
Chin. Ann. Math. Ser. B

41(3), 2020, 479–494
DOI: 10.1007/s11401-020-0212-y

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2020

Lp (p > 1) Solutions of BSDEs with Generators Satisfying
Some Non-uniform Conditions in t and ω ∗

Yajun LIU1 Depeng LI1 Shengjun FAN2

Abstract This paper is devoted to the Lp (p > 1) solutions of one-dimensional backward
stochastic differential equations (BSDEs for short) with general time intervals and genera-
tors satisfying some non-uniform conditions in t and ω. An existence and uniqueness result,
a comparison theorem and an existence result for the minimal solutions are respectively
obtained, which considerably improve some known works. Some classical techniques used
to deal with the existence and uniqueness of Lp (p > 1) solutions of BSDEs with Lipschitz
or linear-growth generators are also developed in this paper.
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1 Introduction

Let us fix an extended real number 0 < T ≤ +∞, which can be finite or infinite. Let

(Ω,F , P ) be a probability space carrying a standard d-dimensional Brownian motion (Bt)t≥0

and (Ft)t≥0 be the natural σ-algebra generated by (Bt)t≥0. We assume that FT = F and

(Ft)t≥0 is right-continuous and complete. In this paper, we are concerned with the following

one-dimensional backward stochastic differential equation (BSDE for short in the remaining):

yt = ξ +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

zs · dBs, t ∈ [0, T ], (1.1)

where the extended real number T is called the terminal time, ξ is an FT -measurable random

variable called the terminal condition, the random function g(ω, t, y, z) : Ω× [0, T ]×R×R
d → R

is (Ft)-progressively measurable for each (y, z) called the generator of BSDE (1.1), and the

solution (yt, zt)t∈[0,T ] is a pair of (Ft)-progressively measurable processes. The triple (ξ, T, g)

is called the parameters of BSDE (1.1), and BSDE with parameters (ξ, T, g) is usually denoted

by BSDE (ξ, T, g).

The nonlinear BSDEs were initially introduced by Pardoux and Peng [23]. In this pio-

neering paper, the authors established an existence and uniqueness result for the L2 solutions

of multidimensional BSDEs, where the generator g is Lipschitz continuous in (y, z) uniformly

with respect to (t, ω), the terminal time T is finite, and both the terminal condition ξ and the
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process {g(t, 0, 0)}t∈[0,T ] are square integrable. From then on, BSDEs have been extensively

studied and many applications have been found in mathematical finance, stochastic control,

partial differential equations and so on, see, for example, El Karoui, Peng and Quenez [11] and

Morlais [22] for details.

Many papers have devoted to improving the existence and uniqueness result obtained in [23]

by relaxing the uniform Lipschitz condition with respect to the generator g, changing the finite

terminal time into the infinite case and studying the solutions of BSDE (1.1) under non-square

integrable parameters. For instance, many works [1, 3–7, 9, 12, 16–17, 19–21, 26] (see also the

references therein) weakened the uniform Lipschitz condition with respect to the generator g,

and some of them investigated the Lp (p > 1) solution of BSDE (1.1). Chen and Wang [8]

first improved the result of Pardoux and Peng [23] to the infinite time interval case and proved

an existence and uniqueness result for the L2 solution of BSDE (1.1), where the generator g is

Lipschitz continuous in (y, z) non-uniformly with respect to t. Fan and Jiang [13] and Fan, Jiang

and Tian [15] further relaxed the Lipschitz condition of Chen and Wang [8] and established two

existence and uniqueness results for the L2 solutions of BSDE (1.1) with general time intervals,

which also generalized the corresponding results obtained in [21] and [19].

We especially mention that El Karoui and Huang [10] first introduced a stochastic Lipschitz

condition of the generator g in (y, z), where the Lipschitz constant depends also on (t, ω). In

this paper, the authors investigate a general time interval BSDE driven by a general càdlàg

martingale, and some stronger integrability conditions on the generator, the terminal condition

and the solutions are required, which make it possible to replace the uniform Lipschitz condition

by a stochastic one. Based on this idea, Bender and Kohlmann [2] and Wang, Ran and Chen

[25] respectively proved an existence and uniqueness result for the L2 solution and the Lp (p >

1) solution of BSDE (1.1) with a general time horizon. After that, Briand and Confortola

[3] introduced another stochastic Lipschitz condition involving a bounded mean oscillation

martingale and investigated the Lp (for some certain p > 1) solution of an infinite dimensional

BSDE, where some new higher order integrability conditions on the generator and the terminal

condition (see their assumptions (A3) and (A4) for details) need to be satisfied.

Motivated by these results, in this paper we first put forward a new stochastic Lipschitz

condition (see (H1) in Section 3) and prove an existence and uniqueness result of the Lp (p > 1)

solution of BSDE (1.1) with a general time interval (see Theorem 3.1). We do not impose any

stronger integrability conditions to the parameters (ξ, g) and the solution (y, z) as made in [2,

10, 25], and the integrability condition (3.1) is the only requirement in (H1). By introducing

an example, we also show that our stochastic Lipschitz condition is strictly weaker than the

Lipschitz condition non-uniform in t used in [8] (see Example 3.1). And by using stopping

times to subdivide the interval [0, T ], we successfully overcome a difficulty arisen naturally in

our framework (see the proof of Theorem 3.1). Furthermore, in Section 4, by developing a

method employed in [15, 20] we establish a general comparison theorem for the Lp (p > 1)

solutions of BSDEs when one of the generators satisfies a monotonicity condition in y and

a uniform continuity condition in z, which are both non-uniform with respect to (t, ω) (see

Theorem 4.1). Finally, in Section 5, we prove an existence result of the minimal Lp (p > 1)

solution for BSDE (1.1) when the generator g is continuous and has a linear growth in (y, z)

non-uniform with respect to (t, ω) (see Theorem 5.1), by improving the method used in [18] to

prove in a direct way that the sequence of solutions of the BSDEs approximated by Lipschitz

generators is a Cauchy sequence in Sp×Mp. And, based on Theorem 5.1 together with Theorem

4.1, we also give a new comparison theorem of the minimal Lp (p > 1) solutions of BSDEs (see

Theorem 5.2) and a general existence and uniqueness theorem of the Lp (p > 1) solution of
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BSDEs (see Theorem 5.3).

We would like to mention that the results of this paper improve some corresponding existing

works including those obtained in [7–8, 15, 19, 23], etc. And, some classical techniques used

to deal with the existence and uniqueness of Lp (p > 1) solutions of BSDEs with Lipschitz or

linear-growth generators are also developed in this paper.

2 Notations and Lemmas

In this section, we introduce some basic notations and definitions, which will be used in

this paper. First, we use | · | to denote the norm of Euclidean space R
d, and for each subset

A ⊂ Ω × [0, T ], let 1A = 1 in case of (ω, t) ∈ A, otherwise, let 1A = 0. Then, for each

real number p > 1, let Lp(Ω,FT , P ;R) be the set of all R-valued and FT -measurable random

variables ξ such that E[|ξ|p] < +∞, Sp(0, T ;R) (or Sp simply) be the set of R-valued, adapted

and continuous processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=
(
E
[

sup
t∈[0,T ]

|Yt|
p
]) 1

p

< +∞,

and Mp(0, T ;Rd) (or Mp simply) be the set of (Ft)-progressively measurable R
d-valued pro-

cesses (Zt)t∈[0,T ] such that

‖Z‖Mp :=
(
E
[( ∫ T

0

|Zt|
2dt

) p

2
]) 1

p

< +∞.

Obviously, both Sp and Mp are Banach spaces for each p > 1.

Finally, let S be the set of all nondecreasing continuous functions φ(·): R
+ 7→ R

+ with

φ(0) = 0 and φ(x) > 0 for all x ∈ R
+, here and hereafter R+ := [0,+∞).

Definition 2.1 A pair of processes (yt, zt)t∈[0,T ] taking values in R × R
d is called an Lp

solution of BSDE (1.1) for some p > 1, if (yt, zt)t∈[0,T ] ∈ Sp(0, T ;R) × Mp(0, T ;Rd) and

dP -a.s., BSDE (1.1) holds true for each t ∈ [0, T ].

Let us introduce the following Lemma 2.1, which will be used in Section 3 and Section 5.

Lemma 2.1 Let p > 1, 0 < T ≤ +∞, and (gt)t∈[0,T ] be an (Ft)-progressively measurable

process such that
∫ T

0 |gt|dt < +∞, dP -a.s.. If (Yt, Zt)t∈[0,T ] is an Lp solution to the following

BSDE:

Yt = YT +

∫ T

t

gsds−

∫ T

t

Zs · dBs, t ∈ [0, T ], (2.1)

then there exists a positive constant Cp depending only on p such that for each t ∈ [0, T ],

E

[
sup

s∈[t,T ]

|Ys|
p
]
≤ CpE

[
|YT |

p +

∫ T

t

(|Ys|
p−1|gs|)ds

]
, (2.2)

E

[(∫ T

t

|Zs|
2ds

) p

2
]
≤ Cp

{
E

[
|YT |

p +
( ∫ T

t

(|Ys||gs|)ds
) p

2
]
+ E

[
sup

s∈[t,T ]

|Ys|
p
]}

. (2.3)

Moreover, there exists a positive constant Cp depending only on p such that for each t ∈ [0, T ],

E

[
sup

s∈[t,T ]

|Ys|
p
]
+ E

[(∫ T

t

|Zs|
2ds

) p

2
]
≤ CpE

[
|YT |

p +
(∫ T

t

|gs|ds
)p]

. (2.4)



482 Y. J. Liu, D. P. Li and S. J. Fan

Proof In the same way as Proposition 2.4 in [18], we can prove (2.2) and (2.3). It remains

to show (2.4). In fact, by the inequality 2ab ≤ a2 + b2 and Young’s inequality we have, for each

constant C̃p > 0,

C̃pE

[ ∫ T

t

(|Ys|
p−1|gs|)ds

]
≤ C̃pE

[
sup

s∈[t,T ]

|Ys|
p−1

∫ T

t

|gs|ds
]

≤
1

2
E

[
sup

s∈[t,T ]

|Ys|
p
]
+

1

p

(2(p− 1)

p
C̃p

)p

E

[( ∫ T

t

|gs|ds
)p]

(2.5)

and

E

[(∫ T

t

(|Ys||gs|)ds
) p

2
]
≤ E

[
sup

s∈[t,T ]

|Ys|
p

2

(∫ T

t

|gs|ds
) p

2
]

≤
1

2
E

[
sup

s∈[t,T ]

|Ys|
p
]
+

1

2
E

[( ∫ T

t

|gs|ds
)p]

. (2.6)

Thus, (2.4) follows immediately from (2.2)–(2.3) and (2.5)–(2.6).

The following technical Lemma 2.2 comes from [14, Lemma 4], which will be used in Section

4. It gives a sequence of upper bounds for functions of linear growth.

Lemma 2.2 Let Ψ(·) : R+ 7→ R
+ be a nondecreasing function of linear growth, which means

that Ψ(x) ≤ K(x+ 1) (K > 0) holds true for all x ∈ R
+. Then for each n ≥ 1,

Ψ(x) ≤ (n+ 2K)x+Ψ
( 2K

n+ 2K

)

holds true for each x ∈ R
+.

3 An Existence and Uniqueness Result

In this section, we will use a stopping time technique involved in subdividing the time

interval [0, T ] to prove a general existence and uniqueness result for the Lp (p > 1) solution

of BSDE (1.1), and introduce an example to show that our stochastic Lipschitz condition is

strictly weaker than the Lipschitz condition non-uniform in t used in [8]. First, let us introduce

the following assumptions with the generator g, where 0 < T ≤ +∞ and p > 1.

(H1) g is Lipschtiz continuous in (y, z) non-uniformly with respect to both t and ω , i.e., there

exist two (Ft)-progressively measurable nonnegative processes {ut(ω)}t∈[0,T ] and {vt(ω)}t∈[0,T ]

satisfying

∫ T

0

[ut(ω) + v2t (ω)]dt ≤ M, dP -a.s. (3.1)

for some constant M > 0 such that dP × dt-a.e., for each y1, y2 ∈ R, z1, z2 ∈ R
d,

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ ut(ω)|y1 − y2|+ vt(ω)|z1 − z2|;

(H2) E
[( ∫ T

0 |g(ω, t, 0, 0)|dt
)p]

< +∞.

Remark 3.1 We note that the above (3.1) is equivalent to
∥∥ ∫ T

0
ut(ω) + v2t (ω)dt

∥∥
∞

≤ M .

For the sake of convenience, the ω in ut(ω) and vt(ω) is usually omitted without causing

confusion.
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The following Theorem 3.1 shows an existence and uniqueness result for Lp (p > 1) solutions

of BSDEs under assumptions (H1) and (H2), which could be regarded as a generalization of the

results obtained by Pardoux and Peng [23] and Chen and Wang [8], where ut and vt in (H1)

do not depend on ω.

Theorem 3.1 Assume that p > 1, 0 < T ≤ +∞ and the generator g satisfies assumptions

(H1)–(H2). Then for each ξ ∈ Lp(Ω,FT , P ;R), BSDE (ξ, T, g) admits a unique Lp solution.

Proof Assume that (yt, zt)t∈[0,T ] ∈ Sp(0, T ;R)×Mp(0, T ;Rd). It follows from (H1) that

|g(s, ys, zs)| ≤ |g(s, 0, 0)|+us|ys|+vs|zs|. Then from the inequality (a+b+c)p ≤ 3p(ap+bp+cp),

Hölder’s inequality and (H2), we have

E

[( ∫ T

0

|g(s, ys, zs)|ds
)p]

≤ 3pE
[(∫ T

0

|g(s, 0, 0)|ds
)p]

+ (3M)pE
[

sup
s∈[0,T ]

|ys|
p
]

+ 3pM
p

2 E

[(∫ T

0

|zs|
2ds

) p

2
]
< +∞.

As a result, the process
(
E
[
ξ+

∫ T

0 g(s, ys, zs)ds
∣∣Ft

])
0≤t≤T

is an Lp martingale. It then follows

from the martingale representation theorem (see, for example, [24, Theorems 2.42 and 2.48])

that there exists a unique process Z· ∈ Mp(0, T ;Rd) such that

E

[
ξ +

∫ T

0

g(s, ys, zs)ds
∣∣∣Ft

]
= E

[
ξ +

∫ T

0

g(s, ys, zs)ds
]
+

∫ t

0

Zs · dBs, 0 ≤ t ≤ T.

Let Yt := E
[
ξ +

∫ T

t
g(s, ys, zs)ds

∣∣Ft

]
, 0 ≤ t ≤ T . Obviously, Y· ∈ Sp(0, T ;R), and it is not

difficult to verify that (Yt, Zt)t∈[0,T ] is just the unique Lp solution to the following equation:

Yt = ξ +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

Zs · dBs, t ∈ [0, T ]. (3.2)

Thus, we have constructed a mapping from Sp(0, T ;R) × Mp(0, T ;Rd) to itself. Denote this

mapping by I : (yt, zt)t∈[0,T ] → (Yt, Zt)t∈[0,T ].

Now, suppose that (yit, z
i
t)t∈[0,T ] ∈ Sp(0, T ;R)×Mp(0, T ;Rd), and let (Y i

t , Z
i
t)t∈[0,T ] be the

mapping of (yit, z
i
t)t∈[0,T ], i = 1, 2, that is, I(yit, z

i
t)t∈[0,T ] = (Y i

t , Z
i
t)t∈[0,T ], i = 1, 2. We denote

Ŷt := Y 1
t − Y 2

t , Ẑt := Z1
t − Z2

t , ŷt := y1t − y2t , ẑt := z1t − z2t ,

ĝt := g(t, y1t , z
1
t )− g(t, y2t , z

2
t ), t ∈ [0, T ].

Then (Ŷt, Ẑt)t∈[0,T ] is an Lp solution of the following BSDE:

Ŷt =

∫ T

t

ĝsds−

∫ T

t

Ẑs · dBs, t ∈ [0, T ].

Furthermore, (2.4) of Lemma 2.1 yields the existence of a constant cp > 0 depending only on p

such that for each t ∈ [0, T ],

E

[
sup

s∈[t,T ]

|Ŷs|
p +

(∫ T

t

|Ẑs|
2ds

) p

2
]
≤ cpE

[(∫ T

t

|ĝs|ds
)p]

.
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Thus, by virtue of (H1) and Hölder’s inequality we can deduce that for each t ∈ [0, T ],

E

[
sup

s∈[t,T ]

|Ŷs|
p +

( ∫ T

t

|Ẑs|
2ds

) p

2
]

≤ cpE
[((∫ T

t

usds
)p

+
( ∫ T

t

v2sds
) p

2
)(

sup
s∈[t,T ]

|ŷs|
p +

( ∫ T

t

|ẑs|
2ds

) p

2
)]

. (3.3)

In the sequel, we choose a sufficiently large number N such that

M

N
≤

1

(4cp)
1
p

∧
1

(4cp)
2
p

,

and subdivide the interval [0, T ] into some small stochastic intervals like [Ti−1, Ti], i = 1, · · · , N ,

by defining the following (Ft)-stopping times:

T0 = 0;

T1 = inf
{
t ≥ 0 :

∫ t

0

(us + v2s )ds ≥
M

N

}
∧ T ;

...

Ti = inf
{
t ≥ Ti−1 :

∫ t

0

(us + v2s )ds ≥
iM

N

}
∧ T ;

...

TN = inf
{
t ≥ TN−1 :

∫ t

0

(us + v2s)ds ≥
NM

N

}
∧ T = T.

Thus, for any [Ti−1, Ti] ⊂ [0, T ], i = 1, · · · , N , it follows that

(∫ Ti

Ti−1

usds
)p

+
( ∫ Ti

Ti−1

v2sds
) p

2

≤
1

2cp
. (3.4)

Now, with the help of inequality (3.3) we have

E

[
sup

s∈[TN−1,T ]

|Ŷs|
p +

(∫ T

TN−1

|Ẑs|
2ds

) p

2
]
≤

1

2
E

[
sup

s∈[TN−1,T ]

|ŷs|
p +

( ∫ T

TN−1

|ẑs|
2ds

) p

2
]
,

which means that I is a strict contraction from Sp(TN−1, T ;R) × Mp(TN−1, T ;R
d) into it-

self. Then I admits a unique fixed point in this space. It follows that there exists a unique

(yt, zt)t∈[TN−1,T ] ∈ Sp(TN−1, T ;R) × Mp(TN−1, T ;R
d) satisfying BSDE (ξ, T, g) on [TN−1, T ].

That is to say, BSDE (ξ, T, g) admits a unique Lp solution on [TN−1, T ].

Finally, note that (3.4) holds true for i = N−1. By replacing TN−1, T and ξ by TN−2, TN−1

and yTN−1
respectively in the above proof, we can obtain the existence and uniqueness for the

Lp solution of BSDE (ξ, T, g) on [TN−2, TN−1]. Furthermore, repeating the above procedure

and making use of (3.4), we deduce the existence and uniqueness for the Lp solution of BSDE

(ξ, T, g) on [TN−3, TN−2], · · · , [0, T1]. The proof of Theorem 3.1 is then completed.

Remark 3.2 It is easy to see that Theorem 3.1 holds also true for multidimensional BSDEs.

The following example shows that the assumption (H1) is strictly weaker than the corre-

sponding assumption in [8]. For readers’ convenience, we list the assumption of Chen and Wang

[8] as the following (H1′):



Lp Solutions of BSDEs with Non-uniform Conditions 485

(H1′) g is Lipschitz continuous in (y, z) non-uniformly with respect to t, i.e., there exist two

functions u(t), v(t) : [0, T ] 7→ R
+ satisfying

∫ T

0

[u(t) + v2(t)]dt < +∞

such that dP × dt-a.e., for each y1, y2 ∈ R, z1, z2 ∈ R
d,

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ u(t)|y1 − y2|+ v(t)|z1 − z2|.

Example 3.1 Let 0 < T ≤ +∞, and for each t0 ∈ (0, T ), define the following two stopping

times:

τ1(ω) = inf
{
t > t0 : |Bt0(ω)|(t− t0) ≥

M

2

}
∧ T,

τ2(ω) = inf
{
t > t0 : |Bt0(ω)|

2(t− t0) ≥
M

2

}
∧ T.

Consider the generator g̃(ω, t, y, z) := ũt(ω)|y|+ ṽt(ω)|z|, where

ũt(ω) = |Bt0(ω)|1((t0,τ1(ω)]](ω, t), ṽt(ω) = |Bt0 |1((t0,τ2(ω)]](ω, t), (t, ω) ∈ [0, T ]× Ω.

It is clear that g̃ satisfies the assumptions (H1) and (H2) with ut = ũt and v(t) = ṽt. Then,

by Theorem 3.1 we know that for each p > 1 and ξ ∈ Lp(Ω,FT , P ;R), BSDE (ξ, T, g̃) admits a

unique Lp solution.

We especially mention that this g̃ does not satisfy the above assumption (H1′). In fact, if

the assumption (H1′) holds true for g̃, then there exist two deterministic functions u(t), v(t) :

[0, T ] 7→ R
+ such that

ũt(ω) ≤ u(t), ṽt(ω) ≤ v(t), dP × dt-a.e. (3.5)

and
∫ T

0

[u(t) + v2(t)]dt < +∞. (3.6)

This yields a contradiction which will be shown below. Note first that for each t ∈ (t0, T ), we

have

{ω : ũt(ω) > u(t)} = {ω : t ≤ τ1(ω) and |Bt0(ω)| > u(t)}

=
{
ω : |Bt0(ω)| ≤

M

2(t− t0)
and |Bt0(ω)| > u(t)

}
,

and note that Bt0(ω) is a normal random variable with zero-expected value and t0-variance

values. If u(t) < M
2(t−t0)

for some t ∈ (t0, T ), then P ({ω : ũt(ω) > u(t)}) > 0. Using this fact

and (3.5) we can conclude that

ut ≥
M

2(t− t0)
, dt-a.e. in (t0, T ).

Thus,
∫ T

0

u(t)dt ≥
M

2

∫ T

t0

1

t− t0
dt = +∞,

which contradicts (3.6).

Therefore, our assumption (H1) is strictly weaker than (H1′) used in [8].



486 Y. J. Liu, D. P. Li and S. J. Fan

4 A General Comparison Theorem

In this section, by developing a method employed in [15, 20] we will prove a general com-

parison theorem for Lp (p > 1) solution of BSDE (1.1). Let us first introduce the following

assumptions, where 0 < T ≤ +∞.

(H3) g satisfies a monotonicity condition in y non-uniform with respect to both t and ω,

i.e., there exists an (Ft)-progressively measurable nonnegative process {ut(ω)}t∈[0,T ] satisfying

∫ T

0

ut(ω)dt ≤ M, dP -a.s.

for some constant M > 0 such that dP × dt-a.e., for each y1, y2 ∈ R, z1, z2 ∈ R
d,

sgn(y1 − y2)(g(ω, t, y1, z)− g(ω, t, y2, z)) ≤ ut(ω)|y1 − y2|;

(H4) g satisfies a uniform continuity condition in z non-uniform with respect to both t and

ω, i.e., there exists a linear-growth function φ(·) ∈ S and an (Ft)-progressively measurable

nonnegative process {vt(ω)}t∈[0,T ] satisfying

∫ T

0

v2t (ω)dt ≤ M, dP -a.s.

such that dP × dt-a.e., for each y1, y2 ∈ R, z1, z2 ∈ R
d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ vt(ω)φ(|z1 − z2|).

Here and hereafter, we always assume that 0 ≤ φ(x) ≤ ax + b for all x ∈ R
+. Furthermore,

when b 6= 0, we also assume that
∫ T

0 vt(ω)dt ≤ M , dP -a.s., where M is defined in (H3).

Remark 4.1 Note that in case of ut(ω) ≡ 0, (H3) means that g is non-increasing in y.

The following Theorem 4.1 establishes a general comparison theorem for BSDEs under the

assumptions (H3)–(H4), which generalizes partly Theorem 2 in [15], where ut(ω) and vt(ω) in

(H3)–(H4) do not depend on ω and p = 2, and [20, Lemma 1], where ut(ω) and vt(ω) need to

be bounded processes and T < +∞.

Theorem 4.1 Let p > 1, 0 < T ≤ +∞, ξ, ξ′ ∈ Lp(Ω,FT , P ;R), g and g′ be two generators

of BSDEs, and (yt, zt)t∈[0,T ] and (y′t, z
′
t)t∈[0,T ] be, respectively, an Lp solution to BSDE (ξ, T, g)

and BSDE (ξ′, T, g′). If dP -a.s., ξ ≤ ξ′, g (respectively, g′) satisfies (H3) and (H4) and dP ×

dt-a.e., g(t, y′t, z
′
t) ≤ g′(t, y′t, z

′
t) (respectively, g(t, yt, zt) ≤ g′(t, yt, zt)), then for each t ∈ [0, T ],

we have

dP -a.s., yt ≤ y′t.

Proof Assume that dP -a.s., ξ ≤ ξ′, g satisfies (H3)–(H4) and dP × dt-a.e., g(t, y′t, z
′
t) ≤

g′(t, y′t, z
′
t). Setting ŷt = yt − y′t, ẑt = zt − z′t, ξ̂ = ξ − ξ′, since g(s, y′s, z

′
s) − g′(s, y′s, z

′
s) is

non-positive, we have

g(s, ys, zs)− g′(s, y′s, z
′
s) = g(s, ys, zs)− g(s, y′s, z

′
s) + g(s, y′s, z

′
s)− g′(s, y′s, z

′
s)

≤ g(s, ys, zs)− g(s, y′s, z
′
s)

= g(s, ys, zs)− g(s, y′s, zs) + g(s, y′s, zs)− g(s, y′s, z
′
s),
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and we deduce, using (H3)–(H4), that1ŷs>0[g(s, ys, zs)− g′(s, y′s, z
′
s)] ≤ usŷ

+
s + 1ŷs>0vsφ(|ẑs|), s ∈ [0, T ]. (4.1)

Then Tanaka’s formula with (4.1) leads to the following inequality, with At :=
∫ t

0 usds,

eAt ŷ+t ≤ eAT ξ̂+ +

∫ T

t

eAs{1ŷs>0[g(s, ys, zs)− g′(s, y′s, z
′
s)]− usŷ

+
s }ds−

∫ T

t

eAs1ŷs>0ẑs · dBs

≤

∫ T

t

eAs1ŷs>0vsφ(|ẑs|)ds−

∫ T

t

eAs1ŷs>0ẑs · dBs, t ∈ [0, T ]. (4.2)

Furthermore, note that Lemma 2.2 with Ψ(·) = φ(·) and K = c := a+ b yields that

∀ n ≥ 1, x ∈ R
+, φ(x) ≤ (n+ 2c)x+ 1b6=0φ

( 2c

n+ 2c

)
, (4.3)

where 1b6=0 = 1 if b 6= 0 and 1b6=0 = 0 if b = 0. By (4.1)–(4.3) we get that for each n ≥ 1 and

t ∈ [0, T ],

eAt ŷ+t ≤ an +

∫ T

t

[eAs1ŷs>0(n+ 2c)vs|ẑs|]ds−

∫ T

t

eAs1ŷs>0ẑs · dBs

= an −

∫ T

t

eAs1ŷs>0ẑs ·
[
−

(n+ 2c)vsẑs
|ẑs|

1|ẑs|6=0ds+ dBs

]
, (4.4)

where, by (H4),

an = 1b6=0φ
( 2c

n+ 2c

)∥∥∥
∫ T

0

eAsvsds
∥∥∥
∞

≤ 1b6=0φ
( 2c

n+ 2c

)
MeM → 0 as n → ∞. (4.5)

Let Pn be the probability on (Ω,F) which is equivalent to P and defined by

dPn

dP
:= exp

{
(n+ 2c)

∫ T

0

vsẑs

|ẑs|
1|ẑs|6=0 · dBs −

1

2
(n+ 2c)2

∫ T

0

1|ẑs|6=0v
2
sds

}
.

It is worth noting that dPn

dP has moments of all orders since
∫ T

0 v2(s)ds ≤ M , dP -a.s.. By

Girsanov’s theorem, under Pn the process

Bn(t) = Bt −

∫ t

0

(n+ 2c)vsẑs
|ẑs|

1|ẑs|6=0ds, t ∈ [0, T ]

is Brownian motion. Moreover, the process
( ∫ t

0
eAs1ŷs>0ẑs · dBn(s)

)
t∈[0,T ]

is a (Ft, Pn)-

martingale. Indeed, let En[X |Ft] represent the conditional expectation of random variable

X with respect to Ft under Pn and let En[X ]=̂En[X |F0], it then follows from the Burkholder-

Davis-Gundy (BDG for short) inequality and Hölder’s inequality that

En

[
sup

0≤t≤T

∣∣∣
∫ t

0

eAs1ŷs>0ẑs · dBn(s)
∣∣∣
]
≤ 4eMEn

[
√∫ T

0

|ẑs|2ds
]

≤ 4eME

[(dPn

dP

) p

p−1
] p−1

p

E

[(∫ T

0

|ẑs|
2ds

) p

2
] 1

p

< +∞.
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Thus, by taking the conditional expectation with respect to Ft under Pn in (4.4), we obtain

that for each n ≥ 1 and t ∈ [0, T ],

eAt ŷ+t ≤ an, dP -a.s. (4.6)

And in view of (4.5), it follows that for each t ∈ [0, T ], dP -a.s., yt ≤ y′t.

Now, let us assume that dP -a.s., ξ ≤ ξ′, g′ satisfies (H3)–(H4) and dP ×dt-a.e., g(t, yt, zt) ≤

g′(t, yt, zt). Then, since g(s, ys, zs)− g′(s, ys, zs) is non-positive, we have

g(s, ys, zs)− g′(s, y′s, z
′
s) = g(s, ys, zs)− g′(s, ys, zs) + g′(s, ys, zs)− g′(s, y′s, z

′
s)

≤ g′(s, ys, zs)− g′(s, y′s, z
′
s)

= g′(s, ys, zs)− g′(s, y′s, zs) + g′(s, y′s, zs)− g′(s, y′s, z
′
s),

and using (H3)–(H4), we know that inequality (4.1) still holds. Therefore, the same proof as

above yields that for each t ∈ [0, T ], dP -a.s., yt ≤ y′t. Theorem 4.1 is proved.

From Theorem 4.1, the following corollary is immediate.

Corollary 4.1 Let p > 1, 0 < T ≤ +∞, ξ, ξ′ ∈ Lp(Ω,FT , P ;R), one of the generators

g and g′ satisfy assumptions (H3)–(H4), and (yt, zt)t∈[0,T ] and (y′t, z
′
t)t∈[0,T ] be, respectively,

an Lp solution to BSDE (ξ, T, g) and BSDE (ξ′, T, g′). If dP -a.s., ξ ≤ ξ′, and dP × dt-a.e.,

g(t, y, z) ≤ g′(t, y, z) for any (y, z) ∈ R× R
d, then for each t ∈ [0, T ], dP -a.s., yt ≤ y′t.

5 An Existence Result of the Minimal Solutions

In this section, we will put forward and prove an existence result of the minimal Lp (p > 1)

solution for BSDE (1.1) (see Theorem 5.1) by improving the method used in [18] to prove in a

direct way that the sequence of solutions of the BSDEs approximated by the Lipschitz generators

is a Cauchy sequence in Sp ×Mp. And, based on Theorem 5.1 together with Theorem 4.1, we

will also give a new comparison theorem of the minimal Lp (p > 1) solutions of BSDEs (see

Theorem 5.2) and a general existence and uniqueness theorem of the Lp (p > 1) solution of

BSDEs (see Theorem 5.3). First, we introduce the following assumptions with respect to the

generator g, where 0 < T ≤ +∞.

(H5) g has a linear growth in (y, z) non-uniform with respect to both t and ω, i.e., there

exist three (Ft)-progressively measurable nonnegative processes {ut(ω)}t∈[0,T ], {vt(ω)}t∈[0,T ]

and {ft(ω)}t∈[0,T ] satisfying

E

[( ∫ T

0

ft(ω)dt
)p]

< +∞,

and
∫ T

0

[ut(ω) + v2t (ω)]dt ≤ M, dP -a.s.,

for some constant M > 0 such that dP × dt-a.e., for each y ∈ R, z ∈ R
d,

|g(ω, t, y, z)| ≤ ft(ω) + ut(ω)|y|+ vt(ω)|z|;

(H6) dP × dt-a.e., g(ω, t, ·, ·) : R× R
d 7→ R is a continuous function.

The following Proposition 5.1 will play an important role in the proof of Theorem 5.1. Its

proof is analogous to [19, Lemma 1], so we omit it here.
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Proposition 5.1 Assume that the generator g satisfies (H5)–(H6). Let gn be the function

defined as follows:

gn(ω, t, y, z) := inf
(y,z)∈R1+d

{g(ω, t, y, z) + nut(ω)|y − y|+ nvt(ω)|z − z|}.

Then the sequence of function gn is well defined. For each n ≥ 1, gn(ω, t, y, z) is (Ft)-

progressively measurable for each (y, z) ∈ R× R
d, and it satisfies, dP × dt-a.e.,

(i) Stochastic linear growth: ∀ y, z, |gn(ω, t, y, z)| ≤ ft(ω) + ut(ω)|y|+ vt(ω)|z|;

(ii) Monotonicity in n: ∀ y, z, gn(ω, t, y, z) increases in n;

(iii) Stochastic Lipschitz condition: ∀ y1, y2, z1, z2, we have

|gn(ω, t, y1, z1)− gn(ω, t, y2, z2)| ≤ nut(ω)|y1 − y2|+ nvt(ω)|z1 − z2|;

(iv) Convergence: If (yn, zn) → (y, z), then gn(ω, t, yn, zn) → g(ω, t, y, z), as n → ∞.

Now we state the main result of this section—Theorem 5.1. It improves [15, Theorem 1],

where ut(ω) and vt(ω) in (H5) do not depend on ω and p = 2, and [18, Theorem 3.3], where

ut(ω) and vt(ω) need to be bounded processes and T < +∞.

Theorem 5.1 Assume that p > 1, 0 < T ≤ +∞ and the generator g satisfies (H5)–(H6).

Then for each ξ ∈ Lp(Ω,FT , P ;R), BSDE (ξ, T, g) admits a minimal Lp solution (yt, zt)t∈[0,T ],

which means that if (yt, zt)u∈[0,T ] is any Lp solution to BSDE (ξ, T, g), then for each t ∈ [0, T ],

dP -a.s., yt ≤ yt.

Proof Let gn be defined as in Proposition 5.1. In view of Proposition 5.1(i), for each n ≥ 1

we have

E

[(∫ T

0

|gn(s, 0, 0)|ds
)p]

≤ E

[(∫ T

0

fsds
)p]

< +∞.

In view of Proposition 5.1(iii) and (H5), it follows from Theorem 3.1 that for each n ≥ 1,

BSDE (ξ, T, gn) and BSDE (ξ, T, h) admit unique Lp solutions (ynt , z
n
t )t∈[0,T ] and (Yt, Zt)t∈[0,T ]

respectively, where h(ω, t, y, z) := ft(ω) + ut(ω)|y| + vt(ω)|z| for each (ω, t, y, z). And in view

of Proposition 5.1(ii), Corollary 4.1 yields that for each n ≥ 1 and t ∈ [0, T ], y1t (ω) ≤ ynt (ω) ≤

yn+1
t (ω) ≤ Yt(ω), dP -a.s.. Thus, there must exist an (Ft)-progressively measurable process

(yt)t∈[0,T ] satisfying that for each t ∈ [0, T ],

lim
n→+∞

ynt (ω) = yt(ω), dP -a.s.,

and for each n ≥ 1,

|ynt (ω)| ≤ |y1t (ω)|+ |Yt(ω)|, dP -a.s.. (5.1)

Now, let G(ω) = sup
t∈[0,T ]

(|y1t (ω)|+ |Yt(ω)|). We have

E

[
sup

t∈[0,T ]

|yt|
p
]
≤ E[Gp] < +∞. (5.2)

Furthermore, it follows form (2.3) of Lemma 2.1 together with (5.1)–(5.2) that there exists

a constant Cp > 0 depending only on p such that for each n ≥ 1,

E

[( ∫ T

0

|zns |
2ds

) p

2
]
≤ CpE

[
|ξ|p +

( ∫ T

0

(|yns ||gn(s, y
n
s , z

n
s )|)ds

) p

2
]
+ CpE[G

p]. (5.3)
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On the other hand, in view of Proposition 5.1(i) and by inequalities (a+b+c)p ≤ 3p(ap+bp+cp),

ab ≤ εa2 + b2

ε
and Hölder’s inequality we can deduce that for each n ≥ 1 and ε > 0,

E

[(∫ T

0

(|yns ||gn(s, y
n
s , z

n
s )|)ds

) p

2
]

≤ 3
p

2 E

[( ∫ T

0

(|yns |fs)ds
) p

2

+
(∫ T

0

(|yns |
2us)ds

) p

2

+
(∫ T

0

(|yns ||z
n
s |vs)ds

) p

2
]

≤ 3
p

2

{
E

[
sup

s∈[0,T ]

|yns |
p
]
+

1

2
E

[(∫ T

0

fsds
)p]

+
1

2
Mp +

(1
ε

) p

2

M
p

2 E

[
sup

s∈[0,T ]

|yns |
p
]}

+ (3ε)
p

2 E

[( ∫ T

0

|zns |
2ds

) p
2
]
. (5.4)

Now, by choosing ε>0 such that Cp(3ε)
p

2 = 1
2 , it follows from (5.3)–(5.4) together with (5.1)–

(5.2) that

sup
n≥1

‖zn· ‖
p
Mp = sup

n≥1
E

[(∫ T

0

|zns |
2ds

) p

2
]
< +∞. (5.5)

Next, we will show that (ynt )t∈[0,T ] is a Cauchy sequence in space Sp(0, T ;R). Note that for

each m,n ≥ 1, (ym· − yn· , z
m
· − zn· ) satisfies the following equation:

ymt − ynt =

∫ T

t

[gm(s, yms , zms )− gn(s, y
n
s , z

n
s )]ds−

∫ T

t

(zms − zns ) · dBs, t ∈ [0, T ].

In view of (H5) and (2.2) of Lemma 2.1, we obtain the existence of a constant cp such that

‖ym· − yn· ‖
p
Sp ≤ 2cpE

[ ∫ T

0

[|yms − yns |
p−1fs]ds

]
+ cpE

[ ∫ T

0

[|yms − yns |
p−1us(|y

m
s |+ |yns |)]ds

]

+ cpE
[ ∫ T

0

[|yms − yns |
p−1vs(|z

m
s |+ |zns |)]ds

]
. (5.6)

We can prove that the three terms of right-hand side of the previous inequality tend to zero as

m,n → ∞ respectively. Indeed, by (H5), Hölder’s inequality and (5.2), note that

E

[ ∫ T

0

(Gp−1fs)ds
]
= E

[
Gp−1

∫ T

0

fsds
]
≤ (E[Gp])

p−1

p

(
E

[( ∫ T

0

fsds
)p]) 1

p

< +∞,

E

[(∫ T

0

(Gp−1us)ds
) p

p−1
]
= E

[
Gp

(∫ T

0

usds
) p

p−1
]
≤ E[Gp]M

p

p−1 < +∞,

E

[(∫ T

0

(G2p−2v2s)ds
) p

2p−2
]
= E

[
Gp

( ∫ T

0

v2sds
) p

2p−2
]
≤ E[Gp]M

p

2p−2 < +∞.

Since for each m,n ≥ 1 and s ∈ [0, T ], dP -a.s., |yms (ω) − yns (ω)|
p−1 ≤ 2p−1Gp−1(ω), and

dP × dt-a.e., yn· → y· as n → +∞, by Lebesgue’s dominated convergence theorem we deduce

that as m,n → ∞,

E

[ ∫ T

0

(|yms − yns |
p−1fs)ds

]
→ 0,

E

[(∫ T

0

(|yms − yns |
p−1us)ds

) p

p−1
]
→ 0,

E

[(∫ T

0

(|yms − yns |
2p−2v2s)ds

) p

2p−2
]
→ 0.

(5.7)



Lp Solutions of BSDEs with Non-uniform Conditions 491

Thus, in view of (5.1)–(5.2), (5.5) and (5.7), it follows from Hölder’s inequality that as m,n →

∞,

E

[ ∫ T

0

[|yms − yns |
p−1us(|y

m
s |+ |yns |)]ds

]

≤ 2(E[Gp])
1
p

(
E

[( ∫ T

0

(|yms − yns |
p−1us)ds

) p

p−1
]) p−1

p

→ 0 (5.8)

and

E

[ ∫ T

0

[|yms − yns |
p−1vs(|z

m
s |+ |zns |)]ds

]

≤ E

[( ∫ T

0

(|yms − yns |
2p−2v2s )ds

) 1
2
(∫ T

0

(|zms |+ |zns |)
2ds

) 1
2
]

≤ E

[( ∫ T

0

(|yms − yns |
2p−2v2s )ds

) p
2p−2

] p−1

p

E

[( ∫ T

0

(|zms |+ |zns |)
2ds

) p
2
] 1

p

→ 0. (5.9)

Consequently, combining (5.6)–(5.9) yields that

lim
n→∞

‖yn· − y·‖Sp = 0. (5.10)

Furthermore, we prove that (znt )t∈[0,T ] is a Cauchy sequence in space Mp(0, T ;Rd). In fact,

by (2.3) of Lemma 2.1 we get the existence of a constant Cp depending only on p such that for

each m,n ≥ 1,

‖zm· − zn· ‖
p
Mp ≤ CpE

[( ∫ T

0

[|yms − yns ||gm(s, yms , zms )− gn(s, y
n
s , z

n
s )|]ds

) p

2
]

+ Cp‖y
m
· − yn· ‖

p
Sp . (5.11)

On the other hand, it follows from (H5), inequality (a+ b+ c)p ≤ 3p(ap + bp + cp) and Hölder’s

inequality that

E

[( ∫ T

0

[|yms − yns ||gm(s, yms , zms )− gn(s, y
n
s , z

n
s )|]ds

) p
2
]

≤ E

[( ∫ T

0

|yms − yns |(2fs + us(|y
m
s |+ |yns |) + vs(|z

m
s |+ |zns |))ds

) p

2
]

≤ 3
p

2 ‖ym· − yn· ‖
p

2

Sp ·
{
2

p

2 E

[( ∫ T

0

fsds
)p] 1

2

+ 2
p

2 E[Gp]
1
2 ·M

p

2

}

+ 3
p

2 ‖ym· − yn· ‖
p

2

Sp · E
[( ∫ T

0

(|zms |+ |zns |)
2ds

) p

2
]
·M

p

4 . (5.12)

Thus, combining (5.5) and (5.10)–(5.12) yields the existence of a process z. ∈ Mp(0, T ;Rd) such

that

lim
n→∞

‖zn· − z·‖Mp = 0. (5.13)

Now, we can choose a subsequence of {zn· }, still denoted by itself, such that ‖zn· −z·‖Mp ≤ 1
2n
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for each n ≥ 1. Then

∥∥∥ sup
n

|zn· |
∥∥∥
Mp

≤
∥∥∥ sup

n
|zn· − z·|

∥∥∥
Mp

+ ‖|z·|‖Mp ≤
∥∥∥

+∞∑

n=1

|zn· − z·|
∥∥∥+ ‖|z·|‖Mp

≤

+∞∑

n=1

‖|zn· − z·|‖Mp + ‖|z·|‖Mp ≤ 1 + ‖|z·|‖Mp < +∞. (5.14)

Denote Ht(ω) := ft(ω) + ut(ω)G(ω) + vt(ω) sup
n

|znt (ω)|. By (H5), (5.1)–(5.2) and Proposition

5.1(i) we know that for each n ≥ 1, dP × dt-a.e.,

|gn(t, y
n
t , z

n
t )− g(t, y, z)| ≤ 2Ht. (5.15)

And, by Hölder’s inequality together with (5.2) and (5.14) we have

E

[(∫ T

0

|Hs|ds
)p]

≤ 3pE
[(∫ T

0

fsds
)p]

+ 3pE[Gp]Mp

+ 3pE
[(∫ T

0

sup
n≥1

|zns |
2ds

) p

2
]
M

p

2 < +∞. (5.16)

On the other hand, in view of (5.10), (5.13) and Proposition 5.1(iv), we can assume that,

choosing a subsequence if necessary, as n → ∞,

gn(t, y
n
t , z

n
t ) → g(t, yt, zt), dP × dt-a.e. (5.17)

Thus, by (5.15)–(5.17), it follows from Lesbesgue’s dominated convergence theorem that

lim
n→∞

E

[(∫ T

0

|gn(s, y
n
s , z

n
s )− g(s, ys, zs)|ds

)p]
= 0.

Finally, taking limits in BSDE (ξ, T, gn) yields that (yt, zt)t∈[0,T ] is an Lp solution of BSDE

(ξ, T, g).

It remains to prove that (y., z.) is the minimal Lp solution of BSDE (ξ, T, g). Let (ŷt, ẑt)t∈[0,T ]

be any Lp solution of BSDE (ξ, T, g). In view of Proposition 5.1(ii)–(iii), by Corollary 4.1 we

obtain that dP -a.s., ynt ≤ ŷt for each t ∈ [0, T ] and n ≥ 1, from which and by letting n → ∞

we get that for each t ∈ [0, T ], dP -a.s., yt ≤ ŷt. The proof of Theorem 5.1 is then complete.

Remark 5.1 In the same way as the proof of Theorem 5.1, we can prove the existence of

the maximal Lp (p > 1) solution of BSDE (1.1) under the assumptions (H5) and (H6).

By Theorem 4.1 and the proof of Theorem 5.1, we can easily get the following comparison

theorem on the minimal (respectively, maximal) Lp solutions of BSDEs.

Theorem 5.2 Assume that p > 1, 0 < T ≤ +∞, ξ, ξ′ ∈ Lp(Ω,FT , P ;R), and both gen-

erators g and g′ satisfy (H5)–(H6). Let (y·, z·) and (y′·, z
′
·) be, respectively, the minimal (re-

spectively, maximal) Lp solution of BSDE (ξ, T, g) and BSDE (ξ′, T, g′) (recalling Theorem

5.1 and Remark 5.1). If dP -a.s., ξ ≤ ξ′ and dP × dt-a.e., g(ω, t, y, z) ≤ g′(ω, t, y, z) for each

(y, z) ∈ R× R
d, then for each t ∈ [0, T ],

dP -a.s., yt ≤ y′t.

By Theorem 5.1 and Theorem 4.1, the following Theorem 5.3 follows immediately, which

generalizes Theorem 3.1 in Section 3.
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Theorem 5.3 Assume that p > 1, 0 < T ≤ +∞, and the generator g satisfies the assump-

tion (H2) and the following assumption (H7):

(H7) g is Lipschitz continuous in y and uniformly continuous in z non-uniformly with respect

to both t and ω, i.e., there exists a linear-growth function φ(·) ∈ S and two (Ft)-progressively

measurable nonnegative processes {ut(ω)}t∈[0,T ] and {vt(ω)}t∈[0,T ] satisfying

∫ T

0

[ut(ω) + v2t (ω)]dt ≤ M, dP -a.s.

for some constant M > 0 such that dP × dt-a.e., for each y1, y2 ∈ R, z1, z2 ∈ R
d,

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ ut(ω)|y1 − y2|+ vt(ω)φ(|z1 − z2|).

Then for each ξ ∈ Lp(Ω,FT , P ;R), BSDE (ξ, T, g) admits a unique Lp solution.
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