Integral Operators Between Fock Spaces^{*}

Yongqing LIU^1 Shengzhao HOU^2

Abstract In this paper, the authors study the integral operator

$$S_{\phi}f(z) = \int_{\mathbb{C}} \phi(z, \overline{w}) f(w) \mathrm{d}\lambda_{\alpha}(w)$$

induced by a kernel function $\phi(z, \cdot) \in F_{\alpha}^{\infty}$ between Fock spaces. For $1 \leq p \leq \infty$, they prove that $S_{\phi}: F_{\alpha}^{1} \to F_{\alpha}^{p}$ is bounded if and only if

$$\sup_{a \in \mathbb{C}} \|S_{\phi} k_a\|_{p,\alpha} < \infty, \tag{\dagger}$$

where k_a is the normalized reproducing kernel of F_{α}^2 ; and, $S_{\phi}: F_{\alpha}^1 \to F_{\alpha}^p$ is compact if and only if

$$\lim_{|a|\to\infty} \|S_{\phi}k_a\|_{p,\alpha} = 0.$$

When $1 < q \leq \infty$, it is also proved that the condition (†) is not sufficient for boundedness of $S_{\phi} : F_{\alpha}^q \to F_{\alpha}^p$.

In the particular case $\phi(z, \overline{w}) = e^{\alpha z \overline{w}} \varphi(z - \overline{w})$ with $\varphi \in F_{\alpha}^2$, for $1 \leq q , they$ $show that <math>S_{\phi} : F_{\alpha}^p \to F_{\alpha}^q$ is bounded if and only if $\varphi = 0$; for 1 , they give $sufficient conditions for the boundedness or compactness of the operator <math>S_{\phi} : F_{\alpha}^p \to F_{\alpha}^q$.

Keywords Fock spaces, Integral operators, Normalized reproducing kernel2000 MR Subject Classification 32A36, 45P05

1 Introduction

Fock spaces are deeply connected with quantum mechanics, partial differential equations, and harmonic analysis. For instance, creation and annihilation operators in quantum mechanics are multiplication and, respectively, differential operators on Fock spaces. Characterizing the zero sequence of Fock space is equivalent to studying the completeness of coherent state systems in quantum mechanics (see [4, 11] and the references therein).

Let α be a positive number, and $d\lambda_{\alpha}(z) = \frac{\alpha}{\pi} e^{-\alpha |z|^2} dA(z)$ be the Gaussian measure on the complex plane \mathbb{C} , where dA is the Euclidean area measure on \mathbb{C} . For 0 , the Fock

China. E-mail: yongqingliu@cslg.edu.cn

Manuscript received February 21, 2022. Revised September 30, 2022.

¹School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, Jiangsu,

²Corresponding author. School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, China. E-mail: shou@suda.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (No. 11971340).

Y. Q. Liu and S. Z. Hou

space F^p_{α} consists of all entire functions f such that

$$\|f\|_{p,\alpha} = \left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |f(z)\mathrm{e}^{-\frac{\alpha}{2}|z|^2}|^p \mathrm{d}A(z)\right)^{\frac{1}{p}} < \infty.$$

$$(1.1)$$

The Fock space F_{α}^{∞} (i.e., $p = \infty$) consists of all entire functions f such that

$$||f||_{\infty,\alpha} = \sup_{z \in \mathbb{C}} |f(z)| e^{-\frac{\alpha}{2}|z|^2} < \infty.$$

$$(1.2)$$

When $1 \le p \le \infty$, Fock space F_{α}^p is a Banach space. In particular, F_{α}^2 is a Hilbert space. $\{e_n(z) = \sqrt{\frac{\alpha^n}{n!}}z^n, n = 0, 1, 2, 3, \cdots\}$ is an orthonormal basis for F_{α}^2 . The reproducing kernel of F_{α}^2 is given by $K_{\alpha}(z, w) = \sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)} = e^{\alpha z \overline{w}}$, and the normalized reproducing kernel at $w \in \mathbb{C}$ is $k_w(z) = e^{\alpha z \overline{w} - \frac{\alpha}{2}|w|^2}$.

Integral operators on Fock spaces have been studied widely (see [1–3, 5, 11]). We know in [4] that every bounded operator T on Fock space F_{α}^2 can be expressed as the integral operator:

$$Tf(z) = \int_{\mathbb{C}} \phi(z, \overline{w}) f(w) d\lambda_{\alpha}(w),$$

where the kernel function $\phi(z, \overline{w}) = TK_{\alpha}(\cdot, w)(z)$, and $\phi(\cdot, w) \in F_{\alpha}^2$ for all $w \in \mathbb{C}$ and $\phi(z, \cdot) \in F_{\alpha}^2$ for all $z \in \mathbb{C}$. On the other hand, it is a difficult problem to obtain conditions on ϕ under which the corresponding integral operator is bounded or compact. In this paper, we study the boundedness and compactness of the integral operators induced by a kernel function $\phi(z, \cdot) \in F_{\alpha}^{\infty}$ between Fock spaces.

In [10], the authors gave some sufficient conditions for a linear operator on F_{α}^2 to be bounded and compact. The authors of [7] extended the work in [10] to F_{α}^p . Precisely, using the atomic decomposition of Fock spaces, the authors of [7] proved that for 0 a linear operator $<math>T: F_{\alpha}^p \to F_{\alpha}^p$ is bounded if and only if

$$\sup_{a\in\mathbb{C}}\|Tk_a\|_{p,\alpha}<\infty.$$

For $\phi(z, \cdot) \in F^{\infty}_{\alpha}$, let

$$S_{\phi}f(z) = \int_{\mathbb{C}} \phi(z, \overline{w}) f(w) \mathrm{d}\lambda_{\alpha}(w)$$

be the integral operator induced by ϕ . In Section 2, for $1 \leq p \leq \infty$, we prove that $S_{\phi} : F_{\alpha}^1 \to F_{\alpha}^p$ is bounded if and only if

$$\sup_{a\in\mathbb{C}} \|S_{\phi}k_a\|_{p,\alpha} < \infty \tag{1.3}$$

(see Theorem 2.1); and, $S_{\phi} : F_{\alpha}^1 \to F_{\alpha}^p$ is compact if and only if $\lim_{|a|\to\infty} \|S_{\phi}k_a\|_{p,\alpha} = 0$ (see Theorem 2.3). When $1 < q \le \infty$, it is also proved that the condition (1.3) is not sufficient for boundedness of $S_{\phi} : F_{\alpha}^q \to F_{\alpha}^p$ (see Theorem 2.2).

Integral Operators Between Fock Spaces

In particular, for $\varphi \in F_{\alpha}^2$, let $\phi(z, \overline{w}) = e^{\alpha z \overline{w}} \varphi(z - \overline{w})$, we consider corresponding integral operator

$$T_{\varphi}f(z) = \int_{\mathbb{C}} e^{\alpha z \overline{w}} \varphi(z - \overline{w}) f(w) d\lambda_{\alpha}(w).$$

Bounded operators on Fock space F_{α}^2 and on $L^2(\mathbb{R}, dx)$ can be connected through the unitary operator Bargmann transform. Using Bargmann transform, Zhu [12] transferred the classical Hilbert transform to the integral operator T_{φ} on F_{α}^2 , where $\varphi(z) = \int_0^{\frac{1}{\sqrt{2}}} e^{u^2} du$, and proposed a question: Find necessary and sufficient conditions in terms of $\varphi \in F_{\alpha}^2$ such that T_{φ} is bounded on F_{α}^2 . Recently, Cao et al. [1] proved that T_{φ} is bounded on F_{α}^2 if and only if there exists an $m \in L^{\infty}(\mathbb{R})$ such that

$$\varphi(z) = \int_{\mathbb{R}} e^{-2(x-\frac{i}{2}z)^2} m(x) dx, \quad z \in \mathbb{C}.$$

In Section 3, we study boundedness and compactness of the integral operator T_{φ} from F_{α}^p to F_{α}^q . For $1 \leq q , we proved that there are no non-zero bounded integral operators$ $<math>T_{\varphi}$ from F_{α}^p to F_{α}^q (see Theorem 3.1). But, when 1 , we give sufficient conditions $for <math>T_{\varphi}$ from F_{α}^p to F_{α}^q to be bounded (see Theorem 3.2) and compact (see Theorem 3.3).

In this paper, we use C to denote a positive number, which may vary from place to place. For two quantities A and B, $A \leq B$ means that there exists a constant C > 0, independent of the involved variables, such that $A \leq CB$, and $A \simeq B$ if and only if $A \leq B$ and $B \leq A$.

2 Boundedness and Compactness of S_{ϕ}

In this section, we give necessary and sufficient conditions for integral operator S_{ϕ} from F_{α}^{1} to F_{α}^{p} to be bounded, and, respectively, compact, for $1 \leq p \leq \infty$.

In order to prove Theorem 2.1, we need the following Minkowski's integral inequality from [9].

Lemma 2.1 Let (X, μ) and (Y, ν) be two σ -finite measure spaces and let $1 \le p < \infty$. For every nonnegative measurable function F on the product space $(X, \mu) \times (Y, \nu)$ we have

$$\left[\int_{Y} \left(\int_{X} F(x,y) \mathrm{d}\mu(x)\right)^{p} \mathrm{d}\nu(y)\right]^{\frac{1}{p}} \leq \int_{X} \left[\int_{Y} F(x,y)^{p} \mathrm{d}\nu(y)v\right]^{\frac{1}{p}} \mathrm{d}\mu(x).$$

The following result provides a necessary and sufficient condition for S_{ϕ} to be bounded.

Theorem 2.1 Let $1 \le p \le \infty$. For any $z \in \mathbb{C}$, suppose $\phi(z, \cdot) \in F_{\alpha}^{\infty}$. Then S_{ϕ} is bounded from F_{α}^{1} to F_{α}^{p} if and only if

$$\sup_{a\in\mathbb{C}}\|S_{\phi}k_a\|_{p,\alpha}<\infty,$$

or equivalently

$$\sup_{a\in\mathbb{C}}\int_{\mathbb{C}}|\phi(z,\overline{a})\mathrm{e}^{-\frac{\alpha}{2}|z|^{2}-\frac{\alpha}{2}|a|^{2}}|^{p}\mathrm{d}A(z)<\infty,\quad 1\leq p<\infty;$$

Y. Q. Liu and S. Z. Hou

$$\sup_{a \in \mathbb{C}} \sup_{z \in \mathbb{C}} |\phi(z, \overline{a}) e^{-\frac{\alpha}{2}|z|^2 - \frac{\alpha}{2}|a|^2}| < \infty, \quad p = \infty.$$

Proof Assume that S_{ϕ} is bounded from F_{α}^1 to F_{α}^p . Since each k_a is a unit vector in F_{α}^1 , we have

$$\|S_{\phi}k_a\|_{p,\alpha} \le \|S_{\phi}\|_{F^1_{\alpha} \to F^p_{\alpha}}.$$

By the reproducing formula (see [2, Lemma 2.15]), we get

$$S_{\phi}k_{a}(z) = \int_{\mathbb{C}} \phi(z, \overline{w})k_{a}(w) d\lambda_{\alpha}(w)$$
$$= e^{-\frac{\alpha}{2}|a|^{2}} \int_{\mathbb{C}} \phi(z, \overline{w})e^{\alpha w \overline{a}} d\lambda_{\alpha}(w)$$
$$= e^{-\frac{\alpha}{2}|a|^{2}} \phi(z, \overline{a}).$$

Therefore, we have

$$\sup_{a \in \mathbb{C}} \int_{\mathbb{C}} |\phi(z,\overline{a})e^{-\frac{\alpha}{2}|z|^2 - \frac{\alpha}{2}|a|^2}|^p \mathrm{d}A(z) < \infty, \quad 1 \le p < \infty$$

and

$$\sup_{a \in \mathbb{C}} \sup_{z \in \mathbb{C}} |\phi(z, \overline{a}) e^{-\frac{\alpha}{2}|z|^2 - \frac{\alpha}{2}|a|^2}| < \infty, \quad p = \infty.$$

Conversely, when $1 \le p < \infty$, let

$$C = \sup_{a \in \mathbb{C}} \int_{\mathbb{C}} |\phi(z,\overline{a})e^{-\frac{\alpha|z|^2}{2} - \frac{\alpha|a|^2}{2}} |^p \mathrm{d}A(z) < \infty.$$

For $f \in F_{\alpha}^{1}$, by Lemma 2.1 and Fubini's Theorem, we have

$$\begin{split} \|S_{\phi}f\|_{p,\alpha} &= \left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |S_{\phi}f(z)e^{-\frac{\alpha|z|^{2}}{2}}|^{p} \mathrm{d}A(z)\right)^{\frac{1}{p}} \\ &= \left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} \left|\int_{\mathbb{C}} \phi(z,\overline{w})f(w)\mathrm{d}\lambda_{\alpha}(w)\right|^{p} \mathrm{e}^{-\frac{p\alpha|z|^{2}}{2}}\mathrm{d}A(z)\right)^{\frac{1}{p}} \\ &\leq \int_{\mathbb{C}} \left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |\phi(z,\overline{w})f(w)|^{p} \mathrm{e}^{-\frac{p\alpha|z|^{2}}{2}}\mathrm{d}A(z)\right)^{\frac{1}{p}}\mathrm{d}\lambda_{\alpha}(w) \\ &\lesssim \frac{\alpha}{2\pi} \int_{\mathbb{C}} |f(w)e^{-\frac{\alpha|w|^{2}}{2}}|\mathrm{d}A(w)\left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |\phi(z,\overline{w})|^{p} \mathrm{e}^{-\frac{p\alpha|z|^{2}}{2}-\frac{p\alpha|w|^{2}}{2}}\mathrm{d}A(z)\right)^{\frac{1}{p}} \\ &\lesssim C^{\frac{1}{p}} \frac{\alpha}{2\pi} \int_{\mathbb{C}} |f(w)e^{-\frac{\alpha|w|^{2}}{2}}|\mathrm{d}A(w). \end{split}$$

Hence, we obtain

$$||S_{\phi}f||_{p,\alpha} \le C^{\frac{1}{p}} ||f||_{1,\alpha}.$$

For $p = \infty$, by Fubini's Theorem, we have

$$\sup_{z \in \mathbb{C}} |S_{\phi}f(z)e^{-\frac{\alpha|z|^2}{2}}|$$

$$\leq \int_{\mathbb{C}} |\phi(z,\overline{w})f(w)| \mathrm{d}\lambda_{\alpha}(w)e^{-\frac{\alpha|z|^2}{2}}$$

Integral Operators Between Fock Spaces

$$= \frac{\alpha}{\pi} \int_{\mathbb{C}} |\phi(z,\overline{w})f(w)| e^{-\alpha|w|^2} dA(w) e^{-\frac{\alpha|z|^2}{2}}$$

$$\lesssim \sup_{w \in \mathbb{C}} \sup_{z \in \mathbb{C}} |\phi(z,\overline{w})| e^{-\frac{\alpha|z|^2}{2}} e^{-\frac{\alpha|w|^2}{2}} \frac{\alpha}{2\pi} \int_{\mathbb{C}} |f(w)e^{-\frac{\alpha|w|^2}{2}} |dA(w)|$$

$$= \sup_{w \in \mathbb{C}} \sup_{z \in \mathbb{C}} |\phi(z,\overline{w})e^{-\frac{\alpha|z|^2}{2}} e^{-\frac{\alpha|w|^2}{2}} |||f||_{1,\alpha}.$$

By the assumption, we obtain

$$||S_{\phi}f||_{\infty,\alpha} \le C||f||_{1,\alpha}.$$

This completes the proof.

The following result shows that the condition in Theorem 2.1 is no longer sufficient for S_{ϕ} to be bounded, when q > 1.

Theorem 2.2 Let $1 < q \leq \infty$ and $1 \leq p \leq \infty$. For any $z \in \mathbb{C}$, there exists a function $\phi(z, \cdot) \in F_{\alpha}^{\infty}$ such that the integral operator S_{ϕ} satisfies

$$\sup_{a\in\mathbb{C}}\|S_{\phi}k_a\|_{p,\alpha}<\infty,$$

but the operator S_{ϕ} is not bounded from F^q_{α} to F^p_{α} .

Proof When $1 \le p \le \infty$ and $1 < q \le \infty$, we can choose some

$$\delta \in \Big(\frac{1}{2q} - \frac{1}{2p}, \frac{1}{2} - \frac{1}{2p}\Big).$$

Let

$$a_{n_k} = \begin{cases} \frac{n_k^{\delta} \alpha^{n_k}}{n_k!}, & n_k \ge 2^{\overline{(\frac{1}{2} - \frac{1}{2p}) - \delta}};\\ 0, & \text{others} \end{cases}$$

and

$$\phi(z,\overline{w}) = \sum_{k=1}^{\infty} a_{n_k} z^{n_k} \overline{w}^{n_k}.$$

Then for $z \in \mathbb{C}$, we have

$$\phi(z,\cdot) \in F_{\alpha}^2 \subset F_{\alpha}^{\infty}.$$

Define the integral operator

$$S_{\phi}f(z) = \int_{\mathbb{C}} \phi(z, \overline{w}) f(w) d\lambda_{\alpha}(w), \quad z \in \mathbb{C}.$$

One can check that the operator S_{ϕ} is well-defined on some dense subset of F_{α}^q .

We first show that S_{ϕ} is not bounded from F_{α}^q to F_{α}^p . By direct calculation, we get

$$S_{\phi}e_{n_k}(z)$$

Y. Q. Liu and S. Z. Hou

$$= \int_{\mathbb{C}} \phi(z, \overline{w}) e_{n_k}(w) d\lambda_{\alpha}(w)$$
$$= a_{n_k} \sqrt{\frac{\alpha^{n_k}}{n_k!}} z^{n_k} \int_{\mathbb{C}} |w|^{2n_k} d\lambda_{\alpha}(w)$$
$$= a_{n_k} n_k! e_{n_k}(z).$$

We calculate the norm of $S_{\phi}e_{n_k}$ in F^p_{α} for $1 \le p \le \infty$. By Stirling's formula, we have

$$\begin{split} &\|S_{\phi}e_{n_{k}}\|_{p,\alpha}^{p} \\ &= \frac{p\alpha}{2\pi} \int_{\mathbb{C}} |a_{n_{k}}n_{k}!e_{n_{k}}(z)e^{-\frac{\alpha|z|^{2}}{2}}|^{p}\mathrm{d}A(z) \\ &= (|a_{n_{k}}|n_{k}!)^{p} \left(\frac{\alpha^{n_{k}}}{n_{k}!}\right)^{\frac{p}{2}} \frac{p\alpha}{2\pi} \int_{\mathbb{C}} |z^{n_{k}}e^{-\frac{\alpha|z|^{2}}{2}}|^{p}\mathrm{d}A(z) \\ &= (|a_{n_{k}}|n_{k}!)^{p} \left(\frac{\alpha^{n_{k}}}{n_{k}!}\right)^{\frac{p}{2}} \left(\frac{2}{\alpha p}\right)^{\frac{n_{p}}{2}} \Gamma\left(\frac{n_{k}p}{2}+1\right) \\ &\sim (|a_{n_{k}}|n_{k}!)^{p} n_{k}^{\frac{1}{2}-\frac{p}{4}}. \end{split}$$

Similarly, for $p = \infty$, we have $||S_{\phi}e_{n_k}||_{\infty,\alpha} \sim |a_{n_k}|n_k!n_k^{-\frac{1}{4}}$. Therefore,

$$\|S_{\phi}e_{n_k}\|_{p,\alpha} \sim |a_{n_k}| n_k! n_k^{\frac{1}{2p} - \frac{1}{4}}.$$
(2.1)

When $1 < q \leq \infty$, the norm estimate of e_n in F^q_{α} is

$$\|e_{n_k}\|_{q,\alpha} \sim n_k^{\frac{1}{2q} - \frac{1}{4}}.$$
(2.2)

Now combining (2.1) with (2.2), we get

$$\begin{split} \frac{\|S_{\phi}e_{n_k}\|_{p,\alpha}}{\|e_{n_k}\|_{q,\alpha}} &\sim |a_{n_k}|n_k!n_k^{\frac{1}{2p}-\frac{1}{2q}}\\ &= \alpha^{n_k}n_k^{\delta-(\frac{1}{2q}-\frac{1}{2p})} \to \infty, \quad k \to \infty. \end{split}$$

So S_{ϕ} is not bounded from F_{α}^{q} to F_{α}^{p} , when $1 < q \leq \infty$ and $1 \leq p \leq \infty$. Next we prove that

$$\sup_{a\in\mathbb{C}}\|S_{\phi}k_a\|_{p,\alpha}<\infty.$$

Using the reproducing formula, we have

$$S_{\phi}k_{a}(z)$$

$$= \int_{\mathbb{C}} \phi(z, \overline{w})k_{a}(w)d\lambda_{\alpha}(w)$$

$$= \sum_{k=1}^{\infty} a_{n_{k}}z^{n_{k}}\int_{\mathbb{C}} \overline{w}^{n_{k}}k_{a}(w)d\lambda_{\alpha}(w)$$

$$= \sum_{k=1}^{\infty} a_{n_{k}}z^{n_{k}}\overline{a}^{n_{k}}e^{-\frac{\alpha}{2}|a|^{2}}.$$

By computation, we get

$$\begin{split} &\|S_{\phi}k_{a}\|_{p,\alpha} \\ \leq \sum_{k=1}^{\infty} |a_{n_{k}}||a|^{n_{k}}\|z^{n_{k}}\|_{p,\alpha} \mathrm{e}^{-\frac{\alpha}{2}|a|^{2}} \\ &= \sum_{k=1}^{\infty} |a_{n_{k}}||a|^{n_{k}} \mathrm{e}^{-\frac{\alpha|a|^{2}}{2}} \Big(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |z^{n_{k}} \mathrm{e}^{-\frac{\alpha}{2}|z|^{2}}|^{p} \mathrm{d}A(z)\Big)^{\frac{1}{p}} \\ \lesssim \sum_{k=1}^{\infty} |a_{n_{k}}| \Big(\max_{a \in \mathbb{C}} |a|^{n_{k}} \mathrm{e}^{-\frac{\alpha|a|^{2}}{2}}\Big) \Big(\frac{n_{k}}{\alpha \mathrm{e}}\Big)^{\frac{n_{k}}{2}} n_{k}^{\frac{1}{2p}}. \end{split}$$

Note that

$$\max_{a \in \mathbb{C}} |a|^n \mathrm{e}^{-\frac{\alpha |a|^2}{2}} = \left(\frac{n}{\alpha \mathrm{e}}\right)^{\frac{n}{2}}.$$

By Stirling's formula, we have

$$\begin{split} &\|S_{\phi}k_{a}\|_{p,\alpha} \\ \lesssim \sum_{k=1}^{\infty} |a_{n_{k}}| \left(\frac{n_{k}}{\alpha e}\right)^{n_{k}} n_{k}^{\frac{1}{2p}} \\ &\sim \sum_{k=1}^{\infty} |a_{n_{k}}| \frac{n_{k}!}{\alpha^{n_{k}}} n^{\frac{1}{2p}-\frac{1}{2}} = \sum_{k=1}^{\infty} n_{k}^{\delta-(\frac{1}{2}-\frac{1}{2p})} \\ &\leq \sum_{k=1}^{\infty} \frac{1}{2^{k}} < \infty. \end{split}$$

This completes the proof.

We can characterize the compactness of S_{ϕ} completely.

Theorem 2.3 Let $1 \le p \le \infty$. For any $z \in \mathbb{C}$, suppose $\phi(z, \cdot) \in F_{\alpha}^{\infty}$. Then S_{ϕ} is a compact operator from F_{α}^{1} to F_{α}^{p} if and only if

$$\lim_{|a| \to \infty} \|S_{\phi} k_a\|_{p,\alpha} = 0.$$

Proof We firstly prove that S_{ϕ} is a compact operator. Let f_n be a sequence in F_{α}^1 such that $\sup_n ||f_n||_{1,\alpha} < \infty$ and $f_n \to 0$ uniformly on compact sets in \mathbb{C} . When $1 \le p < \infty$, by the proof in Theorem 2.1, we get

$$\begin{split} &\|S_{\phi}f_{n}\|_{p,\alpha} \\ = \left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |S_{\phi}f_{n}(z)e^{-\frac{\alpha|z|^{2}}{2}}|^{p} \mathrm{d}A(z)\right)^{\frac{1}{p}} \\ \leq &\frac{\alpha}{2\pi} \int_{\mathbb{C}} |f_{n}(w)e^{-\frac{\alpha|w|^{2}}{2}} |\mathrm{d}A(w)\left(\frac{p\alpha}{2\pi} \int_{\mathbb{C}} |\phi(z,\overline{w})|^{p} e^{-\frac{p\alpha|z|^{2}}{2} - \frac{p\alpha|w|^{2}}{2}} \mathrm{d}A(z)\right)^{\frac{1}{p}} \\ = &\frac{\alpha}{2\pi} \int_{\mathbb{C}} |f_{n}(w)e^{-\frac{\alpha|w|^{2}}{2}}|\|S_{\phi}k_{w}\|_{p,\alpha} \mathrm{d}A(w). \end{split}$$

For any $0 < r < \infty$, we denote

$$D_r = \{ w \in \mathbb{C} : |w| > r \}.$$

Then,

$$\begin{split} \|S_{\phi}f_{n}\|_{p,\alpha} \\ \leq & \frac{\alpha}{2\pi} \int_{\mathbb{C}} |f_{n}(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|\|S_{\phi}k_{w}\|_{p,\alpha}\mathrm{d}A(w) \\ = & \frac{\alpha}{2\pi} \int_{D_{r}} |f_{n}(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|\|S_{\phi}k_{w}\|_{p,\alpha}\mathrm{d}A(w) \\ & + & \frac{\alpha}{2\pi} \int_{\{w\in\mathbb{C}:|w|\leq r\}} |f_{n}(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|\|S_{\phi}k_{w}\|_{p,\alpha}\mathrm{d}A(w) \\ = & I_{1} + I_{2}. \end{split}$$

We estimate each item independently. We first estimate I_1 .

$$I_{1} = \frac{\alpha}{2\pi} \int_{D_{r}} |f_{n}(w)e^{-\frac{\alpha|w|^{2}}{2}}| \|S_{\phi}k_{w}\|_{p,\alpha} dA(w)$$

$$\leq \frac{\alpha}{2\pi} \int_{\mathbb{C}} |f_{n}(w)e^{-\frac{\alpha|w|^{2}}{2}} |dA(w) \sup_{w\in D_{r}} \|S_{\phi}k_{w}\|_{p,\alpha}$$

$$= \|f_{n}\|_{1,\alpha} \sup_{w\in D_{r}} \|S_{\phi}k_{w}\|_{p,\alpha}.$$

Since $\sup_{n} ||f_{n}||_{1,\alpha} < \infty$, we see that $I_{1} \to 0$ as $r \to \infty$. We need to make a similar conclusion for I_{2} , and it follows from $\sup_{w \in \mathbb{C}} ||S_{\phi}k_{w}||_{p,\alpha} < \infty$ that

$$I_{2} = \frac{\alpha}{2\pi} \int_{\{w \in \mathbb{C}: |w| \le r\}} |f_{n}(w) \mathrm{e}^{-\frac{\alpha |w|^{2}}{2}}| \|S_{\phi}k_{w}\|_{p,\alpha} \mathrm{d}A(w)$$
$$\lesssim \sup_{\{w \in \mathbb{C}: |w| \le r\}} |f_{n}(w)|.$$

Since $f_n \to 0$ uniformly on compact sets in \mathbb{C} , we get that $I_2 \to 0$ as $n \to \infty$. Therefore, $\|S_{\phi}f_n\|_{p,\alpha}$ converges to 0 as $n \to \infty$. So, S_{ϕ} is a compact operator.

Conversely, suppose that S_{ϕ} is a compact operator. Since k_a is a unit vector in F_{α}^1 and converges uniformly to 0 on any compact subset of \mathbb{C} as $|a| \to \infty$, we have

$$\|S_{\phi}k_a\|_{p,\alpha} \to 0, \quad |a| \to \infty.$$

For $p = \infty$, the proof is similar above, we omit it. This completes the proof.

3 Boundedness and Compactness of T_{φ}

The section is devoted to studying the integral operator

$$T_{\varphi}f(z) = \int_{\mathbb{C}} e^{\alpha z \overline{w}} \varphi(z - \overline{w}) f(w) d\lambda_{\alpha}(w)$$

between Fock spaces.

Let B(z,r) be the open Euclidean disk centred at z with radius r. The following lemma gives us the optimal pointwise estimates for functions in Fock spaces.

Integral Operators Between Fock Spaces

Lemma 3.1 (see [5, Lemma 2.1]) For any r > 0 and p > 0, there exists a constant C > 0 such that

$$|f(z)e^{-\frac{\alpha}{2}|z|^2}|^p \le C \int_{B(z,r)} |f(w)e^{-\frac{\alpha}{2}|w|^2}|^p dA(w)$$

for all entire function f and all $z \in \mathbb{C}$.

For our next lemma, we need the concept of a lattice. For r > 0, a sequence $\{a_k\}$ in \mathbb{C} is called an *r*-lattice if the following conditions are satisfied:

(1) $\bigcup_{k=1}^{\infty} B(a_k, r) = \mathbb{C}.$

(2) $\left\{ B\left(a_k, \frac{r}{2}\right) \right\}_{k=1}^{\infty}$ are mutually disjoint.

If $\{a_k\}$ is an *r*-lattice, then for any $\delta > 0$ there exists a positive integer *m* (depending only on *r* and δ) such that every point in \mathbb{C} belongs to at most *m* of the sets $B(a_k, \delta)$.

The following lemma is some partial result about atomic decomposition of Fock spaces.

Lemma 3.2 (see [6, Theorem 8.2]) Let r > 0 and $\{a_k\}$ be an r-lattice. For $1 \le p \le \infty$ and $\{c_k\} \in l^p$, set

$$f(z) = \sum_{k=1}^{\infty} c_k \mathrm{e}^{\alpha z \overline{a_k} - \frac{\alpha}{2} |a_k|^2}.$$
(3.1)

Then $f \in F^p_{\alpha}$. Moreover,

$$\|f\|_{p,\alpha} \lesssim \inf \|\{c_k\}\|_{l^p},$$

where the infimum is taken over all sequences $\{c_k\}$ that give rise to the representation of f in (3.1).

We shall use the following technique (due to Luecking [8]) in our proof of boundedness of the integral operator T_{φ} . Recall that the Rademacher functions r_k are defined by

$$r_0(t) = \begin{cases} 1, & \text{if } 0 \le t - [t] < \frac{1}{2}, \\ -1, & \text{if } \frac{1}{2} \le t - [t] < 1 \end{cases}$$

and $r_k(t) = r_0(2^k t)$ for $k = 1, 2, \cdots$, where [t] denotes the largest integer not greater than t. An important property of Rademacher functions is the Khinchine's inequality: For any 0 , $there exist some positive constants <math>C_1$ and C_2 depending only on p such that

$$C_1 \left(\sum_{k=1}^{\infty} |b_k|^2\right)^{\frac{p}{2}} \le \int_0^1 \left|\sum_{k=1}^{\infty} b_k r_k(t)\right|^p \mathrm{d}t \le C_2 \left(\sum_{k=1}^{\infty} |b_k|^2\right)^{\frac{p}{2}}$$

for any complex number sequences $\{b_k\}_{k=1}^{\infty}$.

The following result shows that there are no non-zero bounded integral operators T_{φ} from F_{α}^{p} to F_{α}^{q} if $1 \leq q .$

Theorem 3.1 Let $1 \leq q . Suppose <math>\varphi \in F_{\alpha}^2$, then the integral operator T_{φ} is bounded from F_{α}^p to F_{α}^q if and only if $\varphi = 0$.

Proof We need only to prove that $\varphi = 0$ if T_{φ} is bounded from F_{α}^p to F_{α}^q . Let r > 0 and let $\{a_k\}$ be an *r*-lattice. For any $\{c_k\} \in l^p$, then $\{c_k r_k(t)\} \in l^p$, where $r_k(t)$ is a Rademacher function. By Lemma 3.2, the function

$$f_t(z) = \sum_{k=1}^{\infty} c_k r_k(t) k_{a_k}(z) = \sum_{k=1}^{\infty} c_k r_k(t) e^{\alpha z \overline{a_k} - \frac{\alpha}{2} |a_k|^2}$$

belongs to F^p_{α} and $||f_t||_{p,\alpha} \lesssim ||\{c_k\}||_{l^p}$. Since T_{φ} is bounded from F^p_{α} to F^q_{α} , we get

$$||T_{\varphi}f_t||_{q,\alpha} \le ||T_{\varphi}||_{F^p_{\alpha} \to F^q_{\alpha}} ||f_t||_{p,\alpha} \lesssim ||T_{\varphi}||_{F^p_{\alpha} \to F^q_{\alpha}} ||\{c_k\}||_{l^p}.$$

In the above inequality, integrate with respect to t from 0 to 1. By Fubini's theorem and Khinchine's inequality, we have

$$\begin{split} &\int_{0}^{1} \|T_{\varphi}f_{t}\|_{q,\alpha}^{q} \mathrm{d}t \\ &= \int_{0}^{1} \int_{\mathbb{C}} |T_{\varphi}f_{t}(z)\mathrm{e}^{-\frac{\alpha|z|^{2}}{2}}|^{q} \mathrm{d}A(z) \mathrm{d}t \\ &= \int_{0}^{1} \int_{\mathbb{C}} \Big| \sum_{k=1}^{\infty} c_{k}r_{k}(t)T_{\varphi}k_{a_{k}}(z) \Big|^{q} \mathrm{e}^{-\frac{q\alpha|z|^{2}}{2}} \mathrm{d}A(z) \mathrm{d}t \\ &= \int_{\mathbb{C}} \int_{0}^{1} \Big| \sum_{k=1}^{\infty} c_{k}r_{k}(t)T_{\varphi}k_{a_{k}}(z) \Big|^{q} \mathrm{d}t \mathrm{e}^{-\frac{q\alpha|z|^{2}}{2}} \mathrm{d}A(z) \\ &\gtrsim \int_{\mathbb{C}} \Big(\sum_{k=1}^{\infty} |c_{k}|^{2} |T_{\varphi}k_{a_{k}}(z)|^{2} \Big)^{\frac{q}{2}} \mathrm{e}^{-\frac{q\alpha|z|^{2}}{2}} \mathrm{d}A(z) \\ &\gtrsim \sum_{j=1}^{\infty} \int_{B(a_{j},r)} \Big(\sum_{k=1}^{\infty} |c_{k}|^{2} |T_{\varphi}k_{a_{k}}(z)|^{2} \Big)^{\frac{q}{2}} \mathrm{e}^{-\frac{q\alpha|z|^{2}}{2}} \mathrm{d}A(z) \end{split}$$

For j fixed, we have

$$\sum_{k=1}^{\infty} |c_k|^2 |T_{\varphi} k_{a_k}(z)|^2 \ge |c_j|^2 |T_{\varphi} k_{a_j}(z)|^2$$

This, together with Lemma 3.1, shows that

$$\begin{split} &\sum_{j=1}^{\infty} \int_{B(a_j,r)} \left(\sum_{k=1}^{\infty} |c_k|^2 |T_{\varphi} k_{a_k}(z)|^2 \right)^{\frac{q}{2}} \mathrm{e}^{-\frac{q\alpha|z|^2}{2}} \mathrm{d}A(z) \\ &\geq \sum_{j=1}^{\infty} \int_{B(a_j,r)} |c_j|^q |T_{\varphi} k_{a_j}(z)|^q \mathrm{e}^{-\frac{q\alpha|z|^2}{2}} \mathrm{d}A(z) \\ &= \sum_{j=1}^{\infty} |c_j|^q \int_{B(a_j,r)} |T_{\varphi} k_{a_j}(z)|^q \mathrm{e}^{-\frac{q|z|^2}{2}} \mathrm{d}v(z) \\ &\gtrsim \sum_{j=1}^{\infty} |c_j|^q |T_{\varphi} k_{a_j}(a_j)|^q \mathrm{e}^{-\frac{q|a_j|^2}{2}}. \end{split}$$

By direct calculation, we have

$$T_{\varphi}k_{a_j}(a_j)\mathrm{e}^{-\frac{|a_j|^2}{2}} = \varphi(a_j - \overline{a_j})$$

Therefore, we get

$$\sum_{j=1}^{\infty} |c_j|^q |\varphi(a_j - \overline{a_j})|^q \lesssim \int_0^1 \|T_{\varphi} f_t\|_{q,\alpha}^q \mathrm{d}t \lesssim \|T_{\varphi}\|_{F^p_{\alpha} \to F^q_{\alpha}}^q \|\{c_k\}\|_{l^p}^q$$

Denote $d_j = |c_j|^q$, then

$$\sum_{j=1}^{\infty} |d_j| |\varphi(a_j - \overline{a_j})|^q \lesssim ||T_{\varphi}||^q_{F^p_{\alpha} \to F^q_{\alpha}} ||\{d_j\}||_{l^{\frac{p}{q}}}$$

Since the conjugate exponent of $\frac{p}{q}$ is $\frac{p}{p-q}$, by a duality argument $(l^{\frac{p}{q}})^* = l^{\frac{p}{p-q}}$, we imply that

$$\sum_{j=1}^{\infty} |\varphi(a_j - \overline{a_j})|^{\frac{pq}{p-q}} \lesssim \|T_{\varphi}\|_{F^p_{\alpha} \to F^q_{\alpha}}^{\frac{pq}{p-q}}.$$
(3.2)

Notice that the above inequality (3.2) holds for any r-lattices. Choose a point $\xi_j \in \overline{B(a_j, r)}$ such that

$$|\varphi(\xi_j - \overline{\xi_j})| = \sup_{z \in B(a_j, r)} |\varphi(z - \overline{z})|.$$

Hence, we conclude

$$\int_{\mathbb{C}} |\varphi(z-\overline{z})|^{\frac{pq}{p-q}} dA(z)$$

$$\leq \sum_{j=1}^{\infty} \int_{B(a_j,r)} |\varphi(z-\overline{z})|^{\frac{pq}{p-q}} dA(z)$$

$$\lesssim \sum_{j=1}^{\infty} \sup_{z \in B(a_j,r)} |\varphi(z-\overline{z})|^{\frac{pq}{p-q}}$$

$$\leq \sum_{j=1}^{\infty} |\varphi(\xi_j - \overline{\xi_j})|^{\frac{pq}{p-q}}.$$

Notice that there exists some $\delta > 0$ such that $\{\xi_j\}$ is a finite union of δ -lattices. This together with (3.2) shows

$$\int_{\mathbb{C}} |\varphi(z-\overline{z})|^{\frac{pq}{p-q}} \mathrm{d}A(z) < \infty,$$

which is impossible unless $\varphi = 0$. In fact, if $\varphi(z_0 - \overline{z_0}) \neq 0$, set z = x + iy, $z_0 = x_0 + iy_0$, there exists r > 0 such that

$$\int_{\mathbb{C}} |\varphi(z-\overline{z})|^{\frac{pq}{p-q}} dA(z)$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} |\varphi(2iy)|^{\frac{pq}{p-q}} dy dx$$

$$\geq \int_{\mathbb{R}} \int_{y_0-r}^{y_0+r} |\varphi(2\mathbf{i}y)|^{\frac{p_q}{p-q}} \mathrm{d}y \mathrm{d}x = \infty.$$

This completes the proof.

The next result is a sufficient condition for T_{φ} to be bounded from F_{α}^p to F_{α}^q .

Theorem 3.2 Let 1 . If

$$\sup_{a\in\mathbb{C}}\int_{\mathbb{C}}|\varphi(z-\overline{a})|\mathrm{e}^{-\frac{\alpha}{2}|z-a|^{2}}\mathrm{d}A(z)<\infty,$$

then T_{φ} is bounded from F^p_{α} to F^q_{α} .

Proof By Hölder's Inequality, we get

$$\begin{aligned} &|T_{\varphi}f(z)\mathrm{e}^{-\frac{\alpha|z|^{2}}{2}}|\\ &\leq \int_{\mathbb{C}}|\mathrm{e}^{\alpha z\overline{w}}\varphi(z-\overline{w})f(w)\mathrm{e}^{-\frac{\alpha|z|^{2}}{2}}|\mathrm{d}\lambda_{\alpha}(w)\\ &=&\frac{\alpha}{\pi}\int_{\mathbb{C}}|f(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}||\varphi(z-\overline{w})|\mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}}\mathrm{d}A(w)\\ &\leq&\frac{\alpha}{\pi}\Big(\int_{\mathbb{C}}|\varphi(z-\overline{w})|\mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}}\mathrm{d}A(w)\Big)^{\frac{p-1}{p}}\\ &\cdot\Big(\int_{\mathbb{C}}|f(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p}|\varphi(z-\overline{w})|\mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}}\mathrm{d}A(w)\Big)^{\frac{1}{p}}\end{aligned}$$

Using hypothesis and Fubini's Theorem, we have

$$\begin{split} &\|T_{\varphi}f\|_{p,\alpha}^{p} \\ = & C \int_{\mathbb{C}} |T_{\varphi}f(z)\mathrm{e}^{-\frac{\alpha|z|^{2}}{2}}|^{p}\mathrm{d}A(z) \\ \lesssim & \int_{\mathbb{C}} \int_{\mathbb{C}} |f(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p}|\varphi(z-\overline{w})|\mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}}\mathrm{d}A(w)\mathrm{d}A(z) \\ = & \int_{\mathbb{C}} |f(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p}\mathrm{d}A(w) \int_{\mathbb{C}} |\varphi(z-\overline{w})|\mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}}\mathrm{d}A(z) \\ \lesssim & \int_{\mathbb{C}} |f(w)\mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p}\mathrm{d}A(w). \end{split}$$

Therefore,

$$||T_{\varphi}f||_{p,\alpha} \le C||f||_{p,\alpha}.$$

Since $||f||_{q,\alpha} \leq ||f||_{p,\alpha}$ if $p \leq q$ for any $f \in F^p_{\alpha}$, we see that T_{φ} is bounded from F^p_{α} to F^q_{α} . This completes the proof.

We also give a sufficient condition for T_{φ} to be a compact operator from F_{α}^p to F_{α}^q .

Theorem 3.3 Let 1 . If

$$\lim_{|a|\to\infty}\int_{\mathbb{C}}|\varphi(z-\overline{a})|\mathrm{e}^{-\frac{\alpha}{2}|z-a|^{2}}\mathrm{d}A(z)=0,$$

then T_{φ} is compact from F^p_{α} to F^q_{α} .

Proof By the argument in the proof of Theorem 3.2, we have

$$\begin{aligned} &\|T\varphi f\|_{q,\alpha}^{q} \\ \leq C \int_{\mathbb{C}} \int_{\mathbb{C}} |f(w) \mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p} |\varphi(z-\overline{w})| \mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}} \mathrm{d}A(w) \mathrm{d}A(z) \\ = C \int_{\mathbb{C}} |f(w) \mathrm{e}^{-\frac{\alpha|w|^{2}}{2}}|^{p} \int_{\mathbb{C}} |\varphi(z-\overline{w})| \mathrm{e}^{-\frac{\alpha|z-w|^{2}}{2}} \mathrm{d}A(z) \mathrm{d}A(w) \end{aligned}$$

Let f_n be a sequence in F^p_{α} such that

$$\sup_{n} \|f_n\|_{p,\alpha} < \infty$$

and

 $f_n \to 0$

uniformly on compact sets in \mathbb{C} . For any $0 < r < \infty$, we denote

$$D_r = \{ w \in \mathbb{C} : |w| > r \}.$$

Then,

$$\begin{aligned} \|T\varphi f_n\|_{q,\alpha}^q \\ \leq C \int_{D_r} |f_n(w) \mathrm{e}^{-\frac{\alpha}{2}|w|^2}|^p \int_{\mathbb{C}} |\varphi(z-\overline{w})| \mathrm{e}^{-\frac{\alpha}{2}|z-w|^2} \mathrm{d}A(z) \mathrm{d}A(w) \\ &+ \int_{\{w \in \mathbb{C}: |w| \leq r\}} |f_n(w) \mathrm{e}^{-\frac{\alpha}{2}|w|^2}|^p \int_{\mathbb{C}} |\varphi(z-\overline{w})| \mathrm{e}^{-\frac{\alpha}{2}|z-w|^2} \mathrm{d}A(z) \mathrm{d}A(w) \\ = J_1 + J_2. \end{aligned}$$

We estimate each item independently. We first estimate J_1 .

$$J_{1} = \int_{D_{r}} |f_{n}(w)e^{-\frac{\alpha}{2}|w|^{2}}|^{p} \int_{\mathbb{C}} |\varphi(z-\overline{w})|e^{-\frac{\alpha}{2}|z-w|^{2}} dA(z) dA(w)$$
$$\leq \|f_{n}\|_{p,\alpha}^{p} \sup_{w \in D_{r}} \int_{\mathbb{C}} |\varphi(z-\overline{w})|e^{-\frac{\alpha}{2}|z-w|^{2}} dA(z).$$

Since $\sup_{n} ||f_n||_{p,\alpha} < \infty$, we see that $J_1 \to 0$ as $r \to \infty$. We next estimate J_2 .

$$J_{2} = \int_{\{w \in \mathbb{C}: |w| \le r\}} |f_{n}(w)e^{-\frac{\alpha}{2}|w|^{2}}|^{p} \int_{\mathbb{C}} |\varphi(z-\overline{w})|e^{-\frac{\alpha}{2}|z-w|^{2}} dA(z) dA(w)$$
$$\leq C \sup_{\{w \in \mathbb{C}: |w| \le r\}} |f_{n}(w)|.$$

Since $f_n \to 0$ uniformly on compact sets in \mathbb{C} , we get that $J_2 \to 0$ as $n \to \infty$. Therefore, $\|T_{\varphi}f_n\|_{q,\alpha}$ converges to 0 as $n \to \infty$. So, T_{φ} is a compact operator. This completes the proof.

Acknowledgement The authors would like to thank the referee for his/her careful reading and valuable comments.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

- Cao, G., Li, J., Shen, M., et al., A boundedness cirterion for singular integral operators of convolution type on the Fock space, Adv. Math., 363, 2020, 1–33.
- [2] Cascante, C., Fàbrega, J. and Pascuas, D., Boundedness of the Bergman projection on generalized Fock-Sobolev spaces on Cⁿ, Complex Anal. Oper. Theory, 14(2), 2020, 26 pp.
- [3] Coburn, L., Isralowitz, J. and Li, B., Toeplitz operators with BMO symbols on the Segal-Bargmann space, *Trans. Amer. Math. Soc.*, 363(6), 2011, 3015–3030.
- [4] Folland, G., Harmonic Analysis in Phrase Space, Ann. of Math. Stud., 122, Princeton, NJ, Princeton University Press, 1989.
- [5] Isralowitz, J. and Zhu, K., Toeplitz operators on the Fock space, Integral Equations Operator Theory, 66(4), 2010, 593–611.
- [6] Janson, S., Peetre, J. and Rochberg, R., Hankel forms and the Fock space, Rev. Mat. Iberoam., 3(1), 1987, 61–138.
- [7] Lou, Z., Zhu, K. and Zhu, S., Linear operators on Fock spaces, Integral Equations Operator Theory, 88(2), 2017, 1–14.
- [8] Luecking, D., Embedding theorems for spaces of analytic functions via Khinchine's inequality, Michigan Math. J., 40(2), 1993, 333–358.
- [9] Okikiolu, G. O., Aspects of the Theory of Bounded Integral Operators in L^p-Spaces, Academic, London, 1971.
- [10] Wang, X., Cao, G. and Zhu, K., Boundedness and compactness of operators on the Fock space, Integral Equations Operator Theory, 77(3), 2013, 355–370.
- [11] Zhu, K., Analysis on Fock Spaces, Springer-Verlag, New York, 2012.
- [12] Zhu, K., Singular integral operators on the Fock space, Integral Equations Operator Theory, 81(4), 2015, 451–454.