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Abstract In this paper the author investigates the following predator-prey model with
prey-taxis and rotational flux terms

{

ut = ∆u−∇ · (uS(x, u, v)∇v) + γuF (v)− uh(u), x ∈ Ω, t > 0,

vt = D∆v − uF (v) + f(v), x ∈ Ω, t > 0
(∗)

in a bounded domain with smooth boundary. He presents the global existence of generalized
solutions to the model (∗) in any dimension.
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1 Introduction

In complex ecosystems, predator pursuit of prey is a fundamental binary interaction, and

various mathematical models have been built to describe such predator-prey relation to predict

long term outcome and impact on the entire ecosystem (see [28, 39]). The relationship between

predators and their preys has long been and will continue to be one of the research hotspots

in both ecology and mathematical ecology because of its universal existence and important

significance (see [12]). Predator-prey theory is one of the most mature theories in population

ecology. In particular, the predator-prey system is a typical inhibition model, which greatly

changes the understanding of the species diversity in the biome (see [24]).

Numerous reaction-diffusion equations have been applied to model the spatial predator-prey

distributions (see [7, 9, 15, 30, 47–48]). In the spatial predator-prey interaction, besides the

random diffusion of predator and prey, the predator has the tendency to move towards the

region with higher density of prey population. Prey-taxis, the movement of predators towards

the area with higher-density of prey population, plays an extremely important part in biological

control and ecological balance such as maintaining the pest population below some economic

threshold or leading to outbreaks of pest density (see [27, 40]). Karevia and Odell first derived a
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PDE prey-taxis model to illustrate a population model of spatially heterogeneous predator-prey

interactions (see [20]). The prototypical prey-taxis model can be written as

{
ut = ∆u−∇ · (ρ(u, v)∇v) + γuF (v)− uh(u), x ∈ Ω, t > 0,

vt = D∆v − uF (v) + f(v), x ∈ Ω, t > 0,
(1.1)

where Ω ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂Ω and ∂

∂ν
denotes the

derivative with respect to the outer normal of ∂Ω, where u = u(x, t) denotes the predator

density at position x and time t > 0 and v = v(x, t) denotes the prey population density; the

term −∇ · (ρ(u, v)∇v) stands for the prey-taxis with a coefficient ρ(u, v) which may depend

on the predator or prey density and D is the prey diffusion rate. uF (v) stands for the inter-

specific interaction, uh(u) accounts for the intra-specific interaction. F (v) accounts for the

intake rate of predators, h(u) is the predator mortality rate function and f(v) is the prey

growth function. The parameter γ > 0 denotes the intrinsic predation rate. Since then, various

reaction-diffusion models have been proposed to interpret the prey-taxis phenomenon (see [3, 10,

14, 16, 18, 21–22, 40–41, 43–45, 49, 51, 55, 57]): That is, Wang et al. [49] studied nonconstant

positive steady states of a wide class of prey-taxis systems with general functional responses

over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that

prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-

filling effect in predator species or group defense in prey species) is presented, and prey-taxis

stabilizes the homogeneity otherwise. When F (v) = v
λ+v , h(v) = θ, f(v) = µv

(
1 − v

K

)
and

ρ(u, v) = ρ1(u) depends only on u but is truncated at some number u∗ > 0 (i.e., ρ1(u∗) = 0

and ρ1(u) > 0 for 0 ≤ u < u∗), Ainseba et al. [3] obtained the global weak solutions of (1.1)

for N ≥ 1 by the Schauder fixed point theorem and duality technique, Tao [41] extended the

global weak solutions to the global classical solutions for N ≤ 3 via Lp-estimates and Schauder

estimates, where the bound of solution depends on time. He and Zheng [16] improved the

result of [41] by obtaining the uniform-in-time boundedness of solutions. When ρ(u, v) = χu,

h(u) = a−µu, f(v) = v(c−βv) and sup
s∈[0,∞)

F (s) ≤ K, Wang and Wang [45] proved that system

(1.1) admits a unique nonnegative global classical solution in two space dimensions with β ≡ 0.

Moreover, if µ > χK(3+
√
10
2 + 2+

√
10

D
), system (1.1) also possesses a unique nonnegative global

classical solution in three-dimensional bounded domain with β ≡ 0. When ρ(u, v) = χρ2(u) and

ρ2(u) ≤ u, Wu et al. [55] considered various functional forms of F (v), h(u) and f(v), and showed

that the solution was globally bounded if χ is small. The asymptotic behavior of solutions was

derived for some particularized predator-prey interactions under certain conditions. When

ρ(u, v) = χu, by deriving an entropy-like equality and a boundedness criterion, Jin and Wang

[18] showed that the intrinsic interaction between predators and preys was sufficient to prevent

the population overcrowding even the prey-taxis was included and strong. Furthermore, by



Global Solvability for a Predator-Prey Model with Prey-Taxis and Rotational Flux Terms 299

constructing appropriate Lyapunov functionals, they showed that prey-only steady state was

globally asymptotically stable if the predation is weak, and the co-existence steady state was

globally asymptotically stable under some conditions (like the prey-taxis is weak or the prey

diffuses fast) if the predation is strong. The convergence rates of solutions to the steady states

were derived. When ρ(u, v) = χu, F (v) = v, h(u) = ρ and f(v) = µv(1 − αv), Winkler [51]

proved that if N ≤ 5, then for all appropriately regular initial data system (1.1) admits a

global weak solution at first. To the best of our knowledge, this provides the first result on

global existence in a system (1.1) in a spatially three-dimensional setting when arbitrarily large

initial data and parameters are involved. Then, under the additional hypotheses that N ≤ 3,

ρ = 0 and µ < 16Dα
χ2 , it is shown that each of these solutions becomes eventually smooth

and stabilizes toward a spatially homogeneous equilibrium in the sense that u(·, t) → u∞ in

L∞(Ω) and v(·, t) → 0 in L∞(Ω) as t → ∞, where u∞ is a constant fulfilling u∞ ≥ 1
|Ω|

∫
Ω
u0.

When ρ(u, v) = χu, F (v) = γv, h(u) = ρ and f(v) = µv(1 − v), Li [21] showed that the two-

dimensional system (1.1) possesses a unique global-bounded classical solution. Furthermore, she

used some higher-order estimates to obtain the classical solutions with uniform-in-time bounded

for suitably small initial data. In addition, the asymptotic behavior of the solutions is studied.

When ρ(u, v) = χu, F (v) = v, h(u) = a1, f(v) = a2v and ∆u is replaced by d1∆u, Xiang [57]

proved that, for any regular initial data, system (1.1) admits a unique global smooth solution

for arbitrary size of χ, and it is uniformly bounded in time in the case of a2 ≤ 0. In the latter

case, we further study its long time dynamics, which in particular imply that the prey-tactic

cross-diffusion and even the linear instability of the semi-trivial constant steady states (0, v∗)

with v∗ >
a1
γ
, γ > 0 and a2 ≡ 0 still cannot induce pattern formation. More specifically, it is

shown that (u, v) converges exponentially to (0, 0) in the case that the net growth rate of prey

is negative, i.e., a2 < 0.

For the prey-predator model with indirect prey-taxis, the model is given by




ut = du∆u+ uf(u)− vg(u, v), x ∈ Ω, t > 0,

ct = dc∆c+ αu− βc, x ∈ Ω, t > 0,

vt = dv∆v −∇ · (χv∇c)− rvg(u, v)− kv, x ∈ Ω, t > 0,

(1.2)

where Ω ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary, u and v represent

population densities of prey and predator, respectively. In addition, c is the concentration of

chemical density secreted by the prey with a constant rate α > 0. Moreover, c has constant

diffusivity dc and decays with constant rate β > 0. The conversion rate of the species and

the decay rate of v are specified as r > 0 and k > 0, respectively. Ahn and Yoon [1] proved

the global existence and uniform boundedness of solutions to the model for general functional

responses in any spatial dimensions. Moreover, through linear stability analysis, it turns out

that prey-taxis is an essential factor in generating pattern formations. This result differs in
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that the destabilizing effect of taxis does not occur in the direct prey-taxis case. In addition,

they showed the global stability of the semi-trivial steady state and coexistence steady state

for some specific functional responses, and gave numerical examples to support the analytic

results. Wang and Wang [46] considered the following model





ut = d1∆u−∇ · (uχ(w)∇w) + bug(v)− uh(u), x ∈ Ω, t > 0,

wt = d2∆w + rv − µw, x ∈ Ω, t > 0,

vt = d3∆v + f(v)− ug(v), x ∈ Ω, t > 0,

(1.3)

they investigated the global existence and boundedness of the unique classical solution. Then

they studied the asymptotic stabilities of nonnegative spatially homogeneous equilibria. More-

over, the convergence rates were also studied. And other related model, we recommend that

readers refer to the literature [2, 8, 13, 19, 25, 29, 31, 34–35, 37–38, 52, 56].

Based on recent experiments, the movement of cells is not directed toward the concentration

of chemical signal, but with a rotational motion. Consequently, the chemotactic sensitivity is a

tensor, see [23, 58–59] for more details. In this paper we investigate the following predator-prey

model with prey-taxis and rotational flux terms:





ut = ∆u−∇ · (uS(x, u, v)∇v) + γuF (v)− uh(u), x ∈ Ω, t > 0,

vt = D∆v − uF (v) + f(v), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.4)

where Ω ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂Ω and ∂

∂ν
denotes the

derivative with respect to the outer normal of ∂Ω, where u = u(x, t) denotes the predator density

at position x and time t > 0 and v = v(x, t) the prey population density. The parameters

D, γ > 0. Throughout this paper, we assume that F (v), f(v) and h(u) fulfill the following

hypotheses:

(H1) F (v) ∈ C2([0,∞)), F (0) = 0, F (v) > 0 in (0,∞) and F ′(v) > 0, F ′′(v) ≤ 0 on [0,∞).

(H2) The function h : [0,∞) → (0,∞) is continuously differentiable and there exist three

constants α, β, θ > 0 such that h(u) ≥ βuα + θ for any u ≥ 0.

(H3) The function f : [0,∞) → R is continuously differentiable satisfying f(0) = 0, and

there exist two constants µ,K > 0 such that f(v) ≤ µv for any v ≥ 0, f(K) = 0 and f(v) < 0

for all v > K. Moreover the ratio f(v)
F (v) is continuous on (0,∞) and lim

v→0

f(v)
F (v) exists.

(H4) The chemotactic sensitivity tensor S = (Sij)i,j∈{1,··· ,N} fulfills Sij ∈ C2(Ω× [0,∞)×

[0,∞)) for i, j ∈ {1, · · · , N} and with some nondecreasing function S0 on [0,∞) such that

|S(x, u, v)| ≤ S0(v) for all (x, u, v) ∈ Ω× [0,∞)× [0,∞).

(H5) The initial data (u0, v0) satisfies u0 ∈ L1(Ω), v0 ∈ W 1,∞(Ω) and u0, v0 ≥ 0.
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Remark 1.1 In order to avoid the tedious discussion of different situations, in what follows,

we may assume that 0 < α < 1 since that the global existence had been proved for the case

α ≥ 1 in some previous papers (see [18–19]).

Now, we state the main result in this paper.

Theorem 1.1 Let Ω ⊂ R
N (N ≥ 1) be a bounded domain with smooth boundary, D, γ > 0.

Assume that F, h, f and S satisfy (H1)–(H4). Then for any choice of initial data (u0, v0)

satisfying (H5), the problem (1.4) possesses at least one global generalized solution

u ∈ L1
loc(Ω× [0,∞)),

v ∈ L∞
loc(Ω× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω))

in the sense of Definition 2.1 below. This solution can be obtained as the limit a.e. in Ω×(0,∞)

of a sequence {(uε, vε)}ε=εjց0 of smooth classical solutions to the regularized problems (2.10)

below.

Remark 1.2 Theorem 1.1 partly generalizes the results in [18–19, 55].

In this paper, we use symbols Ci and ci (i = 1, 2, · · · ) as some generic positive constants

which may vary in the context. For simplicity, u(x, t) is written as u, the integral
∫
Ω u(x)dx is

written as
∫
Ω u(x) and

∫ t
0

∫
Ω u(x, t)dxdt is written as

∫ t
0

∫
Ω u(x, t).

The contents of the present paper as follows. In Section 2, we first introduce the concept

of generalized solutions and then give the global existence result for system (1.4). In Section

3, we give some fundamental estimates for the solution to system (1.4). In Section 4, we prove

Theorem 1.1.

2 Preliminaries

In this section, motivated by the thought from [51], and also [26, 32, 36, 53–54, 60], we first

introduce the concept of generalized solution and then give the global existence result for the

system (2.10) below.

Definition 2.1 Assume that F, h, f and S satisfy (H1)–(H4), and that the initial data

(u0, v0) fulfills (H5). Let

{
u ∈ L1

loc(Ω× [0,∞)),

v ∈ L∞
loc(Ω× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω))
(2.1)

be nonnegative and satisfy

γuF (v)− uh(u) ∈ L1
loc(Ω× [0,∞)). (2.2)
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Then (u, v) will be called a global generalized solution of (1.4) if
∫ ∞

0

∫

Ω

vψt −

∫

Ω

v0ψ(·, 0)

=D

∫ ∞

0

∫

Ω

∇v · ∇ψ +

∫ ∞

0

∫

Ω

uF (v)ψ −

∫ ∞

0

∫

Ω

f(v)ψ (2.3)

for all ψ ∈ C∞
0 (Ω× [0,∞)), if

∫

Ω

u(·, t) ≤

∫

Ω

u0 + γ

∫ t

0

∫

Ω

uF (v)−

∫ t

0

∫

Ω

uh(u) for a.e. t > 0 (2.4)

and if there exists a function φ ∈ C2([0,∞)) fulfilling

φ(u), φ′′(u)|∇u|2, uF (v)φ′(u), uh(u)φ′(u) ∈ L1
loc(Ω× [0,∞)),

uφ′′(u)∇u, uφ′(u) ∈ L2
loc(Ω× [0,∞))

and that for all nonnegative ψ ∈ C∞
0 (Ω× [0,∞)), the inequality

−

∫ ∞

0

∫

Ω

φ(u)ψt −

∫

Ω

φ(u0)ψ(·, 0)

≥ −

∫ ∞

0

∫

Ω

φ′′(u)|∇u|2ψ +

∫ ∞

0

∫

Ω

uφ′(u)(∇u · (S(x, u, v)∇v))ψ

+

∫ ∞

0

∫

Ω

φ(u)∆ψ +

∫ ∞

0

∫

Ω

uφ′(u)(S(x, u, v)∇v) · ∇ψ

+

∫ ∞

0

∫

Ω

uF (v)φ′(u)ψ −

∫ ∞

0

∫

Ω

uh(u)φ′(u)ψ (2.5)

holds.

In order to introduce an appropriate regularization of (1.4), now let us fix families {u0ε}ε∈(0,1)

⊂ C0(Ω) and (v0ε)ε∈(0,1) ⊂ W 1,∞(Ω) such that u0ε and v0ε are nonnegative for all ε ∈ (0, 1),

and that as ε→ 0 we have

u0ε → u0 and v0ε → v0 in L1(Ω) a.e. in Ω

as well as

‖u0ε − u0‖L1(Ω) ≤ 1 and ‖v0ε − v0‖L1(Ω) ≤ 1 for all ε ∈ (0, 1). (2.6)

Moreover, we fix nonnegative families {ξε}ε∈(0,1) ⊂ C∞
0 (Ω) and {ζε}ε∈(0,1) ⊂ C∞

0 ([0,∞)) with

0 ≤ ξε ≤ 1 in Ω and ξε ր 1 in Ω as εց 0 (2.7)

as well as

ζε(s)






= 1, 0 ≤ s ≤
1

ε
,

≤ 1,
1

ε
< s <

2

ε
,

= 0, s ≥
2

ε
,
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which fulfills

0 ≤ ζε ≤ 1 in [0,∞) and ζε ր 1 in [0,∞) as εց 0. (2.8)

Let

Sε(x, u, v) = ξε(x)ζε(u)S(x, u, v), x ∈ Ω, u, v ≥ 0, (2.9)

then we consider the regularized problems






uεt = ∆uε −∇ · (uεSε(x, uε, vε)∇vε) + γuεF (vε)− uεh(uε), x ∈ Ω, t > 0,

vεt = D∆vε − uεF (vε) + f(vε), x ∈ Ω, t > 0.

∂uε

∂ν
=
∂vε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), x ∈ Ω

(2.10)

for ε ∈ (0, 1). All of these problems (2.10) are indeed global solvable in the classical sense.

Lemma 2.1 Let Ω ⊂ R
N (N ≥ 1) be a bounded domain with smooth boundary, D, γ > 0.

Assume that F, h, f and S satisfy (H1)–(H4). Then for any choice of initial data (u0, v0)

satisfying (H5) and for each ε ∈ (0, 1), there exist functions

uε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞))

and

vε ∈
⋂

p>max{2,N}
C0([0,∞);W 1,p(Ω)) ∩ C2,1(Ω× (0,∞))

such that (uε, vε) solves (2.10) classically.

Proof Local existence and uniqueness of a smooth solution in Ω × [0, Tmax,ε) can be con-

structed by a well-established contraction mapping argument for suitably small Tmax,ε > 0

as in [17, 33] or by Amann’s theorem (see [4–5]), where Tmax,ε denotes the maximal exis-

tence time. From the maximum principle, the nonnegativity of uε and vε are obtained. Since

Sε(x, uε, vε) ≡ 0 for all sufficiently large uε, standard estimation techniques yield extensibility

of this local solution for all times as in [17]. The proof is complete.

3 Some Lemmas

In this section, we shall give some lemmas which will be used in proving the main theorem

in the next section.

Lemma 3.1 Let ε ∈ (0, 1) and T ∈ (0,∞] as well as nonnegative functions uε and vε belong

to C2,1(Ω × (0, T )) and such that (2.10) is satisfied in Ω × (0, T ). If φ ∈ C2([0,∞)), then for
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any arbitrary ψ ∈ C∞(Ω× (0, T )) with ∂ψ
∂ν

= 0 on ∂Ω× (0, T ), the equality

∫

Ω

∂t{φ(uε)}ψ

=−

∫

Ω

φ′′(uε)|∇uε|
2ψ +

∫

Ω

uεφ
′′(uε)∇uε · (Sε(x, uε, vε)∇vε)ψ

−

∫

Ω

φ′(uε)∇uε · ∇ψ +

∫

Ω

uεφ
′(uε)(Sε(x, uε, vε)∇vε) · ∇ψ

+ γ

∫

Ω

uεF (vε)φ
′(uε)ψ −

∫

Ω

uεh(uε)φ
′(uε)ψ (3.1)

holds for all t ∈ (0, T ) and each ε ∈ (0, 1).

Proof By the straightforward calculation, we have

∫

Ω

∂t{φ(uε)}ψ

=

∫

Ω

φ′(uε)ψ[∆uε −∇ · (uεSε(x, uε, vε)∇vε)

+ γuεF (vε)− uεh(uε)]

= −

∫

Ω

∇{φ(uε)ψ} · (∇uε − uεSε(x, uε, vε)∇vε)

+ γ

∫

Ω

uεF (vε)φ
′(uε)ψ −

∫

Ω

uεh(uε)φ
′(uε)ψ

=−

∫

Ω

φ′′(uε)|∇uε|
2ψ +

∫

Ω

uεφ
′′(uε)∇uε · (Sε(x, uε, vε)∇vε)ψ

−

∫

Ω

φ′(uε)∇uε · ∇ψ +

∫

Ω

uεφ
′(uε)(Sε(x, uε, vε)∇vε) · ∇ψ

+ γ

∫

Ω

uεF (vε)φ
′(uε)ψ −

∫

Ω

uεh(uε)φ
′(uε)ψ

for all t ∈ (0, T ) and each ε ∈ (0, 1). The proof is complete.

Lemma 3.2 Assume that the conditions of Theorem 1.2 hold, the solution (uε, vε) of (2.10)

fulfills

0 < vε(x, t) ≤ K0 for all (x, t) ∈ Ω× (0,∞) (3.2)

and each ε ∈ (0, 1), where

K0 := max{‖v0‖L∞(Ω) + 1,K}.

In particular,

‖vε‖L∞(Ω) ≤ K0 for any ε ∈ (0, 1) and all t > 0. (3.3)

Proof The proof can be found in [18]. To avoid repetition, we omit giving details on this

here.
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Lemma 3.3 There exists C1 > 0 such that

γsF (s̃)− sh(s) ≤ C1 − s for all s, s̃ ≥ 0. (3.4)

Proof From (H1) and (H2), we obtain

γsF (s̃)− sh(s) ≤ γsF (K0)− βs1+α − θs,

where α > 0. By Young’s inequality, it is easy to see that (3.4) is valid with

C1 =
αβ[γF (K0) + 1− θ]

1+α

α

(1 + α)
1+α+α2

α2

.

The proof is complete.

Lemma 3.4 There exists C2 > 0 independent of t such that

‖uε‖L1(Ω) < C2 for all ε ∈ (0, 1) (3.5)

and all t > 0. For any T > 0 there exists C3 = C3(T ) > 0 such that

∫ T

0

∫

Ω

|γuεF (vε)− uεh(uε)| ≤ C3 (3.6)

for all ε ∈ (0, 1). Moreover, {uε}ε∈(0,1) and
{
γuεF (vε)−uεh(uε)

uε+1

}
are uniformly integrable over

Ω× (0, T ).

Proof By Lemma 3.3, there exists c1 > 0 such that

γuεF (vε)− uεh(uε) ≤ c1 − uε for all ε ∈ (0, 1). (3.7)

Integrating the first equation of (2.10) and using (3.7), we deduce

d

dt

∫

Ω

uε ≤ c1|Ω| −

∫

Ω

uε for all t > 0 and ε ∈ (0, 1),

which yields

‖uε‖L1(Ω) ≤ max{‖u0‖L1(Ω) + 1, c1|Ω|}

for all t > 0 and ε ∈ (0, 1). Let

gε(uε, vε) = γuεF (vε)− uεh(uε).

It is well-known that

|gε| = gε+ + gε−

with

gε+ := max{gε, 0}
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and

gε− := max{−gε, 0}.

Once more employing Lemma 3.3, there exist c2, c3 > 0 and s∗ > 0 such that

gε+(s, s̃) ≤ c2 for all s, s̃ ≥ 0

and

gε− ≥ s− c3 for all s ≥ s∗.

Then, we get

∫ T

0

∫

Ω

|gε(uε, vε)|

=

∫ T

0

∫

Ω

gε+(uε, vε) +

∫ T

0

∫

Ω

gε−(uε, vε)

≤ 2c1|Ω|T +

∫

Ω

u0ε for all T > 0 and ε ∈ (0, 1).

Then, for any T > 0 there exists c4 > 0 such that

∫ T

0

∫

Ω

|γuεF (vε)− uεh(uε)| ≤ c4 for all ε ∈ (0, 1).

For any ς1 > 0 we take L1 = L1(ς1, T ) > 0 large enough satisfying c4
L1

≤ ς1
2 . By (H1)–(H2),

there exists s∗∗ = s∗∗(ς1, T ) > 0 such that g(s, s̃) ≤ −L1s for all s > s∗∗ and s̃ ≥ 0, and thus,

|g(s, s̃)| ≥ L1s for all s∗∗ and s̃ ≥ 0,

then, we can choose η = η(ς1, T ) > 0 appropriately small such that s∗∗η ≤ ς1
2 . For any measur-

able Λ ⊂ Ω× (0, T ) with |Λ| ≤ η, we estimate
∫ ∫

Λ

uε =

∫ ∫

Λ∩{uε≤s∗∗}
uε +

∫ ∫

Λ∩{uε>s∗∗}
uε

≤ s∗∗ · |Λ ∩ {uε ≤ s∗∗}|+

∫ ∫

Λ∩{uε>s∗∗}

|gε(uε, vε)|

L

≤ s∗∗ · |Λ|+
1

L1

∫ T

0

∫

Ω

|gε(uε, vε)|

≤ s∗∗η +
c4

L1
≤
ς1

2
+
ς1

2
for all ε ∈ (0, 1).

By the definition of uniformly integrable (see [11]), we know that {uε}ε∈(0,1) is uniformly

integrable over Ω × (0, T ). Given ς2 > 0, we take c5 = c5(ς2, T ) > 0 large enough such that

c4
c5+1 ≤ ς2

2 , whereupon the continuity of F and h on [0, c5], we can find c6 = c6(ς2, T ) > 0

fulfilling

|γuεF (vε)− uεh(uε)| ≤ c6 for all uε ∈ [0, c5].
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Then each measurable Λ̃ ⊂ Ω× (0, T ) satisfying |Λ̃| ≤ ς2
2c6

has the property that

∫ ∫

Λ̃

|γuεF (vε)− uεh(uε)|

uε + 1

=

∫ ∫

Λ̃∩{uε≤c5}

|γuεF (vε)− uεh(uε)|

uε + 1

+

∫ ∫

Λ̃∩{uε>c5}

|γuεF (vε)− uεh(uε)|

uε + 1

≤c6|Λ̃|+
1

c5 + 1

∫ ∫

Λ̃∩{uε>c5}
|γuεF (vε)− uεh(uε)|

≤
c4

c5 + 1
+
ς2

2
≤
ς2

2
+
ς2

2
= ς2 for all ε ∈ (0, 1).

The proof is complete.

Lemma 3.5 For any T > 0, there exists C3 = C3(T ) > 0 such that

∫ T

0

∫

Ω

|∇vε|
2 ≤ C3 for all ε ∈ (0, 1) (3.8)

and

∫ T

0

∫

Ω

F (vε)uε ≤ C3 for all ε ∈ (0, 1). (3.9)

Proof We test the second equation in (2.10) by vε and integrate by parts, we have

1

2

d

dt

∫

Ω

v2ε +D

∫

Ω

|∇vε|
2

=−

∫

Ω

uεvεF (vε) +

∫

Ω

f(vε)vε

≤ −

∫

Ω

uεvεF (vε) + µ

∫

Ω

v2ε

≤ −

∫

Ω

uεvεF (vε) + µK2
0 |Ω|

for all ε ∈ (0, 1) and all t > 0. Integrating the above inequality over (0, T ), we obtain

D

∫ T

0

∫

Ω

|∇vε|
2 ≤

1

2

∫

Ω

(v0 + 1)2 + µK2
0T |Ω|

for all ε ∈ (0, 1), here we used the nonnegativity of uε, vε and F . Then, integrating the second

equation in (2.10), we get

d

dt

∫

Ω

vε +

∫

Ω

uεF (vε) =

∫

Ω

f(vε) ≤ µ

∫

Ω

vε ≤ µK0|Ω|

for all ε ∈ (0, 1) and all t ∈ (0, T ). Integrating the above inequality over (0, T ), we deduce

∫ T

0

∫

Ω

uεF (vε) ≤

∫

Ω

(vε + 1) + µK0T |Ω|

for all ε ∈ (0, 1). The proof is complete.
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Lemma 3.6 For any T > 0, there exists C4 = C4(T ) > 0 such that

∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
≤ C4 for all ε ∈ (0, 1). (3.10)

Proof Letting ψ ≡ 1 and φ(s) = ln(s+ 1) on [0,∞) in Lemma 3.1, we have

d

dt

∫

Ω

ln(uε + 1) =

∫

Ω

|∇uε|
2

(uε + 1)2
−

∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)

+ γ

∫

Ω

uε

uε + 1
F (vε)−

∫

Ω

uε

uε + 1
h(uε) (3.11)

for all ε ∈ (0, 1) and all t ∈ (0, T ). Integrating (3.11) over t ∈ (0, T ), we obtain

∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
≤

∫

Ω

ln(uε(·, T ) + 1) +

∫ T

0

∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)

+

∫ T

0

∫

Ω

|γuεF (vε)− uεh(uε)|

for all ε ∈ (0, 1). Using Young’s inequality, we get

∣∣∣
∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)

∣∣∣

≤
1

2

∫

Ω

|∇uε|
2

(uε + 1)2
+

1

2

∫

Ω

u2ε
(uε + 1)2

|Sε(x, uε, vε)|
2|∇vε|

2

≤
1

2

∫

Ω

|∇uε|
2

(uε + 1)2
+

1

2
S2
0(K0)

∫

Ω

|∇vε|
2

for all ε ∈ (0, 1) and all t ∈ (0, T ). Since 0 ≤ ln(s+ 1) ≤ s for all s ≥ 0,

1

2

∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
≤

∫

Ω

uε(·, T ) +
1

2
S2
0(K0)

∫ T

0

∫

Ω

|∇vε|
2

+

∫ T

0

∫

Ω

|γuεF (vε)− uεh(uε)|.

Combining Lemma 3.4 with Lemma 3.5, we draw the conclusion immediately. The proof is

complete.

Lemma 3.7 Let m > N
2 . Then for any T > 0 there exists C5 = C5(T ) > 0 such that

∫ T

0

‖∂t ln(uε + 1)‖(Wm,2

0
(Ω))∗dt ≤ C5 for all ε ∈ (0, 1). (3.12)

Proof Letting φ(s) = ln(s+ 1) on [0,∞) in Lemma 3.1, we have

∫

Ω

∂t ln(uε + 1) · ψ

=

∫

Ω

|∇uε|
2

(uε + 1)2
ψ −

∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)ψ

−

∫

Ω

1

uε + 1
∇uε · ∇ψ +

∫

Ω

uε

uε + 1
(Sε(x, uε, vε)∇vε) · ∇ψ
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+ γ

∫

Ω

uε

uε + 1
F (vε)ψ −

∫

Ω

uε

uε + 1
h(uε)ψ (3.13)

for all ε ∈ (0, 1) and all t > 0 as well as arbitrary ψ ∈ W
m,2
0 (Ω). Now, we estimate the right

hand side of (3.13) one by one. By Hölder’s inequality, we obtain

∣∣∣
∫

Ω

|∇uε|
2

(uε + 1)2
ψ
∣∣∣ ≤

(∫

Ω

|∇uε|
2

(uε + 1)2

)
‖ψ‖L∞(Ω), (3.14)

∣∣∣−
∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)ψ

∣∣∣

≤ S0(K0)
( ∫

Ω

|∇uε|
2

(uε + 1)2

) 1
2
( ∫

Ω

|∇vε|
2
) 1

2

‖ψ‖L∞(Ω), (3.15)

∣∣∣−
∫

Ω

1

uε + 1
∇uε · ∇ψ

∣∣∣ ≤
( ∫

Ω

|∇uε|
2

(uε + 1)2

) 1
2

‖∇ψ‖L2(Ω), (3.16)

∣∣∣
∫

Ω

uε

uε + 1
(Sε(x, uε, vε)∇vε) · ∇ψ

∣∣∣ ≤ S0(K0)
(∫

Ω

|∇vε|
2
) 1

2

‖ψ‖L∞(Ω), (3.17)

∣∣∣γ
∫

Ω

uε

uε + 1
F (vε)ψ −

∫

Ω

uε

uε + 1
h(uε)ψ

∣∣∣ ≤
( ∫

Ω

|γuεF (vε)− uεh(uε)|
)
‖ψ‖L∞(Ω) (3.18)

for all ε ∈ (0, 1) and all t > 0. Inserting (3.14)–(3.18) into (3.13), we deduce

∣∣∣
∫

Ω

∂t ln(uε + 1) · ψ
∣∣∣

≤
{∫

Ω

|∇uε|
2

(uε + 1)2
+ S0(K0)

(∫

Ω

|∇uε|
2

(uε + 1)2

) 1
2
(∫

Ω

|∇vε|
2
) 1

2

‖ψ‖L∞(Ω)

+
( ∫

Ω

|∇uε|
2

(uε + 1)2

) 1
2

+ S0(K0)
(∫

Ω

|∇vε|
2
) 1

2

+

∫

Ω

|γuεF (vε)− uεh(uε)|
}
(‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω))

for all ε ∈ (0, 1) and all t > 0 as well as arbitrary ψ ∈ W
m,2
0 (Ω). Owing to m > N

2 , it is easy

to see that Wm,2
0 (Ω) →֒ L∞(Ω) is continuous. Thus, by Young’s inequality, there exists c1 > 0

such that

∣∣∣
∫

Ω

∂t ln(uε + 1) · ψ
∣∣∣ ≤ c1

{
1 +

∫

Ω

|∇uε|
2

(uε + 1)2
+

∫

Ω

|∇vε|
2

+

∫

Ω

|γuεF (vε)− uεh(uε)|
}
‖∇ψ‖Wm,2

0
(Ω)

for all ε ∈ (0, 1) and all t > 0. In accordance with Lemmas 3.4–3.6, integrating the above

inequality over (0, T ), we obtain (3.12) immediately. The proof is complete.

Lemma 3.8 Let T > 0. Then

(i) {ln(uε + 1)}ε∈(0,1) is relatively compact in L2((0, T );W 1,2(Ω)) with respect to the weak

topology, and relatively compact in L2(Ω× (0, T )) with respect to the strong topology;

(ii) {vε}ε∈(0,1) is relatively compact in L2(Ω× (0, T )) with respect to the strong topology;

(iii) {F (vε)uε}ε∈(0,1) is relatively compact in L1(Ω×(0, T )) with respect to the weak topology.



310 G. Q. Ren and B. Liu

Proof (i) Let zε := ln(uε + 1). By means of Lemmas 3.6–3.7, we have

{zε}ε∈(0,1) is bounded in L2((0, T );W 1,2(Ω))

and

{zεt}ε∈(0,1) is bounded in L1((0, T ); (WN,2(Ω))∗)

for all T > 0. According to Aubin-Lions lemma (see [42]), we obtain the claimed strong pre-

compactness property.

(ii) Let m > N
2 and an arbitrary ϕ ∈ W

m,2
0 (Ω). We test the second equation in (2.10) by ϕ,

integrating by parts and using the Cauchy-Schwarz inequality, for each fixed t ∈ (0, T ), we get

∣∣∣
∫

Ω

vεtϕ
∣∣∣ ≤ D

( ∫

Ω

|∇vε|
2
) 1

2

· ‖∇ψ‖L2(Ω) +
( ∫

Ω

uεF (vε)
)
· ‖ψ‖L∞(Ω)

+ µK0|Ω| · ‖ψ‖L∞(Ω).

Once more employing the embedding Wm,2
0 (Ω) →֒ L∞(Ω), we can find a constant c1 > 0 such

that

∫ T

0

‖vεt(·, t)‖(Wm,2

0
(Ω))∗dt ≤ c1

∫ T

0

(1 + |∇vε|
2 + uεF (vε))dt.

In accordance with Lemma 3.5, there exists c2 > 0 such that

∫ T

0

‖vεt(·, t)‖(Wm,2

0
(Ω))∗dt ≤ c2(1 + T ).

Thus, together with Aubin-Lions lemma (see [42]), Lemmas 3.2 and 3.5, we draw the claim

immediately.

(iii) Let zε := uεF (vε). In light of Lemma 3.2 and (H1), there exists a constant c3 > 0 such

that

∫ T

0

∫

Ω

zε ln(zε + 1)

≤

∫ T

0

∫

Ω

uεF (vε) ln(F (K0)uε + 1)

≤

∫ T

0

∫

Ω

uεF (vε) ln(c3(uε + 1))

≤ ln c3

∫ T

0

∫

Ω

uεF (vε) +

∫ T

0

∫

Ω

uεF (vε) ln(uε + 1). (3.19)

By the straightforward calculation, we derive

d

dt

∫

Ω

vε ln(uε + 1)

=D

∫

Ω

∆vε · ln(uε + 1)−

∫

Ω

uεF (vε) ln(uε + 1)
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+

∫

Ω

f(vε) ln(uε + 1) +

∫

Ω

vε

uε + 1
·∆uε

−

∫

Ω

vε

uε + 1
∇ · (uεSε(x, uε, vε)∇vε)

+ γ

∫

Ω

uεvε

uε + 1
F (vε)−

∫

Ω

uεvε

uε + 1
h(uε) for all t > 0.

Integrating the above equation over t ∈ (0, T ), we deduce

∫ T

0

∫

Ω

uεF (vε) ln(uε + 1)

≤

∫

Ω

v0 ln(u0 + 1)− (D + 1)

∫ T

0

∫

Ω

1

uε + 1
∇uε · ∇vε

+

∫ T

0

∫

Ω

vε

(uε + 1)2
|∇uε|

2 +

∫ T

0

∫

Ω

f(vε) ln(uε + 1)

+

∫ T

0

∫

Ω

uε

uε + 1
∇vε · (Sε(x, uε, vε)∇vε)

−

∫ T

0

∫

Ω

uεvε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)

+ γ

∫ T

0

∫

Ω

uεvε

uε + 1
F (vε). (3.20)

Applying Young’s inequality, we estimate

−(D + 1)

∫ T

0

∫

Ω

1

uε + 1
∇uε · ∇vε ≤

∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
+ (D + 1)2

∫ T

0

∫

Ω

|∇vε|
2, (3.21)

∫ T

0

∫

Ω

vε

(uε + 1)2
|∇uε|

2 ≤ K0

∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
, (3.22)

∫ T

0

∫

Ω

uε

uε + 1
∇vε · (Sε(x, uε, vε)∇vε) ≤ S0(K0)

∫ T

0

∫

Ω

|∇vε|
2, (3.23)

−

∫ T

0

∫

Ω

uεvε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε)

≤ K0S0(K0)
( ∫ T

0

∫

Ω

|∇uε|
2

(uε + 1)2
+

∫ T

0

∫

Ω

|∇vε|
2
)
, (3.24)

∫ T

0

∫

Ω

f(vε) ln(uε + 1) ≤ µK0

∫ T

0

∫

Ω

uε (3.25)

and

γ

∫ T

0

∫

Ω

uεvε

uε + 1
F (vε) ≤ γK0

∫ T

0

∫

Ω

uεF (vε). (3.26)

Substituting (3.21)–(3.26) into (3.20) and in light of Lemmas 3.4–3.6, there exists a constant

c4 > 0 such that

∫ T

0

∫

Ω

uεF (vε) ln(uε + 1) ≤ c4.
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Together with Lemma 3.5 and (3.19), we get

∫ T

0

∫

Ω

zε ln(zε + 1) ≤ c5

with c5 > 0 is a constant. Given δ > 0, we take c6 > 0 sufficiently large fulfilling

c5

ln(1 + c6)
≤
δ

2
.

Let Λ ⊂ Ω× (0, T ) is an arbitrary measurable set satisfying |Λ| ≤ δ
2c6

for ε ∈ (0, 1), we have

∫ ∫

Λ

zε =

∫ ∫

Λ∩{zε≥c6}
zε +

∫ ∫

Λ∩{zε<c6}
zε

≤
1

ln(1 + c6)

∫ ∫

Λ∩{zε≥c6}
zε ln(zε + 1) + c6|Λ|

≤
c5

ln(1 + c6)
+ c6|Λ| ≤ δ.

Owing to δ > 0 is arbitrary, we know that {zε}ε∈(0,1) is uniformly integrable over Ω × (0, T ).

According to Pettis theorem (see [6]), it is easy to see that {F (vε)uε}ε∈(0,1) is relatively compact

in L1(Ω× (0, T )) with respect to the weak topology. The proof is complete.

Now, we are preparing to extract a suitable sequence of number ε along with the respective

solutions approach a limit in appropriate topologies.

Lemma 3.9 Assume that the conditions of Theorem 1.1 hold. Then there are (εj)j∈N ⊂

(0, 1) and nonnegative functions

u ∈ L1
loc([0,∞);L1(Ω)), v ∈ L2

loc([0,∞);W 1,2(Ω)) (3.27)

such that εj ց 0 as j → ∞ and

uε → u a.e. in Ω× (0,∞), (3.28)

ln(uε + 1)⇀ ln(u+ 1), L2
loc([0,∞);W 1,2(Ω)), (3.29)

vε → v a.e. in Ω× (0,∞), (3.30)

vε → v in L2
loc(Ω× [0,∞)), (3.31)

vε
∗
⇀ v in L∞

loc(Ω× (0,∞)), (3.32)

∇vε ⇀ ∇v in L2
loc(Ω× (0,∞)), (3.33)

F (vε)uε → F (v)u in L1
loc(Ω× [0,∞)), (3.34)

as well as

γF (vε)uε − uεh(uε)

uε + 1
→

γF (v)u− uh(u)

u+ 1
in L1

loc(Ω× (0,∞)) (3.35)

as ε = εj ց 0.
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Proof By means of Lemma 3.8, (3.27)–(3.28) can be obtained through a straightforward

extraction process. Together with (3.3), (3.8) and Lemma 3.8 yield that (3.30)–(3.33) hold

along a further subsequence. In particular, we have

F (vε)uε → F (v)u a.e. in Ω× [0,∞) (3.36)

as ε = εj ց 0. The combination of Lemma 3.8 and Egorov’s theorem guarantees that

F (vε)uε ⇀ F (v)u in L1
loc(Ω× [0,∞))

as ε = εj ց 0. According to [50, Lemma A.3] and (3.36), we know that (3.34) holds. By (3.28),

(3.30), Lemma 3.4 and Vitali convergence theorem, we obtain (3.35). The proof is complete.

Lemma 3.10 Assume that the conditions of Theorem 1.1 hold, and let (εj)j∈N ⊂ (0, 1) be

as in Lemma 3.9. Then there exists a subsequence, again denoted by (εj)j∈N, such that for a.e.

T > 0 we have

∇vε → ∇v in L2(Ω× (0, T )) as ε = εj ց 0.

Proof In light of (3.33), we obtain

∫ T

0

∫

Ω

|∇v|2 ≤ lim inf
ε=εjց0

∫ T

0

∫

Ω

|∇vε|
2 for all T > 0. (3.37)

Then, multiplying the second equation in (2.10) by vε and integrating over Ω× (0, T ) implies

D

∫ T

0

∫

Ω

|∇vε|
2 = −

∫ T

0

∫

Ω

uεvεF (vε) +

∫ T

0

∫

Ω

f(vε)vε

+
1

2

∫

Ω

v20 −
1

2

∫

Ω

v2ε (·, T ). (3.38)

By (3.32) and (3.34), we get

∫ T

0

∫

Ω

uεvεF (vε) →

∫ T

0

∫

Ω

uvF (v) as ε = εj ց 0, (3.39)

(3.31) yields that

∫ T

0

∫

Ω

f(vε)vε →

∫ T

0

∫

Ω

f(v)v as ε = εj ց 0 (3.40)

and

∫

Ω

v2ε (·, T ) →

∫

Ω

v2(·, T ) for all T ∈ (0,∞)\Λ1 (3.41)

with some null set Λ1 ⊂ (0,∞). Thus, collecting (3.38)–(3.41) shows

D lim
ε=εjց0

∫ T

0

∫

Ω

|∇vε|
2 = −

∫ T

0

∫

Ω

uvF (v) +

∫ T

0

∫

Ω

f(v)v
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+
1

2

∫

Ω

v20 −
1

2

∫

Ω

v2(·, T ) for all T ∈ (0,∞)\Λ1,

which in conjunction with the fact of [50, Lemma 8.1] with a null set Λ2 ⊂ (0,∞),

−

∫ T

0

∫

Ω

uvF (v) +
1

2

∫

Ω

v20 −
1

2

∫

Ω

v2(·, T ) ≤ D

∫ T

0

∫

Ω

|∇v|2 for all T ∈ (0,∞)\Λ1

gives the desired consequence. The proof is complete.

4 Proof of Main Theorem

Now, we can prove Theorem 1.1 on the basis of the above lemmas.

Proof of Theorem 1.1 We only verify the inequality (2.5). For any arbitrary ψ ∈

C∞
0 (Ω × [0,∞)), we take T > 0 such that suppψ ⊂ Ω× [0, T ] and choose φ(s) = ln(s + 1) on

[0,∞) in Lemma 3.1, we have

−

∫ ∞

0

∫

Ω

ln(uε + 1)ψt −

∫

Ω

ln(u0ε + 1)ψ(·, 0)

=

∫ ∞

0

∫

Ω

|∇uε|
2

(uε + 1)2
ψ −

∫ ∞

0

∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε) · ψ

+

∫ ∞

0

∫

Ω

ln(uε + 1)∆ψ +

∫ ∞

0

∫

Ω

uε

uε + 1
(Sε(x, uε, vε)∇vε) · ∇ψ

+ γ

∫ ∞

0

∫

Ω

uε

uε + 1
F (vε)ψ −

∫ ∞

0

∫

Ω

uε

uε + 1
h(uε)ψ for all ε ∈ (0, 1). (4.1)

An application of (3.29) infers that

−

∫ ∞

0

∫

Ω

ln(uε + 1)ψt → −

∫ ∞

0

∫

Ω

ln(u+ 1)ψt (4.2)

and

∫ ∞

0

∫

Ω

ln(uε + 1)∆ψ →

∫ ∞

0

∫

Ω

ln(u + 1)∆ψ (4.3)

as ε = εj ց 0. Thanks to (3.35), we get

γ

∫ ∞

0

∫

Ω

uε

uε + 1
F (vε)ψ −

∫ ∞

0

∫

Ω

uε

uε + 1
h(uε)ψ

→ γ

∫ ∞

0

∫

Ω

u

u+ 1
F (v)ψ −

∫ ∞

0

∫

Ω

u

u+ 1
h(u)ψ (4.4)

as ε = εj ց 0. Combining (3.28) with (3.30), we deduce

uε

uε + 1
Sε(x, uε, vε) →

u

u+ 1
S(x, u, v) a.e. in Ω× (0,∞),

along with Lemma 3.10 implies that

uε

uε + 1
(Sε(x, uε, vε)∇vε) →

u

u+ 1
(S(x, u, v)∇v) in L2

loc(Ω× [0,∞)) (4.5)
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as ε = εj ց 0, this ensures that

∫ ∞

0

∫

Ω

uε

uε + 1
(Sε(x, uε, vε)∇vε) · ∇ψ →

∫ ∞

0

∫

Ω

u

u+ 1
(S(x, u, v)∇v) · ∇ψ (4.6)

as ε = εj ց 0. The combination of (3.29) and (3.46) yields

∫ ∞

0

∫

Ω

uε

(uε + 1)2
∇uε · (Sε(x, uε, vε)∇vε) · ψ

=

∫ ∞

0

∫

Ω

∇ ln(uε + 1) ·
( uε

uε + 1
Sε(x, uε, vε)∇vε

)
· ψ

→

∫ ∞

0

∫

Ω

∇ ln(u+ 1) ·
( u

u+ 1
S(x, u, v)∇v

)
· ψ

=

∫ ∞

0

∫

Ω

u

(u + 1)2
(∇u · S(x, u, v)∇v) · ψ (4.7)

as ε = εj ց 0. Applying Fatou’s lemma, we obtain

∫ ∞

0

∫

Ω

|∇u|2

(u+ 1)2
ψ ≤ lim inf

ε=εjց0

∫ ∞

0

∫

Ω

|∇uε|
2

(uε + 1)2
ψ (4.8)

and
∫

Ω

ln(u0 + 1)ψ(·, 0) ≤ lim inf
ε=εjց0

∫

Ω

ln(u0ε + 1)ψ(·, 0). (4.9)

Collecting (3.43)–(3.45) and (3.47)–(3.50), we know that u fulfills (2.5). The proof is complete.
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