Parallel Translation on Kähler Manifolds*

Rongmu YAN ${ }^{1}$

Abstract

In this paper, the author establishs a real-valued function on Kähler manifolds by holomorphic sectional curvature under parallel translation. The author proves if such functions are equal for two simply-connected, complete Kähler manifolds, then they are holomorphically isometric.

Keywords Kähler manifold, Holomorphic sectional curvature, Parallel translation 2000 MR Subject Classification 32Q15

1 Introduction

A classic theorem in [3] shows that a Riemann manifold is a Riemannian locally symmetric space if and only if the sectional curvature is invariant under all parallel translations. A Hermitian symmetric space is of course a Riemannian symmetric space of even dimension, which implies the holomorphic sectional curvature of a Hermitian symmetric space is invariant under all parallel translations. But what will happen for general Kähler manifolds? The object of this paper is to characterize complete simply connected Kähler manifolds by their holomorphic sectional curvature and its behaviour under parallel translations.

Consider two complete simply connected Kähler manifolds and fix a point on each. Any holomorphic isomorphism of the holomorphic tangent space at one of the points onto the holomorphic tangent space at the other induces, through parallel translation, a correspondence between broken geodesics emanating from the one and broken geodesics emanating from the other. We asserts that if the holomorphic sectional curvature parallel translates in the same way along corresponding singly broken geodesics, then the two manifolds are holomorphically isometric.

We now state our main theorem here. Let d be the complex dimension of the Kähler manifolds we consider. Z will be the space of all triples (a, b, Q) where $a \in \mathbb{C}^{d}, b \in \mathbb{C}^{d}$ and Q is any complex 1 -dimensional subspace of \mathbb{C}^{d}. For each complete complex d-dimensional Kähler manifold $M, m \in M$, and unitary frame e_{1}, \cdots, e_{d} at m, we define a real-valued function L on Z as follows. Let $(a, b, Q) \in Z$ with $a=\left(a^{1}, \cdots, a^{d}\right), b=\left(b^{1}, \cdots, b^{d}\right)$. Let α be the geodesic segment of length $|a|$ with $\alpha(0)=m, \alpha^{\prime}(0)=a^{i} e_{i}$. Let n be the final point of α. Let f_{1}, \cdots, f_{d} be the unitary frame at n obtained by parallel translating the e_{1}, \cdots, e_{d} along α. Let β be the geodesic segment of length $|b|$ with $\beta(0)=n, \beta^{\prime}(0)=b^{i} f_{i}$. Let P_{0} be the holomorphic section at m into which Q is carried by the holomorphic isomorphism which carries δ_{i} into e_{i} (where

[^0]δ_{i} is the i th unit point in \mathbb{C}^{d}). Let P be the parallel translate of P_{0} along $\beta \alpha$. We define $L(a, b, Q)=K(P)$, where $K(P)$ is the holomorphic sectional curvature of P.

Theorem 1.1 Let M and ' M be complete simply connected complex d-dimensional Kähler manifolds, m a point of M, ' m a point of ${ }^{\prime} M, e_{1}, \cdots, e_{d}$ a unitary frame at m and ${ }^{\prime} e_{1}, \cdots,{ }^{\prime} e_{d}$ a unitary frame at ' m. Let L and ' L be the corresponding function defined as above on the corresponding spaces. If $L==^{\prime} L$, then M and ' M are holomorphically isometric under a holomorphic isometry which carries m into ' m and whose differential carries each e_{i} into ' e_{i}. This holomorphic isometry is trivially unique.

2 Connections on the Bundle of Bases

Let M be a complex manifold of complex dimension d. Let $\left\{z^{1}, \cdots, z^{d}\right\}$ be a set of local complex coordinates, with $z^{\alpha}=x^{\alpha}+\mathrm{i} x^{d+\alpha}$, so that $\left\{x^{1}, \cdots, x^{d}, x^{d+1}, \cdots, x^{2 d}\right\}$ are local real coordinates. Let $T_{R} M$ denote the real tangent bundle of M, it is a real bundle of rank $2 d$ equipped with a complex structure J. Let $T^{1,0} M$ denote the holomorphic tangent bundle of M. As well known, the bundles $T^{1,0} M$ and $T_{R} M$ are isomorphic. For example, we can choose an explicit isomorphism, the bundle map ${ }^{\circ}: T^{1,0} M \rightarrow T_{R} M$, given by

$$
v^{\circ}=v+\bar{v}, \quad \forall v \in T^{1,0} M
$$

It is easily known that ${ }^{\circ}$ is a real isomorphism preserving J. The inverse 。: $T_{R} M \rightarrow T^{1,0} M$ is given by

$$
u_{\circ}=\frac{1}{2}(u-\mathrm{i} J u), \quad \forall u \in T_{R} M
$$

Furthermore, if $v=v^{\alpha} \frac{\partial}{\partial z^{\alpha}} \in T^{1,0} M$ locally, then setting $v^{\alpha}=u^{\alpha}+\mathrm{i} u^{\alpha+d}, v^{\circ}=u^{a} \frac{\partial}{\partial x^{\alpha}}$. Conversely, if $u=u^{a} \frac{\partial}{\partial x^{a}}$, then $u_{\circ}=\left(u^{\alpha}+\mathrm{i} u^{\alpha+d}\right) \frac{\partial}{\partial z^{\alpha}}$.

Let W be any linear space over \mathbb{C}; then we have a natural complex manifold structure on W. For any such W, we have a natural linear holomorphic isomorphism of W_{w} onto W (for each $w \in W)$ that we shall denote by α^{w}. It is defined as follows. Let e_{1}, \cdots, e_{n} be any base of W and z^{1}, \cdots, z^{n} be its dual base; then $\alpha^{w}\left(a^{i} \frac{\partial}{\partial z^{i}}(w)\right)=a^{i} e_{i}$. It is easily checked it is well-defined. If W and W^{\prime} are complex linear spaces, f is a linear map of $W \rightarrow W^{\prime}$, and $w \in W$, then it is obvious that $\alpha^{f(w)} \circ d f \circ\left(\alpha^{w}\right)^{-1}=f$, where $d f$ is the tangent map of f at w.

Let M be a Kähler manifold of complex d-dimension. For any $m \in M, M_{m}$ will denote either $T_{m}^{1,0} M$ or $T_{m}^{R} M$ depending on the actual situation. If $\left(e_{1}, \cdots, e_{d}\right)$ is a unitary base of M_{m}, then it is easily checked that $\left(e_{1}^{\circ}, \cdots, e_{d}^{\circ}, J e_{1}^{\circ}, \cdots, J e_{d}^{\circ}\right)$ is an orthogonal base of M_{m} and conversely.

Let $\pi: T^{1,0} M \rightarrow M$ denote the holomorphic tangent bundle of M. If $\left\{\left(U_{\alpha}, z_{\alpha}^{i}\right): \alpha \in I\right\}$ is a local coordinate system on M, we write $\left\{\left(U_{\alpha}, \psi_{\alpha}\right) ; \alpha \in I\right\}$ be the locally trivialized structure of the bundle $\pi: T^{1,0} M \rightarrow M$, where $\psi_{\alpha}: U_{\alpha} \times \mathbb{C}^{d} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ are holomorphic isomorphisms. For $1 \leq a \leq d$, define

$$
S_{a}^{\alpha}(p)=\psi_{\alpha}\left(p, \delta_{a}\right), \quad \forall p \in U_{\alpha}
$$

Then $S^{\alpha}=\left(S_{1}^{\alpha}, \cdots, S_{d}^{\alpha}\right)$ is a local field of bases of $T^{1,0} M$ on U_{α}. For each point $p \in U_{\alpha}$, we use $B(p)$ to denote the set of all bases of complex vector space $\pi^{-1}(p)$; then there is a 1-1 correspondence between the complex general linear group $G L(d ; \mathbb{C})$ and $B(p)$. In fact, for any $A \in G L(d ; \mathbb{C})$, the corresponding base is

$$
f(p)=\left(f_{1}(p), \cdots, f_{d}(p)\right)=\left(S_{1}^{\alpha}(p), \cdots, S_{d}^{\alpha}(p)\right) \cdot A=S^{\alpha}(p) \cdot A
$$

that is

$$
f_{a}(p)=A_{a}^{b} \psi_{\alpha}\left(p, \delta_{b}\right)=\psi_{\alpha, p}\left(A_{a}^{b} \delta_{b}\right)
$$

where $\psi_{\alpha, p}=\psi_{\alpha}(p, \cdot): \mathbb{C}^{d} \rightarrow \pi^{-1}(p)$ is a holomorphic isomorphism. Let $B(M)=\bigcup_{p \in M} B(p)$ and define $\widetilde{\pi}: B(M) \rightarrow M$ such that $\tilde{\pi}(B(p))=\{p\}$ for any $p \in M$. It is clear that we can make $(B(M), \widetilde{\pi})$ a holomorphic principal bundle on M naturally. In fact, for any $\alpha \in I$, define $\varphi_{\alpha}: U_{\alpha} \times G L(d ; \mathbb{C}) \rightarrow \widetilde{\pi}^{-1}\left(U_{\alpha}\right)$ by

$$
\varphi_{\alpha}(p, A)=S^{\alpha}(p) \cdot A, \quad \forall(p, A) \in U_{\alpha} \times G L(d ; \mathbb{C})
$$

Then we can define a complex differential structure on $B(M)$ such that the above φ_{α} becomes a holomorphic isomorphism. In particular, $\varphi_{\alpha}^{-1}: \widetilde{\pi}^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G L(d ; \mathbb{C})$ supplies a local coordinate system for $B(M)$, which is denoted by $\left(\widetilde{\pi}^{-1}\left(U_{\alpha}\right) ; z_{\alpha}^{i}, A_{a}^{b}\right)$. It is clear that bundles $\widetilde{\pi}: B(M) \rightarrow M$ and $\pi: T^{1,0} M \rightarrow M$ share the same family of transition functions $\left\{g_{\alpha \beta}:\right.$ $\left.U_{\alpha} \cap U_{\beta} \rightarrow G L(d ; \mathbb{C})\right\}$, where $g_{\alpha \beta}(p)=\psi_{\alpha, p}^{-1} \circ \psi_{\beta, p}=\varphi_{\alpha, p}^{-1} \circ \varphi_{\beta, p}$.

Let $F(M)$ be the real submanifold of $B(M)$ consisting of all $\left(m, e_{1}, \cdots, e_{d}\right)$ which the $\left\{e_{i}\right\}$ is a unitary base of M_{m}. Then $F(M)$ is a holomorphic subbundle of $B(M)$.

Both the structure group and the fiber of $B(M)$ are $G=G L(d ; \mathbb{C})$, all non-singular d by d matrices with complex matrix elements. The Lie algebra \mathfrak{L} of G is all of the left invariant vector fields on G, which is isomorphic to $\mathfrak{g l}(d ; \mathbb{C})$, all $d \times d$ complex matrices. There is a natural isomorphism of the Lie algebra \mathfrak{L} of G onto a Lie algebra $\widetilde{\mathfrak{L}}$ of vertical vector fields on $B(M)$ which will be defined below. In fact, let $A \in \mathfrak{L}$, we will assign a vertical vector field W on $B(M)$ to A. For any $b \in B(M)$, consider any strip map $\varphi: U \times G \rightarrow B(M)$ such that $b \in \varphi(U \times G)$. If $\varphi_{m}(f)=b$ where $\varphi_{m}=\varphi(m, \cdot)$, we define $W(b)=d \varphi_{m} A(f)$. It can be checked this definition is independent of the strip $\operatorname{map} \varphi$; then it is well-defined. The map $A \rightarrow W$ is the isomorphism from \mathfrak{L} to $\widetilde{\mathfrak{L}}$, which we denote by λ. For a natural base for $L, V_{1}^{1}, \ldots, V_{d}^{d}$ such that $V_{i}^{j}(e)=\frac{\partial}{\partial A_{i}^{j}}(e)$, we define vector fields E_{i}^{j} on $B(M)$ by $E_{i}^{j}=\lambda V_{i}^{j}$.

Let D be the Hermite connection on M. Let $p \in M$ be any fixed point, $\sigma_{0} \in \tilde{\pi}^{-1}(p)$; then $\sigma_{0}=\left(\sigma_{1}, \cdots, \sigma_{d}\right)$ is a base of $\pi^{-1}(p)=T_{p}^{1,0} M$. Let $\gamma:[0, b] \rightarrow M$ be a smooth curve on M with $\gamma(0)=p$. It is well known there exists a unique family of vector fields $\sigma_{a}(u), 0 \leq u \leq b, 1 \leq a \leq$ d, parallel along γ, with $\sigma_{a}(0)=\sigma_{a}$. Thus $\sigma(u)=\left(\sigma_{1}(u), \cdots, \sigma_{d}(u)\right)$ is a field of base parallel along γ with $\sigma(0)=\sigma_{0}, \sigma(u) \in B(M)$ for $0 \leq u \leq b$. $\sigma(u)$ is called the horizontal lift of $\gamma(u)$ on $B(M)$ through σ_{0}, and $\sigma^{\prime}(0)$ is called the horizontal lift of $\gamma^{\prime}(0) \in T_{p}^{1,0} M$ at $\sigma_{0} \in \widetilde{\pi}^{-1}(p)$. Such vectors are called horizontal vectors. We denote by $H_{\sigma_{0}}$ the set of all horizontal vectors at σ_{0}, which is a subspace of $B(M)_{\sigma_{0}}$ and will be called a horizontal subspace at σ_{0}. We also call the distribution H the induced connection on $B(M)$ by D.

A holomorphic vector $t \in B(M)_{\sigma_{0}}$ is said to be vertical if $d \widetilde{\pi} t=0$. The linear space of vertical vectors at σ_{0} is called vertical subspace at σ_{0} and denoted by $V_{\sigma_{0}}$. It is clear that

$$
B(M)_{\sigma_{0}}=H_{\sigma_{0}} \oplus V_{\sigma_{0}}
$$

Under local coordinates $\left(z_{\alpha}^{i}, A_{a}^{b}\right)$ as above, let

$$
\omega_{a}^{b}=\left(A^{-1}\right)_{c}^{b}\left(d A_{a}^{c}+A_{a}^{d} \Gamma_{d i}^{c} d z^{i}\right)
$$

where $\left\{\Gamma_{a i}^{b}\right\}$ are the Christoffel symbols of the Hermite connection on M. It can be checked directly that $\left\{\omega_{a}^{b}\right\}$ are well-defined on the whole $B(M)$. Thus we can call $\omega=\left(\omega_{a}^{b}\right)$, a $d \times d$ matrix of 1-form elements, the 1-form of the connection H.

The curvature form is defined by $\Omega=d \omega-\omega \wedge \omega$, which is a $d \times d$ matrix of (1,1)form elements. We now define certain (1,0)-vector fields E_{1}, \cdots, E_{d} on $B(M)$ as follows. If $b=\left(m, e_{1}, \cdots, e_{d}\right) \in B(M)$, then $E_{i}(b)$ is the unique element of H_{b} that projects to e_{i} under $d \widetilde{\pi}$. We also introduce certain $(1,0)$-forms $\omega^{1}, \cdots, \omega^{d}$ on $B(M)$, which is independent on H, by if $t \in B(M)_{b}$, then $\omega^{i}(t)=$ the i th coefficient of $d \widetilde{\pi} t$ when $d \widetilde{\pi} t$ is expressed linearly in terms of the base e_{1}, \cdots, e_{d}. So $d \widetilde{\pi} t=\omega^{i}(t) e_{i}$. It is obvious that the ω^{i} and ω_{j}^{k} at b are a dual base of the $E_{i}(b)$ and $E_{j}^{k}(b)$.

Under the above local coordinate system, $\omega^{i}=\left(A^{-1}\right)_{j}^{i} d z^{j}, E_{i}=A_{i}^{j}\left(\frac{\partial}{\partial z^{j}}-A_{a}^{l} \Gamma_{l j}^{b} \frac{\partial}{\partial A_{a}^{b}}\right)$, $E_{i}^{j}=A_{i}^{k} \frac{\partial}{\partial A_{j}^{k}}$. Notice that ω^{i} and E_{i}^{j} are holomorphic 1-form and vector fields on $B(M)$ respectively, while E_{i} and ω_{a}^{b} fail to be holomorphic.

It is well known or can be checked directly that the Cartan structural equations for Kähler manifolds are

$$
d \omega^{i}=\omega^{j} \wedge \omega_{j}^{i}, \quad d \omega_{i}^{j}=\omega_{i}^{k} \wedge \omega_{k}^{j}+\Omega_{i}^{j} .
$$

In terms of vector fields E_{i} and E_{j}^{k}, the above structural equations can be expressed by the formula

$$
\left[E_{i}^{j}, E_{k}\right]=\delta_{k}^{j} E_{i}, \quad\left[E_{i}, E_{j}\right]=-\sum_{k, l} \Omega_{k}^{l}\left(E_{i}, E_{j}\right) E_{k}^{l}=0, \quad\left[E_{i}, \bar{E}_{j}\right]=-\sum_{k, l} \Omega_{k}^{l}\left(E_{i} \bar{E}_{j}\right) E_{k}^{l} .
$$

A property of the Ω_{i}^{j} that will be useful later is

$$
\begin{equation*}
\Omega_{i}^{j}=\frac{1}{2} K_{i k \bar{l}}^{j} \omega^{k} \wedge \bar{\omega}^{l} \tag{2.1}
\end{equation*}
$$

for certain C^{∞} functions $K_{i k \bar{l}}^{j}$ on $B(M)$, which can be checked directly under local coordinate system.

3 The Complex Exponential Mappings

When M is looked as a Riemann manifold with the induced Riemann metric, the exponential map exp and Exp have been defined which can be found in [1]. For each $m \in M$, we define $\exp _{m}^{C}: M_{m} \rightarrow M$ by $\exp _{m}^{C}=\exp _{m} .^{\circ}$ as complex exponential map on M. More precisely, if $p \in M_{m}, \sigma_{p}$ is the unique geodesic with $\sigma_{p}(0)=m$ and whose holomorphic tangent vector at m is p, then $\exp _{m}^{C} p=\sigma_{p}(1)$. For each $b=\left(m, e_{1}, \cdots, e_{d}\right) \in F(M)$, we define $\operatorname{Exp}_{b}^{C}: M_{m} \rightarrow B(M)$ as follows. If $\widetilde{\sigma}_{p}$ is the unique horizontal curve (the holomorphic tangent vectors are horizontal) in $B(M)$ with $\widetilde{\sigma}_{p}(0)=b$ and $\widetilde{\sigma}_{p}$ lying over σ_{p}, i.e., $\widetilde{\pi} \circ \widetilde{\sigma}_{p}=\sigma_{p}$, then $\operatorname{Exp}_{b}^{C} p=\widetilde{\sigma}_{p}(1)$. Obviously, $\operatorname{Exp}_{b}^{C}$ carries rays through the origin in M_{m} into the corresponding horizontal curves through b.

It is clear that $\tilde{\pi} \circ \operatorname{Exp}_{b}^{C}=\exp _{\tilde{\pi} b}^{C}$ and (1) $\exp _{m}^{C}$ and $\operatorname{Exp}_{b}^{C}$ are holomorphic; (2) $\exp _{m}^{C}$ up $=$ $\sigma_{p}(u)$ and $\operatorname{Exp}_{b}^{C} u p=\widetilde{\sigma}_{p}(u)$ for all real u; (3) the holomorphic tangent maps $d \exp _{m}^{C}$ and $d \operatorname{Exp}_{b}^{C}$ are non-singular at O.

We carry the $\omega^{i}, \omega_{i}^{j}, \Omega_{i}^{j}$ back, via $\operatorname{Exp}_{b}^{C}$ to forms $\left.\theta^{i}\right|_{b},\left.\theta_{i}^{j}\right|_{b},\left.\Theta_{i}^{j}\right|_{b}$ on M_{m}, i.e., $\left.\theta^{i}\right|_{b}=\omega^{i} \circ$ $d \operatorname{Exp}_{b}^{C},\left.\theta_{i}^{j}\right|_{b}=\omega_{i}^{j} \circ d \operatorname{Exp}_{b}^{C},\left.\Theta_{i}^{j}\right|_{b}=\Omega_{i}^{j} \circ d \operatorname{Exp}_{b}^{C}$.

In this section, the point $b=\left(m, e_{1}, \cdots, e_{d}\right)$ will be kept fixed, so for the remainder of the section, we sometimes drop it. We fix the following notation for this section. We let z^{1}, \cdots, z^{d} denote the dual base of e_{1}, \cdots, e_{d}; thus the z^{i} are linear functions on M_{m} and a holomorphic coordinate system of M_{m} considered as a complex manifold. We let $z=\left(\Sigma\left|z^{i}\right|^{2}\right)^{\frac{1}{2}}$.

Then if $\operatorname{Exp}_{b}^{C} p=\left(n, f_{1}, \cdots, f_{d}\right)$, we shall sometimes write $m(p)$ for n and $e_{i}(p)$ for f_{i}, i.e., $\operatorname{Exp}_{b}^{C} p=\left(m(p), e_{1}(p), \cdots, e_{d}(p)\right)$. So $m(0)=m, e_{i}(0)=e_{i}$.

If γ is any ray from O to p in M_{m} and σ is the corresponding geodesic from m to $n=\exp _{m}^{C} p$, i.e., $\sigma=\exp _{m}^{C} \circ \gamma$, then we shall call σ the natural geodesic from m to $\exp _{m}^{C} p$. Note that the $e_{i}(p)$ are the parallel translates of the e_{i} along the natural geodesic from m to $\exp _{m}^{C} p$ for $\operatorname{Exp}_{b}^{C} \circ \gamma$ is a horizontal curve lying over σ from $\left(m, e_{1}, \cdots, e_{d}\right)$ to $\left(m(p), e_{1}(p), \cdots, e_{d}(p)\right)$.

Proposition 3.1 (1) At $O \in M_{m}$, $d \exp _{m}^{C}=\alpha^{0}$ where α^{0} is the natural map of $\left(M_{m}\right)_{O} \rightarrow$ M_{m}.
(2) If t is the holomorphic tangent vector to the ray $\gamma: \gamma(\lambda)=\lambda c^{i} e_{i}$ at any point on the ray, then $\theta_{i}^{j}(t)=0$ and $\theta^{i}(t)=c^{i}$.
(3) If t is a holomorphic tangent vector to M_{m} at p, then $d \exp _{m}^{C} t=\left.\theta^{i}\right|_{b}(t) e_{i}(p)$.

Proof (1) If $t \in\left(M_{m}\right)_{O}$, then $t=c^{i} \frac{\partial}{\partial z^{i}}$ for some complex numbers c^{i}. Then clearly t is the holomorphic tangent vector of the ray $\gamma: \gamma(v)=v c^{i} e_{i}$. The mapping $\exp _{m}^{C}$ carries this ray into the geodesic whose holomorphic tangent vector at m is $c^{i} e_{i}$. Thus it carries the holomorphic tangent vector to that ray, which is $c^{i} \frac{\partial}{\partial z^{i}}$ into the holomorphic tangent vector to that geodesic, which is $c^{i} e_{i}$, i.e., $d \exp _{m}^{C}=\alpha^{0}$.
(2) Since $\operatorname{Exp}_{b}^{C}$ carries γ into a horizontal curve; hence $d \operatorname{Exp}_{b}^{C} t$ is horizontal. Then $\theta_{i}^{j}(t)=$ $\omega_{i}^{j}\left(d \operatorname{Exp}_{b}^{C} t\right)=0$. Since $\operatorname{Exp}_{b}^{C}$ o γ is horizontal and lies over a geodesic, we know that $\omega^{i}\left(d \operatorname{Exp}_{b}^{C} t\right)$ is constant when t varies through the various holomorphic tangent vectors to γ, i.e., $\theta^{i}(t)$ is constant on these t. So it suffices to prove, for t the holomorphic tangent vector to this ray at O, that $\theta^{i}(t)=c^{i}$. We have known that $d \exp _{m}^{C} t=c^{i} e_{i}$. From this and the fact that $\widetilde{\pi} \circ \operatorname{Exp}_{b}^{C}=\exp _{m}^{C}$, it follows that $d \operatorname{Exp}_{b}^{C} t=c^{j} E_{j}(b)$. Hence

$$
\theta^{i}(t)=\omega^{i}\left(d \operatorname{Exp}_{b}^{C} t\right)=\omega^{i}\left(c^{j} E_{j}\right)=c^{i} .
$$

(3) It can be deduced from the following:

$$
\begin{aligned}
\left.\theta^{i}\right|_{b}(t) & =\omega^{i}\left(d \operatorname{Exp}_{b}^{C} t\right) \\
& =i \text { th coefficient of } d \widetilde{\pi} \circ d \operatorname{Exp}_{b}^{C} t \text { with respect to the } e_{i}(p) \\
& =i \text { th coefficient of } d \exp _{m}^{C} t \text { with respect to the } e_{i}(p) .
\end{aligned}
$$

The formula in (3) of the above proposition shows that

$$
\begin{gather*}
\left\langle d \exp _{m}^{C} s, d \exp _{m}^{C} t\right\rangle=\Sigma \theta^{i}(s) \overline{\theta^{i}}(t), \tag{3.1}\\
\left\|d \exp _{m}^{C} s\right\|^{2}=\Sigma\left|\theta^{i}(s)\right|^{2} \tag{3.2}
\end{gather*}
$$

for any $s, t \in\left(M_{m}\right)_{p}$.
The Cartan structural equation, when carried back to M_{m} under $\operatorname{Exp}_{b}^{C}$, becomes

$$
d \theta^{i}=\theta^{j} \wedge \theta_{j}^{i}, \quad d \theta_{i}^{j}=\theta_{i}^{k} \wedge \theta_{k}^{j}+\Theta_{i}^{j} .
$$

Let ρ be a map of the unit square $[0,1] \times[0,1]$ in $R^{2} \cong C$ into $B(M)$ which can be extended to a C^{∞} map of some neighborhood of the square into $B(M)$. For each $v \in[0,1]$, let ρ^{v} be the curve $\rho^{v}(u)=\rho(u, v)$. Let $\rho^{i}=\omega^{i} \circ d \rho, \rho_{i}^{j}=\omega_{i}^{j} \circ d \rho, P_{i}^{j}=\Omega_{i}^{j} \circ d \rho$. Let U and V be the vector fields of partial differentiation with respect to the first and second coordinate axes in R^{2}.

Lemma 3.1 If each ρ^{v} is horizontal and lies over a geodesic, then
(1) $U \rho^{i}(V)=V \rho^{i}(U)+\rho^{k}(U) \rho_{k}^{i}(V)$;
(2) $U \rho_{i}^{j}(V)=P_{i}^{j}(U, V)$;
(3) $U^{2} \rho^{i}(V)=\rho^{k}(U) P_{k}^{i}(U, V)$.

Proof We know $[U, V]=0$, because the ρ^{v} are horizontal we have $\rho_{i}^{j}(U)=0$, and because $\widetilde{\pi} \circ \rho^{v}$ is a geodesic we have $U \rho^{i}(U)=0$. In each of the following steps we use these facts.

The first structural equation gives

$$
U \rho^{i}(V)-V \rho^{i}(U)=\rho^{k}(U) \rho_{k}^{i}(V),
$$

proving (1). Applying U to (1) gives

$$
\begin{aligned}
U^{2} \rho^{i}(V) & =U V \rho^{i}(U)+\rho^{k}(U) U \rho_{k}^{i}(V) \\
& =[U, V] \rho^{i}(U)+\rho^{k}(U) U \rho_{k}^{i}(V) \\
& =\rho^{k}(U) U \rho_{k}^{i}(V) .
\end{aligned}
$$

The second structural equation gives

$$
U \rho_{i}^{j}(V)=P_{i}^{j}(U, V) .
$$

This is (2) and combined with the previous formula gives (3), so the lemma is proved.
Lemma 3.2 Let γ be the ray through O in M_{m} defined by $\gamma(t)=t\left(c^{1} e_{1}+\cdots+c^{d} e_{d}\right)$, where the c^{i} are any complex numbers with $\Sigma\left|c^{i}\right|^{2}=1$, and let W be the field of holomorphic tangent vectors to γ. Let A be any constant holomorphic tangent vector field on M_{m}, i.e., $A=a^{i} \frac{\partial}{\partial z^{i}}$, where the a^{i} are complex numbers. Then
(1) at O, we have $\theta^{i}(u A)=\theta^{i}\left(u A^{\circ}\right)=0, W^{\circ} \theta^{i}(u A)=W^{\circ} \theta^{i}\left(u A^{\circ}\right)=a^{i}$;
(2) $W^{\circ} \theta_{i}^{j}\left(u A^{\circ}\right)=\Theta_{i}^{j}\left(W^{\circ}, u A^{\circ}\right)$;
(3) $\left(W^{\circ}\right)^{2} \theta^{i}\left(u A^{\circ}\right)=c^{k} \Theta_{k}^{i}\left(W^{\circ}, u A^{\circ}\right)$.

Proof We apply the previous lemma to the 2 -cube $\rho=\operatorname{Exp}_{b}^{C} \circ p$, where p is the mapping of the unit square into M_{m} defined by

$$
p(u, v)=u \sum_{i}\left(c^{i}+a^{i} v\right) e_{i} .
$$

Trivial computations show that $d p U=W^{\circ}, d p V=u A^{\circ}$; the definition of $\operatorname{Exp}_{b}^{C}$ makes each ρ^{v} a horizontal curve lying over a geodesic. Hence (2) and (3) of Lemma 3.1 imply (2) and (3) of this lemma. To prove (1) we note, following through the definition of $\rho, \rho^{i}(U)(0, v)=c^{i}+a^{i} v$, hence $V \rho^{i}(U)=a^{i}$. Then (1) follows from (1) of Lemma 3.1.

The above lemma shows immediately that a flat Kähler manifold is locally holomorphically isometric to C^{d}. In fact, if the curvature is 0 (the vanishing of holomorphic sectional curvature can imply the vanishing of sectional curvature for the induced Riemann metric), then it shows along any ray out from the origin in M_{m} that $\theta^{i}(z A)$ is a linear function, hence $\theta^{i}(A)$ is a constant and then by (1) it follows that $\theta^{i}(A)=a^{i}$. Then by (3.2), $\left\|d \exp _{m}^{C} A\right\|^{2}=\Sigma\left|\theta^{i}(A)\right|^{2}=$ $\Sigma\left|a^{i}\right|^{2}=\|A\|^{2}$. So the differential of $\exp _{m}^{C}$ is a locally holomorphic isometry. If M is complete and simply connected, this locally holomorphic isometry will be a holomorphic isometry of M_{m} onto M. We will show below the case of arbitrary holomorphic curvature.

The set of conjugate points of m in M_{m} is the set of all $p \in M_{m}$ such that $d \exp _{m}^{C}$ is singular at p, i.e., there exists $t \neq 0$ in $\left(M_{m}\right)_{p}$ with $d \exp _{m}^{C} t=0$. Using (3.2), one sees that $p \in M_{m}$ is
conjugate to m if and only if there is a $t \neq 0$ in $\left(M_{m}\right)_{p}$ with all $\theta^{i}(t)=0$. The conjugate locus, or set of first conjugate points of m in M_{m} is the set of all those conjugate points p of m in M_{m} such that no points between O and p in the ray from O to p is a conjugate point. The set of conjugate points and the conjugate locus of m in M are the images under $\exp _{m}^{C}$ of these sets in M_{m}. Since Lemma 3.2 shows that the θ^{i} are determined by the Θ_{i}^{j}, we get the conjugate points are determined by the curvature. If S is the set of non-conjugate points of m in M_{m} and we put a new Kähler metric on S by $\|t\|^{2}=\Sigma\left|\theta^{i}(t)\right|^{2}$, then $\exp _{m}^{C}$ becomes a locally holomorphic isometry of S onto its image in M.

4 The Significance of Θ_{i}^{j}

Let M and ' M be complete complex d-dimensional Kähler manifolds; m and ' m will be fixed points of M and ' M respectively; e_{1}, \cdots, e_{d} will be a fixed unitary base of M_{m} and ' $e_{1}, \cdots,{ }^{\prime} e_{d}$ be a fixed unitary base of ' M_{m}. In general, if Q is any object associated with M, then ' Q will be the corresponding object associated with ' M. However, when the corresponding object associated with ' M has several pre-primes in its symbol, we usually drop most of them, allowing one or more pre-primes to indicate that the rest of them are properly there. Again we drop the subscript b which remains fixed.

From now on, R will be a fixed linear transformation of $M_{m} \rightarrow^{\prime} M_{m}$ carrying $e_{i} \rightarrow^{\prime} e_{i}$; thus R is a holomorphic isometry of M_{m} onto ' M_{m}.

Theorem 4.1 If $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$ and $p \in M,{ }^{\prime} p \in^{\prime} M$ are not conjugate points of m and ' m respectively, then
(1) $\theta^{i}=^{\prime} \theta^{i} \circ d R$;
(2) R carries the set of conjugate points and the conjugate locus of M_{m} onto the set of conjugate points and the conjugate locus of ' M_{m};
(3) there exists a neighborhood P of p and a neighborhood O of $\exp _{m}^{C} p$ such that $\exp _{m}^{C}$ is a holomorphic isomorphism of P onto O; there exist similar ' $P,{ }^{\prime} O$ for ${ }^{\prime} M$ and ' p. For any such $P, O,{ }^{\prime} P,{ }^{\prime} O$ for which $R P==^{\prime} P$, the mapping ' $\exp _{m}^{C} \circ R \circ\left(\exp _{m}^{C}\right)^{-1}$ is a holomorphic isometry of O onto ' O.

Proof (1) It is clear that $\theta^{i}=\omega^{i} \circ d \operatorname{Exp}_{b}^{C}$ is a holomorphic 1-form on M_{m}. Using Lemma 3.2, we see that $\theta^{i}(u A)=\theta^{i}\left(u A^{\circ}\right)$ has a second derivative along any ray of a certain expression involving the Θ_{i}^{j}. Since the same is true for ' $\theta^{i}(u A)$; then (1) holds.
(2) It follows from (1) and the characterization of the conjugate points in terms of the θ^{i}.
(3) Since p is not a conjugate point of m, (2) shows that ' p will not be a conjugate point of ' m and the inverse function theorem implies the existence of such $P, O,{ }^{\prime} P,{ }^{\prime} O$. Let S be the set of non-conjugate points of m in M_{m}, and put on S the Kähler metric in which, for $t \in S_{s},\|t\|^{2}=\Sigma\left|\theta^{i}(t)\right|^{2}$; it is a Kähler metric since it is a pulling back metric. Then (3.2) shows that $\left(\exp _{m}^{C}\right)^{-1}$ is a holomorphic isometry of O onto P. Similarly we make ' S, the non-conjugate points of ' m in ' M, into a Kähler manifolds by defining $\|t\|^{2}=\left.\left.\Sigma\right|^{\prime} \theta^{i}(t)\right|^{2}$ for $t \in^{\prime} S_{s}$, and have that ' $\exp _{m}^{C}$ is a holomorphic isometry of ' P onto ' O.

Because we are assuming $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$, (1) implies $\theta^{i}=^{\prime} \theta^{i} \circ d R$, thus R is a holomorphic isometry of S onto ${ }^{\prime} S$. Hence if $R P=^{\prime} P$ we see that the indicated mapping is a holomorphic isometry.

For each $s \in M_{n}$ at each $n \in M$, we define a linear map $T_{s}: M_{n} \rightarrow M_{n}$ as follows. If f_{1}, \cdots, f_{d} is any base of M_{n} and \widetilde{s} is any (1,0)-vector at $c=\left(n, f_{1}, \cdots, f_{d}\right)$ which lies over s,
i.e., $d \widetilde{\pi} \widetilde{s}=s$, then

$$
T_{s} f_{i}=-\Omega_{i}^{j}(\widetilde{s}, \overline{\tilde{s}}) f_{j}
$$

Noticing that (2.1), it is easily checked that this definition is independent of the particular choices of $f_{1}, \cdots, f_{d}, \widetilde{s}$ with the above properties. The holomorphic section curvature $K(P)$ of the holomorphic section spanned by s is

$$
\begin{equation*}
K(P)=\left\langle T_{s} s, s\right\rangle /\|s\|^{4} \tag{4.1}
\end{equation*}
$$

where $\|s\|^{2}=\langle s, s\rangle$.
We now define a function L_{m} on the holomorphic sections of $M_{m}, L_{m}(Q)$, for Q a holomorphic section of M_{m} at $q \in M_{m}$, will be the holomorphic sectional curvature of a holomorphic section P of M at $\exp _{m}^{C} q$. P is obtained by first translating Q to a holomorphic section Q_{0} at O, carrying Q_{0} to a holomorphic section P_{0} at m by $d \exp _{m}^{C}$; and then translating P_{0} parallel to itself along the natural geodesic from m to $\exp _{m}^{C} q$.

For any manifold M, we denote by M^{2} a topological space whose points are all (m, P) where $m \in M$ and P is any holomorphic section at m. We define the topology of M^{2} in terms of the topology on $B(M)$. We have a natural mapping, that we denote by α, of $B(M) \rightarrow M^{2}$: $\alpha\left(n, f_{1}, \cdots, f_{d}\right)=\left(n\right.$, the complex 1-dimensional subspace of M_{n} spanned by $\left.f_{1}\right)$. We define the topology on M^{2} to be the finest one in which this mapping is continuous, i.e., a set V in M^{2} is open if and only if $\alpha^{-1}(V)$ is open in $B(M)$. It is easily seen that α is an open mapping.

For M a Kähler manifold, the holomorphic section curvature K is a real valued function on M^{2} and we want to show that K is continuous. To prove this, it is convenient to introduce the following function \widetilde{K} on $B(M)$: If $c=\left(n, f_{1}, \cdots, f_{d}\right) \in B(M)$, then

$$
\widetilde{K}(c)=\text { holomorphic section curvature of the holomorphic section spanned by } f_{1} \text {. }
$$

We prove $\widetilde{K} \in C^{\infty}$ as follows. It is clear $\left\langle T_{s} s, s\right\rangle=-\sum_{i, j, k} \omega^{i}(\widetilde{s}) \overline{\omega^{j}(\widetilde{s})} \Omega_{i}^{k}(\widetilde{s}, \overline{\widetilde{s}}) h_{k \bar{j}}$, where $h_{k \bar{j}}=$ $\left\langle f_{k}, f_{j}\right\rangle$. Taking $\widetilde{s}=E_{1}(c)$, we find $\widetilde{K}=-\Omega_{1}^{k}\left(E_{1}, \overline{E_{1}}\right) h_{k \overline{1}}\left(h_{1 \overline{1}}\right)^{-2}$. Since the $\Omega_{i}^{j}, E_{i}, h_{i \bar{j}}$ are all C^{∞} functions, this shows $\widetilde{K} \in C^{\infty}$. Continuity of K now follows from the fact that α is open and $K^{-1}(V)=\alpha \widetilde{K}^{-1}(V)$ for V any subset of R. Since we have showed $\widetilde{K} \in C^{\infty}$, it would follow in essentially the same way that $K \in C^{\infty}$ if we had introduced the complex structure on M^{2} and proved α is holomorphic.

We now give again the definition of L_{m}, but in slightly different terms. We first define a map that we denote by f from M_{m}^{2} to M^{2}. If Q is the holomorphic section at $q \in M_{m}$ spanned by $a^{i} \frac{\partial}{\partial z^{i}}(q)$, then $P=f(Q)$ is the holomorphic section at $\exp _{m}^{C} q$ spanned by $a^{i} e_{i}$. Then we define $L_{m}=K \circ f$.

Thus continuity of L_{m} will follow from continuity of f. So we briefly indicate a proof that f is continuous. We define a function F from $B\left(M_{m}\right)$ to $B(M)$ by $F\left(p, h_{1}, \cdots, h_{d}\right)=\operatorname{Exp}_{c}^{C} p$, where $c=\left(m, \alpha^{p} h_{1}, \cdots, \alpha^{p} h_{d}\right)$. One can prove F is holomorphic and clearly $\alpha \circ F=f \circ \alpha$; this and openness of α imply the continuity of f. And once more, if α is holomorphic, so is f.

Theorem $4.2 \Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$ if and only if $L_{m}=^{\prime} L_{m} \circ d R$.
Proof We first show that $L_{m}=^{\prime} L_{m} \circ d R$ implies $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$. Notice that the holomorphic section curvature on a Kähler manifold determines the curvature tensor of the induced Riemann metric, the expression (4.21) of $K_{i k l}^{j}$ in [2] shows that

$$
\begin{equation*}
K_{i k l}^{j}=^{\prime} K_{i k l}^{j} \circ R . \tag{4.2}
\end{equation*}
$$

Next we consider $\Theta_{i}^{j}\left(T^{\circ}, u A^{\circ}\right)$, where $A=a^{i} \frac{\partial}{\partial z^{i}}$, the a^{i} being any complex numbers, and T being the unit radial holomorphic vector field on M_{m}. Because $\widetilde{\pi} \circ \operatorname{Exp}_{b}^{C}=\exp _{m}^{C}$ and (3) in Proposition 3.1 shows that $d \exp _{m}^{C} u A=\theta^{i}(u A) e_{i}(p)$, we see that the horizontal part of $d \operatorname{Exp}_{b}^{C} u A=$ $\theta^{i}(u A) E_{i}$. Now consider any fixed ray γ emanating from O in M_{m}, say $\gamma(u)=u c^{i} e_{i}$, and with $\Sigma\left|c^{i}\right|^{2}=1$. At points on this ray, we have $d \operatorname{Exp}_{b}^{C} T=c^{i} E_{i}$. Hence we have, at such points

$$
\begin{aligned}
\Theta_{i}^{j}\left(T^{\circ}, u A^{\circ}\right) & =\Omega_{i}^{j}\left(d \operatorname{Exp}_{b}^{C} T+\overline{d \operatorname{Exp}_{b}^{C} T}, d \operatorname{Exp}_{b}^{C} u A+\overline{d \operatorname{Exp}_{b}^{C} u A}\right) \\
& =\Omega_{i}^{j}\left(d \operatorname{Exp}_{b}^{C} T, \overline{d \operatorname{Exp}_{b}^{C} u A}\right)+\Omega_{i}^{j}\left(\overline{\operatorname{Exp}_{b}^{C} T}, d \operatorname{Exp}_{b}^{C} u A\right) \\
& =\Omega_{i}^{j}\left(c^{\alpha} E_{\alpha}, \overline{\theta^{\beta}(u A) E_{\beta}}\right)+\Omega_{i}^{j}\left(\bar{c}^{\alpha} \bar{E}_{\alpha}, \theta^{\beta}(u A) E_{\beta}\right) \\
& =c^{\alpha} \overline{\theta^{\beta}(u A)} K_{i \alpha \beta}^{j}-\bar{c}^{\alpha} \theta^{\beta}(u A) K_{i \beta \alpha}^{j} .
\end{aligned}
$$

Using (3) in Lemma 3.2, this shows that

$$
\left(W^{\circ}\right)^{2} \theta^{j}(u A)=c^{i}\left(c^{\alpha} \overline{\theta^{\beta}(u A)} K_{i \alpha \beta}^{j}-\bar{c}^{\alpha} \theta^{\beta}(u A) K_{i \beta \alpha}^{j}\right) .
$$

Notice that $K_{i k l}^{j}=K_{i k l}^{j} \circ R$ and θ^{β} are holomorphic 1-forms, we conclude that

$$
\begin{equation*}
\theta^{\beta}(u A)=^{\prime} \theta^{\beta}(u A) \circ R . \tag{4.3}
\end{equation*}
$$

Now let $B=b^{i} \frac{\partial}{\partial z^{i}}$; then

$$
\begin{aligned}
\Theta_{i}^{j}\left(u A^{\circ}, u B^{\circ}\right) & =\Omega_{i}^{j}\left(\left(d \operatorname{Exp}_{b}^{C} u A\right)^{\circ},\left(d \operatorname{Exp}_{b}^{C} u B\right)^{\circ}\right) \\
& =\theta^{\alpha}(u A) \overline{\theta^{\beta}(u B)} K_{i \alpha \beta}^{j}-\overline{\theta^{\alpha}(u A)} \theta^{\beta}(u B) K_{i \beta \alpha}^{j},
\end{aligned}
$$

and we have the corresponding formula for ' Θ_{i}^{j}. This plus (4.2)-(4.3) proves the desired conclusion $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$ at all points other than O. The desired relation then holds also at O by continuity.

For the proof of the other half of this theorem, we define $\tilde{f}: T^{1,0}\left(M_{m}\right) \rightarrow T^{1,0} M$ by $\widetilde{f}\left(a^{i} \frac{\partial}{\partial z^{i}}(p)\right)=a^{i} e_{i}(p)$. It is obvious that if Q is the holomorphic section at $p \in M_{m}$ spanned by s, then $f(Q)$ is the holomorphic section at $\exp _{m}^{C} p$ spanned by $\tilde{f}(s)$.

We first consider holomorphic sections at points p which are not conjugate points of m; then the corresponding points $R p$ of M_{m} are not conjugate points of ' m. We shall prove first that $L_{m}=^{\prime} L_{m} \circ f$ at such points, then use continuity to obtain this at other points.

We now assume $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$. We see immediately that $\theta^{i}=^{\prime} \theta^{i} \circ d R$ by Theorem 4.1.
Now consider any fixed $p \in M_{m}$, not conjugate to m. We define a map β of $\left(M_{m}\right)_{p}$ onto itself by $\beta(t)=\left(d \exp _{m}^{C}\right)^{-1} \circ \widetilde{f}(t)$. Clearly, $d \exp _{m}^{C} \circ \beta=\widetilde{f}$ and then because $\widetilde{\pi} \circ \operatorname{Exp}_{b}^{C}=\exp _{m}^{C}$ it follows that $\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s)$ lies over $\left(d \exp _{m}^{C} \circ \beta\right)(s)=\widetilde{f}(s)$. By Proposition 3.1, we see that $\beta(t)=\theta^{i}(t) \frac{\partial}{\partial z^{i}}(p)$. Since $d R\left(\frac{\partial}{\partial z^{i}}\right)=\frac{\partial}{\partial^{\prime} z^{i}}$ and $\theta^{i}=^{\prime} \theta^{i} \circ d R$, it follows from this that $d R \circ \beta=\prime \beta \circ d R$.

Now let Q be any holomorphic section at p, spanned by s. So $L_{m}(Q)$ is the holomorphic curvature of the holomorphic section P_{\sim} at $\exp _{m}^{C} p$ spanned by $\widetilde{f}(s)$. Using this and (4.1) and the fact that $\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s)$ lies over $\widetilde{f}(s)$, we have

$$
\begin{aligned}
L_{m}(Q)= & \sum_{i, j} \omega^{i}\left(\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s)\right) \overline{\omega^{j}\left(\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s)\right)} \Omega_{i}^{j}\left(\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s),\right. \\
& \frac{\left.\left(d \operatorname{Exp}_{b}^{C} \circ \beta\right)(s)\right)}{} / \alpha^{2}(\tilde{f}(s), \overline{\tilde{f}(s)}) \\
= & \sum_{i, j} \theta^{i}(\beta s) \overline{\theta^{j}(\beta s)} \Theta_{i}^{j}(\beta s, \overline{\beta s}) /\left[\sum_{i}\left(\theta^{i}(\beta s)\right)^{2} \sum_{j}\left(\overline{\theta^{j}(\beta s)}\right)^{2}-\sum_{i}\left|\theta^{i}(\beta s)\right|^{2}\right] .
\end{aligned}
$$

And the corresponding formula of course holds for ' L (' p). From these two formulas and the facts: (1) $\theta^{i}=^{\prime} \theta^{i} \circ d R$; (2) $\Theta_{i}^{j}=^{\prime} \Theta_{i}^{j} \circ d R$; (3) $d R \circ \beta=^{\prime} \beta \circ d R$, it follows trivially that $L_{m}(Q)=^{\prime} L_{m}(d R Q)$, i.e., $L_{m}=^{\prime} L_{m} \circ d R$. This is for any holomorphic section Q at any p not conjugate to m. Using the well known facts that along each ray in M_{m} the conjugate points are isolated, it follows, by continuity, that $L_{m}=^{\prime} L_{m} \circ d R$ for holomorphic sections at all points, completing the theorem.

5 Proof of Theorem 1.1

We again let M and ' M be complete, complex d-dimensional Kähler manifolds with m, e_{1}, $\cdots, e_{d}, b=\left(m, e_{1}, \cdots, e_{d}\right),{ }^{\prime} m,{ }^{\prime} e_{1}, \cdots,{ }^{\prime} e_{d},{ }^{\prime} b=\left({ }^{\prime} m,{ }^{\prime} e_{1}, \cdots,{ }^{\prime} e_{d}\right)$ fixed as before, including that the e_{i} and ' e_{i} are unitary bases. We continue to use the pre-prime systematically as before and R will again be the fixed linear map of $M_{m} \rightarrow^{\prime} M_{m}$ carrying $e_{i} \rightarrow^{\prime} e_{i}$. However the fixed b and ' b of this section need not be the same as those previously held fixed. We shall apply the results of earlier sections, stated there with b and ' b fixed, to points other than the fixed b and ${ }^{\prime} b$ of this section. We define that I_{c} where $c=\left(n, f_{1}, \cdots, f_{d}\right)$ is any point of $B(M)$, is the linear transformation of $C^{d} \rightarrow M_{n}$ carrying δ_{i} into f_{i}. Let O be the origin in \mathbb{C}^{d} and we define

$$
\exp _{O}^{C}=\exp _{m}^{C} \circ I_{b}, \quad \operatorname{Exp}_{O}^{C}=\operatorname{Exp}_{b}^{C} \circ I_{b}
$$

If r is any point in \mathbb{C}^{d}, we define

$$
\exp _{r}^{C}=\exp _{\exp _{O}^{C} r}^{C} \circ I_{\operatorname{Exp}_{O}^{C} r}, \quad \operatorname{Exp}_{r}^{C}=\operatorname{Exp}_{\operatorname{Exp}_{S}^{C}}^{C} \circ I_{\operatorname{Exp}_{S}^{C} r}
$$

Thus the effect of $\exp _{r}^{C}$ is to map C^{d} into M by first mapping it into M_{m}, then parallel translating M_{m} along the geodesic into which $\exp _{m}^{C}$ carries the ray from O to $I_{b} r$, then spraying onto M via the geodesics at $\exp _{O}^{C} r$. Clearly, $\pi \circ \operatorname{Exp}_{r}^{C}=\exp _{r}^{C}$. For $(r, s) \in \mathbb{C}^{d} \times \mathbb{C}^{d}$, we define

$$
\begin{aligned}
& m(r)=\exp _{r}^{C} O=\exp _{O}^{C} r, \quad m(r, s)=\exp _{r}^{C} s, \\
& b(r)=\operatorname{Exp}_{r}^{C} O=\operatorname{Exp}_{O}^{C} r, \quad b(r, s)=\operatorname{Exp}_{r}^{C} s .
\end{aligned}
$$

Clearly $m(r, 0)=m(r), b(r, 0)=b(r)$. If $b(r, s)=\left(n, f_{1}, \cdots, f_{d}\right)$, then clearly $n=m(r, s)$ and we define $e_{i}(r, s)=f_{i}$, i.e., $b(r, s)=\left(m(r, s), e_{1}(r, s), \cdots, e_{d}(r, s)\right)$; and we similarly define $e_{i}(r)$ and have $b(r)=\left(m(r), e_{1}(r), \cdots, e_{d}(r)\right)$. Thus $e_{i}(r, 0)=e_{i}(r)$.

We let $B(p, \delta)$ be the open ball of radius δ about the point p, for p in any metric space. We define a function Δ on \mathbb{C}^{d}, whose values are positive real numbers or ∞, by $\Delta(r)=$ $\sup \left\{\delta \mid \exp _{r}^{C}\right.$ maps $B(O, \delta)$ onto $B\left(\exp _{r}^{C} O, \delta\right)$ and ' $\exp _{r}^{C}$ maps $B(O, \delta)$ onto $B\left({ }^{\prime} \exp _{r}^{C} O, \delta\right)$ such that both maps are holomorphic isomorphisms\}. Thus Δ is bounded below by a positive number on any compact subset of \mathbb{C}^{d}. We let F be the subset of $\mathbb{C}^{d} \times \mathbb{C}^{d}$ consisting of those (r, s) with any point of C^{d} and $|s|<\Delta(r)$. We also define, for $m \in M$,
$\Delta(m)=\sup \left\{\delta \mid \exp _{m}^{C}\right.$ is a holomorphic isomorphism of $B(O, \delta)$ onto an open subset of $\left.M\right\}$.
Define an equivalence relation \sim, on the points of F by $\left(r_{1}, s_{1},\right) \sim\left(r_{2}, s_{2}\right)$ if and only if all three of the following hold: (1) $m\left(r_{1}, s_{1}\right)=m\left(r_{2}, s_{2}\right),(2)^{\prime} m\left(r_{1}, s_{1}\right)=^{\prime} m\left(r_{2}, s_{2}\right)$, (3) $b\left(r_{1}, s_{1}\right) g=b\left(r_{2}, s_{2}\right)$ implies ' $b\left(r_{1}, s_{1}\right) g=^{\prime} b\left(r_{2}, s_{2}\right)$ ($b g$ denotes the transform of $b \in F(M)$ by g, an element of the unitary group, under the action of the group on $F(M)$). Define X to be the set of equivalence classes of this equivalence relation. Let I denote the natural map of $F \rightarrow X: I(r, s)=$ equivalence class containing (r, s); and let I_{r} be the map of $B(O, \Delta(r))$
into X defined by $I_{r}(s)=I(r, s)$. We also define a map e, of X into M, by $e(x)=m(r, s)$, if $(r, s) \in x$. Clearly $\exp _{r}^{C}=e \circ I_{r}$; it is obvious that e maps X onto M and ' e maps X onto ' M because M and ' M are complete.

The following lemma is due to [1].
Lemma 5.1 Let n and p be points in M, and $\alpha_{1}, \alpha_{2}, \beta$ be paths with α_{1} going from n to p, β from p to p, and α_{2} from p to n. Let c be any point of $F(M)$ lying over n, d be the parallel translation of c along α_{1}, g be the holonomy element generated by d and β, h be the holonomy element generated by $\alpha_{2} \alpha_{1}$ and c. Then the holonomy element generated by $\alpha_{2} \beta \alpha_{1}$ and c is $h g$.

Our procedure from this point is to make X into a topological space, show e and ' e are local homeomorphisms, use this to put a Kähler metric on X for which e and ' e are locally holomorphic isometries, prove X complete, and deduce that e and ' e are covering mappings. Then if M and ' M are simply connected, we conclude that e and ' e are homeomorphisms, thus ${ }^{\prime} e \circ e^{-1}$ is a holomorphic isometry of M onto ' M.

We now define the topology on X by the condition that each I_{r} shall be an open mapping of $B(O, \Delta(r))$ into X, i.e., the topology is generated by all sets of the form $I_{r} V$ where r is any point in \mathbb{C}^{d} and V is any open subset of $B(O, \Delta(r))$. Define $P_{r}=I_{r} B(O, \Delta(r))$.

Since $\exp _{r}^{C}$ maps $B(O, \Delta(r))$ 1-1 onto $B(m(r), \Delta(r))$ and $\exp _{r}^{C}=e \circ I_{r}$, we have that e maps P_{r} 1-1 onto $B(m(r), \Delta(r))$ and ' e maps P_{r} 1-1 onto $B\left({ }^{\prime} m(r), \Delta(r)\right)$. Furthermore, I_{r} maps $B(O, \Delta(r)) 1-1$ onto P_{r}.

Lemma $5.2 e$ and'e are continuous.
Proof Let $e(x)=n$, and V be any neighborhood of n. Let $(r, s) \in x$. Then $\left(\exp _{r}^{C}\right)^{-1} V \cap$ $B(O, \Delta(r))$ is open, hence $P=I_{r}\left(\left(\exp _{r}^{C}\right)^{-1} V \cap B(O, \Delta(r))\right)$ is open in X. It suffices to show that $x \in P$ and $e(P) \subset V$. In fact, we have $\exp _{r}^{C} s=e(x)=n \in V$, showing $s \in\left(\exp _{r}^{C}\right)^{-1} V$, and $(r, s) \in x$ implies $s \in B(O, \Delta(r))$. Thus $s \in\left(\exp _{r}^{C}\right)^{-1} V \cap B(O, \Delta(r))$, hence $x=I_{r} s \in P$. We have $e(P) \subset V$ because $y \in P$ implies $y=I_{r} s_{1}$ for some $s_{1} \in\left(\exp _{r}^{C}\right)^{-1} V \cap B(O, \Delta(r))$, thus $e(y)=\exp _{r}^{C} s_{1} \in V$.

Lemma 5.3 If $L=^{\prime} L$, then $L_{m(r)}=^{\prime} L_{m(r)} \circ d R_{r}$ for all $r \in C^{d}$, where R_{r} is the linear map of $M_{m(r)}$ onto ' $M_{m(r)}$ which carries $e_{i}(r)$ into ' $e_{i}(r)$.

Proof Let S be any holomorphic section at $q \in M_{m(r)}$, spanned by $a^{i} \frac{\partial}{\partial z^{2}}(q)$, where the z^{i} are the linear coordinates on $M_{m(r)}$ dual to the $e_{i}(r)$. Let $I_{b(r)} t=q$. Then by definition $L_{m(r)}(S)=K(P)$, where P is the holomorphic section at $m(r, t)$ spanned by $a^{i} e_{i}(r, t)$. Also by definition this equals $L(r, t, Q)$, where Q is the complex 1-dimensional subspace of C^{d} spanned by $\left(a^{1}, \cdots, a^{d}\right)$. If $L={ }^{\prime} L$, this means $L_{m(r)}(S)=^{\prime} L_{m(r)}\left({ }^{\prime} S\right)$, where ' S is the holomorphic section of ' $M_{m(r)}$ spanned by $a^{i} \frac{\partial}{\partial^{\prime} z^{i}}\left({ }^{\prime} q\right)$, the ' z^{i} being the linear coordinates on ' $M_{m(r)}$ dual to the ' $e_{i}(r)$, and ' $I_{b(r)} t=^{\prime} q$. Since $R_{r} q=^{\prime} q$ and $d R_{r}\left(\frac{\partial}{\partial z^{i}}\right)=\left(\frac{\partial}{\partial^{\prime} z^{i}}\right)\left({ }^{\prime} q\right)$, the statement that $L_{m(r)}(S)=^{\prime} L_{m(r)}\left({ }^{\prime} S\right)$ says that $L_{m(r)}(S)={ }^{\prime} L_{m(r)}\left(d R_{r} S\right)$, thus $L_{m(r)}=^{\prime} L_{m(r)} \circ d R_{r}$.

By the discussion in the previous sections, we can conclude that

$$
\left.\theta^{i}\right|_{b(r)}=\left.^{\prime} \theta^{i}\right|_{b(r)} \circ d R_{r},\left.\quad \theta_{i}^{j}\right|_{b(r)}==\left.^{\prime} \theta_{i}^{j}\right|_{b(r)} \circ d R_{r},\left.\quad \Theta_{i}^{j}\right|_{b(r)}==_{i}^{\prime} \Theta_{b(r)}^{j} \circ d R_{r} .
$$

For each $r \in C^{d}$, we define a map S_{r} from $B(m(r), \Delta(r))$ onto $B\left({ }^{\prime} m(r), \Delta(r)\right)$ by

$$
S_{r}=\left.{ }^{\prime} \exp _{r}^{C} \circ\left(\exp _{r}^{C}\right)^{-1}\right|_{B(m(r), \Delta(r))}
$$

Lemma 5.4 For each $r \in \mathbb{C}^{d}, S_{r}$ is a holomorphic isometry of $B(m(r), \Delta(r))$ onto $B\left({ }^{\prime} m(r)\right.$, $\Delta(r))$ and for $|s|<\Delta(r)$, we have $S_{r}(m(r, s))=^{\prime} m(r, s)$ and $d S_{r} e_{i}(r, s)=^{\prime} e_{i}(r, s)$.

Proof It is obvious that $S_{r} m(r, s)=^{\prime} m(r, s)$. Since

$$
\prime \exp _{r}^{C} \circ\left(\exp _{r}^{C}\right)^{-1}=^{\prime} \exp _{m(r)}^{C} \circ^{\prime} I_{b(r)} \circ I_{b(r)}^{-1} \circ\left(\exp _{m(r)}^{C}\right)^{-1}=^{\prime} \exp _{m(r)}^{C} R_{r} \circ\left(\exp _{m(r)}^{C}\right)^{-1}
$$

we can conclude that S_{r} is a holomorphic isometry by Theorem 4.1. For the remainder of the lemma, we first consider $s=0$. Then $d S_{r}=d^{\prime} \exp _{m(r)}^{C} \circ d R_{r} \circ d\left(\exp _{m(r)}^{C}\right)^{-1}=^{\prime} \alpha^{0} \circ d R_{r} \circ$ $\left(\alpha^{0}\right)^{-1}=R_{r}$. For a general s, we apply (3) in Proposition 3.1 with $b(r)$ for $b, e_{i}(r)$ for e_{i} and $e_{i}(r, s)$ for $e_{i}(p)$. It shows, for $t \in M_{m(r, s)}$, that $d \exp _{m(r)}^{C} t=\left.\theta^{i}\right|_{b(r)}(t) e_{i}(r, s)$. Similarly, for $\left.' t \in^{\prime} M_{m(r, s)}, d^{\prime} \exp _{m(r)}^{C}\left({ }^{\prime} t\right)=\left.{ }^{\prime} \theta^{i}\right|_{b(r)}{ }^{\prime} t\right)^{\prime} e_{i}(r, s)$. Taking ${ }^{\prime} t=d R_{r} t$, this gives $d^{\prime} \exp _{m(r)}^{C} \circ d R_{r} t=$ $\left.{ }^{\prime} \theta^{i}\right|_{b(r)}\left(d R_{r} t\right)^{\prime} e_{i}(r, s)=\left.\theta^{i}\right|_{b(r)}(t)^{\prime} e_{i}(r, s)$. Thus at $m(r, s), d S_{r}$ carries $\left.\theta^{i}\right|_{b(r)}(t) e_{i}(r, s)$ into $\left.\theta^{i}\right|_{b(r)}(t)^{\prime} e_{i}(r, s)$. Since $|s|<\Delta(r), m(r, s)$ can not be conjugate to $m(r)$ along $\exp _{r}^{C}$ of the ray from O to s, so this shows that $d S_{r}$ carries $e_{i}(r, s)$ into ${ }^{\prime} e_{i}(r, s)$.

From this point, we shall often write $\left(\exp _{r}^{C}\right)^{-1}$ for $\left(\left.\exp _{r}^{C}\right|_{B(O, \Delta(r))}\right)^{-1}$.
Lemma 5.5 Let $\left(r_{1}, s_{1}\right)$ and $\left(r_{2}, s_{2}\right)$ be in F. If $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$, then there is a neighborhood O_{1} of s_{1} and a neighborhood O_{2} of s_{2}, with $O_{i} \subset B\left(0, \Delta\left(r_{i}\right)\right)$ and such that all the following hold:
(1) $\left(\exp _{r_{2}}^{C}\right)^{-1} \circ \exp _{r_{1}}^{C}$ is a holomorphic isomorphism, mapping O_{1} onto O_{2};
(2) $\left(\exp _{r_{2}}^{C}\right)^{-1} \circ^{\prime} \exp _{r_{1}}^{C}$ is the same as $\left(\exp _{r_{2}}^{C}\right)^{-1} \circ \exp _{r_{1}}^{C}$ on O_{1};
(3) if $p_{1} \in O_{1}$ and $p_{2} \in O_{2}$, then $\exp _{r_{1}}^{C} p_{1}=\exp _{r_{2}}^{C} p_{2}$ implies $\left(r_{1}, p_{1}\right) \sim\left(r_{2}, p_{2}\right)$.

Proof Let $n=\exp _{r_{1}}^{C} s_{1}=\exp _{r_{2}}^{C} s_{2}, n={ }^{\prime} \exp _{r_{1}}^{C} s_{1}={ }^{\prime} \exp _{r_{2}}^{C} s_{2}$. Choose a positive real number ε such that $B(n, \varepsilon) \subset \exp _{r_{1}}^{C} B\left(O, \Delta\left(r_{1}\right)\right) \cap \exp _{r_{2}}^{C} B\left(O, \Delta\left(r_{2}\right)\right), B\left({ }^{\prime} n, \varepsilon\right) \subset^{\prime} \exp _{r_{1}}^{C} B\left(O, \Delta\left(r_{1}\right)\right) \cap$ ${ }^{\prime} \exp _{r_{2}}^{C} B\left(O, \Delta\left(r_{2}\right)\right), \varepsilon<\Delta(n)$ and $\varepsilon<\Delta\left({ }^{\prime} n\right)$. Define

$$
O_{1}=\left(\exp _{r_{1}}^{C}\right)^{-1} B(n, \varepsilon), \quad O_{2}=\left(\exp _{r_{2}}^{C}\right)^{-1} B(n, \varepsilon)
$$

Then conclusion (1) above holds trivially.
Next we show $S_{r_{1}}=S_{r_{2}}$ on $B(n, \varepsilon)$. Since we know $S_{r_{1}}$ and $S_{r_{2}}$ are holomorphic isometries and both carry n into ' n, it suffices to show both (a) $B\left({ }^{\prime} n, \varepsilon\right)$ is included in the component of ' n of $S_{r_{1}}\left(B\left(m\left(r_{1}\right), \Delta\left(r_{1}\right)\right)\right) \cap S_{r_{2}}\left(B\left(m\left(r_{2}\right), \Delta\left(r_{2}\right)\right)\right)$ and (b) $d S_{r_{1}}=d S_{r_{2}}$ at n. The choice of ε above makes it clear that $S_{r_{i}}\left(B\left(m\left(r_{i}\right), \Delta\left(r_{i}\right)\right)\right)$ contains $B\left({ }^{\prime} n, \varepsilon\right)$, so (a) holds. To prove (b), it is sufficient to show that $d S_{r_{1}} e_{i}\left(r_{2}, s_{2}\right)=^{\prime} e_{i}\left(r_{2}, s_{2}\right)$. By assumption that $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$, we know $b\left(r_{2}, s_{2}\right)=b\left(r_{1}, s_{1}\right) g$ implies ' $b\left(r_{2}, s_{2}\right)={ }^{\prime} b\left(r_{1}, s_{1}\right) g$. Let $g=\left(g_{i}^{j}\right)$ and these statements say

$$
e_{i}\left(r_{2}, s_{2}\right)=g_{i}^{j} e_{j}\left(r_{1}, s_{1}\right), \quad ' e_{i}\left(r_{2}, s_{2}\right)=g_{i}^{j} e_{j}\left(r_{1}, s_{1}\right),
$$

hence $d S_{r_{1}} e_{i}\left(r_{2}, s_{2}\right)=g_{i}^{j} d S_{r_{1}} e_{j}\left(r_{1}, s_{1}\right)=g_{i}^{j} e_{j}\left(r_{1}, s_{1}\right)=^{\prime} e_{2}\left(r_{2}, s_{2}\right)$, proving (b) and thus showing that $S_{r_{1}}=S_{r_{2}}$ on $B(n, \varepsilon)$.

Let us write $\exp _{r_{1}}^{C}$ for the mapping of O_{1} into $B(n, \varepsilon), \exp _{r_{2}}^{C}$ for the mapping of O_{2} into $B(n, \varepsilon)$. Because $S_{r_{1}}=S_{r_{2}}$ on $B(n, \varepsilon)$, we have from the definition of S_{r},

$$
' \exp _{r_{1}}^{C} \circ\left(\exp _{r_{1}}^{C}\right)^{-1}=^{\prime} \exp _{r_{2}}^{C} \circ\left(\exp _{r_{2}}^{C}\right)^{-1}
$$

Thus $\left({ }^{\prime} \exp _{r_{2}}^{C}\right)^{-1} \circ^{\prime} \exp _{r_{1}}^{C}=\left(\exp _{r_{2}}^{C}\right)^{-1} \circ \exp _{r_{1}}^{C}$, proving (2).
Now we prove (3). Fix any $p_{1} \in O_{1}$ and $p_{2} \in O_{2}$ with $\exp _{r_{1}}^{C} p_{1}=\exp _{r_{2}}^{C} p_{2}$. By (2), we know that ' $\exp _{r_{1}}^{C} p_{1}={ }^{\prime} \exp _{r_{2}}^{C} p_{2}$. It remains to show $b\left(r_{2}, p_{2}\right)=b\left(r_{1}, p_{1}\right) h$ implies ' $b\left(r_{2}, p_{2}\right)=$ ${ }^{\prime} b\left(r_{1}, p_{1}\right) h$. We know that $b\left(r_{2}, s_{2}\right)=b\left(r_{1}, s_{1}\right) g$ implies ' $b\left(r_{2}, s_{2}\right)==^{\prime} b\left(r_{1}, s_{1}\right) g$.

Let ρ_{i} be the geodesic into which $\exp _{O}^{C}$ carries the ray from O to r_{i}, σ_{i} be the geodesic into which $\exp _{r_{i}}^{C}$ carries the ray from O to s_{i}, let $\beta=\sigma_{2} \rho_{2} \rho_{1}^{-1} \sigma_{1}^{-1}$. Let α_{2} be the unique geodesic
in $B(n, \varepsilon)$ from n to $m\left(r_{1}, p_{1}\right)=m\left(r_{2}, p_{2}\right), \alpha_{2}^{-1}=\alpha_{1}$. Let $\bar{\alpha}_{1}$ be the unique horizontal curve over α_{1} which ends at $b\left(r_{1}, s_{1}\right)$ and let c be its initial point. Since the holonomy element by $\alpha_{2} \alpha_{1}$ and c is the identity, it follows from Lemma 5.1 that the holonomy element generated by $\alpha_{2} \beta \alpha_{1}$ and c is g; similarly, the holonomy element generated by ' $\alpha_{2}^{\prime} \beta^{\prime} \alpha_{1}$ and ' c is g.

Let τ_{i} be the geodesic into which $\exp _{r_{i}}^{C}$ carries the ray from O to $p_{i}, \delta=\tau_{2} \rho_{2} \rho_{1}^{-1} \tau_{1}^{-1}$, $\gamma_{i}=\alpha_{2} \sigma_{i} \tau_{i}^{-1}$, and let k_{i} be the holonomy element generated by $b\left(r_{i}, p_{i}\right)$ and γ_{i}. Then the holonomy element generated by $b\left(r_{1}, p_{1}\right)$ and δ is clearly $k_{1} k_{2}^{-1} g$, i.e., $b\left(r_{2}, p_{2}\right)=b\left(r_{1}, p_{1}\right) k_{1} k_{2}^{-1} g$.

Since $S_{r_{i}}$ carries $\tau_{i} \rightarrow^{\prime} \tau_{i}, \sigma_{i} \rightarrow^{\prime} \sigma_{i}, \alpha_{i} \rightarrow^{\prime} \alpha_{i}$ and $d S_{r_{i}}$ carries $e_{i}\left(r_{j}, p_{j}\right) \rightarrow{ }^{\prime} e_{i}\left(r_{j}, p_{j}\right), e_{i}\left(r_{j}, s_{j}\right) \rightarrow$ ${ }^{\prime} e_{i}\left(r_{j}, s_{j}\right)$, and $e_{i}\left(r_{j}\right) \rightarrow{ }^{\prime} e_{i}\left(r_{j}\right)$, it follows that the holonomy element generated by ' γ_{i} and ${ }^{\prime} b\left(r_{i}, p_{i}\right)$ is the same as that generated by γ_{i} and $b\left(r_{i}, p_{i}\right)$, thus is k_{i}. Then it follows that the holonomy element generated by $\delta \delta$ is $k_{i} k_{2}^{-1} g$, i.e., $b\left(r_{2}, p_{2}\right)=^{\prime} b\left(r_{1}, p_{1}\right) k_{1} k_{2}^{-1} g$. This proves (3).

Lemma 5.6 Each I_{r} is continuous.
Proof It is sufficient to show, for each such finite intersection, that $I_{r}^{-1}\left(I_{r_{1}} P_{1} \cap \cdots \cap I_{r_{k}} P_{k}\right)$ is open in $B(O, \Delta(r))$, where all $r_{i} \in \mathbb{C}^{d}$ and $P_{i} \subset B(O, \Delta(r))$ are open. Let $x \in I_{r_{1}} P_{1} \cap \cdots \cap I_{r_{k}} P_{k}$, $x=I_{r} s=I_{r_{j}} s_{j}$. By the previous lemma, we can find neighborhoods O_{1}, \cdots, O_{k} of s and neighborhoods Q_{1}, \cdots, Q_{k} of s_{1}, \cdots, s_{k} such that $O_{i} \subseteq B(O, \Delta(r)), Q_{i} \subseteq P_{i},\left(\exp _{r_{i}}^{C}\right)^{-1} \circ \exp _{r}^{C}$ is a holomorphic isomorphism of O_{i} onto Q_{i}, and for $t_{i} \in O_{i}$ and $q_{i} \in Q_{i}$, we have $\left(r, t_{i}\right) \sim\left(r, q_{i}\right)$ if $\exp _{r}^{C} t_{i}=\exp _{r_{i}}^{C} q_{i}$.

Let $V=O_{1} \cap \cdots \cap O_{k}$ and we show $I_{r} V \subseteq I_{r_{1}} P_{1} \cap \cdots \cap I_{r_{k}} P_{k}$. Let $t \in V$ and we must show $I_{r} t \in I_{r_{i}} Q_{i}$ for each i. Let $q_{i}=\left(\exp _{r_{i}}^{C}\right)^{-1} \circ \exp _{r}^{C} t$. We have $(r, t) \sim\left(r, q_{i}\right)$, hence $I_{r} t=I_{r} q_{i} \in I_{r} Q_{i}$.

Furthermore, we have the following lemma.
Lemma 5.7 For any r_{1} and r_{2} in C^{d}, the mappings $I_{r_{1}}$ and $I_{r_{2}}$ are holomorphic related, i.e., $\left(\left.I_{r_{2}}^{-1}\right|_{P_{r_{1}} \cap P_{r_{2}}}\right) \circ I_{r_{1}}$ is holomorphic.

Proof Let $x \in P_{r_{1}} \cap P_{r_{2}}$ with $x=I_{r_{1}} s_{1}=I_{r_{2}} s_{2}$. Choose the neighborhoods O_{1} and O_{2} of s_{1} and s_{2} given by Lemma 5.5. Then on O_{1}, we have $\left(\left.I_{r_{2}}^{-1}\right|_{P_{r_{1}} \cap P_{r_{2}}}\right) \circ I_{r_{1}}=\left(\exp _{r_{2}}^{C}\right)^{-1} \circ \exp _{r_{1}}^{C}$. Since the latter is holomorphic, so is the former. This holds for every such x, so the lemma is proved.

This lemma shows that the mappings I_{r} induce a complex structure on X and we henceforth consider X as a complex manifold in this way. Since $\exp _{r}^{C},{ }^{\prime} \exp _{r}^{C}$ and I_{r} are holomorphic maps on $B(O, \Delta(r))$, it follows that e and ' e are holomorphic maps of X into M and ' M. We now define the Kähler structure on X by the condition that e and ' e shall be locally holomorphic isometries.

Definition 5.1 If u and $v \in X_{x}$, we define $\langle u, v\rangle=\langle d e u$, dev $\rangle=\left\langle d^{\prime} e u, d^{\prime} e v\right\rangle$.
The second equality holds because the S_{r} are holomorphic isometries. It is clear that we now have made X into a Kähler manifold, and so that e and ' e are locally holomorphic isometries.

Lemma 5.8 X is complete.
Proof Let $x_{0}=I_{O} O$. For each ray ρ emanating from O in C^{d}, we find $I_{\rho} O$ is a geodesic in X; this follows from the facts that $e \circ I_{\rho} O=\exp _{\rho}^{C} O=\exp _{O} \circ \rho$ is a geodesic in M and the local holomorphic isometry of X with M. Since the rays ρ are infinitely extendable, we see that these geodesics are infinitely extendable. They are also all the geodesics emanating from x_{0}, hence X is complete.

The following theorem is obvious. In fact, it suffices to prove ϕ is $1-1$, but it is a direct result of the corresponding theorem of Riemann manifolds if we look M and N as Riemann manifolds.

Theorem 5.1 Let N and M be Kähler manifolds of complex dimension d with N complete and ϕ be a locally holomorphic isometry of N onto M. If M is simply connected, then ϕ is a globally holomorphic isometry.

Now we can finish the proof of Theorem 1.1, our main theorem. In fact, by the above theorem, we see that e and ' e are homeomorphisms, thus ' $e \circ e^{-1}$ is a homeomorphism of M onto ' M. Because e and ' e are locally holomorphic isometries, ' $e \circ e^{-1}$ is also a locally holomorphic isometry. It clearly carries m into ' m and its differential carries e_{i} into ' e_{i}. Then the conclusion holds by the above theorem.

Acknowledgement The author would like to thank the reviewer for his (her) very careful and valuable comments.

References

[1] Ambrose, W., Parallel translation of Riemannian curvature, Annals of Mathematics, 64, 1956, 337-363.
[2] Chen, W. and Li, X., An Introduction to Riemann Geometry, Peking University Press, Beijing, 2004 (in Chinese).
[3] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, 2nd ed., Academic Press, New York, San Francisco, London, 1978.

[^0]: Manuscript received March 7, 2017. Revised August 15, 2017.
 ${ }^{1}$ School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.
 E-mail: yanrm@xmu.edu.cn
 *This work was supported by the National Natural Science Foundation of China (Nos.11571287, 11871405), the Fundamental Research Funds for the Central Universities (No. 20720150006) and the Natural Science Foundation of Fujian Province of China (No. 2016J01034).

