n) under the mapping sending any Σaijxidj +ΣbijξiDj +

ΣcijxiDj +Σdijξidj ∈ g[0] to ΣaijEij +ΣbijEm+i,m+j +ΣcijEi,m+j +ΣdijEm+i,j ∈ gl(m | n),

where Ekl denotes the (m + n) × (m + n) matrix with 1 in the position of the k-th row and

l-th column, and zero elsewhere. Furthermore, we have a standard triangular decomposition:

g[0] = n− ⊕ h⊕ n+, where

n− =
∑

1≤j<i≤m

Fxidj +
∑

1≤j<i≤n

FξiDj +
∑

1≤i≤n
1≤j≤m

Fξidj ,

h =

m+n∑

i=1

Fhi withhi = xidi for 1 ≤ i ≤ m and hj = ξj−mDj−m for m+ 1 ≤ j ≤ m+ n

and

n+ =
∑

1≤i<j≤m

Fxidj +
∑

1≤i<j≤n

FξiDj +
∑

1≤i≤m
1≤j≤n

FxiDj .

Set b± := h+n± and b+ is usually simply denoted by b. Set N− := n−⊕g[−1], N
+ := n+⊕g1,

B− := h⊕N−, B+ := h⊕N+, g+ := g[0] ⊕ g1 and g− := g[0] ⊕ g[−1]. Then it is easy to check

that b±, N±, B± and g± are restricted subalgebras of g.

The Cartan subalgebra h of g[0] is also a Cartan subalgebra of g. We then have a root space

decomposition: g = h ⊕
∑
α∈∆

gα, where ∆ = {a1ε1 + · · · + amεm + ηi1 + · · · + ηik − ηj | 0 ≤

ak ≤ p − 1, 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j ≤ n} ∪ {−εi,−ηj | 1 ≤ i ≤ m, 1 ≤ j ≤ m}, and

{ε1, · · · , εm, η1, · · · , ηn} is the standard basis in h∗ dual to {x1d1, · · · , xmdm, ξ1D1, · · · , ξnDn},

i.e.,

εi(xjdj) = δij , εi(ξkDk) = 0, ∀ 1 ≤ k ≤ n, 1 ≤ i ≤ m, 1 ≤ j ≤ m

and

ηs(xjdj) = 0, ηs(ξtDt) = δst, ∀ 1 ≤ j ≤ m, 1 ≤ s ≤ n, 1 ≤ t ≤ n.

3 Character Formulas for Simple Restricted g-Modules

3.1 Simple restricted g-modules

Recall that the iso-classes of irreducible restricted g[0]-modules are parameterized by the set

of restricted weights Λ := {λ = (λ1, · · · , λm+n) | λi ∈ Fp, i = 1, · · · ,m+n}. More precisely, for

a given λ ∈ Λ, there is a one-dimensional restricted b-module Fλ on which every element of h

acts as a scalar determined by λ, while n+ acts trivially. Then one has the so-called baby Verma

module Z(λ) := u(g[0])⊗u(b) Fλ which has a simple head denoted by L0(λ), where u(g[0]) and

u(b) are restricted enveloping superalgebras of g[0] and b, respectively. Then {L0(λ) | λ ∈ Λ}

constitute the set of representatives of restricted simple g[0]-modules. Since g1 is a restricted

nilpotent ideal of g0, each simple restricted g[0]-module can be extended to a g0-module with

trivial action of g1. Moreover, each simple restricted g0-module is also a simple g[0]-module

with trivial action by g1.
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Definition 3.1 Keep notations as above. For λ ∈ Λ, set K(λ) = u(g)⊗u(g+) L
0(λ), where

L0(λ) is regarded canonically as a g+-module with trivial g1-action. The induced module K(λ)

is called a Kac module.

Remark 3.1 For each λ ∈ Λ, the Kac module K(λ) has a unique maximal submodule

J(λ) which is the sum of all proper submodules of K(λ). Therefore K(λ) has a unique simple

quotient denoted by L(λ).

Proposition 3.1 (cf. [7, Corollary 3.16]) The family {L(λ) | λ ∈ Λ} constitute the set of

iso-classes of restricted irreducible g-modules.

Definition 3.2 (1) L(λ) is called a typical simple g-module if L(λ) = K(λ). In this case,

λ is called a typical weight.

(2) L(λ) is called an atypical simple g-module if L(λ) 6= K(λ). In this case, λ is called an

atypical weight.

Each simple restricted g[0]-module L0(λ) (λ ∈ Λ) can also be extended to a g−-module with

trivial action by g[−1]. Moreover, each simple restricted g−-module is also a simple g[0]-module

with trivial action by g[−1]. For each λ ∈ Λ, set K−(λ) = u(g) ⊗u(g−) L
0(λ), where L0(λ)

is regarded canonically as a g−-module with trivial g[−1]-action. Then K−(λ) has a unique

maximal submodule J−(λ) which is the sum of all proper submodules of K−(λ). Therefore,

K−(λ) has a unique simple quotient denoted by L−(λ). Similar to Proposition 3.1, we have

the following analogous result.

Proposition 3.2 The family {L−(λ) | λ ∈ Λ} constitute the set of iso-classes of restricted

irreducible g-modules.

Combining Proposition 3.1 with Proposition 3.2, we can define a bijection “ ′ ” on Λ via:

L(λ) ∼= L−(λ′). Then by [7, Corollary 3.9, Theorem 3.13], we have the following result.

Proposition 3.3 (cf. [7, Corollary 3.9, Theorem 3.13, Proposition 3.6, Proposition 3.8])

Let λ ∈ Λ. Then the following statements hold.

(1) λ is typical if and only if λ′ = λ−
n∑

i=1

ηi −
m∑
j=1

(p− 1)ǫj.

(2) λ is atypical if and only if λ is one of the following forms:

(i) Type I: {aηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm | 0 < a ≤ p− 1, 1 ≤ i ≤ n}.

(ii) Type II: {(p− 1)ǫj + · · ·+ (p− 1)εm | 1 ≤ j ≤ m} ∪ {0}.

(3) Let λ = aηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm be an atypical weight of type

I with 1 ≤ i ≤ n and a 6= 0, then λ′ = −η1 − · · · − ηi−1 + aηi.

3.2 u(g)–T -module category

Let T be the canonical maximal torus of GL(m,F ) × GL(n, F ) which consists of diagonal

matrices Diag(t1, · · · , tm+n), ti ∈ F ∗, i = 1, · · · ,m + n. Clearly, Lie(T ) = h. Let X(T )

be the character group of T . Then X(T ) is a free Abelian group of rank m + n, identified

with Zm+n. By a rational T -module V , we mean that V =
⊕

λ∈X(T )

Vλ, where Vλ = {v ∈

V | tv = tλ1

1 · · · t
λm+n

m+n v} for λ = (λ1, · · · , λm+n) ∈ Zm+n and t =Diag(t1, · · · , tm+n) ∈ T .

For λ ∈ X(T ), its differential dλ : h → F is a homomorphism of restricted Lie algebras,

i.e., dλ(h[p]) = (dλ(h))p. This implies that dλ ∈ Λ. The map ϕ : X(T ) → Λ sending any

λ ∈ X(T ) to dλ ∈ Λ has kernel pX(T ). So it induces a bijection X(T )/pX(T ) ∼= Λ. Denote

dλ ∈ Λ ∼= X(T )/pX(T ) by λ for brevity. It follows from an easy calculation that u(g) is a



54 Y.-F. Yao

rational T -module. The action of t ∈ T on a ∈ u(g) is denoted by Ad(t)(a), defined as the

usual way. A character λ ∈ X(T ) is called typical (atypical), if λ ∈ Λ is typical (atypical).

Definition 3.3 (cf. [1, 3]) The category u(g)–T -mod is defined as such a category whose

objects are finite-dimensional F -superspaces endowed with both u(g)-module and rational T -

module structure satisfying the following compatible conditions for V ∈ u(g)–T -mod:

(1) The action of h coincides with the action of Lie(T ) induced from T .

(2) t(av) = (Ad t(a))tv for any a ∈ u(g), t ∈ T and v ∈ V .

The morphisms in u(g)–T -mod are defined to be linear maps of F -superspaces as both u(g)-

module homomorphisms and rational T -module homomorphisms. Each object in u(g)–T -mod

is called a û(g)-module.

Example 3.1 For λ ∈ X(T ), one can define a rational T -module K̂(λ) := u(g)⊗u(g+) V̂ (λ)

on which T acts diagonally, where V̂ (λ) is a simple û(g[0])-module. One can also similarly define

L̂(λ), K̂−(λ) and L̂−(λ) for λ ∈ X(T ). Moreover, all these modules are û(g)-modules.

We have the following obvious facts.

Proposition 3.4 Keep notations as above. Then the following statements hold.

(1) K̂(λ) is irreducible if and only if K(λ) is irreducible.

(2) The iso-classes of irreducible modules in u(g)–T -mod are in one-to-one correspondence

with X(T ). Precisely speaking, each simple object in u(g)–T -mod is isomorphic to L̂(λ) for

λ ∈ X(T ).

(3) K̂(λ)
∣∣
u(g)

∼= K(λ) and L̂(λ)
∣∣
u(g)

∼= L(λ). Furthermore, sending λ ∈ X(T ) to λ ∈ Λ =

X(T )/pX(T ) gives rise to the map L̂(λ) 7→ L(λ) from the set of iso-classes of simple objects in

u(g)–T -mod to the set of iso-classes of simple objects in u(g)-mod.

Remark 3.2 λ ∈ X(T ) is typical (atypical) if and only if K̂(λ) ∼= L̂(λ) (resp. K̂(λ) ≇ L̂(λ)).

For a rational T -module M , define the length of M , denoted by l(M), as the number of Adt

weights of M minus one, where t =Diag(t, · · · , t) ∈ T for t ∈ F ∗. It is a routine to check that

the set of weights of L̂(λ) is {λ(t), λ(t) − 1, · · · , λ′(t)}. It follows that l(L̂(λ)) = |λ| − |λ′| ≤

n+m(p− 1) where |λ| =
m+n∑
i=1

λi for λ =
m∑
i=1

λiεi +
n∑

j=1

λm+jηj . The equality holds if and only

if λ is typical.

Lemma 3.1 Let λ = aηi+ηi+1+· · ·+ηn+(p−1)εi+· · ·+(p−1)εm with 0 6= a ∈ Z, 1 ≤ i ≤ n.

Then l(L̂(λ)) = n+m(p− 1)− 1.

Proof Since λ′ = −η1 − · · · − ηi−1 + aηi by Proposition 3.3(3), it follows that l(L̂(λ)) =

|λ| − |λ′| = n+m(p− 1)− 1.

For λ, µ ∈ X(T ), let m(λ, µ) = [K̂(λ) : L̂(µ)] be the number of the simple module L̂(µ)

appearing as a decomposition factor in the decomposition series of the Kac module K̂(λ).

Proposition 3.5 Let λ = aηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm be atypical of

type I, where a ∈ Z, 1 ≤ i ≤ n. Then the following statements hold.

(1) Suppose that µ 6= 0, then m(λ, µ) 6= 0 if and only if µ = λ or µ′ = λ−
n∑

i=1

ηi−
m∑
j=1

(p−1)ǫj.

In such case, m(λ, µ) = 1.

(2) m(λ, 0) = 0, if a 6= 1.

(3) m(λ, 0) = 1, if a = 1.
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Proof (1) As a vector space K̂(λ) ∼= u(g[−1])⊗F L0(λ). Let Y = D1 · · ·Dnd
p−1
1 · · · dp−1

m ∈

u(g[−1]). For any Z2-graded submoduleM of K̂(λ), with some action byD1, · · · , Dn, d1, · · · , dm
on any nonzero element in M , one can easily obtain that M contains Y ⊗ v for some nonzero

homogeneous element v ∈ L0(λ). Note that [Y, n±] = 0. The simplicity of L0(λ) as a g[0]-

module implies that Y ⊗ L0(λ) ⊆ M . It is obvious that Y ⊗ vλ is a maximal vector of weight

λ−
n∑

i=1

ηi −
m∑
j=1

(p− 1)ǫj with respect to the Borel subalgebra B−. Hence Soc (K̂(λ)) = L̂−(λ−

n∑
i=1

ηi −
m∑
j=1

(p− 1)ǫj). Therefore, it follows from Lemma 3.1 that L̂(µ) occurs as a composition

factor of K̂(λ) if and only if L̂(µ) is a head or a socle of K̂(λ). Then m(λ, µ) 6= 0 if and only if

µ = λ or µ′ = λ−
n∑

i=1

ηi −
m∑
j=1

(p− 1)ǫj . In these cases m(λ, µ) = 1.

(2)–(3) Suppose m(λ, 0) 6= 0. Then K̂(λ) contains a nonzero û(b)-module primitive vector

v of weight 0. Since K̂(λ) ∼= u(g[−1]) ⊗ L0(λ) as û(g[0])-modules. The weights of all possible

û(b)-module primitive vectors in u(g[−1]) are −(ηj1 + · · · + ηjs) − (a1ε1 + · · · + amεm) with

1 ≤ j1 < j2 < · · · < js ≤ n, 0 ≤ ak ≤ p− 1, 1 ≤ k ≤ m. We denote this set by P (g[−1]).

Note that the weights of all possible û(b)-module primitive vector in K̂(λ) are of the form

δ+λ for δ ∈ P (g[−1]) by the modular superversion of Littlewood-Richardson rule (cf. [2, D10]).

Since m(λ, 0) 6= 0, it follows that λ = ηj1 + · · ·+ηjs +a1ε1+ · · ·+amεm with 1 ≤ j1 < j2 < · · · <

js ≤ n, 0 ≤ ak ≤ p− 1, 1 ≤ k ≤ m. Hence λ = ηi + ηi+1 + · · ·+ ηn +(p− 1)ε1 + · · ·+(p− 1)εm.

On the other hand, for λ = ηi + ηi+1 + · · · + ηn + (p − 1)ε1 + · · · + (p − 1)εm, note that

Di · · ·Dnd
p−1
1 · · · dp−1

m ⊗ vλ is a û(b)-module primitive vector with weight 0, then m(λ, 0) ≥ 1.

While it follows from the Littlewood-Richardson rule that m(λ, 0) ≤ 1. Therefore m(λ, 0) = 1.

By Proposition 3.5, we have the following result.

Proposition 3.6 The following statements hold.

(1) For λ = aηi + ηi+1 + · · · + ηn + (p − 1)ε1 + · · · + (p − 1)εm with a 6= 0, 1, there is an

exact sequence as follows:

0 → L̂(λ− ηi) → K̂(λ) → L̂(λ) → 0.

(2) For λ = ηi+ · · ·+ηn+(p−1)ε1+ · · ·+(p−1)εm with i > 1, there are two exact sequences

as follows:

0 → Ĵ(λ) → K̂(λ) → L̂(λ) → 0;

0 → L̂(−ηi−1 + λ) → Ĵ(λ) → L̂(0) → 0.

(3) For λ = η1 + · · ·+ ηn+(p− 1)ε1+ · · ·+(p− 1)εm, there is an exact sequence as follows:

0 → L̂(0) → K̂(λ) → L̂(λ) → 0.

Proof (1) In this case, by Proposition 3.5, there are only two composition factors L̂(λ) and

L̂(µ) with µ′ = λ−
n∑

i=1

ηi −
m∑
j=1

(p− 1)ǫj , which appears once for each one in the decomposition

series of K̂(λ). Hence µ = λ− ηi by Proposition 3.3(3), so that the exact sequence is obtained.

(2) In this case, by Proposition 3.5, there are three composition factors L̂(λ), L̂(µ) and L̂(0)

with µ′ = λ−
n∑

i=1

ηi−
m∑
j=1

(p− 1)ǫj, which appears once for each one in the decomposition series

of K̂(λ). Hence µ = λ− ηi−1 by Proposition 3.3(3), so that the exact sequence is obtained.
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(3) In this case, by Proposition 3.5, there are two composition factors L̂(λ), L̂(0) which

appears once for each one in the decomposition series of K̂(λ), so that the exact sequence is

obtained.

3.3 Character formulas in u(g)–T -mod

Let V be an object in u(g)–T -mod (resp. u(g)-mod) with V =
∑

λ∈X(T )

Vλ (resp. V =
∑
λ∈Λ

Vλ).

Denote the character of V by ch(V ) which is by definition equal to
∑

λ∈X(T )

(dim Vλ)e
λ (resp.

∑
λ∈Λ

(dim Vλ)e
λ). Let Π :=

n∏
i=1

m∏
j=1

(1 + e−ηi)(1 + e−ǫj )p−1 for brevity. The following result is

obvious.

Theorem 3.1 Let λ be typical. Then ch(L̂(λ)) = ch(K̂(λ)) = Πch(L̂0(λ)).

Proof Since λ is typical, we have L̂(λ) ∼= K̂(λ). Moreover, as a vector space, K̂(λ) ∼=
u(g[−1])⊗F L0(λ), from which the statement follows immediately.

Theorem 3.2 Let λ = aηi + ηi+1 + · · ·+ ηn +(p− 1)ε1 + · · ·+(p− 1)εm be atypical of type

I with 1 ≤ i ≤ n and 0 6= a ∈ Z.

(1) If a ∈ Z−, then

ch(L̂(λ)) =

∞∑

j=0

(−1)jΠch(L̂0(λ− jηi)).

(2) If a ∈ Z+ and i > 1, then

ch(L̂(λ)) =
a−1∑

j=0

(−1)jΠch(L̂0(λ− jηi)) +
∞∑

b=1

(−1)a+b−1Πch(L̂0(λ− bηi−1 − (a− 1))ηi)

+ (−1)ach(L̂(0)).

(3) If a ∈ Z+ and i = 1, then

ch(L̂(λ)) =

a−1∑

j=0

(−1)jΠch(L̂0(λ− jη1)) + (−1)ach(L̂(0)).

Proof (1) By Proposition 3.6(1), we obtain the following exact sequence:

· · · → K̂(λ − jηi) → · · · → K̂(λ− ηi) → K̂(λ) → L̂(λ) → 0. (3.1)

The desired character formula follows from (3.1) and Theorem 3.1.

(2) By Proposition 3.6(1)–(2), we obtain the following exact sequences:

· · · → K̂(λ− (a− 1)ηi − bηi−1)) → · · · → K̂(λ− (a− 1)ηi − ηi−1)

→ L̂(λ− (a− 1)ηi − ηi−1) → 0, (3.2)

0 → L̂(λ− (a− 1)ηi − ηi−1) → Ĵ(λ− (a− 1)ηi) → L̂(0) → 0, (3.3)

0 → Ĵ(λ− (a− 1)ηi) → K̂(λ− (a− 1)ηi) → · · · → K̂(λ− ηi)

→ K̂(λ) → L̂(λ) → 0. (3.4)

The desired character formula follows from (3.2)–(3.4) and Theorem 3.1.
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(3) By Proposition 3.6(1) and 3.6(3), we obtain the following exact sequence:

0 → L̂(0) → K̂(η1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → · · ·

· · · → K̂(λ− η1) → K̂(λ) → L̂(λ) → 0. (3.5)

The desired character formula follows from (3.5) and Theorem 3.1.

The proof is completed.

3.4 Character formulas in u(g)-mod

In this subsection, we compute the character formulas for the simple restricted g-modules

with atypical weights of type I. We first have the following easy observation.

Theorem 3.3 Let λ be typical. Then ch(L(λ)) = Πch(L0(λ)).

Proof Since λ is typical, we have L(λ) ∼= K(λ). Consequently, L(λ) ∼= u(g[−1]) ⊗F L0(λ)

as a vector space, from which we obtain the character formula stated in the theorem.

The following result is a direct consequence of Proposition 3.6.

Corollary 3.1 The following statements hold.

(1) For λ = aηi + ηi+1 + · · · + ηn + (p − 1)ε1 + · · · + (p − 1)εm with a 6= 0, 1, there is an

exact sequence as follows:

0 → L(λ− ηi) → K(λ) → L(λ) → 0.

(2) For λ = ηi+ · · ·+ηn+(p−1)ε1+ · · ·+(p−1)εm with i > 1, there are two exact sequences

as follows:

0 → J(λ) → K(λ) → L(λ) → 0;

0 → L((p− 1)ηi−1 + λ) → J(λ) → L(0) → 0.

(3) For λ = η1 + · · ·+ ηn+(p− 1)ε1+ · · ·+(p− 1)εm, there is an exact sequence as follows:

0 → L(0) → K(λ) → L(λ) → 0.

Proof Since each exact sequence in u(g)–T -mod is also an exact sequence in u(g)-mod, the

desired assertion follows immediately from Proposition 3.6.

By Corollary 3.1, we then obtain the following main theorem on character formulas of the

restricted simple g-modules with atypical weights of type I.

Theorem 3.4 The following statements on character formulas of simple modules hold.

(1) For 1 ≤ t ≤ p− 1 and 1 ≤ i ≤ n with i being odd, we have

ch(L(tηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

=
t∑

j=1

(−1)j+tΠch(L0(jηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+

i−1∑

s=1

p−1∑

k=1

(−1)s+k+i+tΠch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·

+ (p− 1)εm)) + (−1)ti.
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(2) For 1 ≤ t ≤ p− 1 and 1 ≤ i ≤ n with i being even, we have

ch(L(tηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

=
t∑

j=1

(−1)j+tΠch(L0(jηi + ηi+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+
i−1∑

s=1

p−1∑

k=1

(−1)s+k+i+t−1Πch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·

+ (p− 1)εm)) + (−1)ti.

Proof We use induction on i and t to prove the assertion.

By Corollary 3.1(3), ch(L(η1+ · · ·+ηn+(p−1)ε1+ · · ·+(p−1)εm)) = ch(K(η1+ · · ·+ηn+

(p−1)ε1+ · · ·+(p−1)εm))−ch(L(0)) = Πch(L0(η1+ · · ·+ηn+(p−1)ε1+ · · ·+(p−1)εm))−1.

Hence the statement holds for i = 1 and t = 1. For any 1 < l ≤ p − 1, if the assertion holds

for i = 1 and t < l, we then show that it also holds for i = 1 and t = l. For that, we have the

following exact sequence by Corollary 3.1(1):

0 → L((l − 1)η1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)

→ K(lη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)

→ L(lη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → 0.

So

ch(L(lη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= ch(K(lη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− ch(L((l − 1)η1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= Πch(L0(lη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

−
( l−1∑

j=1

(−1)j+l−1Πch(L0(jη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)) + (−1)l−1
)

=

l∑

j=1

(−1)j+lΠch(L0(jη1 + η2 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)) + (−1)l,

which implies that the assertion also holds for i = 1 and t = l. Therefore, we have proved that

the assertion holds for i = 1 and 1 ≤ t ≤ p− 1.
Furthermore, for any 1 < i′ ≤ n with i′ being even, if the assertion holds for i < i′ and

1 ≤ t ≤ p − 1, next we will verify that it also holds for i = i′ and 1 ≤ t ≤ p − 1. Indeed, we
have the following two exact sequences by Corollary 3.1(2):

0 → J(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → K(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)

→ L(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → 0,

and

0 → L((p− 1)ηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)

→ J(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → L(0) → 0.

Hence

ch(K(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))



Character Formulas for a Class of Simple Restricted W (m,n,1)-Modules 59

= ch(J(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+ ch(L(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)),

and

ch(J(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= ch(L((p− 1)ηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)) + ch(L(0))

= ch(L((p− 1)ηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)) + 1.

It follows that

ch(L(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= ch(K(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− ch(L((p− 1)ηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))− 1

= Πch(L0(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− ch(L((p− 1)ηi′−1 + ηj + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))− 1.

By the inductive hypotheses,

ch(L((p− 1)ηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

=

p−1∑

j=1

(−1)jΠch(L0(jηi′−1 + ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+

i′−2∑

s=1

p−1∑

k=1

(−1)s+k+i′−1Πch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm)) + (i′ − 1),

so that

ch(L(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= Πch(L0(ηi′ + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− ch(L((p− 1)ηi′−1 + ηj + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))− 1

= Πch(L0(ηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+

i′−1∑

s=1

p−1∑

k=1

(−1)s+k+i′Πch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))− i′,

which implies that the assertion holds for i = i′ and t = 1.

For any 1 < l ≤ p− 1, if the assertion holds for i = i′ and t < l, we then show that it also

holds for i = i′ and t = l. Indeed, we have the following exact sequence by Corollary 3.1(1):

0 → L((l − 1)ηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → K(lηi′ + ηi′+1

+ · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm) → L(lηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1

+ · · ·+ (p− 1)εm) → 0.

So

ch(L(lηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))
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= ch(K(lηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− ch(L((l − 1)ηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

= Πch(L0(lηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

−
l−1∑

j=1

(−1)j+l−1Πch(L0(jηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

−
i′−1∑

s=1

p−1∑

k=1

(−1)s+k+i′+lΠch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

− (−1)l−1i′

=
l∑

j=1

(−1)j+lΠch(L0(jηi′ + ηi′+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+

i′−1∑

s=1

p−1∑

k=1

(−1)s+k+i′+l−1Πch(L0(kηs + ηs+1 + · · ·+ ηn + (p− 1)ε1 + · · ·+ (p− 1)εm))

+ (−1)li′,

which implies that the assertion also holds for i = i′ and t = l.

For any 1 < i′ ≤ n with i′ being odd, if the assertion holds for i < i′ and 1 ≤ t ≤ p− 1, one

can verify that it also holds for i = i′ and 1 ≤ t ≤ p− 1 by using similar arguments as above.

Summing up, according to the induction principal, we complete the proof.

References

[1] Chiu, S., Principal indecomposable representations for restricted Lie algebras of Cartan type, J. Algebra,

155, 1993, 142–160.

[2] Green, J. A., Polynomial representations of GLn, 2nd corrected and augmented edition, Lecture Notes in
Math., 830, Springer-Verlag, Berlin, Heidelberg, 2007.

[3] Jantzen, J. C., Uber Darstellungen Hoherer Frobenius-Kerne halbeinfacher algebraischer gruppen, Math.

Z., 164, 1979, 271–292.

[4] Kac, V., Lie superalgebras, Adv. Math., 26, 1977, 8–96.

[5] Petrogradski, V., Identities in the enveloping algebras for modular Lie superalgebras, J. Algebra, 145,
1992, 1–21.

[6] Serganova, V., On representations of Cartan type Lie superalgebras, Amer. Math. Soc. Transl., 213, 2005,
213–239.

[7] Shu, B. and Zhang, C. W., Representations of the restricted Cartan type Lie superalgebra W (m,n,1),
Algebr. Represent. Theory, 14, 2010, 463–481.

[8] Shu, B. and Zhang, C. W., Restricted representations of the Witt superalgebras, J. Algebra, 324, 2010,
652–672.

[9] Zhang, Y. Z. and Liu, W. D., Modular Lie Superalgebras, Scientific Press, Beijing, 2001 (in Chinese).


