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Abstract In this paper, the author establishs a real-valued function on Kähler manifolds

by holomorphic sectional curvature under parallel translation. The author proves if such

functions are equal for two simply-connected, complete Kähler manifolds, then they are

holomorphically isometric.
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1 Introduction

A classic theorem in [3] shows that a Riemann manifold is a Riemannian locally symmetric

space if and only if the sectional curvature is invariant under all parallel translations. A Her-

mitian symmetric space is of course a Riemannian symmetric space of even dimension, which

implies the holomorphic sectional curvature of a Hermitian symmetric space is invariant under

all parallel translations. But what will happen for general Kähler manifolds? The object of

this paper is to characterize complete simply connected Kähler manifolds by their holomorphic

sectional curvature and its behaviour under parallel translations.

Consider two complete simply connected Kähler manifolds and fix a point on each. Any

holomorphic isomorphism of the holomorphic tangent space at one of the points onto the holo-

morphic tangent space at the other induces, through parallel translation, a correspondence

between broken geodesics emanating from the one and broken geodesics emanating from the

other. We asserts that if the holomorphic sectional curvature parallel translates in the same

way along corresponding singly broken geodesics, then the two manifolds are holomorphically

isometric.

We now state our main theorem here. Let d be the complex dimension of the Kähler

manifolds we consider. Z will be the space of all triples (a, b,Q) where a ∈ Cd, b ∈ Cd and Q is

any complex 1-dimensional subspace of Cd. For each complete complex d-dimensional Kähler

manifold M , m ∈M , and unitary frame e1, · · · , ed at m, we define a real-valued function L on

Z as follows. Let (a, b,Q) ∈ Z with a = (a1, · · · , ad), b = (b1, · · · , bd). Let α be the geodesic

segment of length |a| with α(0) = m,α′(0) = aiei. Let n be the final point of α. Let f1, · · · , fd
be the unitary frame at n obtained by parallel translating the e1, · · · , ed along α. Let β be the

geodesic segment of length |b| with β(0) = n, β′(0) = bifi. Let P0 be the holomorphic section

at m into which Q is carried by the holomorphic isomorphism which carries δi into ei (where
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δi is the ith unit point in C
d). Let P be the parallel translate of P0 along βα. We define

L(a, b,Q) = K(P ), where K(P ) is the holomorphic sectional curvature of P .

Theorem 1.1 Let M and ′M be complete simply connected complex d-dimensional Kähler

manifolds, m a point of M , ′m a point of ′M , e1, · · · , ed a unitary frame at m and ′e1, · · · ,
′ ed

a unitary frame at ′m. Let L and ′L be the corresponding function defined as above on the

corresponding spaces. If L =′ L, then M and ′M are holomorphically isometric under a holo-

morphic isometry which carries m into ′m and whose differential carries each ei into
′ei. This

holomorphic isometry is trivially unique.

2 Connections on the Bundle of Bases

Let M be a complex manifold of complex dimension d. Let {z1, · · · , zd} be a set of local

complex coordinates, with zα = xα + ixd+α, so that {x1, · · · , xd, xd+1, · · · , x2d} are local real

coordinates. Let TRM denote the real tangent bundle of M , it is a real bundle of rank 2d

equipped with a complex structure J . Let T 1,0M denote the holomorphic tangent bundle of

M . As well known, the bundles T 1,0M and TRM are isomorphic. For example, we can choose

an explicit isomorphism, the bundle map ◦ : T 1,0M → TRM , given by

v◦ = v + v, ∀v ∈ T 1,0M.

It is easily known that ◦ is a real isomorphism preserving J . The inverse ◦ : TRM → T 1,0M is

given by

u◦ =
1

2
(u− iJu), ∀u ∈ TRM.

Furthermore, if v = vα ∂
∂zα ∈ T 1,0M locally, then setting vα = uα + iuα+d, v◦ = ua ∂

∂xa .

Conversely, if u = ua ∂
∂xa , then u◦ = (uα + iuα+d) ∂

∂zα .

LetW be any linear space over C; then we have a natural complex manifold structure onW .

For any such W , we have a natural linear holomorphic isomorphism of Ww onto W (for each

w ∈ W ) that we shall denote by αw. It is defined as follows. Let e1, · · · , en be any base of W

and z1, · · · , zn be its dual base; then αw
(
ai ∂

∂zi (w)
)
= aiei. It is easily checked it is well-defined.

If W and W ′ are complex linear spaces, f is a linear map of W → W ′, and w ∈ W , then it is

obvious that αf(w) ◦ df ◦ (αw)−1 = f , where df is the tangent map of f at w.

Let M be a Kähler manifold of complex d-dimension. For any m ∈ M , Mm will denote

either T 1,0
m M or TR

mM depending on the actual situation. If (e1, · · · , ed) is a unitary base of

Mm, then it is easily checked that (e◦1, · · · , e
◦

d, Je
◦

1, · · · , Je
◦

d) is an orthogonal base of Mm and

conversely.

Let π : T 1,0M → M denote the holomorphic tangent bundle of M . If {(Uα, z
i
α) : α ∈ I} is

a local coordinate system on M , we write {(Uα, ψα);α ∈ I} be the locally trivialized structure

of the bundle π : T 1,0M →M , where ψα : Uα ×Cd → π−1(Uα) are holomorphic isomorphisms.

For 1 ≤ a ≤ d, define

Sα
a (p) = ψα(p, δa), ∀p ∈ Uα.

Then Sα = (Sα
1 , · · · , S

α
d ) is a local field of bases of T 1,0M on Uα. For each point p ∈ Uα,

we use B(p) to denote the set of all bases of complex vector space π−1(p); then there is a 1-1

correspondence between the complex general linear group GL(d;C) and B(p). In fact, for any

A ∈ GL(d;C), the corresponding base is

f(p) = (f1(p), · · · , fd(p)) = (Sα
1 (p), · · · , S

α
d (p)) ·A = Sα(p) · A,
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that is

fa(p) = Ab
aψα(p, δb) = ψα,p(A

b
aδb),

where ψα,p = ψα(p, ·) : Cd → π−1(p) is a holomorphic isomorphism. Let B(M) =
⋃

p∈M

B(p)

and define π̃ : B(M) → M such that π̃(B(p)) = {p} for any p ∈ M . It is clear that we can

make (B(M), π̃) a holomorphic principal bundle on M naturally. In fact, for any α ∈ I, define

ϕα : Uα ×GL(d;C) → π̃−1(Uα) by

ϕα(p,A) = Sα(p) · A, ∀(p,A) ∈ Uα ×GL(d;C).

Then we can define a complex differential structure on B(M) such that the above ϕα becomes

a holomorphic isomorphism. In particular, ϕ−1
α : π̃−1(Uα) → Uα × GL(d;C) supplies a local

coordinate system for B(M), which is denoted by (π̃−1(Uα); z
i
α, A

b
a). It is clear that bundles

π̃ : B(M) → M and π : T 1,0M → M share the same family of transition functions {gαβ :

Uα ∩ Uβ → GL(d;C)}, where gαβ(p) = ψ−1
α,p ◦ ψβ,p = ϕ−1

α,p ◦ ϕβ,p.

Let F (M) be the real submanifold of B(M) consisting of all (m, e1, · · · , ed) which the {ei}

is a unitary base of Mm. Then F (M) is a holomorphic subbundle of B(M).

Both the structure group and the fiber of B(M) are G = GL(d;C), all non-singular d by

d matrices with complex matrix elements. The Lie algebra L of G is all of the left invariant

vector fields on G, which is isomorphic to gl(d;C), all d × d complex matrices. There is a

natural isomorphism of the Lie algebra L of G onto a Lie algebra L̃ of vertical vector fields on

B(M) which will be defined below. In fact, let A ∈ L, we will assign a vertical vector field

W on B(M) to A. For any b ∈ B(M), consider any strip map ϕ : U × G → B(M) such that

b ∈ ϕ(U×G). If ϕm(f) = b where ϕm = ϕ(m, ·), we defineW (b) = dϕmA(f). It can be checked

this definition is independent of the strip map ϕ; then it is well-defined. The map A → W is

the isomorphism from L to L̃, which we denote by λ. For a natural base for L, V 1
1 , · · · , V

d
d such

that V j
i (e) =

∂

∂A
j
i

(e), we define vector fields Ej
i on B(M) by Ej

i = λV j
i .

Let D be the Hermite connection on M . Let p ∈ M be any fixed point, σ0 ∈ π̃−1(p); then

σ0 = (σ1, · · · , σd) is a base of π−1(p) = T 1,0
p M . Let γ : [0, b] →M be a smooth curve onM with

γ(0) = p. It is well known there exists a unique family of vector fields σa(u), 0 ≤ u ≤ b, 1 ≤ a ≤

d, parallel along γ, with σa(0) = σa. Thus σ(u) = (σ1(u), · · · , σd(u)) is a field of base parallel

along γ with σ(0) = σ0, σ(u) ∈ B(M) for 0 ≤ u ≤ b. σ(u) is called the horizontal lift of γ(u)

on B(M) through σ0, and σ
′(0) is called the horizontal lift of γ′(0) ∈ T 1,0

p M at σ0 ∈ π̃−1(p).

Such vectors are called horizontal vectors. We denote by Hσ0
the set of all horizontal vectors

at σ0, which is a subspace of B(M)σ0
and will be called a horizontal subspace at σ0. We also

call the distribution H the induced connection on B(M) by D.

A holomorphic vector t ∈ B(M)σ0
is said to be vertical if dπ̃t = 0. The linear space of

vertical vectors at σ0 is called vertical subspace at σ0 and denoted by Vσ0
. It is clear that

B(M)σ0
= Hσ0

⊕ Vσ0
.

Under local coordinates (ziα, A
b
a) as above, let

ωb
a = (A−1)bc(dA

c
a +Ad

aΓ
c
didz

i),

where {Γb
ai} are the Christoffel symbols of the Hermite connection on M . It can be checked

directly that {ωb
a} are well-defined on the whole B(M). Thus we can call ω = (ωb

a), a d × d

matrix of 1-form elements, the 1-form of the connection H .
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The curvature form is defined by Ω = dω − ω ∧ ω, which is a d × d matrix of (1, 1)-

form elements. We now define certain (1, 0)-vector fields E1, · · · , Ed on B(M) as follows. If

b = (m, e1, · · · , ed) ∈ B(M), then Ei(b) is the unique element of Hb that projects to ei under

dπ̃. We also introduce certain (1, 0)-forms ω1, · · · , ωd on B(M), which is independent on H , by

if t ∈ B(M)b, then ω
i(t) = the ith coefficient of dπ̃t when dπ̃t is expressed linearly in terms of

the base e1, · · · , ed. So dπ̃t = ωi(t)ei. It is obvious that the ωi and ωk
j at b are a dual base of

the Ei(b) and E
k
j (b).

Under the above local coordinate system, ωi = (A−1)ijdz
j , Ei = Aj

i

(
∂

∂zj − Al
aΓ

b
lj

∂
∂Ab

a

)
,

Ej
i = Ak

i
∂

∂Ak
j

. Notice that ωi and Ej
i are holomorphic 1-form and vector fields on B(M)

respectively, while Ei and ω
b
a fail to be holomorphic.

It is well known or can be checked directly that the Cartan structural equations for Kähler

manifolds are

dωi = ωj ∧ ωi
j , dωj

i = ωk
i ∧ ωj

k +Ωj
i .

In terms of vector fields Ei and Ek
j , the above structural equations can be expressed by the

formula

[Ej
i , Ek] = δjkEi, [Ei, Ej ] = −

∑

k,l

Ωl
k(Ei, Ej)E

l
k = 0, [Ei, Ej ] = −

∑

k,l

Ωl
k(EiEj)E

l
k.

A property of the Ωj
i that will be useful later is

Ωj
i =

1

2
Kj

ikl
ωk ∧ ωl (2.1)

for certain C∞ functions Kj

ikl
on B(M), which can be checked directly under local coordinate

system.

3 The Complex Exponential Mappings

WhenM is looked as a Riemann manifold with the induced Riemann metric, the exponential

map exp and Exp have been defined which can be found in [1]. For each m ∈ M , we define

expCm : Mm → M by expCm = expm ·◦ as complex exponential map on M . More precisely, if

p ∈Mm, σp is the unique geodesic with σp(0) = m and whose holomorphic tangent vector at m

is p, then expCm p = σp(1). For each b = (m, e1, · · · , ed) ∈ F (M), we define ExpCb :Mm → B(M)

as follows. If σ̃p is the unique horizontal curve (the holomorphic tangent vectors are horizontal)

in B(M) with σ̃p(0) = b and σ̃p lying over σp, i.e., π̃ ◦ σ̃p = σp, then ExpCb p = σ̃p(1). Obviously,

ExpCb carries rays through the origin in Mm into the corresponding horizontal curves through

b.

It is clear that π̃ ◦ ExpCb = expCπ̃b and (1) expCm and ExpCb are holomorphic; (2) expCm up =

σp(u) and ExpCb up = σ̃p(u) for all real u; (3) the holomorphic tangent maps d expCm and dExpCb
are non-singular at O.

We carry the ωi, ωj
i ,Ω

j
i back, via ExpCb to forms θi|b, θ

j
i |b,Θ

j
i |b on Mm, i.e., θi|b = ωi ◦

dExpCb , θ
j
i |b = ωj

i ◦ dExp
C
b ,Θ

j
i |b = Ωj

i ◦ dExp
C
b .

In this section, the point b = (m, e1, · · · , ed) will be kept fixed, so for the remainder of

the section, we sometimes drop it. We fix the following notation for this section. We let

z1, · · · , zd denote the dual base of e1, · · · , ed; thus the zi are linear functions on Mm and a

holomorphic coordinate system ofMm considered as a complex manifold. We let z = (Σ|zi|2)
1

2 .
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Then if ExpCb p = (n, f1, · · · , fd), we shall sometimes write m(p) for n and ei(p) for fi, i.e.,

ExpCb p = (m(p), e1(p), · · · , ed(p)). So m(0) = m, ei(0) = ei.

If γ is any ray from O to p inMm and σ is the corresponding geodesic fromm to n = expCm p,

i.e., σ = expCm ◦γ, then we shall call σ the natural geodesic from m to expCm p. Note that the

ei(p) are the parallel translates of the ei along the natural geodesic from m to expCm p for

ExpCb ◦ γ is a horizontal curve lying over σ from (m, e1, · · · , ed) to (m(p), e1(p), · · · , ed(p)).

Proposition 3.1 (1) At O ∈Mm, d expCm = α0 where α0 is the natural map of (Mm)O →

Mm.

(2) If t is the holomorphic tangent vector to the ray γ : γ(λ) = λciei at any point on the

ray, then θji (t) = 0 and θi(t) = ci.

(3) If t is a holomorphic tangent vector to Mm at p, then d expCm t = θi|b(t)ei(p).

Proof (1) If t ∈ (Mm)O, then t = ci ∂
∂zi for some complex numbers ci. Then clearly t is the

holomorphic tangent vector of the ray γ : γ(v) = vciei. The mapping expCm carries this ray into

the geodesic whose holomorphic tangent vector at m is ciei. Thus it carries the holomorphic

tangent vector to that ray, which is ci ∂
∂zi into the holomorphic tangent vector to that geodesic,

which is ciei, i.e., d exp
C
m = α0.

(2) Since ExpCb carries γ into a horizontal curve; hence dExpCb t is horizontal. Then θ
j
i (t) =

ωj
i (dExp

C
b t) = 0. Since ExpCb ◦γ is horizontal and lies over a geodesic, we know that ωi(dExpCb t)

is constant when t varies through the various holomorphic tangent vectors to γ, i.e., θi(t) is

constant on these t. So it suffices to prove, for t the holomorphic tangent vector to this ray

at O, that θi(t) = ci. We have known that d expCm t = ciei. From this and the fact that

π̃ ◦ ExpCb = expCm, it follows that dExpCb t = cjEj(b). Hence

θi(t) = ωi(dExpCb t) = ωi(cjEj) = ci.

(3) It can be deduced from the following:

θi|b(t) = ωi(dExpCb t)

= ith coefficient of dπ̃ ◦ dExpCb t with respect to the ei(p)

= ith coefficient of d expCm t with respect to the ei(p).

The formula in (3) of the above proposition shows that

〈d expC
m s, d expCm t〉 = Σθi(s)θi(t), (3.1)

‖d expCm s‖2 = Σ|θi(s)|2 (3.2)

for any s, t ∈ (Mm)p.

The Cartan structural equation, when carried back to Mm under ExpCb , becomes

dθi = θj ∧ θij , dθji = θki ∧ θjk +Θj
i .

Let ρ be a map of the unit square [0, 1]× [0, 1] in R2 ∼= C into B(M) which can be extended

to a C∞ map of some neighborhood of the square into B(M). For each v ∈ [0, 1], let ρv be the

curve ρv(u) = ρ(u, v). Let ρi = ωi ◦ dρ, ρji = ωj
i ◦ dρ, P

j
i = Ωj

i ◦ dρ. Let U and V be the vector

fields of partial differentiation with respect to the first and second coordinate axes in R2.
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Lemma 3.1 If each ρv is horizontal and lies over a geodesic, then

(1) Uρi(V ) = V ρi(U) + ρk(U)ρik(V );

(2) Uρji (V ) = P j
i (U, V );

(3) U2ρi(V ) = ρk(U)P i
k(U, V ).

Proof We know [U, V ] = 0, because the ρv are horizontal we have ρji (U) = 0, and because

π̃ ◦ ρv is a geodesic we have Uρi(U) = 0. In each of the following steps we use these facts.

The first structural equation gives

Uρi(V )− V ρi(U) = ρk(U)ρik(V ),

proving (1). Applying U to (1) gives

U2ρi(V ) = UV ρi(U) + ρk(U)Uρik(V )

= [U, V ]ρi(U) + ρk(U)Uρik(V )

= ρk(U)Uρik(V ).

The second structural equation gives

Uρji (V ) = P j
i (U, V ).

This is (2) and combined with the previous formula gives (3), so the lemma is proved.

Lemma 3.2 Let γ be the ray through O in Mm defined by γ(t) = t(c1e1+ · · ·+ cded), where

the ci are any complex numbers with Σ|ci|2 = 1, and let W be the field of holomorphic tangent

vectors to γ. Let A be any constant holomorphic tangent vector field on Mm, i.e., A = ai ∂
∂zi ,

where the ai are complex numbers. Then

(1) at O, we have θi(uA) = θi(uA◦) = 0,W ◦θi(uA) =W ◦θi(uA◦) = ai;

(2) W ◦θji (uA
◦) = Θj

i (W
◦, uA◦);

(3) (W ◦)2θi(uA◦) = ckΘi
k(W

◦, uA◦).

Proof We apply the previous lemma to the 2-cube ρ = ExpCb ◦ p, where p is the mapping

of the unit square into Mm defined by

p(u, v) = u
∑

i

(ci + aiv)ei.

Trivial computations show that dpU = W ◦, dpV = uA◦; the definition of ExpCb makes each ρv

a horizontal curve lying over a geodesic. Hence (2) and (3) of Lemma 3.1 imply (2) and (3) of

this lemma. To prove (1) we note, following through the definition of ρ, ρi(U)(0, v) = ci + aiv,

hence V ρi(U) = ai. Then (1) follows from (1) of Lemma 3.1.

The above lemma shows immediately that a flat Kähler manifold is locally holomorphically

isometric to Cd. In fact, if the curvature is 0 (the vanishing of holomorphic sectional curvature

can imply the vanishing of sectional curvature for the induced Riemann metric), then it shows

along any ray out from the origin in Mm that θi(zA) is a linear function, hence θi(A) is a

constant and then by (1) it follows that θi(A) = ai. Then by (3.2), ‖d expCmA‖2 = Σ|θi(A)|2 =

Σ|ai|2 = ‖A‖2. So the differential of expCm is a locally holomorphic isometry. If M is complete

and simply connected, this locally holomorphic isometry will be a holomorphic isometry ofMm

onto M . We will show below the case of arbitrary holomorphic curvature.

The set of conjugate points of m in Mm is the set of all p ∈Mm such that d expCm is singular

at p, i.e., there exists t 6= 0 in (Mm)p with d expCm t = 0. Using (3.2), one sees that p ∈ Mm is
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conjugate to m if and only if there is a t 6= 0 in (Mm)p with all θi(t) = 0. The conjugate locus,

or set of first conjugate points of m in Mm is the set of all those conjugate points p of m in Mm

such that no points between O and p in the ray from O to p is a conjugate point. The set of

conjugate points and the conjugate locus of m in M are the images under expCm of these sets in

Mm. Since Lemma 3.2 shows that the θiare determined by the Θj
i , we get the conjugate points

are determined by the curvature. If S is the set of non-conjugate points of m in Mm and we

put a new Kähler metric on S by ‖t‖2 = Σ|θi(t)|2, then expCm becomes a locally holomorphic

isometry of S onto its image in M .

4 The Significance of Θ
j

i

LetM and ′M be complete complex d-dimensional Kähler manifolds; m and ′m will be fixed

points of M and ′M respectively; e1, · · · , ed will be a fixed unitary base of Mm and ′e1, · · · ,
′ ed

be a fixed unitary base of ′Mm. In general, if Q is any object associated with M , then ′Q

will be the corresponding object associated with ′M . However, when the corresponding object

associated with ′M has several pre-primes in its symbol, we usually drop most of them, allowing

one or more pre-primes to indicate that the rest of them are properly there. Again we drop the

subscript b which remains fixed.

From now on, R will be a fixed linear transformation of Mm →′ Mm carrying ei →
′ ei; thus

R is a holomorphic isometry of Mm onto ′Mm.

Theorem 4.1 If Θj
i =

′ Θj
i ◦ dR and p ∈M,′ p ∈′ M are not conjugate points of m and ′m

respectively, then

(1) θi =′ θi ◦ dR;

(2) R carries the set of conjugate points and the conjugate locus of Mm onto the set of

conjugate points and the conjugate locus of ′Mm;

(3) there exists a neighborhood P of p and a neighborhood O of expCm p such that expCm is a

holomorphic isomorphism of P onto O; there exist similar ′P,′O for ′M and ′p. For any such

P,O,′ P,′O for which RP =′ P , the mapping ′ expCm ◦R ◦ (expCm)−1 is a holomorphic isometry

of O onto ′O.

Proof (1) It is clear that θi = ωi ◦ dExpCb is a holomorphic 1-form on Mm. Using Lemma

3.2, we see that θi(uA) = θi(uA◦) has a second derivative along any ray of a certain expression

involving the Θj
i . Since the same is true for ′θi(uA); then (1) holds.

(2) It follows from (1) and the characterization of the conjugate points in terms of the θi.

(3) Since p is not a conjugate point of m, (2) shows that ′p will not be a conjugate point

of ′m and the inverse function theorem implies the existence of such P,O,′ P,′O. Let S be

the set of non-conjugate points of m in Mm, and put on S the Kähler metric in which, for

t ∈ Ss, ‖t‖
2 = Σ|θi(t)|2; it is a Kähler metric since it is a pulling back metric. Then (3.2) shows

that (expCm)−1 is a holomorphic isometry of O onto P . Similarly we make ′S, the non-conjugate

points of ′m in ′M , into a Kähler manifolds by defining ‖t‖2 = Σ|′θi(t)|2 for t ∈′ Ss, and have

that ′ expCm is a holomorphic isometry of ′P onto ′O.

Because we are assuming Θj
i =

′ Θj
i ◦ dR, (1) implies θi =′ θi ◦ dR, thus R is a holomorphic

isometry of S onto ′S. Hence if RP =′ P we see that the indicated mapping is a holomorphic

isometry.

For each s ∈ Mn at each n ∈ M , we define a linear map Ts : Mn → Mn as follows. If

f1, · · · , fd is any base of Mn and s̃ is any (1,0)-vector at c = (n, f1, · · · , fd) which lies over s,
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i.e., dπ̃s̃ = s, then

Tsfi = −Ωj
i (s̃, s̃)fj .

Noticing that (2.1), it is easily checked that this definition is independent of the particular

choices of f1, · · · , fd, s̃ with the above properties. The holomorphic section curvature K(P ) of

the holomorphic section spanned by s is

K(P ) = 〈Tss, s〉/‖s‖
4, (4.1)

where ‖s‖2 = 〈s, s〉.

We now define a function Lm on the holomorphic sections of Mm, Lm(Q), for Q a holomor-

phic section of Mm at q ∈ Mm, will be the holomorphic sectional curvature of a holomorphic

section P of M at expCm q. P is obtained by first translating Q to a holomorphic section Q0 at

O, carrying Q0 to a holomorphic section P0 at m by d expCm; and then translating P0 parallel

to itself along the natural geodesic from m to expCm q.

For any manifoldM , we denote byM2 a topological space whose points are all (m,P ) where

m ∈ M and P is any holomorphic section at m. We define the topology of M2 in terms of

the topology on B(M). We have a natural mapping, that we denote by α, of B(M) → M2 :

α(n, f1, · · · , fd) = (n, the complex 1-dimensional subspace of Mn spanned by f1). We define

the topology on M2 to be the finest one in which this mapping is continuous, i.e., a set V in

M2 is open if and only if α−1(V ) is open in B(M). It is easily seen that α is an open mapping.

For M a Kähler manifold, the holomorphic section curvature K is a real valued function on

M2 and we want to show that K is continuous. To prove this, it is convenient to introduce the

following function K̃ on B(M): If c = (n, f1, · · · , fd) ∈ B(M), then

K̃(c) = holomorphic section curvature of the holomorphic section spanned by f1.

We prove K̃ ∈ C∞ as follows. It is clear 〈Tss, s〉 = −
∑
i,j,k

ωi(s̃)ωj(s̃)Ωk
i (s̃, s̃)hkj , where hkj =

〈fk, fj〉. Taking s̃ = E1(c), we find K̃ = −Ωk
1(E1, E1)hk1(h11)

−2. Since the Ωj
i , Ei, hij are all

C∞ functions, this shows K̃ ∈ C∞. Continuity of K now follows from the fact that α is open

and K−1(V ) = αK̃−1(V ) for V any subset of R. Since we have showed K̃ ∈ C∞, it would

follow in essentially the same way that K ∈ C∞ if we had introduced the complex structure on

M2 and proved α is holomorphic.

We now give again the definition of Lm, but in slightly different terms. We first define a

map that we denote by f fromM2
m to M2. If Q is the holomorphic section at q ∈Mm spanned

by ai ∂
∂zi (q), then P = f(Q) is the holomorphic section at expCm q spanned by aiei. Then we

define Lm = K ◦ f.

Thus continuity of Lm will follow from continuity of f . So we briefly indicate a proof that

f is continuous. We define a function F from B(Mm) to B(M) by F (p, h1, · · · , hd) = ExpCc p,

where c = (m,αph1, · · · , α
phd). One can prove F is holomorphic and clearly α ◦F = f ◦α; this

and openness of α imply the continuity of f . And once more, if α is holomorphic, so is f.

Theorem 4.2 Θj
i =

′ Θj
i ◦ dR if and only if Lm =′ Lm ◦ dR.

Proof We first show that Lm =′ Lm◦dR implies Θj
i =

′ Θj
i ◦dR. Notice that the holomorphic

section curvature on a Kähler manifold determines the curvature tensor of the induced Riemann

metric, the expression (4.21) of Kj
ikl in [2] shows that

Kj
ikl =

′ Kj
ikl ◦R. (4.2)
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Next we consider Θj
i (T

◦, uA◦), where A = ai ∂
∂zi , the a

i being any complex numbers, and T be-

ing the unit radial holomorphic vector field onMm. Because π̃◦ExpCb = expCm and (3) in Propo-

sition 3.1 shows that d expCm uA = θi(uA)ei(p), we see that the horizontal part of dExpCb uA =

θi(uA)Ei. Now consider any fixed ray γ emanating from O in Mm, say γ(u) = uciei, and with

Σ|ci|2 = 1. At points on this ray, we have dExpCb T = ciEi. Hence we have, at such points

Θj
i (T

◦, uA◦) = Ωj
i (dExp

C
b T + dExpCb T , dExp

C
b uA+ dExpCb uA)

= Ωj
i (dExp

C
b T, dExp

C
b uA) + Ωj

i (dExp
C
b T , dExp

C
b uA)

= Ωj
i (c

αEα, θβ(uA)Eβ) + Ωj
i (c

αEα, θ
β(uA)Eβ)

= cαθβ(uA)Kj
iαβ − cαθβ(uA)Kj

iβα.

Using (3) in Lemma 3.2, this shows that

(W ◦)2θj(uA) = ci(cαθβ(uA)Kj
iαβ − cαθβ(uA)Kj

iβα).

Notice that Kj
ikl =

′ Kj
ikl ◦R and θβ are holomorphic 1-forms, we conclude that

θβ(uA) =′ θβ(uA) ◦R. (4.3)

Now let B = bi ∂
∂zi ; then

Θj
i (uA

◦, uB◦) = Ωj
i ((dExp

C
b uA)

◦, (dExpCb uB)◦)

= θα(uA)θβ(uB)Kj
iαβ − θα(uA)θβ(uB)Kj

iβα,

and we have the corresponding formula for ′Θj
i . This plus (4.2)–(4.3) proves the desired con-

clusion Θj
i =

′ Θj
i ◦ dR at all points other than O. The desired relation then holds also at O by

continuity.

For the proof of the other half of this theorem, we define f̃ : T 1,0(Mm) → T 1,0M by

f̃
(
ai ∂

∂zi (p)
)
= aiei(p). It is obvious that if Q is the holomorphic section at p ∈ Mm spanned

by s, then f(Q) is the holomorphic section at expCm p spanned by f̃(s).

We first consider holomorphic sections at points p which are not conjugate points of m; then

the corresponding points Rp of Mm are not conjugate points of ′m. We shall prove first that

Lm =′ Lm ◦ f at such points, then use continuity to obtain this at other points.

We now assume Θj
i =

′ Θj
i ◦ dR. We see immediately that θi =′ θi ◦ dR by Theorem 4.1.

Now consider any fixed p ∈ Mm, not conjugate to m. We define a map β of (Mm)p onto

itself by β(t) = (d expC
m)−1 ◦ f̃(t). Clearly, d expCm ◦β = f̃ and then because π̃ ◦ ExpCb = expCm

it follows that (dExpCb ◦ β)(s) lies over (d expCm ◦β)(s) = f̃(s). By Proposition 3.1, we see

that β(t) = θi(t) ∂
∂zi (p). Since dR

(
∂

∂zi

)
= ∂

∂′zi and θi =′ θi ◦ dR, it follows from this that

dR ◦ β =′ β ◦ dR.

Now let Q be any holomorphic section at p, spanned by s. So Lm(Q) is the holomorphic

curvature of the holomorphic section P at expCm p spanned by f̃(s). Using this and (4.1) and

the fact that (dExpCb ◦ β)(s) lies over f̃(s), we have

Lm(Q) =
∑

i,j

ωi((dExpCb ◦ β)(s))ωj((dExpCb ◦ β)(s))Ωj
i ((dExp

C
b ◦ β)(s),

(dExpCb ◦ β)(s))/α2(f̃(s), f̃(s))

=
∑

i,j

θi(βs)θj(βs)Θj
i (βs, βs)/

[∑

i

(θi(βs))2
∑

j

(θj(βs))2 −
∑

i

|θi(βs)|2
]
.
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And the corresponding formula of course holds for ′L(′p). From these two formulas and the

facts: (1) θi =′ θi ◦ dR; (2) Θj
i =′ Θj

i ◦ dR; (3) dR ◦ β =′ β ◦ dR, it follows trivially that

Lm(Q) =′ Lm(dRQ), i.e., Lm =′ Lm ◦ dR. This is for any holomorphic section Q at any p not

conjugate to m. Using the well known facts that along each ray in Mm the conjugate points are

isolated, it follows, by continuity, that Lm =′ Lm ◦ dR for holomorphic sections at all points,

completing the theorem.

5 Proof of Theorem 1.1

We again let M and ′M be complete, complex d-dimensional Kähler manifolds with m, e1,

· · · , ed, b = (m, e1, · · · , ed),
′m,′ e1, · · · ,

′ ed,
′ b = (′m,′ e1, · · · ,

′ ed) fixed as before, including that

the ei and
′ei are unitary bases. We continue to use the pre-prime systematically as before and

R will again be the fixed linear map of Mm →′ Mm carrying ei →′ ei. However the fixed b

and ′b of this section need not be the same as those previously held fixed. We shall apply the

results of earlier sections, stated there with b and ′b fixed, to points other than the fixed b and
′b of this section. We define that Ic where c = (n, f1, · · · , fd) is any point of B(M), is the linear

transformation of Cd →Mn carrying δi into fi. Let O be the origin in Cd and we define

expCO = expCm ◦Ib, ExpCO = ExpCb ◦ Ib.

If r is any point in Cd, we define

expCr = expCexpC
O

r
◦IExpC

O
r, ExpCr = ExpCExpC

O
r ◦ IExpC

O
r.

Thus the effect of expCr is to map Cd into M by first mapping it into Mm, then parallel

translatingMm along the geodesic into which expCm carries the ray from O to Ibr, then spraying

onto M via the geodesics at expCO r. Clearly, π ◦ ExpCr = expCr . For (r, s) ∈ Cd ×Cd, we define

m(r) = expCr O = expCO r, m(r, s) = expCr s,

b(r) = ExpCr O = ExpCOr, b(r, s) = ExpCr s.

Clearly m(r, 0) = m(r), b(r, 0) = b(r). If b(r, s) = (n, f1, · · · , fd), then clearly n = m(r, s) and

we define ei(r, s) = fi, i.e., b(r, s) = (m(r, s), e1(r, s), · · · , ed(r, s)); and we similarly define ei(r)

and have b(r) = (m(r), e1(r), · · · , ed(r)). Thus ei(r, 0) = ei(r).

We let B(p, δ) be the open ball of radius δ about the point p, for p in any metric space.

We define a function ∆ on Cd, whose values are positive real numbers or ∞, by ∆(r) =

sup{δ | expCr maps B(O, δ) onto B(expCr O, δ) and
′ expCr maps B(O, δ) onto B(′expCr O, δ)

such that both maps are holomorphic isomorphisms}. Thus ∆ is bounded below by a positive

number on any compact subset of Cd. We let F be the subset of Cd × Cd consisting of those

(r, s) with any point of Cd and |s| < ∆(r). We also define, for m ∈M,

∆(m) = sup{δ | expCm is a holomorphic isomorphism of B(O, δ) onto an open subset of M}.

Define an equivalence relation ∼, on the points of F by (r1, s1, ) ∼ (r2, s2) if and only

if all three of the following hold: (1) m(r1, s1) = m(r2, s2), (2)
′m(r1, s1) =′ m(r2, s2), (3)

b(r1, s1)g = b(r2, s2) implies ′b(r1, s1)g =′ b(r2, s2) (bg denotes the transform of b ∈ F (M) by

g, an element of the unitary group, under the action of the group on F (M)). Define X to

be the set of equivalence classes of this equivalence relation. Let I denote the natural map of

F → X : I(r, s) = equivalence class containing (r, s); and let Ir be the map of B(O,∆(r))
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into X defined by Ir(s) = I(r, s). We also define a map e, of X into M , by e(x) = m(r, s), if

(r, s) ∈ x. Clearly expCr = e ◦ Ir; it is obvious that e maps X onto M and ′e maps X onto ′M

because M and ′M are complete.

The following lemma is due to [1].

Lemma 5.1 Let n and p be points in M , and α1, α2, β be paths with α1 going from n to p,

β from p to p, and α2 from p to n. Let c be any point of F (M) lying over n, d be the parallel

translation of c along α1, g be the holonomy element generated by d and β, h be the holonomy

element generated by α2α1 and c. Then the holonomy element generated by α2βα1 and c is hg.

Our procedure from this point is to make X into a topological space, show e and ′e are

local homeomorphisms, use this to put a Kähler metric on X for which e and ′e are locally

holomorphic isometries, prove X complete, and deduce that e and ′e are covering mappings.

Then if M and ′M are simply connected, we conclude that e and ′e are homeomorphisms, thus
′e ◦ e−1 is a holomorphic isometry of M onto ′M .

We now define the topology on X by the condition that each Ir shall be an open mapping

of B(O,∆(r)) into X , i.e., the topology is generated by all sets of the form IrV where r is any

point in Cd and V is any open subset of B(O,∆(r)). Define Pr = IrB(O,∆(r)).

Since expCr maps B(O,∆(r)) 1-1 onto B(m(r),∆(r)) and expCr = e ◦ Ir , we have that e

maps Pr 1-1 onto B(m(r),∆(r)) and ′e maps Pr 1-1 onto B(′m(r),∆(r)). Furthermore, Ir
maps B(O,∆(r)) 1-1 onto Pr .

Lemma 5.2 e and ′e are continuous.

Proof Let e(x) = n, and V be any neighborhood of n. Let (r, s) ∈ x. Then (expCr )
−1V ∩

B(O,∆(r)) is open, hence P = Ir((exp
C
r )

−1V ∩ B(O,∆(r))) is open in X . It suffices to show

that x ∈ P and e(P ) ⊂ V . In fact, we have expCr s = e(x) = n ∈ V , showing s ∈ (expC
r )

−1V ,

and (r, s) ∈ x implies s ∈ B(O,∆(r)). Thus s ∈ (expC
r )

−1V ∩B(O,∆(r)), hence x = Irs ∈ P .

We have e(P ) ⊂ V because y ∈ P implies y = Irs1 for some s1 ∈ (expCr )
−1V ∩ B(O,∆(r)),

thus e(y) = expCr s1 ∈ V .

Lemma 5.3 If L =′ L, then Lm(r) =
′ Lm(r) ◦ dRr for all r ∈ Cd, where Rr is the linear

map of Mm(r) onto
′Mm(r) which carries ei(r) into ′ei(r).

Proof Let S be any holomorphic section at q ∈ Mm(r), spanned by ai ∂
∂zi (q), where the

zi are the linear coordinates on Mm(r) dual to the ei(r). Let Ib(r)t = q. Then by definition

Lm(r)(S) = K(P ), where P is the holomorphic section at m(r, t) spanned by aiei(r, t). Also by

definition this equals L(r, t, Q), where Q is the complex 1-dimensional subspace of Cd spanned

by (a1, · · · , ad). If L =′ L, this means Lm(r)(S) =′ Lm(r)(
′S), where ′S is the holomorphic

section of ′Mm(r) spanned by ai ∂
∂′zi (

′q), the ′zi being the linear coordinates on ′Mm(r) dual

to the ′ei(r), and
′Ib(r)t =

′ q. Since Rrq =′ q and dRr

(
∂

∂zi

)
=

(
∂

∂′zi

)
(′q), the statement that

Lm(r)(S) =
′ Lm(r)(

′S) says that Lm(r)(S) =
′ Lm(r)(dRrS), thus Lm(r) =

′ Lm(r) ◦ dRr.

By the discussion in the previous sections, we can conclude that

θi|b(r) =
′ θi|′b(r) ◦ dRr, θji |b(r) =

′ θji |b(r) ◦ dRr, Θj
i |b(r) =

′ Θj
i |b(r) ◦ dRr.

For each r ∈ Cd, we define a map Sr from B(m(r),∆(r)) onto B(′m(r),∆(r)) by

Sr =′ expCr ◦(expCr )
−1|B(m(r),∆(r)).

Lemma 5.4 For each r ∈ Cd, Sr is a holomorphic isometry of B(m(r),∆(r)) onto B(′m(r),

∆(r)) and for |s| < ∆(r), we have Sr(m(r, s)) =′ m(r, s) and dSrei(r, s) =
′ ei(r, s).
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Proof It is obvious that Srm(r, s) =′m(r, s). Since

′expCr ◦(expCr )
−1 =′ expCm(r) ◦

′Ib(r) ◦ I
−1
b(r) ◦ (exp

C
m(r))

−1 =′ expCm(r)Rr ◦ (exp
C
m(r))

−1,

we can conclude that Sr is a holomorphic isometry by Theorem 4.1. For the remainder of

the lemma, we first consider s = 0. Then dSr = d′expC
m(r) ◦dRr ◦ d(exp

C
m(r))

−1 =′α0 ◦ dRr ◦

(α0)−1 = Rr. For a general s, we apply (3) in Proposition 3.1 with b(r) for b, ei(r) for ei and

ei(r, s) for ei(p). It shows, for t ∈ Mm(r,s), that d exp
C
m(r) t = θi|b(r)(t)ei(r, s). Similarly, for

′t ∈′ Mm(r,s), d
′expC

m(r)(
′t) =′θi|b(r)(

′t)′ei(r, s). Taking ′t = dRrt, this gives d
′expC

m(r) ◦dRrt =
′θi|b(r)(dRrt)

′ei(r, s) = θi|b(r)(t)
′ei(r, s). Thus at m(r, s), dSr carries θi|b(r)(t)ei(r, s) into

θi|b(r)(t)
′ei(r, s). Since |s| < ∆(r), m(r, s) can not be conjugate to m(r) along expCr of the

ray from O to s, so this shows that dSr carries ei(r, s) into
′ei(r, s).

From this point, we shall often write (expCr )
−1 for (expCr |B(O,∆(r)))

−1.

Lemma 5.5 Let (r1, s1) and (r2, s2) be in F . If (r1, s1) ∼ (r2, s2), then there is a neigh-

borhood O1 of s1 and a neighborhood O2 of s2, with Oi ⊂ B(0,∆(ri)) and such that all the

following hold:

(1) (expCr2)
−1 ◦ expCr1 is a holomorphic isomorphism, mapping O1 onto O2;

(2) (′expCr2)
−1 ◦′expCr1 is the same as (expCr2)

−1 ◦ expCr1 on O1;

(3) if p1 ∈ O1 and p2 ∈ O2, then expCr1 p1 = expCr2 p2 implies (r1, p1) ∼ (r2, p2).

Proof Let n = expCr1 s1 = expCr2 s2,
′n =′expCr1 s1 =′expCr2 s2. Choose a positive real number

ε such that B(n, ε) ⊂ expCr1 B(O,∆(r1)) ∩ expCr2 B(O,∆(r2)), B(′n, ε) ⊂′expCr1 B(O,∆(r1))∩
′expCr2 B(O,∆(r2)), ε < ∆(n) and ε < ∆(′n). Define

O1 = (expCr1)
−1B(n, ε), O2 = (expCr2)

−1B(n, ε).

Then conclusion (1) above holds trivially.

Next we show Sr1 = Sr2 on B(n, ε). Since we know Sr1 and Sr2 are holomorphic isometries

and both carry n into ′n, it suffices to show both (a) B(′n, ε) is included in the component of
′n of Sr1(B(m(r1),∆(r1))) ∩ Sr2(B(m(r2),∆(r2))) and (b) dSr1 = dSr2 at n. The choice of ε

above makes it clear that Sri(B(m(ri),∆(ri))) contains B(′n, ε), so (a) holds. To prove (b), it

is sufficient to show that dSr1ei(r2, s2) =
′ei(r2, s2). By assumption that (r1, s1) ∼ (r2, s2), we

know b(r2, s2) = b(r1, s1)g implies ′b(r2, s2) =
′b(r1, s1)g. Let g = (gji ) and these statements say

ei(r2, s2) = gji ej(r1, s1),
′ei(r2, s2) = gji

′ej(r1, s1),

hence dSr1ei(r2, s2) = gji dSr1ej(r1, s1) = gji
′ej(r1, s1) =

′e2(r2, s2), proving (b) and thus showing

that Sr1 = Sr2 on B(n, ε).

Let us write expCr1 for the mapping of O1 into B(n, ε), expCr2 for the mapping of O2 into

B(n, ε). Because Sr1 = Sr2 on B(n, ε), we have from the definition of Sr,

′expCr1 ◦(exp
C
r1
)−1 =′ expCr2 ◦(exp

C
r2
)−1.

Thus (′expCr2)
−1 ◦′expCr1 = (expCr2)

−1 ◦ expCr1 , proving (2).

Now we prove (3). Fix any p1 ∈ O1 and p2 ∈ O2 with expCr1 p1 = expCr2 p2. By (2), we

know that ′expCr1 p1 =′expCr2 p2. It remains to show b(r2, p2) = b(r1, p1)h implies ′b(r2, p2) =
′b(r1, p1)h. We know that b(r2, s2) = b(r1, s1)g implies ′b(r2, s2) =

′b(r1, s1)g.

Let ρi be the geodesic into which expCO carries the ray from O to ri, σi be the geodesic into

which expCri carries the ray from O to si, let β = σ2ρ2ρ
−1
1 σ−1

1 . Let α2 be the unique geodesic
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in B(n, ε) from n to m(r1, p1) = m(r2, p2), α
−1
2 = α1. Let α1 be the unique horizontal curve

over α1 which ends at b(r1, s1) and let c be its initial point. Since the holonomy element by

α2α1 and c is the identity, it follows from Lemma 5.1 that the holonomy element generated by

α2βα1 and c is g; similarly, the holonomy element generated by ′α′

2β
′α1 and ′c is g.

Let τi be the geodesic into which expCri carries the ray from O to pi, δ = τ2ρ2ρ
−1
1 τ−1

1 ,

γi = α2σiτ
−1
i , and let ki be the holonomy element generated by b(ri, pi) and γi. Then the

holonomy element generated by b(r1, p1) and δ is clearly k1k
−1
2 g, i.e., b(r2, p2) = b(r1, p1)k1k

−1
2 g.

Since Sri carries τi→
′τi, σi →

′σi, αi →
′αi and dSri carries ei(rj , pj) →

′ei(rj , pj), ei(rj , sj) →
′ei(rj , sj), and ei(rj) →′ei(rj), it follows that the holonomy element generated by ′γi and
′b(ri, pi) is the same as that generated by γi and b(ri, pi), thus is ki. Then it follows that the

holonomy element generated by ′δ is kik
−1
2 g, i.e., ′b(r2, p2) =

′ b(r1, p1)k1k
−1
2 g. This proves (3).

Lemma 5.6 Each Ir is continuous.

Proof It is sufficient to show, for each such finite intersection, that I−1
r (Ir1P1∩· · ·∩IrkPk) is

open in B(O,∆(r)), where all ri ∈ Cd and Pi ⊂ B(O,∆(r)) are open. Let x ∈ Ir1P1∩· · ·∩IrkPk,

x = Irs = Irjsj . By the previous lemma, we can find neighborhoods O1, · · · , Ok of s and

neighborhoods Q1, · · · , Qk of s1, · · · , sk such that Oi ⊆ B(O,∆(r)), Qi ⊆ Pi, (exp
C
ri
)−1 ◦ expCr

is a holomorphic isomorphism of Oi onto Qi, and for ti ∈ Oi and qi ∈ Qi, we have (r, ti) ∼ (r, qi)

if expCr ti = expCri qi.

Let V = O1 ∩ · · · ∩ Ok and we show IrV ⊆ Ir1P1 ∩ · · · ∩ IrkPk. Let t ∈ V and we must

show Irt ∈ IriQi for each i. Let qi = (expCri)
−1 ◦ expCr t. We have (r, t) ∼ (r, qi), hence

Irt = Irqi ∈ IrQi.

Furthermore, we have the following lemma.

Lemma 5.7 For any r1 and r2 in Cd, the mappings Ir1 and Ir2 are holomorphic related,

i.e., (I−1
r2

|Pr1
∩Pr2

) ◦ Ir1 is holomorphic.

Proof Let x ∈ Pr1 ∩ Pr2 with x = Ir1s1 = Ir2s2. Choose the neighborhoods O1 and O2 of

s1 and s2 given by Lemma 5.5. Then on O1, we have (I−1
r2

|Pr1
∩Pr2

) ◦ Ir1 = (expCr2)
−1 ◦ expCr1 .

Since the latter is holomorphic, so is the former. This holds for every such x, so the lemma is

proved.

This lemma shows that the mappings Ir induce a complex structure on X and we henceforth

consider X as a complex manifold in this way. Since expCr ,
′ expCr and Ir are holomorphic maps

on B(O,∆(r)), it follows that e and ′e are holomorphic maps of X into M and ′M . We now

define the Kähler structure on X by the condition that e and ′e shall be locally holomorphic

isometries.

Definition 5.1 If u and v ∈ Xx, we define 〈u, v〉 = 〈deu, dev〉 = 〈d′eu, d′ev〉.

The second equality holds because the Sr are holomorphic isometries. It is clear that we now

have made X into a Kähler manifold, and so that e and ′e are locally holomorphic isometries.

Lemma 5.8 X is complete.

Proof Let x0 = IOO. For each ray ρ emanating from O in Cd, we find IρO is a geodesic

in X ; this follows from the facts that e ◦ IρO = expCρ O = expO ◦ρ is a geodesic in M and the

local holomorphic isometry of X with M . Since the rays ρ are infinitely extendable, we see

that these geodesics are infinitely extendable. They are also all the geodesics emanating from

x0, hence X is complete.
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The following theorem is obvious. In fact, it suffices to prove φ is 1-1, but it is a direct

result of the corresponding theorem of Riemann manifolds if we look M and N as Riemann

manifolds.

Theorem 5.1 Let N and M be Kähler manifolds of complex dimension d with N complete

and φ be a locally holomorphic isometry of N onto M . If M is simply connected, then φ is a

globally holomorphic isometry.

Now we can finish the proof of Theorem 1.1, our main theorem. In fact, by the above

theorem, we see that e and ′e are homeomorphisms, thus ′e ◦ e−1 is a homeomorphism of

M onto ′M . Because e and ′e are locally holomorphic isometries, ′e ◦ e−1 is also a locally

holomorphic isometry. It clearly carries m into ′m and its differential carries ei into
′ei. Then

the conclusion holds by the above theorem.
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