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Abstract A class of nonlocal symmetries of the Camassa-Holm type equations with

bi-Hamiltonian structures, including the Camassa-Holm equation, the modified Camassa-

Holm equation, Novikov equation and Degasperis-Procesi equation, is studied. The nonlo-

cal symmetries are derived by looking for the kernels of the recursion operators and their

inverse operators of these equations. To find the kernels of the recursion operators, the

authors adapt the known factorization results for the recursion operators of the KdV, mod-

ified KdV, Sawada-Kotera and Kaup-Kupershmidt hierarchies, and the explicit Liouville

correspondences between the KdV and Camassa-Holm hierarchies, the modified KdV and

modified Camassa-Holm hierarchies, the Novikov and Sawada-Kotera hierarchies, as well

as the Degasperis-Procesi and Kaup-Kupershmidt hierarchies.
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1 Introduction

A remarkable property to integrable systems is the existence of an infinite number of gen-

eralized symmetries (also Lie-Bäcklund symmetres) (see [30, 33–34]), which is relevant to the

existence of an infinite number of conservation laws due to the Noether theorem (see [34]). Such

property is related closely to integrable properties of the integrable systems such as the Lax-pair

and bi-Hamiltonian structure etc. A simple and effective method to obtain an infinite number

of symmetries of integrable equations is to look for their recursion operators. In a number of

papers, this property has been employed to classify integrable equations of certain forms so as

to obtain a large classes of new integrable equations.

Beyond the generalized symmetries, integrable equations also admit various nonlocal sym-

metries, which are an extension of the local Lie symmetry and generalized symmetry, they

usually depend upon the integral of solutions and eigenfunction functions of the Lax-pair. For

instance, the KdV equation

ut + uxxx + 6uux = 0 (1.1)
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admits the nonlocal symmetry σ = (Ψ2)x, where Ψ is the eigenfunction of the isospectral

problem of the KdV equation. This symmetry can be used to reduce the KdV equation to a

finite-dimensional dynamical system. The recursion operators of integrable equations can also

be used to obtain nonlocal symmetries of the KdV equation (see [16–18, 27–29, 43]).

Some non-integrable nonlinear evolution equations such as the nonlinear diffusion equations

also admit nonlocal symmetries. The nonlocal symmetries were used by Bluman et al. [2–3]

to linearize nonlinear diffusion equations, and by Akhatov et al. [1] to perform classification

of symmetries and obtain exact solutions of nonlinear diffusion equations. Some systems of

nonlinear diffusion equations were proved to admit nonlocal symmetries (see [38]), which can

be used to linearize systems of nonlinear diffusion equations (see [2]). A geometric formulation

of nonlocal symmetries was formulated by Vinogradov and Krasilshchik [45]. There are a

number of papers to consider other different kinds of nonlocal symmetries of nonlinear evolution

equations, see [19, 21–22, 35, 37–38, 40] and the references therein.

The integrable Camassa-Holm (CH for short) type equations (see [4–5, 7, 10, 12, 15, 32,

36]) have attracted much attention in recent years because of their several remarkable prop-

erties. Those equations are closely related to the well-known classical integrable systems. For

example, the CH equation and modified CH (mCH for short) equation can be transformed to

first equation respectively in negative hierarchies of the KdV and mKdV equations via Liouville

transformations (see [20, 26, 31]). The nonlocal symmetries of the CH equation depending on

the eigenfunctions of the isospectral problem have been discussed in [39, 41]. It seems there are

no such nonlocal symmetries for the mCH equation, Novikov equation and Degasperis-Procesi

(DP for short) equations (see [44]). In addition, these equations admit only the trivial Lie point

symmetries, translation for time t and space variable x and a dilation for time t and dependent

variable. As a class of typical integrable equations, they should possess rich symmetry groups.

Therefore, it is of great interest to explore other symmetries of the CH-type equations.

The goal of this paper is to investigate the nonlocal symmetries of the CH-type equations

including CH equation, the mCH equation, Novikov equation and DP equation. This work is

motivated by three observations. First, in light of the factorization of the recursion operators

and their inverse operators, some nonlocal symmetries of the KdV equation, mKdV equation,

Sawada-Kotera equation (see [42]) and Kaup-Kupershmidt equation (see [25]) can be derived by

seeking for the kernels of the recursion operators and their inverse operators, see the references

[18, 27–29] and therein. Second, recent studies [23–24] show that the CH equation (see [4, 11]),

mCH equation (see [12–13, 36]), Novikov equation (see [20, 32]) and DP equation (see [9–10])

can be mapped into respectively the first ones in the KdV, mKdV, Sawada-Kotera and Kaup-

Kupershmidt hierarchies (see [23–24, 26, 31]). It turns out that the recursion operators or their

dual recursion operator of the CH, mCH, Novikov and DP hierarchies are interconnected with

the recursion operators of the KdV, mKdV, Sawada-Kotera and Kaup-Kupershmidt hierarchies.

Using the factorization of recursion operators of the KdV, mKdV, SK and KK hierarchies and

their relationships with the CH, mCH, Novikov and DP hierarchies. Consequently, we obtain

nonlocal symmetries of these equations.

The outline of this paper is as follows. In Section 2, we construct nonlocal symmetries of the



Nonlocal Symmetries of the Camassa-Holm Type Equations 409

CH equation by using the results in [26, 31] and the factorization of the recursion operator of the

KdV equation. The nonlocal symmetries for the modified CH equation are found by employing

the results in [23] and the factorization of the recursion operator of the mKdV equation (see

[28]). The nonlocal symmetries for the Novikov and DP equations will be discussed respectively

in Sections 4–5 by using the results in [24] and [18, 27].

2 Nonlocal Symmetries of the CH Equation

The CH equation

mt = 2uxm+ umx, m = u− uxx (2.1)

can be expressed as the bi-Hamiltonian system

mt = K
δH1[u]

δm
= J

δH2[u]

δm
, (2.2)

with the Hamiltonian functionals

H1[u] =
1

2

∫
(u2 + u2x)dx,

H2[u] =
1

2

∫
u(u2 + u2x)dx

(2.3)

and the Hamiltonian operators

K = −(mDx +Dxm), J = −Dx(1−D2

x), (2.4)

which leads to the the recursion operator of CH equation

R̃1 = KJ −1. (2.5)

It is well-known that the CH equation is closely related to the KdV equation (see [11, 26, 31])

vt + vyyy + 6vvy = 0. (2.6)

This fact is reflected in two aspects. On the one hand, the bi-Hamiltonian structures of the CH

equation can be obtained from the KdV equation via the tri-Hamiltonian duality approach (see

[12–13, 16]). On the other hand, the CH equation can be transformed to the first equation in

the negative flow of the KdV hierarchy (see [6]). The recursion operator of the KdV equation

reads (see [33–34])

R1 = D2

y + 2v + vyD
−1

y , (2.7)

which permits the factorization (see [28])

R1 = ψ−2Dyψ
2Dyψ

2Dyψ
−2D−1

y , (2.8)

where ψ is the eigenfunction of the Schrödinger operator with the potential v(y) and zero

eigenvalue

ψyy + vψ = 0. (2.9)
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It is easy to find the inverse of R , given by (see [28])

R
−1

1
= Dyψ

2D−1

y ψ−2D−1

y ψ−2D−1

y ψ2. (2.10)

The relationship between the recursion operators of the KdV and CH equations is established

in the following lemma (see [11, 26, 31]).

Lemma 2.1 (see [26, 31]) The recursion operators of the KdV and CH equations are related

by

R̃1 = mR
−1

1
m−1. (2.11)

The proof of Lemma 2.1 relies on the Liouville transformation

y =

∫ x

−∞

m
1

2 (ξ)dξ, v(y) =
1

m

(1
4
−m

1

4 (m−
1

4 )xx

)
. (2.12)

This allows us to obtain

Dx = m
1

2Dy. (2.13)

Using (2.10) and (2.12)–(2.13), we obtain the recursion operator of the CH equation (2.1) given

by

R̃1 = m
1

2Dxψ
2D−1

x m
1

2ψ−2D−1

x m
1

2ψ−2D−1

x ψ2m−
1

2 . (2.14)

Clearly, its inverse operator is

R̃
−1

1
= m

1

2ψ−2Dxψ
2m−

1

2Dxψ
2m−

1

2Dxψ
−2D−1

x m−
1

2 , (2.15)

where ψ(t, x) satisfies

ψxx −
1

2

mx

m
ψx +

(1
4
−m

1

4 (m−
1

4 )xx

)
ψ = 0.

By looking for the kernels of R̃1 and R̃
−1

1
, we obtain the nonlocal symmetries of the CH

equation (2.1) governed by the following theorem.

Theorem 2.1 The CH equation (2.1) admits the following nonlocal symmetries:

K0 = m
1

2Dxψ
2,

K1 = m
1

2Dxψ
2D−1

x m
1

2ψ−2,

K2 = m
1

2Dxψ
2D−1

x m
1

2ψ−2D−1

x m
1

2ψ−2,

J0 = m
1

2ψ−2Dxψ
2m−

1

2Dxψ
2m−

1

2Dxψ
−2.

3 Nonlocal Symmetries of the mCH Equation

The mCH equation reads

mt + ((u2 − u2x)m)x = 0, m = u− uxx, (3.1)
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which can be written in bi-Hamiltonian form (see[36])

mt = K1

δH3[u]

δm
= J1

δH4[u]

δm
, (3.2)

where K1 and J1, given by

K1 = −DxmD
−1

x mDx, J1 = −Dx(1−D2

x) (3.3)

are the Hamiltonian operators, and

H3[u] =

∫
(u2 + u2x)dx, H4[u] =

1

4

∫
(u4 + 2u2u2x −

1

3
u4x)dx (3.4)

are the Hamiltonian functionals, which gives the recursion operator of the mCH equation

R̃2 = K1J
−1

1
(3.5)

of the mCH equation (see [36]). As for the CH case, the mCH equation is related to the mKdV

equation (see [23, 36])

Qτ +Qyyy + 6Q2Qy = 0. (3.6)

Indeed, the mCH equation can be obtained from the mKdV equation via the tri-Hamiltonian

duality approach (see [36]). Recently, it was shown in [23] that the mCH equation is mapped into

the first equation in the negative flow of the mKdV hierarchy via the Liouville transformation

Q(τ, y) =
1

2m(t, x)
, y =

∫ x

m(t, ξ)dξ, τ = t. (3.7)

The mKdV equation is a bi-Hamiltonian equation, which can be written as

Qτ = K1

δH3[Q]

δQ
= J 1

δH4[Q]

δQ
, (3.8)

where

K1 = −
1

4
D3

y −DyQD
−1

y QDy,

J 1 = −Dy,

H3[Q] = 2

∫
Q2dy,

H4[Q] =
1

2

∫
(Q4 −Q2

y)dy.

(3.9)

The recursion operator of the mKdV equation is then given by

R2 = K1J
−1

1
= D2

y +Q2 +QyD
−1

y Q. (3.10)

The following lemma gives the relationship between R̃2 and R2.
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Lemma 3.1 (see [23]) Let K1 and J1 be the two compatible Hamiltonian operators (3.3)

of the mCH equation (3.1), and K1 and J 1 the two compatible Hamiltonian operators (3.9) of

the mKdV equation (3.6). Then there holds the identity

R̃2 = −4
(
1−

Qy

4Q3
Dy +

1

4Q2
D2

y

)
R

−1

2

(
1−

Qy

4Q3
Dy +

1

4Q2
D2

y

)
−1

. (3.11)

Note that the operator can be expressed as

1−
Qy

4Q3
Dy +

1

4Q2
D2

y =
1

4
(hQ)−1Dyh

2Q−1Dyh
−1, (3.12)

where Q is the solution of (3.6) and h(t, y) satisfies the equation

hyy −
Qy

Q
hy + 4Q2h = 0. (3.13)

Using (3.11)–(3.12) and the following factorization for R2 (see [27])

R2 = Dyg
2Dyg

−4Q−1Dyg
2D−1

y Q,

where g satisfies the Schrödinger equation (2.9) with v repalced by Q, we get the following

result.

Proposition 3.1 The recursion operator R̃2 and its inverse of the mCH equation has the

following factorizations:

R̃2 = (Qh)−1Dyh
2Q−1Dy(Qh)

−1Dyg
−2D−1

y Qg4D−1

y g−2

·D−1

y hD−1

y Qh−2D−1

y Qh,

R̃
−1

2
= (Qh)−1Dyh

2Q−1Dyh
−1Dyg

2Dyg
−4Q−1Dyg

2

·D−1

y QhD−1

y Qh−2D−1

y Qh.

(3.14)

By looking for the kernels of R̃2 and R̃
−1

2
, we are able to obtain nonlocal symmetries of the

mCH equation.

Theorem 3.1 The mCH equation (3.1) possesses the following nonlocal symmetries:

J0 = (Qh)−1Dyh
2Q−1Dyh

−1Dyg
2DyQ

−1g−4Dyg
2,

J1 = (Qh)−1Dyh
2Q−1Dyh

−1Dyg
2DyQ

−1g−4Dyg
2D−1

y (Qh),

J2 = (Qh)−1Dyh
2Q−1Dyh

−1Dyg
2DyQ

−1g−4Dyg
2D−1

y QhD−1

y (Qh−2),

K0 = (Qh)−1Dyh
2Q−1Dy(hQ)−1Dyg

−2,

K1 = (Qh)−1Dyh
2Q−1Dy(hQ)−1Dyg

−2D−1

y (Qg4),

K2 = (Qh)−1Dyh
2Q−1Dy(hQ)−1Dyg

−2D−1

y (Qg4)D−1

y g−2,

K3 = (Qh)−1Dyh
2Q−1Dy(hQ)−1Dyg

−2D−1

y (Qg4)D−1

y g−2D−1

y h,

K4 = (Qh)−1Dyh
2Q−1Dy(hQ)−1Dyg

−2D−1

y (Qg4)D−1

y g−2D−1

y hD−1

y (Qh−2).

(3.15)
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4 Nonlocal Symmetries of the Novikov Equation

The Novikov equation with cubic nonlinearities

mt = 3uuxm+ u2mx, m = u− uxx (4.1)

arises from the symmetry classification of a class of nonlinear evolution equations involving

both cubic and quadratic nonlinearities (see [32]). The Lax pair formulation with 3× 3 isospec-

tral problem and bi-Hamiltonian structure were established in [9], it can be written in bi-

Hamiltonian form (see [20])

mt = K2

δH5[u]

δm
= J2

δH6[u]

δm
, (4.2)

where

K2 =
1

2
m

1

3 Dxm
2

3 (4Dx −D3

x)
−1m

2

3 Dxm
1

3 ,

J2 = (1 −D2

x)m
−1Dxm

−1 (1 −D2

x),

H5[u] = 9

∫
(u2 + u2x)dx,

H6[u] =
1

6

∫
um∂−1

x m(1− ∂2x)
−1(u2mx + 3uuxm)dx

=
1

6

∫
(u4m2 − utmt)dx.

(4.3)

This gives the recursion operator of the Novikov equation

R̃3 = K2J
−1

2
. (4.4)

It was shown in [20, 24] that the Novikov hierarchy is related to the Sawada-Kotera hierarchy

Qτ = K2

δH5[Q]

δQ
, J2K2[Q] =

δH6[Q]

δQ
, (4.5)

where

K2 = −(D3

y + 2QDy + 2DyQ),

J 2 = 2D3

y + 2D2

yQD
−1

y + 2D−1

y QD2

y +Q2D−1

y +D−1

y Q2,

H5 =
1

6

∫
(Q3 − 3Q2

y)dy,

(4.6)

whose corresponding integrable hierarchy is then generated by the recursion operator

R3 = K2J 2. (4.7)

In fact, there is relationship between the recursion operator for the Novikov equation and the

dual recursion operator of the Sawada-Kotera equation (see [24]). It was addressed in [20]

that the Novikov equation (4.1) is related to the first equation in the negative Sawada-Kotera

hierarchy, this fact was verified recently in [24].
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Lemma 4.1 (see [24]) Under the Liouville transformation

y =

∫ x

m
2

3 (t, ξ)dξ, τ = t, Q(τ, ξ) =
4

9
m−

10

3 m2

x −
1

3
m−

7

3mxx −m−
4

3 , (4.8)

the relation

R̃3 = K2J
−1

2
= mDy(J 2K2)

−1D−1

y (4.9)

holds.

It follows from the above lemma that the recursion operator R̂ of the Novikov equation

permits the following factorization

R̃3 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x g−2m
2

3D−1

x g2Dxg

·D−1

x g−2m
2

3D−1

x gm
2

3D−1

x g−2m
2

3D−1

x gm−
1

3 ,

R̃
−1

3
= m

1

3 g−1Dxg
2m−

2

3Dxg
−1m−

2

3Dxg
2m−

2

3Dxg
−1

·D−1

x g−2Dxg
2m−

2

3Dxg
2m−

2

3Dxg
−2D−1

x m−
1

3 .

(4.10)

Thus we arrive at the following result for the Novikov equation.

Theorem 4.1 The Novikov equation (4.1) possesses the following nonlocal symmetries:

K̃0 = m
1

3Dxg
2 = 2m

1

3 ggx,

K̃1 = m
1

3Dxg
2D−1

x (g−2m
2

3 ),

K̃2 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x (g−2m
2

3 ),

K̃3 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x (gm
2

3 ),

K̃4 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x g−2m
2

3D−1

x g2DxgD
−1

x (g−2m
2

3 ),

K̃5 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x g−2m
2

3D−1

x g2DxgD
−1

x g−2m
2

3D−1

x (gm
2

3 ),

K̃6 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x g−2m
2

3D−1

x g2DxgD
−1

x g−2m
2

3D−1

x gm
2

3D−1

x (gm
2

3 ),

K̃7 = m
1

3Dxg
2D−1

x g−2m
2

3D−1

x g−2m
2

3D−1

x g2DxgD
−1

x g−2m
2

3

·D−1

x gm
2

3D−1

x gm
2

3D−1

x (g−2m
2

3 ),

J̃0 = g−1m
1

3Dxg
2m−

2

3Dxg
−1m−

2

3Dxg
−1m−

2

3Dxg
2m−

2

3Dxg
−1,

J̃1 = g−1m
1

3Dxg
2m−

2

3Dxg
−1m−

2

3Dxg
−2m−

2

3Dxg
2m−

2

3

·Dxg
−1D−1

x g−2Dxg
2m−

2

3Dxg
2m−

2

3Dxg
−2.

(4.11)

5 Nonlocal Symmetries of the DP Equation

The DP equation

nt = 3vxn+ vnx, n = v − vxx (5.1)

can be obtained from the governing equation for shallow-water waves (see [8]), which can also

be written in bi-Hamiltonian form (see [9])

nt = L
δH7[u]

δm
= D

δH8[u]

δm
, (5.2)
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where

L = n
2

3Dx n
1

3 (Dx −D3

x)
−1 n

1

3 Dx n
2

3 ,

D = Dx(1−D2

x)(4−D2

x),

H7[u] =
9

2

∫
ndx,

H8[u] =
1

6

∫
u3dx.

(5.3)

This provides the recursion operator of the DP equation (see [9])

R̃4 = LD−1. (5.4)

The relationship between DP equation and KK equation was indicated in [9], and it was proved

in [24] that DP equation (5.1) is related to the first one in the negative flow of KK equation

(see [9, 24])

Pτ + Pyyyyy + 20QQyyy + 50QyQyy + 80Q2Qy = 0 (5.5)

via the Liouville transformation

P (τ, y) = n−
1

2

(
D2

x −
1

4

)
n−

1

6 , y =

∫ x

n
1

3 (t, ξ)dξ, τ = t. (5.6)

It was known (see [14]) that equation (5.5) is a generalized bi-Hamiltonian system:

Pτ = L̃
δH7[P ]

δP
, D̃L̃[P ] =

δH8[P ]

δP
, (5.7)

where

L̃ = −(D3

y + 2PDy + 2DyP ),

D̃ = D3

y + 6(PDy +DyP ) + 4(D2

yPD
−1

y +D−1

y PD2

y) + 32(P 2D−1

y +D−1

y P 2),

H7 =
1

6

∫ (8
3
P 3 −

1

2
P 2

y

)
dy.

(5.8)

The recursion operator of (5.5) is

R4 = L̃D̃. (5.9)

The relationship between the recursion operator of the DP equation and the dual recursion

operator of the KK equation was established in [24].

Lemma 5.1 (see [24]) Under the Liouville transformation (5.6), there holds

R̃4 = LD
−1 = nDy(D̃L̃)−1(nDy)

−1. (5.10)

To obtain nonlocal symmetries of the Kaup-Kupershmidt equation (5.5), we apply the fo-

llowing factorization on the operator D̃L̃ (see [18])

D̃L̃ = D−1

y g̃−4Dy g̃
2Dy g̃

2Dy g̃
2Dy g̃

2Dyg̃
4D−1

y g̃−2Dy g̃
2Dyg̃

2Dy g̃
−2, (5.11)
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where g̃ satisfies (2.9) with v replaced by P . Using Lemma 5.1 and the Liouville transformation

(5.6), we get the following result.

The recursion operator R̃4 of the DP equation (5.1) and its inverse operator admit the

following factorizations:

R̃4 = n
2

3Dxg̃
2D−1

x g̃−2n
1

3D−1

x g̃−2n
1

3D−1

x g̃2Dxg̃
−4D−1

x g̃−2n
1

3

·D−1

x g̃−2n
1

3D−1

x g̃−2n
1

3D−1

x g̃−2n
1

3D−1

x g̃4n−
2

3 ,

R̃
−1

4
= n

2

3 g̃−4Dxg̃
2n−

1

3Dxg̃
2n−

1

3Dxg̃
2n−
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We thus arrive at the following result.

Theorem 5.1 The DP equation (5.1) admits the following nonlocal symmetries:
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2
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(5.13)
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