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Abstract Let RIII(n) be the classical domain of type III with n ≥ 2. This article
is devoted to a deep study of the Schwarz lemma on RIII(n) via not only exploring the
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boundary point for holomorphic self-mappings of RIII(n).
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1 Introduction

Schwarz lemma is one of the most important results in the classical complex analysis. A

great deal of work has been devoted to generalizations of Schwarz lemma to more general

settings. We refer to [1–8] for a more complete insight on the Schwarz lemma.

In the case of several complex variables, the Schwarz lemma originated from the work of

Cartan. In [9], Cartan obtained the following rigidity theorem for holomorphic mappings.

Theorem 1.1 (cf. [9]) Let Ω be a bounded domain in Cn. If f : Ω → Ω is a holomorphic

mapping such that f(z) = z + o(‖z − z0‖) as z → z0 for some z0 ∈ Ω, then f(z) ≡ z.

On the other hand, Look first considered the properties of the Jacobian matrix of holomor-

phic mapping in [10].

Theorem 1.2 (cf. [10]) Let Ω be a bounded domain in Cn, and let f be a holomorphic

self-mapping of Ω which fixes a point p ∈ Ω. Then the eigenvalues of Jf (p) all have modulus

not exceeding 1 and | detJf (p)| ≤ 1. Moreover, if | detJf (p)| = 1, then f is a biholomorphism

of Ω.

It is natural to explore the high-dimensional versions of the Schwarz lemma at the boundary.

Motivated by Theorem 1.1, Burns and Krantz first studied the boundary Schwarz lemma and
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the rigidity problem for holomorphic mappings in [11]. See [12–16] for more on these matters.

Motivated by Theorem 1.2, we focused on the characterizations of the Jacobian matrix of holo-

morphic mapping at the boundary point of some domains in Cn, and established the boundary

Schwarz lemmas (see [17–18]).

These results are widely applied in many fields. By the classical Schwarz lemma at the

boundary, Bonk improved the Bloch constant in [19], and Liu, Ren, Gong and Zhang ob-

tained the growth, covering and distortion theorems for biholomorphic convex mappings or

quasi-convex mappings on some domains in [20–22]. Recently, using the Schwarz lemma at the

boundary of the unit ball, we gave a new and simple proof of the distortion theorem of de-

terminants for biholomorphic convex mappings in [18], and established the distortion theorem

of determinants and the distortion theorem of matrices at extreme points for biholomorphic

starlike mappings in [23].

Let RI(m,n) be the classical domain of type I in Cm×n with 1 ≤ m ≤ n. And let RII(n)

be the classical domain of type II. More recently, we investigated the Schwarz lemmas at

the boundary on RI(m,n) and RII(n) in [24–25], respectively. In this paper, we consider the

case of the classical domain of type III. We first characterize the properties of the smooth

boundary points of RIII(n), and then prove the Schwarz lemma at the boundary. Namely,

we obtain the optimal estimates of the eigenvalues of the Fréchet derivative of holomorphic

self-mapping at the smooth boundary point of RIII(n).

Remark 1.1 Notice that the corresponding inner products are different on these classical

domains, which means that the methods and techniques of matrix are completely different on

these classical domains. We need to find a different approach for such a study. For instance,

because there are multiple roots for the characteristic polynomial of ZZ
′
on RIII(n) we can

not apply directly the implicit function existence theorem to study the smooth boundary point

of RIII(n) by the methods and techniques similar to RI(m,n) and RII(n).

Remark 1.2 Although RIII(n) is a convex domain, RIII(n) is not a strongly pseudocon-

vex domain and ∂RIII(n) is not smooth. Therefore, we can not apply the similar method in

[17] to prove the main result of this paper.

Remark 1.3 The Carathéodory metric and Kobayashi metric of RIII(n) are difficult to

characterize explicitly. We must find some new approaches to prove the Schwarz lemma at the

boundary of RIII(n), which means that the proof is completely different from that of [18] in

the unit ball.

The rest of the article is organized as follows. In Section 2, we develop some properties of

the smooth boundary points of RIII(n). In Section 3, we present some lemmas. In Section 4,

we give the main result of the article and its proof.

2 Smooth Boundary Points of RIII(n)

In this section, we present some characterizations of the smooth boundary points ofRIII(n),

which will be used in the subsequent sections.

We first introduce some notations and definitions. Let Cn×n be the set of all complex square
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matrices of order n. For n ≥ 2, let

C

n(n−1)
2

III = {Z ∈ C
n×n : Z ′ = −Z}

be the family of all anti-symmetric complex square matrices of order n. Throughout this

paper, Z ′ and Z represent the transpose and the complex conjugate of Z, respectively. For any

Z,W ∈ C

n(n−1)
2

III , the inner product and the corresponding norm are given by

〈Z,W 〉 =
∑

1≤i<j≤n

zijwij =
1

2
tr(ZW

′
), ‖Z‖ = 〈Z,Z〉 1

2 ,

where Z = (zij)n×n and W = (wij)n×n. It is well known that C
n(n−1)

2

III is an n(n−1)
2 -dimensional

Hilbert space and ‖·‖ is a Euclidean norm. As real vectors in Rn(n−1), Z and W are orthogonal

if and only if ℜ〈Z,W 〉 = 0.

The classical domain of type III, denoted by RIII(n), is defined as

RIII(n) = {Z ∈ C

n(n−1)
2

III : In − ZZ
′
> 0},

where In is the unit square matrix of order n, and the inequality sign means that the left-hand

side is positive definite. Let ∂RIII(n) be the boundary of RIII(n), and write C1×n = Cn. Let

Bn ⊂ C
n be the open unit ball under the Euclidean metric. The Minkowski functional ρ(Z) of

RIII(n) is defined by

ρ(Z) = max{‖αZ‖ : α ∈ ∂Bn}, Z ∈ C

n(n−1)
2

III .

By [26], it is easy to see that ρ(Z) is a Banach norm of C
n(n−1)

2

III , (ρ(Z))2 is the largest eigenvalue

of ZZ
′
, RIII(n) = {Z ∈ C

n(n−1)
2

III : ρ(Z) < 1}, and RIII(n) is a bounded convex circular

domain in C

n(n−1)
2

III . In particular, RIII(2) is just the open unit disk △ in the complex plane

C, and RIII(3) = B3. For the unitary square matrix U of order n, it is clear that

Z ∈ RIII(n) ⇔ UZU ′ ∈ RIII(n), Z ∈ ∂RIII(n) ⇔ UZU ′ ∈ ∂RIII(n).

Note that Z ∈ RIII(n) shows that the elements in the principal diagonal of In − ZZ
′
are

positive. So we have |zij | < 1 for i, j = 1, · · · , n. We also get ρ(UZU ′) = ρ(Z) for each

Z ∈ C

n(n−1)
2

III .

For Z̊ ∈ C

n(n−1)
2

III , according to [4], Z̊ has the following polar decompositions:

Z̊ = U




(
0 r1

−r1 0

)
0

(
0 r2

−r2 0

)

. . .

0

(
0 rp

−rp 0

)




U ′
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or

Z̊ = U




(
0 r1

−r1 0

)
0

(
0 r2

−r2 0

)

. . . (
0 rp

−rp 0

)

0 0




U ′,

where r1 ≥ r2 ≥ · · · ≥ rp ≥ 0 and U is a unitary square matrix of order n. For our later use we

denote by [x], for x ∈ R, the greatest integer not greater than x. Notice that ∂RIII(2) = ∂△
and ∂RIII(3) = ∂B3 are smooth. Then from now on, we always assume that n ≥ 4 for

RIII(n).

Theorem 2.1 Let Z̊ ∈ C

n(n−1)
2

III be the polar decomposition above. Then Z̊ is a smooth

boundary point of RIII(n) if and only if 1 = r1 > r2 ≥ · · · ≥ rp ≥ 0. Furthermore, ρ(Z) is

holomorphic about Z and Z near Z̊, and the gradient of ρ at Z̊

∇ρ(Z̊) = U




(
0 1
−1 0

)
0

0
. . .

0 0




U ′

is a unit outward normal vector to ∂RIII(n) at Z̊ with 〈Z̊,∇ρ(Z̊)〉 = 1.

Proof It is easy to see that Z̊ ∈ ∂RIII(n) if and only if r1 = 1. Suppose that 1 = r1 >

r2 ≥ · · · ≥ rp ≥ 0. For Z ∈ C

n(n−1)
2

III , let

Z = U(Z)




(
0 r1(Z)

−r1(Z) 0

)
0

(
0 r2(Z)

−r2(Z) 0

)

. . .

0

(
0 rp(Z)

−rp(Z) 0

)




U(Z)′

or

Z = U(Z)




(
0 r1(Z)

−r1(Z) 0

)
0

(
0 r2(Z)

−r2(Z) 0

)

. . . (
0 rp(Z)

−rp(Z) 0

)

0 0




U(Z)′,

where ρ(Z) = r1(Z) ≥ r2(Z) ≥ · · · ≥ rp(Z) ≥ 0, U(Z) is a unitary square matrix of order

n, r1(Z̊) = 1, r2(Z̊) = r2, · · · , rp(Z̊) = rp and U(Z̊) = U . Then the characteristic polynomial
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of ZZ
′
is det(xIn − ZZ

′
) = xn − tr(ZZ

′
)xn−1 + · · · + (−1)n det(ZZ

′
) =

p∏
k=1

(x− r2k(Z))2 or

det(xIn − ZZ
′
) = x

p∏
k=1

(x− r2k(Z))2. Write

Φ(x, Z) =

p∏

k=1

(x − r2k(Z)) or Φ(x, Z) =
√
x

p∏

k=1

(x− r2k(Z)).

Then Φ[(ρ(Z))2, Z] ≡ 0. Because

Φ(1, Z̊) = 0,
∂Φ

∂x
(1, Z̊) =

p∏

k=2

(1 − r2k) > 0, (2.1)

by the implicit function existence theorem we know that (ρ(Z))2 is a holomorphic function about

Z and Z near Z̊, and satisfies (ρ(Z̊))2 = 1. Therefore, ρ(Z) is also a holomorphic function about

Z and Z near Z̊. Now, we compute ∇ρ(Z̊). Since Φ[(ρ(Z))2, Z] = (det[(ρ(Z))2In −ZZ
′
])

1
2 ≡ 0

near Z̊, we get

∂Φ

∂x
(1, Z̊)2ρ(Z̊)

∂ρ

∂zij
(Z̊) +

∂Φ

∂zij
(1, Z̊) = 0, 1 ≤ i < j ≤ n.

This, together with (2.1), gives

n∏

k=2

(1− r2k)(∇ρ(Z̊))ij +
∂Φ

∂zij
(1, Z̊) = 0. (2.2)

Notice that when ε ∈ (0, 1), we have det(xIn − ε2ZZ
′
)|(x,Z)=(1,Z̊) = det(In − ε2U

′
ZZ

′
U)|Z=Z̊ ,

and

In − ε2U
′
Z̊Z̊

′
U =




(1− ε2r21)I2 0
(1− ε2r22)I2

. . .

0 (1 − ε2r2p)I2




or

In − ε2U
′
Z̊Z̊

′
U =




(1− ε2r21)I2 0
(1− ε2r22)I2

. . .

(1− ε2r2p)I2
0 1




.

Then the algebraic cofactor of the element at s-th row and t-th column for det(In− ε2U
′
Z̊Z̊

′
U)

is

Jst =




(1− ε2r2

[ s+1
2 ]

)

p∏

k 6=[ s+1
2 ],k=1

(1− ε2r2k)
2, 1 ≤ s = t ≤ n,

0, s 6= t,

or

Jst =





(1 − ε2r2
[ s+1

2 ]
)

p∏

k 6=[ s+1
2 ],k=1

(1− ε2r2k)
2, 1 ≤ s = t ≤ n− 1,

0, s 6= t,
p∏

k=1

(1− ε2r2k)
2, s = t = n.
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On the other hand,

det(In − ε2U
′
ZZ

′
U)|

Z=Z̊
=

p∏

k=1

(1− ε2r2k)
2, Φ(1, εZ) = [det(In − ε2U

′
ZZ

′
U)]

1
2 .

Thus, we obtain

∂Φ

∂zij
(1, εZ̊) =

1

2[det(In − ε2U
′
Z̊Z̊

′
U)]

1
2

∂

∂zij
[det(In − ε2U

′
ZZ

′
U)]|Z=Z̊

=
ε2

2
p∏

k=1

(1− ε2r2k)

(
−

n∑

s,t=1

∂

∂zij
(U

′
ZZ

′
U)st|Z=Z̊Jst

)
.

It follows that

∂Φ

∂zij
(1, εZ̊) = −ε2

2

n∑

s=1

p∏

k 6=[ s+1
2 ],k=1

(1− ε2r2k)
∂

∂zij
(U

′
ZZ

′
U)ss|Z=Z̊ ,

or

∂Φ

∂zij
(1, εZ̊)

= −ε2

2

[ n−1∑

s=1

p∏

k 6=[ s+1
2 ],k=1

(1− ε2r2k)
∂

∂zij
(U

′
ZZ

′
U)ss|Z=Z̊ +

p∏

k=1

(1− ε2r2k)
∂

∂zij
(U

′
ZZ

′
U)nn|Z=Z̊

]
.

Hence

∂Φ

∂zij
(1, Z̊) = −1

2

p∏

k=2

(1− r2k)

2∑

s=1

∂

∂zij
(U

′
ZZ

′
U)ss|Z=Z̊

= −1

2

p∏

k=2

(1− r2k)

2∑

s=1

∂

∂zij

( n∑

l,m,t=1

ulszlmztmuts

)∣∣∣
Z=Z̊

= −1

2

p∏

k=2

(1− r2k)
2∑

s=1

n∑

l=1

(ulsz̊ljuis − ulsz̊liujs) (1 ≤ i < j ≤ n)

= −1

2

p∏

k=2

(1− r2k)[(U
′
Z̊)1jui1 − (U

′
Z̊)1iuj1 + (U

′
Z̊)2jui2 − (U

′
Z̊)2iuj2]

= −1

2

p∏

k=2

(1− r2k)(uj2ui1 − ui2uj1 − uj1ui2 + ui1uj2)

= −
p∏

k=2

(1− r2k)(ui1uj2 − ui2uj1), 1 ≤ i < j ≤ n,

where U = (uij)n×n and Z̊ = (̊zij)n×n. This, together with (2.2), shows

(∇ρ(Z̊))ij = ui1uj2 − ui2uj1, 1 ≤ i < j ≤ n.
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Therefore

∇ρ(Z̊) = U




(
0 1
−1 0

)
0

0
. . .

0 0




U ′ ∈ C

n(n−1)
2

III

is a nonzero vector. This means that ∂RIII(n) is smooth near Z̊. Moreover, utilizing

〈W,∇ρ(Z̊)〉 = 1

2
tr



WU




(
0 −1
1 0

)
0

0
. . .

0 0




U
′




for any W ∈ C

n(n−1)
2

III we find

〈∇ρ(Z̊),∇ρ(Z̊)〉 = 1, 〈Z̊,∇ρ(Z̊)〉 = 1.

Conversely, suppose that Z̊ is a smooth boundary point of RIII(n). Assume

1 = r1 = r2 ≥ · · · ≥ rp ≥ 0.

Then any two nonzero outward normal vectors to ∂RIII(n) at Z̊ have the same direction. We

discuss the following two different [n(n − 1) − 1]-dimensional real affine spaces through Z̊ in

C

n(n−1)
2

III :

Σ1 = {Z̊ + UαU ′ : α ∈ C

n(n−1)
2

III , ℜα12 = 0}, Σ2 = {Z̊ + UαU ′ : α ∈ C

n(n−1)
2

III , ℜα34 = 0}.

To simplify our notations, set

T1 =




(
0 1
−1 0

)
0

0
. . .

0 0




, T2 =




(
0 0
0 0

)
0

(
0 1
−1 0

)

0
. . .

0 0




.

Then T1 and T2 are the unit vectors in C

n(n−1)
2

III . On the one hand, for any Z̊ + UαU ′ ∈ Σ1 we

obtain

ℜ〈UαU ′, UT1U
′〉 = 1

2
ℜtr(UαU ′U T1

′
U

′
) = ℜα12 = 0.

Hence, UT1U
′ is a normal vector to Σ1 at Z̊. See the following figure 1.
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′�

Σ

′�
�。

Figure 1 RIII(n) and real affine space.

Similarly, UT2U
′ is a normal vector to Σ2 at Z̊. On the other hand, for each UWU ′ ∈ RIII(n)

we get

ℜ〈Z̊ − UWU ′, UT1U
′〉 = 1− 1

2
ℜtr(UWU ′U T1

′
U

′
) = 1−ℜw12 > 0.

This shows that RIII(n) is located on one side of Σ1. That is, Σ1 is an affine tangent space

to ∂RIII(n) at Z̊. Similar to the proof above, we know that Σ2 is also an affine tangent space

to ∂RIII(n) at Z̊. Since Z̊ is a smooth boundary point of RIII(n), this contradicts with

Σ1 6= Σ2. Thus, we have 1 = r1 > r2 ≥ · · · ≥ rm ≥ 0. The proof is complete.

3 Some Lemmas

In this section, we exhibit some notations and collect several lemmas, which will be used in

the subsequent section.

Let f : RIII(n) → C

n(n−1)
2

III be a holomorphic mapping. The Fréchet derivative of f at

a ∈ RIII(n) is defined by

(Df(a)(W ))ij =
∑

1≤s<t≤n

∂fij

∂zst
(a)wst, W ∈ C

n(n−1)
2

III .

It is easy to see that Df(a) is a linear transformation from C

n(n−1)
2

III to C

n(n−1)
2

III and df(Z)|Z=a =

Df(a)(dZ). Let D∗f(a) be the adjoint transformation of Df(a) with respect to the inner

product 〈·, ·〉. That is,

〈D∗f(a)(Z),W 〉 = 〈Z,Df(a)(W )〉, Z,W ∈ C

n(n−1)
2

III .

D∗f(a) is also a linear transformation from C

n(n−1)
2

III to C

n(n−1)
2

III . Specifically,

(D∗f(a)(Z))ij =
∑

1≤s<t≤n

∂fst

∂zij
(a)zst, Z ∈ C

n(n−1)
2

III .

In fact, suppose that eij ∈ Cn×n is a square matrix which has 1 at i-th row and j-th column,

and 0s elsewhere. Then when i < j we have

(D∗f(a)(Z))ij = 〈D∗f(a)(Z), eij − eji〉 = 〈Z,Df(a)(eij − eji)〉

=
〈
Z,

∂f

∂zij
(a)
〉
=

∑

1≤s<t≤n

∂fst

∂zij
(a)zst.
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It is clear that λ is an eigenvalue of Df(a) if and only if λ is an eigenvalue of D∗f(a).

Let △ be the open unit disk in the complex plane C. There is the classical boundary Schwarz

lemma as follows.

Lemma 3.1 (cf. [3]) Let f : △ → △ be a holomorphic function. If f is holomorphic at

z = 1 with f(0) = 0 and f(1) = 1, then f ′(1) ≥ 1. Moreover, the inequality is sharp.

If the condition f(0) = 0 is removed, then by applying Lemma 3.1 to g(z) = 1−f(0)
1−f(0)

f(z)−f(0)

1−f(0)f(z)
,

one has the following estimate instead:

f ′(1) ≥ |1− f(0)|2
1− |f(0)|2 > 0. (3.1)

Lemma 3.2 (cf. [26]) Let

a = A




(
0 l1

−l1 0

)
0

. . .

0

(
0 lp

−lp 0

)




A′ ∈ RIII(n)

or

a = A




(

0 l1
−l1 0

)

0

.

.

.

(

0 lp
−lp 0

)

0 0




A′ ∈ RIII(n).

Write

Q = A




I2√
1−l21

0

. . .

0 I2√
1−l2p


A

′
or Q = A




I2√
1−l21

0

. . .
I2√
1−l2p

0 1




A
′
,

where 1 > l1 ≥ · · · ≥ lp ≥ 0 and A is a unitary square matrix of order n. For any Z ∈ RIII(n),

define

ϕa(Z) = Q−1(In − Za′)−1(a− Z)Q.

Then the following statements hold:

(1) ϕa(Z) is a holomorphic automorphism of RIII(n), and ϕa(Z) is biholomorphic in a

neighborhood of RIII(n);

(2) ϕa(0) = a, ϕa(a) = 0, ϕ−1
a = ϕa;

(3) dϕa(Z)|Z=a = −QdZQ, dϕa(Z)|Z=0 = −Q−1dZQ
−1

.

In what follows, we always denote by F (Z, ξ) the infinitesimal form of Carathéodory metric

or Kobayashi metric on RIII(n), where Z ∈ RIII(n) and ξ ∈ C

n(n−1)
2

III (see [27] for details).
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Lemma 3.3 Let ρ(Z) be the Minkowski functional of RIII(n). Then under the notations

of Lemma 3.2, for any ξ ∈ C

n(n−1)
2

III ,

F (a, ξ) = ρ(QξQ).

Proof Note that ϕa(Z) is a holomorphic automorphism of RIII(n), and F (Z, ξ) is a

biholomorphically invariant metric on RIII(n). It follows that F (a, ξ) = F (0, Dϕa(a)(ξ)).

This, together with Dϕa(a)(dZ) = dϕa(Z)|Z=a and Lemma 3.2, implies

F (a, ξ) = F (0, Dϕa(a)(ξ)) = F (0,−QξQ) = F (0, QξQ).

Hence, by Lemma 3.2 in [20], we obtain F (a, ξ) = F (0, QξQ) = ρ(QξQ). The proof is complete.

Lemma 3.4 Let Z̊ be a smooth boundary point of RIII(n). Then for each W ∈ C

n(n−1)
2

III ,

|〈W,∇ρ(Z̊)〉| ≤ ρ(W ).

Proof Without loss of generality, we may assume W 6= 0. Then W
ρ(W ) ∈ ∂RIII(n). Since

RIII(n) is a bounded convex circular domain, we have

ℜ
〈
Z̊ − eiθ

W

ρ(W )
,∇ρ(Z̊)

〉
≥ 0

for any θ ∈ R. It follows from this and Theorem 2.1 that

ℜ eiθ

ρ(W )
〈W,∇ρ(Z̊)〉 ≤ ℜ〈Z̊,∇ρ(Z̊)〉 = 1.

This gives |〈W,∇ρ(Z̊)〉| ≤ ρ(W ). The proof is complete.

Lemma 3.5 (cf. [28]) Let f : RIII(n) → RIII(n) be a holomorphic mapping and let

f(0) = 0. Then for any Z ∈ RIII(n),

ρ(f(Z)) ≤ ρ(Z).

4 Schwarz Lemma at the Boundary

In this section, we establish the Schwarz lemma at the smooth boundary point for holomor-

phic self-mappings of RIII(n).

Let

Z̊ = U




(
0 r1

−r1 0

)
0

. . .

0

(
0 rp

−rp 0

)




U ′

or

Z̊ = U




(
0 r1

−r1 0

)
0

. . . (
0 rp

−rp 0

)

0 0




U ′
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be a smooth boundary point of RIII(n), where 1 = r1 > r2 ≥ · · · ≥ rp ≥ 0 and U is a unitary

square matrix of order n. Then by Theorem 2.1, 〈UαU ′,∇ρ(Z̊)〉 = α12 for any α ∈ C

n(n−1)
2

III .

This shows that the tangent space T
Z̊
(∂RIII(n)) to ∂RIII(n) at Z̊ is

T
Z̊
(∂RIII(n)) =

{
β ∈ C

n(n−1)
2

III : ℜ〈β,∇ρ(Z̊)〉 = 0
}
=
{
UαU ′ : α ∈ C

n(n−1)
2

III ,ℜα12 = 0
}
,

and the holomorphic tangent space T
1,0

Z̊
(∂RIII(n)) to ∂RIII(n) at Z̊ is

T
1,0

Z̊
(∂RIII(n)) =

{
β ∈ C

n(n−1)
2

III : 〈β,∇ρ(Z̊)〉 = 0
}
=
{
UαU ′ : α ∈ C

n(n−1)
2

III , α12 = 0
}
.

Theorem 4.1 Let f : RIII(n) → RIII(n) be a holomorphic mapping with f(0) = a, and

let

Z̊ = U




(
0 r1

−r1 0

)
0

. . .

0

(
0 rp

−rp 0

)




U ′

or

Z̊ = U




(
0 r1

−r1 0

)
0

. . . (
0 rp

−rp 0

)

0 0




U ′

be a smooth boundary point of RIII(n), where 1 = r1 > r2 ≥ · · · ≥ rp ≥ 0 and U is a unitary

square matrix of order n. If f is holomorphic at Z̊ and f(Z̊) = Z̊, then all the eigenvalues

λ, µi(i = 1, · · · , 2(n− 2)) and νi(i = 1, · · · , (n−2)(n−3)
2 ) of the linear transformation Df(Z̊) on

C

n(n−1)
2

III have the following properties.

(1) ∇ρ(Z̊) is an eigenvector of D∗f(Z̊) and the corresponding eigenvalue is a real number

λ that we just mentioned above. That is, D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊).

(2) λ ≥ 1−ρ(a)
1+ρ(a) > 0.

(3) T
1,0

Z̊
(∂RIII(n)) = M⊕N , where N =

{
UαU ′ : α ∈ C

n(n−1)
2

III , α12 = 0,

(
α13 · · · α1n

α23 · · · α2n

)

= 0
}
is an

(n−2)(n−3)
2 -dimensional invariant subspace of Df(Z̊), andM is a 2(n−2)-dimensional

invariant subspace of Df(Z̊). Moreover, the eigenvalues µi of Df(Z̊), which is a linear trans-

formation on M , satisfy

|µi| ≤
√
λ, i = 1, · · · , 2(n− 2);

and the eigenvalues νi of Df(Z̊), which is a linear transformation on N , satisfy

|νi| ≤ 1, i = 1, · · · , (n− 2)(n− 3)

2
.

(4) | detDf(Z̊)| ≤ λn−1, |trDf(Z̊)| ≤ λ+ 2
√
λ(n− 2) + (n−2)(n−3)

2 .

Moreover, the inequalities in (2)–(4) are sharp.
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Proof Without loss of generality, we may assume that n = 2p is an even number. When

n = 2p+ 1 is an odd number, the proof is similar.

(1) For any β ∈ T
Z̊
(∂RIII(n)), we have Df(Z̊)(β) ∈ T

Z̊
(∂RIII(n)). Then

ℜ〈Df(Z̊)(β),∇ρ(Z̊)〉 = ℜ〈β,D∗f(Z̊)(∇ρ(Z̊))〉 = 0.

Hence, there is λ ∈ R such that

D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊).

That is, λ is an eigenvalue of D∗f(Z̊) and ∇ρ(Z̊) is an eigenvector of D∗f(Z̊) with respect to

λ. Since λ ∈ R, we know that λ is also an eigenvalue of Df(Z̊). The proof of (1) is complete.

(2) The proof of (2) is divided into two cases.

Case 1 f(0) = a = 0. For each t ∈ (0, 1), by Lemma 3.5 we obtain

ρ(f(tZ̊)) ≤ ρ(tZ̊) = t.

This, together with Lemma 3.4, yields

ℜ〈f(tZ̊),∇ρ(Z̊)〉 ≤ ρ(f(tZ̊)) ≤ t. (4.1)

By Theorem 2.1, 〈Z̊,∇ρ(Z̊)〉 = 1. Thus, combine f(tZ̊) = Z̊−(1−t)Df(Z̊)(Z̊)+O(|t−1|2)(t →
1−) and (4.1) to get

1− (1− t)ℜ〈Df(Z̊)(Z̊),∇ρ(Z̊)〉+O(|t− 1|2) ≤ t.

This implies

ℜ〈Z̊,D∗f(Z̊)(∇ρ(Z̊))〉 +O(|t− 1|) ≥ 1.

It follows from D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊) and 〈Z̊,∇ρ(Z̊)〉 = 1 that

λ+O(|t− 1|) ≥ 1.

Taking t → 1−, we have λ ≥ 1.

Case 2 f(0) = a 6= 0. Suppose that

a = A




(
0 l1

−l1 0

)
0

. . .

0

(
0 lp

−lp 0

)




A′ ∈ RIII(n)

and

Q = A




I2√
1−l21

0

. . .

0 I2√
1−l2p


A

′
,
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where 1 > l1 ≥ · · · ≥ lp ≥ 0 and A is a unitary square matrix of order n. By Lemma 3.2,

g = ϕa ◦ f : RIII(n) → RIII(n) is a holomorphic mapping, g(0) = 0 and g is holomorphic at

Z̊. Moreover,

W̊ = g(Z̊) = ϕa(Z̊) = Q−1(In − Z̊a′)−1(a− Z̊)Q

is also a smooth boundary point of RIII(n). Notice that Dϕa(Z̊)(β) ∈ T
W̊
(∂RIII(n)) for

each β ∈ T
Z̊
(∂RIII(n)). Then

ℜ〈Dϕa(Z̊)(β),∇ρ(W̊ )〉 = 0, ℜ〈β,D∗ϕa(Z̊)(∇ρ(W̊ ))〉 = 0.

It follows that there exists µ ∈ R such that

D∗ϕa(Z̊)(∇ρ(W̊ )) = µ∇ρ(Z̊). (4.2)

Take

h1(ζ) = 〈ϕa(ζZ̊),∇ρ(W̊ )〉, ζ ∈ △.

Then h1 : △ → △ is a holomorphic function, and h1 is holomorphic at ζ = 1 with h1(1) =

〈W̊ ,∇ρ(W̊ )〉 = 1. This, together with (3.1) and (4.2), shows

µ = 〈Z̊, µ∇ρ(Z̊)〉 = 〈Z̊,D∗ϕa(Z̊)(∇ρ(W̊ ))〉 = 〈Dϕa(Z̊)(Z̊),∇ρ(W̊ )〉 = h′
1(1) > 0.

Set

h2(ζ) = 〈g(ζZ̊),∇ρ(W̊ )〉, ζ ∈ △.

Then h2 : △ → △ is a holomorphic function, and h2 is holomorphic at ζ = 1 with h2(0) = 0

and h2(1) = 1. It follows from Lemma 3.1, (4.2) and (1) that

1 ≤ h′
2(1)

= 〈Dg(Z̊)(Z̊),∇ρ(W̊ )〉
= 〈Dϕa(Z̊)(Df(Z̊)(Z̊)),∇ρ(W̊ )〉
= 〈Df(Z̊)(Z̊), D∗ϕa(Z̊)(∇ρ(W̊ ))〉
= µ〈Df(Z̊)(Z̊),∇ρ(Z̊)〉
= µ〈Z̊,D∗f(Z̊)(∇ρ(Z̊))〉
= λµ.

This gives

λ ≥ 1

µ
.

Now, we estimate µ = 〈Dϕa(Z̊)(Z̊),∇ρ(W̊ )〉. For X ∈ Cn×n, let ρn(X) = max{‖αX‖ : α ∈
∂Bn} be the matrix norm of X . Then ρn(XY ) ≤ ρn(X)ρn(Y ) for each X,Y ∈ Cn×n and

ρn(Z) = ρ(Z) for any Z ∈ C

n(n−1)
2

III . Notice that

Dϕa(Z̊)(Z̊)

= Q−1(In − Z̊a′)−1Z̊a′(In − Z̊a′)−1(a− Z̊)Q −Q−1(In − Z̊a′)−1Z̊Q

= Q−1(In − Z̊a′)−1Z̊a′QW̊ + W̊ −Q−1(In − Z̊a′)−1aQ
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= Q−1(In − Z̊a′)−1(Z̊a′ − In)QW̊ +Q−1(In − Z̊a′)−1QW̊ + W̊ −Q−1(In − Z̊a′)−1Qa

= Q−1(In − Z̊a′)−1Q(W̊ − a)

and

Q−1(In − Z̊a′)−1(a− Z̊)Qa′ − In = W̊a′ − In,

Q−1(In − Z̊a′)−1
[
(a− Z̊)Qa′ − (In − Z̊a′)Q

]
= W̊a′ − In,

Q−1(In − Z̊a′)−1(Q− aQa′) = In − W̊a′,

Q−1(In − Z̊a′)−1Q−1 = In − W̊a′,

Q−1(In − Z̊a′)−1 = (In − W̊a′)Q.

Then

Dϕa(Z̊)(Z̊) = (In − W̊a′)Q2(W̊ − a).

This, together with Lemma 3.4, yields

µ = 〈Dϕa(Z̊)(Z̊),∇ρ(W̊ )〉
≤ ρ[Dϕa(Z̊)(Z̊)]

≤ [ρn(In) + ρ(W̊ )ρ(a′)][ρn(Q)]2[ρ(W̊ ) + ρ(a)]

= [1 + ρ(a)]2[1− (ρ(a))2]−1

=
1 + ρ(a)

1− ρ(a)
.

Hence, we obtain

λ ≥ 1

µ
≥ 1− ρ(a)

1 + ρ(a)
.

The proof of (2) is complete.

(3) It is well known that the
[
n(n−1)

2 −1
]
-dimensional space T 1,0

Z̊
(∂RIII(n)) = {UαU ′ : α ∈

C

n(n−1)
2

III , α12 = 0} is an invariant subspace of Df(Z̊). That means

(U
′
Df(Z̊)(β)U )12 = 0

for any β ∈ T
1,0

Z̊
(∂RIII(n)). Now, we claim that

N =
{
UαU ′ : α ∈ C

n(n−1)
2

III , α12 = 0,

(
α13 · · · α1n

α23 · · · α2n

)
= 0
}

is an invariant subspace of Df(Z̊). We only need to prove that for each

β = U




0 0

0




0 α34 · · · α3(n−1) α3n

−α34 0 · · · α4(n−1) α4n

...
...

. . .
...

...
−α3(n−1) −α4(n−1) · · · 0 α(n−1)n

−α3n −α4n · · · −α(n−1)n 0







U ′ ∈ N,
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if we set ε = U
′
Df(Z̊)(β)U ∈ C

n(n−1)
2

III , then ε12 = 0 and

(
ε13 · · · ε1n
ε23 · · · ε2n

)
= 0.

According to Df(Z̊)(β) ∈ T
1,0

Z̊
(∂RIII(n)), we have ε12 = 0. For t ∈ (0, 1), write the polar

decompositions of tZ̊ and f(tZ̊) as

tZ̊ = U




(
0 t

−t 0

)
0

. . .

0

(
0 trp

−trp 0

)




U ′

and

f(tZ̊) = U(t)




(
0 r1(t)

−r1(t) 0

)
0

. . .

0

(
0 rp(t)

−rp(t) 0

)




U(t)′,

respectively, where 1 > r1(t) ≥ r2(t) ≥ · · · ≥ rp(t) ≥ 0 and U(t) is a unitary square matrix of

order n. By Lemma 3.2, corresponding to a = tZ̊ and a = f(tZ̊), take

Q = U




I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p




U
′

and

Q(t) = U(t)




I2√
1−r21(t)

0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)




U(t)
′
.

Since lim
t→1−

f(tZ̊) = Z̊, we obtain

lim
t→1−

r1(t) = 1, lim
t→1−

r2(t) = r2, · · · , lim
t→1−

rp(t) = rp.

Meanwhile, we get

U(t) = U +O(|t − 1|), Df(tZ̊)(β) = Df(Z̊)(β) +O(|t− 1|)

as t → 1−. Moreover, it follows from f(tZ̊) = Z̊ − (1 − t)Df(Z̊)(Z̊) +O(|t − 1|2) that

r1(t) = ρ(f(tZ̊))

= 1− (1− t)2ℜ
∑

1≤i<j≤n

∂ρ

∂zij
(Z̊)Dfij(Z̊)(Z̊) +O(|t − 1|2)

= 1− (1− t)ℜ〈Df(Z̊)(Z̊),∇ρ(Z̊)〉+O(|t − 1|2)
= 1− (1− t)ℜ〈Z̊,D∗f(Z̊)(∇ρ(Z̊))〉+O(|t − 1|2)
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= 1− λ(1− t) +O(|t− 1|2)

as t → 1−. This implies

√
1− r21(t) =

√
1− [1− λ(1 − t) +O(|t− 1|2)]2 =

√
2λ(1− t) +O(|t − 1|2) (4.3)

as t → 1−. By Lemma 3.3,

F (tZ̊, β)

= ρ



















U



















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p



















U
′
βU



















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p



















U ′



















= ρ













































I2 0

I2
√

1−t2r22

. . .

0 I2
√

1−t2r2p







































0 0

0















0 α34 · · · α3(n−1) α3n

−α34 0 · · · α4(n−1) α4n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
−α3(n−1) −α4(n−1) · · · 0 α(n−1)n

−α3n −α4n · · · −α(n−1)n 0





















































I2 0

I2
√

1−t2r2
2

. . .

0
I2

√

1−t2r2p













































.

This gives

lim
t→1−

√
1− t2F (tZ̊, β) = 0. (4.4)

Similarly, we have

F [f(tZ̊), Df(tZ̊)(β)]

= ρ



U(t)




I2√
1−r21(t)

0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)




U(t)
′
Df(tZ̊)(β)U(t)




I2√
1−r21(t)

0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)




U(t)′



.

Notice that

U(t)
′
Df(tZ̊)(β)U(t) = U

′
Df(Z̊)(β)U +O(|t− 1|) = ε+O(|t− 1|)
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as t → 1−. This, together with (4.3), shows

lim
t→1−

√
1− r21(t)F [f(tZ̊), Df(tZ̊)(β)]

= lim
t→1−

√
1− r21(t)ρ







I2 0
I2√

1−r22(t)

. . .

0 I2√
1−r2p(t)







O(|t−1|)
1−r21(t)

O(|t−1|)
1−r21(t)

ε13+O(|t−1|)√
1−r21(t)

· · · ε1n+O(|t−1|)√
1−r21(t)

O(|t−1|)
1−r21(t)

O(|t−1|)
1−r21(t)

ε23+O(|t−1|)√
1−r21(t)

· · · ε2n+O(|t−1|)√
1−r21(t)

−ε13+O(|t−1|)√
1−r21(t)

−ε23+O(|t−1|)√
1−r21(t)

O(|t − 1|) · · · ε3n +O(|t − 1|)
...

...
...

. . .
...

−ε1n+O(|t−1|)√
1−r21(t)

−ε2n+O(|t−1|)√
1−r21(t)

−ε3n +O(|t− 1|) · · · O(|t − 1|)







I2 0
I2√

1−r22(t)

. . .

0 I2√
1−r2p(t)







= ρ







0 0 ε13√
1−r22

· · · ε1n√
1−r2p

0 0 ε23√
1−r22

· · · ε2n√
1−r2p

−ε13√
1−r22

−ε23√
1−r22

0 · · · 0

...
...

...
. . .

...
−ε1n√
1−r2p

−ε2n√
1−r2p

0 · · · 0







.

By the contraction property of the Kobayashi metric, we get

F [f(tZ̊), Df(tZ̊)(β)] ≤ F (tZ̊, β). (4.5)

Thus, by (4.3)–(4.5), we obtain

ρ







0 0 ε13√
1−r22

· · · ε1n√
1−r2p

0 0 ε23√
1−r22

· · · ε2n√
1−r2p

−ε13√
1−r22

−ε23√
1−r22

0 · · · 0

...
...

...
. . .

...
−ε1n√
1−r2p

−ε2n√
1−r2p

0 · · · 0







= lim
t→1−

√
1− r21(t)F [f(tZ̊), Df(tZ̊)(β)]

≤ lim
t→1−

√
1− r21(t)√
1− t2

√
1− t2F (tZ̊, β)

=
√
λ lim

t→1−

√
1− t2F (tZ̊, β) = 0.
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That means

(
ε13 · · · ε1n
ε23 · · · ε2n

)
= 0. It follows that N is an (n−2)(n−3)

2 -dimensional invariant

subspace of Df(Z̊). Hence, there is a 2(n − 2)-dimensional invariant subspace M of Df(Z̊)

such that T
1,0

Z̊
(∂RIII(n)) = M ⊕ N. Because M ∩ N = {0}, we have

(
α13 · · · α1n

α23 · · · α2n

)
6= 0

for any β = UαU ′ ∈ M \ {0}.
For each eigenvalue µi of Df(Z̊) on M , suppose that β(i) = Uα(i)U ′ ∈ M \ {0} is a nonzero

eigenvector with respect to µi. Here

(
α
(i)
13 · · · α

(i)
1n

α
(i)
23 · · · α

(i)
2n

)
6= 0, U

′
Df(Z̊)(β(i))U = µiα

(i), i = 1, · · · , 2(n− 2).

By Lemma 3.3, we get

F (tZ̊, β
(i)) = ρ

















U

















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p

















U
′
β
(i)
U

















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p

















U
′

















= ρ















































I2 0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p















































0 0
α
(i)
13√
1−t2

· · · α
(i)
1n√
1−t2

0 0
α
(i)
23√
1−t2

· · · α
(i)
2n√
1−t2

−α
(i)
13√

1−t2

−α
(i)
23√

1−t2
0 · · · α

(i)
3n

...
...

...
. . .

...
−α

(i)
1n√

1−t2

−α
(i)
2n√

1−t2
−α

(i)
3n · · · 0















































I2 0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p





































.

This yields

lim
t→1−

√
1− t2F (tZ̊, β(i)) = ρ







0 0
α
(i)
13√
1−r22

· · · α
(i)
1n√
1−r2p

0 0
α
(i)
23√
1−r22

· · · α
(i)
2n√
1−r2p

−α
(i)
13√

1−r22

−α
(i)
23√

1−r22

0 · · · 0

...
...

...
. . .

...
−α

(i)
1n√

1−r2p

−α
(i)
2n√

1−r2p
0 · · · 0







6= 0.
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On the other hand,

F [f(tZ̊), Df(tZ̊)(β(i))] = ρ


U(t)




I2√
1−r21(t)

0

. . .

0 I2√
1−r2p(t)




U(t)
′
Df(tZ̊)(β(i))U(t)




I2√
1−r21(t)

0

. . .

0 I2√
1−r2p(t)


U(t)′


 .

Notice that U(t)
′
Df(tZ̊)(β(i))U(t) = U

′
Df(Z̊)(β(i))U + O(|t − 1|) = µiα

(i) + O(|t − 1|) as

t → 1− and α
(i)
12 = 0. Then

lim
t→1−

√

1− r21(t)F [f(tZ̊), Df(tZ̊)(β(i))]

= lim
t→1−

√

1− r21(t)ρ





































I2 0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)















































O(|t−1|)

1−r21(t)

O(|t−1|)

1−r21(t)

µiα
(i)
13 +O(|t−1|)√

1−r21(t)
· · · µiα

(i)
1n+O(|t−1|)√

1−r21(t)

O(|t−1|)

1−r21(t)

O(|t−1|)

1−r21(t)

µiα
(i)
23 +O(|t−1|)√

1−r21(t)
· · · µiα

(i)
2n+O(|t−1|)√

1−r21(t)

−µiα
(i)
13 +O(|t−1|)√
1−r21(t)

−µiα
(i)
23 +O(|t−1|)√
1−r21(t)

O(|t − 1|) · · · µiα
(i)
3n +O(|t− 1|)

...
...

...
. . .

...
−µiα

(i)
1n+O(|t−1|)√
1−r21(t)

−µiα
(i)
2n+O(|t−1|)√
1−r21(t)

−µiα
(i)
3n +O(|t − 1|) · · · O(|t− 1|)















































I2 0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)





































= |µi|ρ

























































0 0
α
(i)
13√
1−r22

· · · α
(i)
1n√
1−r2p

0 0
α
(i)
23√
1−r22

· · · α
(i)
2n√
1−r2p

−α
(i)
13√

1−r22

−α
(i)
23√

1−r22

0 · · · 0

...
...

...
. . .

...
−α

(i)
1n√

1−r2p

−α
(i)
2n√

1−r2p
0 · · · 0

























































= |µi| lim
t→1−

√

1− t2F (tZ̊, β(i)).

It follows from this and (4.3) that

1 ≥ lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
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= lim
t→1−

√
1− t2√

1− r21(t)

√
1− r21(t)√
1− t2

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
=

|µi|√
λ
.

This implies

|µi| ≤
√
λ, i = 1, · · · , 2(n− 2).

For any eigenvalue νi of Df(Z̊) on N , suppose that β(i) = Uα(i)U ′ ∈ N \ {0} is a nonzero

eigenvector with respect to νi. Here

(
α
(i)
13 · · · α

(i)
1n

α
(i)
23 · · · α

(i)
2n

)
= 0,




0 α
(i)
34 · · · α

(i)
3(n−1) α

(i)
3n

−α
(i)
34 0 · · · α

(i)
4(n−1) α

(i)
4n

...
...

. . .
...

...

−α
(i)
3(n−1) −α

(i)
4(n−1) · · · 0 α

(i)
(n−1)n

−α
(i)
3n −α

(i)
4n · · · −α

(i)
(n−1)n 0




6= 0

and U
′
Df(Z̊)(β(i))U = νiα

(i) for i = 1, · · · , (n−2)(n−3)
2 . Then by Lemma 3.3, we have

F (tZ̊, β
(i))

= ρ

















U

















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p

















U
′
β
(i)

U

















I2√
1−t2

0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p

















U
′

















= ρ









































I2 0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p









































0 0

0



















0 α
(i)
34 · · · α

(i)
3(n−1) α

(i)
3n

−α
(i)
34 0 · · · α

(i)
4(n−1) α

(i)
4n

...
...

. . .
...

...

−α
(i)
3(n−1) −α

(i)
4(n−1) · · · 0 α

(i)
(n−1)n

−α
(i)
3n −α

(i)
4n · · · −α

(i)
(n−1)n 0



























































I2 0

I2√
1−t2r22

. . .

0 I2√
1−t2r2p





































.
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Hence

lim
t→1−

F (tZ̊, β
(i)) = ρ





































































0 0

0































0
α
(i)
34

1−r22
· · ·

α
(i)
3(n−1)√

1−r22

√
1−r2p

α
(i)
3n√

1−r22

√
1−r2p

−α
(i)
34

1−r22
0 · · ·

α
(i)
4(n−1)√

1−r22

√
1−r2p

α
(i)
4n√

1−r22

√
1−r2p

...
...

. . .
...

...
−α

(i)
3(n−1)√

1−r22

√
1−r2p

−α
(i)
4(n−1)√

1−r22

√
1−r2p

· · · 0
α
(i)
(n−1)n

1−r2p

−α
(i)
3n√

1−r22

√
1−r2p

−α
(i)
4n√

1−r22

√
1−r2p

· · ·
−α

(i)
(n−1)n

1−r2p
0



































































































6= 0.

On the other hand,

F [f(tZ̊), Df(tZ̊)(β(i))] = ρ

















U(t)

















I2√
1−r21(t)

0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)

















U(t)
′
Df(tZ̊)(β(i))U(t)

















I2√
1−r21(t)

0

I2√
1−r22(t)

. . .

0 I2√
1−r2p(t)

















U(t)′

















.

Thus we utilize U(t)
′
Df(tZ̊)(β(i))U(t) = U

′
Df(Z̊)(β(i))U +O(|t− 1|) = νiα

(i) +O(|t− 1|) as
t → 1− and (4.3) to achieve

lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

= lim
t→1−

ρ







I2 0
I2√

1−r22(t)

. . .

0 I2√
1−r2p(t)










0 O(|t−1|)
1−r21(t)

O(|t−1|)
1−r21(t)

0


 O(|t−1|)√

1−r21(t)

O(|t−1|)√
1−r21(t)

B







I2 0
I2√

1−r22(t)

. . .

0 I2√
1−r2p(t)







= ρ










0 b12

−b12 0


 0

0 B̃







≥ |νi| lim
t→1−

F (tZ̊, β(i)),
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where

b12 = lim
t→1−

(
U(t)

′
Df(tZ̊)(β(i))U(t)

)

12

1− r21(t)
,

B =




0 νiα
(i)
34 + O(|t − 1|) · · · νiα

(i)

3(n−1)
+ O(|t − 1|) νiα

(i)
3n + O(|t − 1|)

−νiα
(i)
34 + O(|t − 1|) 0 · · · νiα

(i)

4(n−1)
+ O(|t − 1|) νiα

(i)
4n + O(|t − 1|)

.

.

.
.
.
.

. . .
.
.
.

.

.

.

−νiα
(i)

3(n−1)
+ O(|t − 1|) −νiα

(i)

4(n−1)
+ O(|t − 1|) · · · 0 νiα

(i)

(n−1)n
+ O(|t − 1|)

−νiα
(i)
3n + O(|t − 1|) −νiα

(i)
4n + O(|t − 1|) · · · −νiα

(i)

(n−1)n
+ O(|t − 1|) 0




and

B̃ =




0
νiα

(i)
34

1−r22
· · · νiα

(i)

3(n−1)√
1−r22

√
1−r2p

νiα
(i)
3n√

1−r22

√
1−r2p

−νiα
(i)
34

1−r22
0 · · · νiα

(i)

4(n−1)√
1−r22

√
1−r2p

νiα
(i)
4n√

1−r22

√
1−r2p

...
...

. . .
...

...
−νiα

(i)

3(n−1)√
1−r22

√
1−r2p

−νiα
(i)

4(n−1)√
1−r22

√
1−r2p

· · · 0
νiα

(i)

(n−1)n

1−r2p

−νiα
(i)
3n√

1−r22

√
1−r2p

−νiα
(i)
4n√

1−r22

√
1−r2p

· · · −νiα
(i)

(n−1)n

1−r2p
0




.

It follows that

1 ≥ lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
≥ |νi|.

This shows

|νi| ≤ 1, i = 1, · · · , (n− 2)(n− 3)

2
.

The proof of (3) is complete.

(4) Note that T 1,0

Z̊
(∂RIII(n)) =

{
UαU ′ : α ∈ C

n(n−1)
2

III , α12 = 0
}
= M⊕N is an

[
n(n−1)

2 −1
]
-

dimensional invariant subspace of Df(Z̊). So, there is a one-dimensional invariant subspace L

of Df(Z̊) such that

C

n(n−1)
2

III = L⊕M ⊕N.

Since L ∩ T
1,0

Z̊
(∂RIII(n)) = {0} we have α12 6= 0 for any β = UαU ′ ∈ L \ {0}. Now, we prove

that λ is just the eigenvalue of Df(Z̊) on L. Suppose that λ̃ is an eigenvalue of Df(Z̊) on L,

and β = UαU ′ ∈ L \ {0} is a nonzero eigenvector of Df(Z̊) with respect to λ̃. Then Theorem

2.1 is utilized to derive

〈Df(Z̊)(β),∇ρ(Z̊)〉 = λ̃〈β,∇ρ(Z̊)〉

=
1

2
λ̃tr



UαU ′U




(
0 −1
1 0

)
0

0
. . .

0 0




U
′




= λ̃α12.
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Meanwhile

〈Df(Z̊)(β),∇ρ(Z̊)〉 = 〈β,D∗f(Z̊)(∇ρ(Z̊))〉 = λ〈β,∇ρ(Z̊)〉 = λα12.

This, together with α12 6= 0, gives λ̃ = λ. Therefore λ, µi (i = 1, · · · , 2(n − 2)) and νi
(
i =

1, · · · , (n−2)(n−3)
2

)
are all the eigenvalues of the linear transformation Df(Z̊) on C

n(n−1)
2

III . This

implies

| detDf(Z̊)| ≤ λn−1, |trDf(Z̊)| ≤ λ+ 2
√
λ(n− 2) +

(n− 2)(n− 3)

2
.

The proof of (4) is complete.

Remark 4.1 From the view of geometry, N is an invariant subspace of Df(Z̊) perhaps

because the Levi form of ρ at Z̊ is positive semi-definite and not positive definite on N . We

get the same conclusions of |µi| ≤
√
λ (i = 1, · · · , 2(n − 2)) with Theorem 3.1 in [17] perhaps

because the Levi form of ρ at Z̊ is positive definite on M .

Remark 4.2 From the proof of Theorem 4.1, it is clear that we need only to assume that

the mapping f is C1 up to the boundary of RIII(n) near Z̊.

Remark 4.3 When n = 2, f(0) = 0 and RIII(2) = △, Theorem 4.1 is just Lemma 3.1.

And when RIII(3) = B3, Theorem 4.1 is just Theorem 3.1 in [18].

Finally, we give the following example to show that the inequalities in (2)–(4) of Theorem

4.1 are sharp.

Example 4.1 Let

a =




(
0 ε

−ε 0

)
0

0
. . .

0 0




∈ RIII(n)

and 0 < ε < 1. Write eij ∈ Cn×n as a square matrix, which has 1 at i-th row and j-th column,

and 0s elsewhere. According to Lemma 3.2, take

Q =

( 1√
1−ε2

I2 0

0 In−2

)
.

Let Z̊ =




(

0 1
−1 0

)

0

. . .

0

(

0 rp
−rp 0

)




or Z̊ =




(

0 1
−1 0

)

0

. . .
(

0 rp
−rp 0

)

0 0




be a

smooth boundary point of RIII(n), where 1 > r2 ≥ · · · ≥ rp ≥ 0. Define

f(Z) = −ϕ−a(Z) = Q−1(In + Za′)−1(a+ Z)Q, Z ∈ RIII(n).

Then f : RIII(n) → RIII(n) is a holomorphic mapping with f(0) = a, and f is holomorphic

at Z̊. Moreover, f has the following properties.
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(1) f(Z̊) = Z̊.

(2) For any β ∈ C

n(n−1)
2

III ,

Df(Z̊)(β) =



√

1−ρ(a)
1+ρ(a) I2 0

0 In−2


β



√

1−ρ(a)
1+ρ(a) I2 0

0 In−2


 .

(3) Df(Z̊)(e12 − e21) =
1−ρ(a)
1+ρ(a) (e12 − e21). This shows that one of eigenvalues of Df(Z̊) is

1−ρ(a)
1+ρ(a) .

(4) Df(Z̊)(eij −eji) =
√

1−ρ(a)
1+ρ(a) (eij −eji) (i = 1, 2; 3 ≤ j ≤ n). This shows that the 2(n−2)

eigenvalues of Df(Z̊) are all
√

1−ρ(a)
1+ρ(a) .

(5) Df(Z̊)(eij − eji) = eij − eji(3 ≤ i < j ≤ n). This shows that the (n−2)(n−3)
2 eigenvalues

of Df(Z̊) are all 1.

Proof By Lemma 3.2, it is clear that f : RIII(n) → RIII(n) is a holomorphic mapping

with f(0) = a, and f is holomorphic at Z̊. Without loss of generality, we may assume that

n = 2p is an even number.

(1) It is obvious that ρ(a) = ε. Since

Z̊a′ =

(
εI2 0
0 0

)
, In + Z̊a′ =

(
(1 + ε)I2 0

0 In−2

)

and

a+ Z̊ =




(
0 1 + ε

−(1 + ε) 0

)
0

. . .

0

(
0 rp

−rp 0

)




,

we have

f(Z̊)

= Q−1(In + Z̊a′)−1(a+ Z̊)Q

=

(√
1− ε2I2 0

0 In−2

)(
I2

1+ε
0

0 In−2

)




(
0 1 + ε

−(1 + ε) 0

)
0

. . .

0

(
0 rp

−rp 0

)




( I2√
1−ε2

0

0 In−2

)

= Z̊.

(2) For any β ∈ C

n(n−1)
2

III , we get

Df(Z̊)(β) = Q−1(In + Z̊a′)−1βQ−Q−1(In + Z̊a′)−1βa′(In + Z̊a′)−1(a+ Z̊)Q

= Q−1(In + Z̊a′)−1βQ−Q−1(In + Z̊a′)−1βa′Qf(Z̊)
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=

(√
1−ε
1+ε

I2 0

0 In−2

)
β(Q − a′QZ̊)

=

(√
1−ε
1+ε

I2 0

0 In−2

)
β

[( 1√
1−ε2

I2 0

0 In−2

)
−
( ε√

1−ε2
I2 0

0 0

)]

=

(√
1−ε
1+ε

I2 0

0 In−2

)
β

(√
1−ε
1+ε

I2 0

0 In−2

)

=

(√
1−ρ(a)
1+ρ(a) I2 0

0 In−2

)
β

(√
1−ρ(a)
1+ρ(a) I2 0

0 In−2

)
. (4.6)

(3)–(5) By (4.6) and a straightforward calculation, we can obtain (3)–(5) at once. The proof

is complete.

Acknowledgement The authors express their gratitude to the referees for useful advice.

References

[1] Ahlfors, L. V., An extension of Schwarz’s lemma, Trans. Amer. Math. Soc., 43(3), 1938, 359–364.

[2] Elin, M., Jacobzon, F., Levenshtein, M. and Shoikhet, D., The Schwarz Lemma: Rigidity and Dynamics,
Harmonic and Complex Analysis and Its Applications, Springer-Verlag, Berlin, 2014, 135–230.

[3] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.

[4] Hua, L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,
Translations of Mathematical Monographs, 6, Amer. Math. Soc., Providence RI, 1963.

[5] Kim, K. and Lee, H., Schwarz’s Lemma from a Differential Geometric Viewpoint, IISc Press, Bangalore,
2011.

[6] Wu, H., Normal families of holomorphic mappings, Acta Math., 119(1), 1967, 193–233.

[7] Yau, S. T., A general Schwarz lemma for Kähler manifolds, Amer. J. Math., 100(1), 1978, 197–203.

[8] Rodin, B., Schwarz’s lemma for circle packings, Invent. Math., 89(2), 1987, 271–289.

[9] Cartan, H., Les fonction de deux variables complexs et le problème de la reprèsentation analytique, J. de
Math. Pures et Appl., 96, 1931, 1–114 (in German).

[10] Look, K. H., Schwarz lemma and analytic invariants, Sci Sinica Mathematics, 7(5), 1958, 453–504.

[11] Burns, D. M. and Krantz, S. G., Rigidity of holomorphic mappings and a new Schwarz lemma at the
boundary, J. Amer. Math. Soc., 7(3), 1994, 661–676.

[12] Huang, X. J., A preservation principle of extremal mappings near a strongly pseudoconvex point and its
applications, Illinois J. Math., 38(2), 1994, 283–302.

[13] Huang, X. J., A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex
domains, Can. J. Math., 47(2), 1995, 405–420.

[14] Huang, X. J., Some applications of Bell’s theorem to weakly pseudoconvex domains, Pacific J. Math.,
158(2), 1993, 305–315.

[15] Krantz, S. G., The Schwarz lemma at the boundary, Complex Var. Elliptic Equ., 56(5), 2011, 455–468.

[16] Tang, X. M., Liu, T. S. and Zhang, W. J., Schwarz lemma at the boundary and rigidity property for
holomorphic mappings on the unit ball of Cn, Proc. Amer. Math. Soc., 145(4), 2017, 1709–1716.

[17] Liu, T. S. and Tang, X. M., Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn,
Math. Ann., 366(1–2), 2016, 655–666.

[18] Liu, T. S., Wang, J. F. and Tang, X. M., Schwarz lemma at the boundary of the unit ball in Cn and its
applications, J. Geom. Anal., 25(3), 2015, 1890–1914.

[19] Bonk, M., On Bloch’s constant, Proc. Amer. Math. Soc., 110(4), 1990, 889–894.

[20] Gong, S. and Liu, T. S., Distortion therorems for biholomorphic convex mappings on bounded convex
circular domains, Chin. Ann. Math. Ser. B, 20(3), 1999, 297–304.



360 T. S. Liu, X. M. Tang and W. J. Zhang

[21] Liu, T. S. and Ren, G. B., The growth theorem of convex mappings on bounded convex circular domains,
Science in China , 41(2), 1998, 123–130.

[22] Zhang, W. J. and Liu, T. S., On growth and covering theorems of quasi-convex mappings in the unit ball
of a complex Banach space, Science in China , 45(12), 2002, 1538–1547.

[23] Liu, T. S. and Tang, X. M., Distortion theorem at extreme points for biholomorphic starlike mappings on
the unit ball, Chinese J. Contemp. Math., 37(1), 2016, 45–52.

[24] Liu, T. S. and Tang, X. M., A boundary Schwarz lemma on the classical domain of type I, Sci. China

Math., 60(7), 2017, 1239–1258.

[25] Tang, X. M., Liu, T. S. and Zhang, W. J., Schwarz lemma at the boundary on the classical domain of type
II, J. Geom. Anal., 28(2), 2018, 1610–1634.

[26] Liu, T. S., The Growth Theorems, Covering Theorems and Distortion Theorems for Biholomorphic
Mappings on Classical Domains, Doctoral Dissertion, University of Science and Technology of China,
Hefei, 1989.

[27] Krantz, S. G., Function Theory of Several Complex Variables (2nd ed.), Amer. Math. Soc., Providence RI,
2001.

[28] Liu, T. S. and Ren, G. B., Decomposition therorem of normalized biholomorphic convex mapping, J. Reine
Angew. Math., 496, 1998, 1–13.


