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Equivariant Tautological Integrals on Flag Varieties∗
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Abstract The author apples the Atiyah-Bott-Berline-Vergne formula to the equivariant

tautological integrals over flag varieties of types A, B, C, D, and recovers the formulas

expressing the integrals as iterated residues at infinity, which were first obtained by Zie-

lenkiewicz using symplectic reduction.
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1 Introduction

Let Pn be the complex projective space of dimension n and x ∈ H2(Pn,Z) be the hyperplane

class. Then H∗(Pn,Z) = Z[x]/〈xn+1〉. A general element in H∗(Pn,Z) can be written as Q(x)

for some polynomial Q with coefficients in Z, and we have
∫

Pn

Q(x) = Resz=0
Q(z)

zn+1
dz. (1.1)

Note that there is a natural action of the torus T = (C∗)n+1 on Pn:

T × P
n −→ P

n, ((t0, · · · , tn), [x0 : · · · : xn]) 7−→ [t0x0 : · · · : tnxn]. (1.2)

We can also consider integrals of T -equivariant cohomology classes. LetH be the equivariant

hyperplane class, t be the Lie algebra of T and αi = 2π
√
−1ui, i = 1, · · · , n+ 1 be the weights

of T defined by αi(X1, · · · , Xn+1) = Xi, ∀(X1, · · · , Xn+1) ∈ t. Then for any polynomial Q we

have ∫

Pn

Q(H) = Resz=∞
−Q(z)∏

1≤i≤n+1

(ui + z)
dz, (1.3)

where Resz=∞ is the residue at infinity (see [2, 8]). We call formulas like (1.1) nonequivariant

residue formulas and call formulas like (1.3) residue formulas. By taking nonequivariant limit,

we can see that (1.1) is a consequence of (1.3).

It is natural to ask for the similar formulas for general flag varieties. In [2], for a special

class of type A flag varieties (the full flag of k-dimensional subspaces of Sym≤k
Cn), Bérczi and
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Szenes wrote the equivariant integrals as iterated residues at infinity. The main idea of [2] is to

apply the Atiyah-Bott-Berline-Vergne formula to express the equivariant integrals as sums over

fixed points and then play combinatorics. In this paper, we follow the idea of Bérczi and Szenes

to derive the equivariant residue formulas for generalized flag varieties of types A,B,C,D.

Since the formulas share a lot of similarities, we only present here the formula in the type

C case and refer the reader to later sections for other formulas. To state our result, we in-

troduce some necessary notations. Let S be a nondegenerate skew-symmetric bilinear form on

C2n. For any increasing sequence of positive integers 0 = a0 < a1 < · · · < as = k ≤ n,

set ri = ai − ai−1. Let FlS = FlS(a1, · · · , as; 2n) be the variety parametrizing isotrop-

ic flags E1 ⊂ · · · ⊂ Es ⊂ C2n, where dimEi = ai. Then FlS can be identified with

Sp(2n;C)/Pa1,··· ,as
, where Pa1,··· ,as

is a parabolic subgroup. The maximal torus T of Sp(2n;C)

acts canonically on FlS. This action lifts canonically to the i -th tautological vector bun-

dle which we denote by Ei. Let cTj
(( Ep

Ep−1

)∗)
be the j-th equivariant Chern class of

( Ep

Ep−1

)∗

(p = 1, · · · , s; j = 1, · · · , rp). For any polynomial Q(x1, · · · , xk), which is invariant with respect

to any permutation of xai+1, · · · , xai+1
for any i ∈ {0, · · · , s− 1}, there exists a polynomial Q̃

such that Q(x1, · · · , xk) = Q̃(e11, · · · , er11 , · · · , e1s, · · · , erss ), where eji = eji (xai−1+1, · · · , xai
) is

the j-th elementary symmetric polynomial. Letting

IC(Q) =

∫

FlS
Q̃(cT1

((E1
E0

)∗)
, · · · , cTr1

((E1
E0

)∗)
, · · · , cT1

(( Es
Es−1

)∗)
, · · · , cTrs

(( Es
Es−1

)∗
))

,

then we prove the following theorem.

Theorem 6.1

IC(Q) =
(−1)k

r1! · · · rs!
Res∞×

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
s∏

m=1

∏
am−1+1≤i<j≤am

(zi − zj)

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)

dz1 · · · dzk. (1.4)

Note that the equivariant Chern classes cTi
(( Ej

Ej−1

)∗)
(i = 1, · · · , rj ; j = 1, · · · , s−1) generate the

equivariant cohomolgy ring. Hence in principle we can compute the integral of any equivariant

cohomology class over FlS via the above formula.

In the case of classical Grassmannians and maximal isotropic Grassmannians, the equivari-

ant residue formulas were also proved by Zielenkiewicz in [13] using the same idea. Zielenkiewicz

also suggested using JeffreyCKirwan nonabelian localization and symplectic reduction to obtain

the residue formulas. Using that method, Zielenkiewicz obtained the equivariant residue formu-

las for flag varieties of types A,B,C,D in [14]. Later in [9] Weber and Zielenkiewicz also proved

the residue formulas for the exceptional group G2. In [7], Darondeau and Pragacz expressed

the images of the nonequivariant cohomology classes under Gysin homomorphisms in terms of

residues and Segre classes for flag bundles of types A,B,C,D. In [10–11] , the author also
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proved the nonequivariant residue formulas for flag varieties of type A using the ring structure

of the cohomology ring. Note that the formulas in [7] (in the case that the base manifold is a

single point) differs from the formulas obtained in [11, 14].

Our formulas coincide with those obtained in [14], except that in [14], the factor 2k is

missing in the type D case. In [14], the proofs of the formulas are based on the embeddings of

the various flag varieties into the type A flag varieties. Our approach does not rely on such an

embedding, and we believe that we can obtain the corresponding formulas for the exceptional

groups along this line. As an application of the nonequivariant formulas, we also reprove the

formulas (in the case that the base manifold is a single point) obtained in [7].

This paper is organized as follows. In Section 2, we fix some notations and collect the basic

facts about flag varieties. In Section 3, as a warm up, we prove the type A case. In Section

4, we prove the type D case. In Section 5, we prove the type B case. In Section 6, we prove

the type C case. In Section 7, we reprove the formulas (in the case that the base manifold is a

single point) obtained in [7].

2 Preliminaries

In this section, we fix some notations and recall some basic facts about flag varieties.

2.1 Notations

Throughout this paper, we use [n] to denote the set {1, · · · , n}, and set [0] = ∅. We use

Mn×k(C) to denote the set of n×k matrices over C. For any sequence of increasing positive inte-

gers 0 = a0 < a1 < · · · < as < n, we set ri = ai−ai−1 and k = as. We will consider the varieties

parametrizing flags E1 ⊂ · · · ⊂ Es ⊂ C
n, satisfying dimEi = ai and certain additional condi-

tions. In each case, we use Ei to denote the i-th universal vector bundle of rank ai over the flag

variety. We will see that there is a natural action of a torus T on the flag variety, which lifts to Ei
canonically. By tautological integrals, we mean the integrals of the cohomology classes written

as polynomials of the (equivariant) Chern classes of the bundles
( Ei

Ei−1

)∗
(i = 1, · · · , s). In gen-

eral, such a class can be obtained in the following way. Let Q(x1, · · · , xk) be a polynomial which

is invariant with respect to the Sr1 ×· · ·×Srs action. In other words, for any i = 0, · · · , s−1, Q

is invariant with respect to any permutation of xai+1, · · · , xai+1
. There exists a polynomial Q̃

such that Q(x1, · · · , xk) = Q̃(e11, · · · , er11 , · · · , e1s, · · · , erss ) where eji is the j-th elementary sym-

metric polynomial of xai−1+1, · · · , xai
. Then Q̃

(
cT1

((E1

E0

)∗)
, · · · , cTr1

((E1

E0

)∗)
, · · · , cTrs

(( Es

Es−1

)∗))

is such a class, where cTi is the i-th equivariant Chern class with respect to the action of T .

Next we introduce the notion of iterated residues (see [2, 8]). Let w1, · · · , wN be affine forms

on Cn, i.e., there exist constants aji , i = 1, · · · , N ; j = 0, · · · , n, such that wi = a0i +
n∑

j=1

ajizj .

Then for any holomorphic function h(z), where z = (z1, · · · , zn), the iterated residue at infinity
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of h(z)
N∏

i=1

wi

dz is defined as

Resz1=∞ · · ·Reszn=∞
h(z)
N∏
i=1

wi

dz =
( 1

2π
√
−1

)n
∫

MR

h(z)
N∏
i=1

wi

dz, (2.1)

where the integral is taken over the real torus MR = {(z1, · · · , zn) | |zi| = Ri, i = 1, · · · , n}, 1 ≪
R1 ≪ · · · ≪ Rn and the orientation of MR is chosen such that Resz1=∞ · · ·Reszn=∞

1
z1···zn dz =

(−1)n. For simplicity we use Res∞ or Resz=∞ to denote Resz1=∞ · · ·Reszn=∞. In practical

computation, we can evaluate the iterated residue at infinity by iterated integrals

Res∞
h(z)
N∏
i=1

wi

dz =
(
− 1

2π
√
−1

∫

|z1|=R1

· · ·
(
− 1

2π
√
−1

∫

|zn|=Rn

h(z)
N∏
i=1

wi

dzn

)
· · · dz1

)
, (2.2)

where each integral is a contour integral of a function of one complex variable along a coun-

terclockwise circle in the complex plane, which can be evaluated by the residue theorem. Note

that in general the iterated residue depends on the order of the variables zi. For example, let

ω = 1
(z1+z2)z1

dz1dz2. We find that

− 1

2π
√
−1

∫

|z1|=R1

(
− 1

2π
√
−1

∫

|z2|=R2

1

(z1 + z2)z1
dz2

)
dz1 = 1, R1 ≪ R2, (2.3)

while at the same time,

− 1

2π
√
−1

∫

|z2|=R2

(
− 1

2π
√
−1

∫

|z1|=R1

1

(z1 + z2)z1
dz1

)
dz2 = 0, R2 ≪ R1. (2.4)

We remark that the iterated residues in this article, however, do not depend on the order of

the variables, since we only consider residues of forms like

h(z)

g1(z1) · · · gn(zn)
dz, (2.5)

where the gi’s are holomorphic functions in one variable.

2.2 Flag varieties and homogeneous vector bundles

Let G be a connected complex semisimple Lie group. Fix a maximal torus T in G. Let t and

g be the Lie algebras of T and G, respectively. Let R(G) be the set of roots of G with respect to

T . By fixing an ordering on t∗, R(G) can be written as the disjoint union of the set of positive

roots R+(G) and the set of negative roots R−(G). Let Π = {α1, · · · , αn} be the simple roots

with respect to this ordering. Then each positive root α can be written as α =
n∑

i=1

miαi with

mi ∈ Z≥0, ∀1 ≤ i ≤ n. We have the root-space decomposition

g = t⊕
⊕

α∈R(G)

gα, (2.6)
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where gα = {X ∈ g | adt(X) = α(t)X, ∀t ∈ t}.
Let B be the Borel subgroup corresponding to the Lie subalgebra b = t⊕ ⊕

α∈R−(G)

gα. Then

any parabolic subgroup containing B can be written in the form PI , where I ⊂ {1, 2, · · · , n},
and PI is the parabolic subgroup corresponding to the following Lie algebra

p = t⊕
⊕

α∈R−(G)

gα ⊕
⊕

α∈R+

I

gα,

where R+
I =

{ n∑
i=1

miαi ∈ R+(G) | mi = 0 if i ∈ I
}
.

Let X = G/PI . Then X is a smooth projective variety which is called a generalized flag

variety. Recall that the restriction of every complex representation V of G to T is diagonalizable.

Hence, as a T -representation V ∼= ⊕λVλ, where λ ∈ t∗ and Vλ is the subspace of V on which

T acts by exp(t)(v) = exp(λ(t)) · v, ∀t ∈ t. These λ’s are called the weights of V . Let K be a

compact real form of G. By Mostow theorem, K acts transitively on G/PI . It is easy to see

that H = K ∩ PI is a connected Lie subgroup of K, which is determined by its Lie algebra. In

this way, we represent the flag variety G/PI as the quotient of two compact Lie groups of the

same rank G/PI = K/H (see [1] for details).

Let S = K∩T be the common maximal torus in K and H . Denote the Lie algebra of S by s.

Then Γ = {v ∈ s | exp(v) = e} is a lattice in s which is isomorphic to Zn. The linear forms on s

which are integral on Γ can be identified with H1(S,Z), and we have HomZ(Γ,Z) ∼= H1(S,Z).

Under the transgression map (see [3]), each integral linear form on s corresponds to an element

in H2(K/S,Z). In this paper, we use the same symbol to denote the integral linear form and

the corresponding element in H2(K/S;Z). Since S is a compact real form of T , any weight λ of

T when restricted to s takes the form 2π
√
−1u, where u is an integral linear form on s. Hence

λ
2π

√
−1

represents an element in H2(K/S;Z).

Let {u1, · · · , un} be a basis of H1(S,Z). Then the cohomology ring of the classifying space

of S is H∗(BS ,Z) = Z[u1, · · · , un] (see [3, Theorem 19.1]). Denote the Weyl groups of K and H

by WK and WH , respectively. Then WH can be viewed as a subgroup of WK . H∗(BH ,Z) can

be regarded as the subring Z[u1, · · · , un]
WH of Z[u1, · · · , un], which consists of WH -invariant

polynomials (see [3, Proposition 27.1]). Let 〈Z[u1, · · · , un]
WK

+ 〉 be the ideal in Z[u1, · · · , un]
WH

generated by homogeneous WK -invariant polynomials of positive degrees. Then we have

H∗(K/H,Z) ∼= Z[u1, · · · , un]
WH/〈Z[u1, · · · , un]

WK

+ 〉. (2.7)

Note that the inverse of the above isomorphism is given by transgression (see [3, Theorem 22.2]):

For any f(u1, · · · , un) ∈ Z[u1, · · · , un]
WH , we regard ui, i = 1, · · · , l as elements of H2(K/S,Z)

via transgression, then f(u1, · · · , un) is an element in H∗(K/S,Z). The fact that f(u1, · · · , un)

is invariant under WH implies that f(u1, · · · , un) descends to an element in H∗(K/H,Z).

Let (V, ϕ) be a complex representation of PI of dimension l and λ1, · · · , λl be the weights

of V as a representation of T . Let V = G ×PI ,ϕ V be the corresponding homogeneous vector
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bundle over X (see [6]). We can rewrite V in the compact picture

V = K ×H,ϕ|H V. (2.8)

By [5, Thereom 10.3], the Chern class of V is c(V) =
l∏

i=1

(
1 + 1

2π
√
−1

λi

)
. The expression

l∏
i=1

(
1 + 1

2π
√
−1

λi

)
is WH -invariant since WH acts on {λ1, · · · , λl}. In particular, if we take

V = g/p and let ϕ be the adjoint representation, G ×PI ,ϕ g/p is the holomorphic tangent

bundle on G/PI , which we denote by TX . We have

c(TX) =
∏

α∈R+(G)\R+

I

(
1 +

1

2π
√
−1

α
)
. (2.9)

2.3 Torus actions on flag varieties

The compact torus S acts canonically on K/H by sending (t, k̄) ∈ S × K/H to tk. The

fixed point set XS can be determined completely (see [4]).

Proposition 2.1 (see [4])

XS = {wH ∈ K/H | w ∈ WK}. (2.10)

In particular, XS is bijective to WK/WH .

For any homogeneous vector bundle V = K×H V , S acts on V by sending (t, (k, v)) ∈ S×V
to (tk, v) ∈ V . Under these actions, the projection V → K/H is S-equivariant. For any

kH ∈ K/H , let V|kH be the fiber of V over kH . Then for any fixed point wH ∈ XS, S acts on

V|wH . Suppose that the weights of V as a representation of T are λ1, · · · , λn. Then the weight

of V|wH can be calculated as follows. Since V|wH = {w}×H V , for any t ∈ S, (w, v) ∈ {w}×H V

we have t(w, v) = (tw, v) = (ww−1tw, v) = (w,w−1twv) ∈ {w} ×H V . Hence one can see that

the weights of V|wH are wλ1, · · · , wλn.

For any homogeneous symmetric polynomial Q(x1, · · · , xl), l = dimV , it can be written as

a polynomial in elementary symmetric polynomials, say Q̃(e1, · · · , el). Let cSi (V), i = 1, · · · , l,
be the equivariant Chern classes of V . By Atiyah-Bott-Berline-Vergne formula, we can express
∫
X Q̃(cS1 (V), · · · , cSl (V)) as the sums of contributions at fixed points

∫

X

Q̃(cS1 (V), · · · , cSl (V)) = (2π
√
−1)dimX

∑

w∈WK/WH

Q(wu1, · · · , wul)∏

α∈R+(G)\R+

I

wα
, (2.11)

where ui =
1

2π
√
−1

λi, i = 1, · · · , l.
In the following sections, in order to use (2.11) we need to determine in each case the

following datum:

(1) The fixed point set;

(2) the complementary roots R+(G) \R+
I ;

(3) the weights of the tautological bundles at fixed points.



Equivariant Tautological Integrals on Flag Varieties 469

3 Partial Flag Varieties of Type A

To illustrate our method, we include here the simplest case: The type A flag varieties. Now,

let Fl = Fl(a1, · · · , as;n) be the variety of type A parametrizing flags

E1 ⊂ · · · ⊂ Es ⊂ C
n, (3.1)

satisfying dimEi = ai. SL(n;C) acts transitively on the set of such flags, and Fl can be

identified with SL(n;C)/P for some parabolic subgroup P . The torus T = (C∗)n acts on Cn

by

(t1, · · · , tn) · (z1, · · · , zn) := (t1z1, · · · , tnzn), (3.2)

which induces a T -action on Fl canonically. Note that unlike the type B,C,D cases, the torus

we use here is not a maximal torus of SL(n;C) (SL(n;C) has rank n− 1). In order to use the

Atiyah-Bott-Berline-Vergne formula to compute
∫
Fl

Q̃(cT1 ((E1/E0)∗), · · · , cTrs((Es/Es−1)
∗)), we

need to determine the weights of the fibers of the tangent bundle and the bundles (Ei/Ei−1)
∗

at the fixed points. We refer the reader to [12] for an elementary analysis and we only state

the results. The fixed point set of this action is indexed by the set I = {(I1, · · · , Is) | Ii ⊂
{1, · · · , k}, |Ii| = ri, Ii ∩ Ij = ∅, ∀i 6= j}. For any (I1, · · · , Is) ∈ I, the corresponding fixed

point PI1,··· ,Is is the following flag:

span{ei | i ∈ I1} ⊂ span{ei | i ∈ I1 ∪ I2} ⊂ · · · ⊂ span{ei | i ∈ I1 ∪ · · · ∪ Is} ⊂ C
n. (3.3)

Let t be the Lie algebra of T . Let λ1, · · · , λn be the standard weights of T , i.e., λi(X) = Xi,

∀X = (X1, · · · , Xn) ∈ t. Then the weights of the tangent space of Fl at PI1,··· ,Is are

s⋃

p=1

{λi − λj | j ∈ Ip, i /∈ I1 ∪ · · · ∪ Ip}. (3.4)

The weights of (Ei/Ei−1)
∗|PI1,··· ,Is

are

{−λj | j ∈ Ii}. (3.5)

Denote ui = 1
2π

√
−1

λi, i = 1, · · · , n. For any I = {i1, · · · , ip} ⊂ [n] (i1 < · · · < ip), denote

uI = (ui1 , · · · , uip). Using the Atiyah-Bott-Berline-Vergne formula and combining (3.4)–(3.5),

we have ∫

Fl

Q̃(cT1 ((E1/E0)∗), · · · , cTrs((Es/Es−1)
∗)) =

∑

(I1,··· ,Is)∈I
CI1,··· ,Is , (3.6)

where

CI1,··· ,Is =
Q(−uI1 , · · · ,−uIs)
s∏

p=1

∏
j∈Ip

i/∈I1∪···∪Ip

(ui − uj)
. (3.7)
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We can rewrite CI1,··· ,Is as

Q(−uI1 , · · · ,−uIs)
∏

i,j∈I1∪···∪Is
i6=j

(ui − uj)

∏
j∈I1∪···∪Is

∏
1≤i≤n
i6=j

(ui − uj)
s∏

p=1

∏
j∈Ip

∏
i∈Ip+1∪···∪Is

(ui − uj)
, (3.8)

and we recognize it as the residue:

Resz=(−uI1
,··· ,−uIs )

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

∏
1≤j≤k

∏
1≤i≤n

(ui + zj)
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)
dz. (3.9)

Hence, we have

∑

(I1,··· ,Is)∈I
CI1,··· ,Is

=
∑

(I1,··· ,Is)∈I
Resz=(−uI1

,··· ,−uIs )

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

∏
1≤j≤k

∏
1≤i≤n

(ui + zj)
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)
dz

= Res∞
(−1)k

r1! · · · rs!

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

∏
1≤j≤k

∏
1≤i≤n

(ui + zj)
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)
dz,

where the last equality follows from the residue theorem and the factor r1! · · · rs! comes from

the Sr1 × · · · × Srs-invariance of the function

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

∏
1≤j≤k

∏
1≤i≤n

(ui + zj)
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)
.

We have proved the following theorem which was originally proved by Zielenkiewicz in [14,

Theorem 4.19].

Theorem 3.1 Let IA(Q) =
∫
Fl(a1,··· ,as;n)

Q̃(cT1 ((E1/E0)∗), · · · , cTrs((Es/Es−1)
∗)). Then we

have

IA(Q) = Res∞
(−1)k

r1! · · · rs!

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

∏
1≤j≤k

∏
1≤i≤n

(ui + zj)
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)

dz. (3.10)
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Taking the nonequivariant limit, we have the folloming corollary

Corollary 3.1 Let uap−1+1, · · · , uap
be the Chern roots of (Ep/Ep−1)

∗. Then

∫

Fl(a1,··· ,as;n)

Q(u1, · · · , uk) = Resz=0
1

r1! · · · rs!

Q(z1, · · · , zk)
∏

1≤i,j≤k
i6=j

(zi − zj)

(z1 · · · zk)n
s∏

p=1

∏
ap−1+1≤i≤ap

ap+1≤j≤k

(zi − zj)
dz. (3.11)

The formula (3.11) coincides with the formula obtained in [11]. In [11], it was proved by

using the structure of the cohomology ring.

4 Flag Varieties of Type D

4.1 The flag varieties of type D

Consider the vector space C2n, and fix a nondegenerate symmetric bilinear form S on it.

In this section, we consider flags in C2n:

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ C
2n, (4.1)

satisfying dimEi = ai and S|Ei×Ei
= 0, ∀1 ≤ i ≤ s. We denote by FlO = FlO(a1, · · · , as; 2n)

the variety parametrizing the isotropic flags (4.1). Fix a basis e1, · · · , en, f1, · · · , fn of C2n such

that S(ei, ej) = 0 = S(fi, fj),S(ei, fj) = δij . With respect to this basis, S has the following

matrix representation:
(

0 In
In 0,

)
,

where In is the n × n identity matrix. Let SO(2n;C) be the group of linear isomorphisms of

C2n preserving S with determinant 1. Then SO(2n;C) acts on FlO in a natural way, and we

denote by Pa1,··· ,as
the isotropy group at the following flag:

span{f1 · · · , fa1
} ⊂ span{f1 · · · , fa2

} ⊂ · · · ⊂ span{f1 · · · , fas
} ⊂ C

2n. (4.2)

With respect to the basis e1, · · · , en, f1, · · · , fn, matrices in Pa1,··· ,as
take the following form:

(4.3)

where U is a block upper-triangular matrix

(4.4)
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with Ui ∈ Mri×ri(C), where ri = ai−ai−1. When as < n, the action of SO(n) is transitive and

we can identify FlO(a1, · · · , as; 2n) with SO(2n;C)/Pa1,··· ,as
. When as = n, FlO(a1, · · · , as; 2n)

has two isomorphic connected components, and SO(n) acts transitively on each of the compo-

nents. In the following, we assume that as < n. However, the results also hold for the case

as = n, and the reader can check that the proof is exactly the same. In the case as = n,

although (4.20) only contains the fixed points lying on one of the connected components, the

whole fixed point set is again indexed by (4.23) and is given by the formula (4.24).

Denote the Lie algebras of SO(2n;C) and Pa1,··· ,as
by g and p, respectively. Let T be the

maximal torus in SO(2n;C) which consists of diagonal matrices in the following form

diag(t1, · · · , tn, t−1
1 , · · · , t−1

n ), ti ∈ C
∗, i = 1, · · · , n,

and let t be its Lie algebra. Choose an ordering on t∗ such that the simple roots of SO(2n;C)

are

λ1 − λ2, · · · , λn−1 − λn, λn−1 + λn,

where λi(X) = Xi, ∀X = diag(X1, · · · , Xn,−X1, · · · ,−Xn) ∈ t, 1 ≤ i ≤ n. By a direct

computation, one can check that Pa1,··· ,as
is exactly the parabolic subgroup associated to the

roots

λa1
− λa1+1, λa2

− λa2+1, · · · , λas
− λas+1 (4.5)

(when as = n−1, Pa1,··· ,as
is the parabolic subgroup associated to λa1

−λa1+1, λa2
−λa2+1, · · · ,

λas−1
− λas−1+1, λas

− λas+1, λn−1 + λn; when as = n, Pa1,··· ,as
is the parabolic subgroup

associated to λa1
− λa1+1, λa2

− λa2+1, · · · , λas−1
− λas−1+1, λn−1 + λn), and p consists of the

matrices of the following form

, (4.6)

where D,F,G are skew-symmetric matrices, B,C,E are arbitrary matrices whose sizes are

indicated in (4.6) and A is a block lower triangular matrix

(4.7)

with Ai ∈ Mri×ri(C). Hence the weights of the adjoint representation of Pa1,··· ,as
on g/p are

{λi + λj | 1 ≤ i < j ≤ as}
∪{λi ± λj | 1 ≤ i ≤ as, as + 1 ≤ j ≤ n}
∪{λi − λj | am−1 + 1 ≤ i ≤ am, am + 1 ≤ j ≤ as,m = 1, · · · , s− 1}.

(4.8)

By (4.8), we have

dimFlO(a1, · · · , as; 2n) =
(
as
2

)
+ 2as(n− as) +

∑

1≤i<j≤s

rirj . (4.9)
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Let ι̃ : FlO(a1, · · · , as; 2n) → Gr(ai; 2n) be the canonical map sending 0 ⊂ E1 ⊂ · · · ⊂ Es ⊂
C2n to Ei. ι̃ fits into the following commutative diagram

, (4.10)

where ι is induced by the canonical inclusion of SO(2n;C) into SL(2n;C) and Pai
is the

subgroup of SL(2n;C) consisting of the matrices of the following form

(4.11)

One can check that the universal vector bundle over Gr(ai; 2n) can be identified with the

following homogeneous vector bundle

SL(2n;C)×Pai
,ρi

C
ai , (4.12)

where ρi is the representation of Pai
given by

ρi(g)(v) = U · v (4.13)

for any element g ∈ Pai
in the form (4.11) and any element v ∈ Cai .

Since the universal bundle Ei over FlO(a1, · · · , as; 2n) is just the pullback of E under ι̃,

Ei/Ei−1 can be identified with the following homogeneous vector bundle

Ei/Ei−1 = SO(2n;C)×Pa1,··· ,as ,πi
C

ri , (4.14)

where πi is the representation of Pa1,··· ,as
given by

πi(g)(v) = Ui · v, ∀v ∈ C
ri (4.15)

for any element g ∈ Pa1,··· ,as
in the form (4.3).

By (4.14), the weights of (Ei/Ei−1)|p0
are

−λai−1+1, · · · ,−λai
, (4.16)

and the Chern roots of Ei/Ei−1 are

−uai−1+1, · · · ,−uai
, (4.17)

where p0 is the flag represented by (4.2) and

ui =
1

2π
√
−1

λi, i = 1, · · · , n.
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Let K be a compact real form of SO(2n;C), H = K ∩ Pa1,··· ,as
and S = K ∩ T be the

common maximal torus of K and H . Let WK and WH be the Weyl groups of K and H with

respect to S. For any root α, denote the simple reflection with respect to α by sα. Then

WK = 〈sλ1−λ2
, · · · , sλn−1−λn

, sλn−1+λn
〉, (4.18)

WH = 〈sλi−λi+1
, sλn−1+λn

| i ∈ [n− 1] \ {a1, · · · , as}〉. (4.19)

By a direct computation, WK is generated by all permutations of λ1, · · · , λn and even sign

changes. Comparing (4.9) with (4.18), it follows immediately that WH is generated by

permutations of {λai−1+1, · · · , λai
}, i = 1, · · · , s,

permutations of {λas+1, · · · , λn},
even sign changes of λas+1, · · · , λn.

Any polynomial Q(u1, · · · , uk) which is symmetric with respect to the canonical Sr1 × · · ·×
Srs action is WH -invariant, and therefore represents a cohomology class on FlO(a1, · · · , as; 2n).

4.2 Torus action on FlO(a1, · · · , as; 2n)

As is discussed in Section 2, the fixed point set of the action of S on FlO(a1, · · · , as; 2n) is

{wH ∈ K/H | w ∈ WK}, (4.20)

which is bijective to WK/WH . To determine the flag corresponding to wH , we recall the

following notation.

Definition 4.1 A k× k matrix M is called a permutation matrix if there exists a permu-

tation σ ∈ Sk such that the i-th row of M is εσ(i), where

Let Pern be the set of n × n permutation matrices. One can easily check that for any

element g in Per2n ∩
{
(A B
B A ) | A,B ∈ Mn×n(C)1

}
, g preserves S (here we identify g with the

linear isomorphism that it represents with respect to the basis e1, · · · , en, f1, · · · , fn). Note

that gT g = I2n, hence if we further require det g = 1 (i.e., g represents an even permutation ),

g must lie in SO(2n;C). We can characterize the condition det g = 1 in the following way.

Note that any g permutes {e1, · · · , en, f1, · · · , fn}, and in turn determines a function φg :

{1, 2, · · · , n} → {±1,±2, · · · ,±n} such that

gfi =

{
fφg(i), if φg(i) > 0,

e−φg(i), if φg(i) < 0.
(4.21)

Then det g = 1 if and only if

♯{i | φg(i) < 0, i ∈ [n]} is even. (4.22)
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Any g ∈ Per2n ∩
{
( A B
B A ) | A,B ∈ Mn×n(C)

}
satisfying (4.22) lies in the normalizer of the

maximal torus and in turn represents a element w in the Weyl group. This establishes a one-

to-one correspondence between the set of elements in Per2n ∩
{
(A B
B A ) | A,B ∈ Mn×n(C)

}

satisfying (4.22) and the Weyl group WK . And under this correspondence, the fixed point wH

is the flag obtained by acting g on the flag (4.2).

By the above description of the fixed point wH , geometrically, the fixed points can be

indexed by the set

F = {(I1, · · · , Is; J1, · · · , Js) | Ii, Ji ⊂ {1, · · · , n}, |Ii ∪ Ji| = ri, Ii ∩ Jj = ∅, ∀i, j}. (4.23)

For simplicity, we use (I; J) to denote (I1, · · · , Is; J1, · · · , Js). For any (I; J) ∈ F , the

corresponding fixed point PI;J is the following flag

span
{
ei, fj

∣∣∣ i ∈ I1,
j ∈ J1

}
⊂ span

{
ei, fj

∣∣∣ i ∈ I2,
j ∈ J2

}
⊂ · · · ⊂ span

{
ei, fj

∣∣∣ i ∈ Is

j ∈ Js

}
, (4.24)

where for any (I; J) ∈ F we denote Ip =
⋃

1≤m≤p

Im and Jp =
⋃

1≤m≤p

Jm, p = 1, · · · , s.

Using this notation, the flag (4.2) is P(∅,··· ,∅);({1,··· ,a1},··· ,{as−1+1,··· ,as}). Under the identifi-

cation of λi with i, the Weyl group WK acts on the set {±1, · · · ,±n}, and for any w ∈ WK

the fixed point wH is exactly PI;J such that the image of [ai] under w is w([ai]) = (−Ii) ∪ J i,

i = 1, · · · , s. Since the weights of the torus action on the tangent space at wH is obtained by

applying w to the weights of the tangent space at H . The weights of the tangent space at PI,J

are

{λ̃i + λ̃j | i, j ∈ Is ∪ Js, i < j}
∪{λ̃i + λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js} ∪ {λ̃i − λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js}
∪{λ̃i − λ̃j | i ∈ Im ∪ Jm, j ∈ (Is ∪ Js) \ (Im ∪ Jm), m = 1, · · · , s},

(4.25)

where

λ̃m =

{
λm, if m ∈ Js,

−λm, otherwise.

Similarly, the weights of Ei/Ei−1 at PI;J are

{−λ̃j | j ∈ Ii ∪ Ji}. (4.26)

For any (Sr1 × · · · × Srs)-invariant polynomial, Q(x1, · · · , xk), consider the following integral

ID(Q) =

∫

FlO(a1,··· ,as;2n)

Q̃(cT1 ((E1/E0)∗), · · · , cTrs((Es/Es−1)
∗)). (4.27)

By the Atiyah-Bott-Berline-Vergne formula, the above integral can be expressed by the

following summation:

∑

(I;J)∈F

Q(ũI1∪J1
, · · · , ũIs∪Js

)
∏

i,j∈Is∪Js

i<j

(ũi + ũj)
∏

i∈Is∪Js,
j /∈Is∪Js

(u2
i − u2

j)
s∏

m=1

∏
i∈Im∪Jm,

j∈(Is∪Js)\(Im∪Jm)

(ũi − ũj)
, (4.28)
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where for any i = 1, · · · , s, if Ii ∪ Ji = {j1, · · · , jri} (j1 < · · · < jr), we use ũIi∪Ji
to denote

(ũj1 , · · · , ũjri
), where

ũj =

{
uj , if j ∈ Ji,

−uj, otherwise.

To avoid nested subscripts, we simply denote as by k. In the following, we give a second

proof of the following theorem which was originally proved by Zielenkiewicz in [14, Theorem

4.25] using symplectic reduction.

Theorem 4.1

ID(Q)

= (−1)k
2k

r1! · · · rs!
Res∞

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
k∏

i=1

zi
∏

1≤m≤s
am−1<i<j≤am

(zi − zj)

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)

dz. (4.29)

To prove the theorem, we make some preparations. Let

f(z) =

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
k∏

i=1

zi
s∏

m=1

∏
am−1<i<j≤am

(zi − zj)

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)

. (4.30)

It is obvious that the set of poles of f that contributes nonzero residues can be identified with

P = {(ε, υ) | ε : [k] → {−1, 1}, υ : [k] → [n], υ injective}, (4.31)

where any (ε, υ) ∈ P corresponds to the pole (z1, · · · , zk) = (ε(1)uυ(1), · · · , ε(k)uυ(k)). There

is a canonical projection

π : P → F (4.32)

which sends (ε, υ) to (I, J) = (I1, · · · , Is; J1, · · · , Js) ∈ F , where

Im = υ([am] \ [am−1] ∩ ǫ−1(−1)), Jm = υ([am] \ [am−1] ∩ ε−1(1)), m = 1, · · · , s. (4.33)

The symmetric group Sk acts on P via acting on [k], and its subgroup Sr1 × · · · × Srs acts

transitively on each fiber of π. In particular, |P| = r1! · · · rs!|F|. A key observation that will

be used in the proof of Theorem 4.1 is that the residues of f are the same at poles in a single

fiber of π. This follows from the fact that f is Sr1 × · · · × Srs-invariant. To see this, we rewrite

f as follows

f(z1, · · · , zk) =
Q(z1, · · · , zk)

∏
i6=j

(zi − zj)
∏
i<j

(zi + zj)
k∏

i=1

zi

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)
s∏

m=1

∏
am−1+1≤i≤am,

am+1≤j≤k

(zi − zj)

. (4.34)
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Then the Sr1 × · · · × Srs-invariance of f follows from the Sr1 × · · · × Srs-invariance of

s∏

m=1

∏

am−1+1≤i≤am,
am+1≤j≤k

(zi − zj),

which is obvious since

∏

am−1+1≤i≤am,
am+1≤j≤k

(zi − zj)isSrm × Srm+1+···+rs − invariant.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 By the residue theorem, (−1)kRes∞f(z)dz =
∑
p∈P

Respf(z)dz.

Using the Sr1 × · · · × Srs-invariance of f , we have

∑

p∈P
Respf(z)dz =

∑

(I,J)∈F
r1! · · · rs!ReszI,Jf(z)dz, (4.35)

where zI,J is a pole of f such that π(zI,J ) = (I, J) ∈ F . We can compute ReszI,Jf(z)dz directly

ReszI,J f(z)dz

=ReszI,J

Q(z1, · · · , zk)
∏
i6=j

(zi − zj)
∏
i<j

(zi + zj)
k∏

i=1

zi

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)
s∏

m=1

∏
am−1+1≤i≤am,

am+1≤j≤k

(zi − zj)

dz

=

Q(ũI1∪J1
, · · · , ũIs∪Js

)
∏

i,j∈Is∪Js

i6=j

(ũi − ũj)
∏

i,j∈Is∪Js

i<j

(ũi + ũj)
∏

i∈Is∪Js

(ũi)

∏
j∈Is∪Js

n∏
i=1
i6=j

(ũj − ui)(ũj + ui) · 2k
∏

i∈Is∪Js

(ũi)
s∏

m=1

∏
i∈Im∪Jm,

j∈(Is∪Js)\(Im∪Jm)

(ũi − ũj)

=
Q(ũI1∪J1

, · · · , ũIs∪Js
)

2k
∏

i,j∈Is∪Js

i>j

(ũi + ũj)
∏

i/∈Is∪Js

j∈Is∪Js

(u2
j − u2

i )
s∏

m=1

∏
i∈Im∪Jm,

j∈(Is∪Js)\(Im∪Jm)

(ũi − ũj)
.

Substituting the last expression into (4.35) and comparing with (4.28)–(4.29) follows.

Taking lim
u→0

in (4.29), we have the following corollary.

Corollary 4.1 Let uap−1+1, · · · , uap
be the Chern roots of (Ep/Ep−1)

∗, then

∫

FlO(a1,··· ,as;2n)

Q(u1, · · · , uk)

=
2k

r1! · · · rs!
Resz=0

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
∏

1≤m≤s
am−1<i<j≤am

(zi − zj)

(z1 · · · zk)2n−1
dz. (4.36)
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5 Flag Varieties of Type B

5.1 The flag varieties of type B

Consider the vector space C2n+1, and let S be a nondegenerate symmetric bilinear form on

it. We denote by FlO = FlO(a1, · · · , as; 2n + 1) the flag variety parametrizing the isotropic

flags

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ C
2n+1 (5.1)

satisfying dimC Ei = ai, i = 1, · · · , s. Unlike the type D case, FlO(a1, · · · , as; 2n+ 1) is always

connected.

Fix a basis g, e1, · · · , en, f1, · · · , fn of C2n+1 such that S(ei, ej) = S(fi, fj) = S(g, fi) =

S(g, ei) = 0,S(ei, fj) = δij , S(g, g) = 1. With respect to this basis, S has the following matrix

representation:

, (5.2)

where I is the n×n identity matrix. Let SO(2n+1;C) be the group of linear isomorphisms of

C2n+1 preserving S. SO(2n+1;C) acts on FlO(a1, · · · , as; 2n+1) transitively, and we denote

by Pa1,··· ,as
the isotropy group at the following flag

span{f1 · · · , fa1
} ⊂ span{f1 · · · , fa2

} ⊂ · · · ⊂ span{f1 · · · , fas
} ⊂ C

2n. (5.3)

With respect to the basis g, e1, · · · , en, f1, · · · , fn, matrices in Pa1,··· ,as
take the following form

, (5.4)

where α, β′, γ, δ are row vectors and U is a block upper-triangular matrix

(5.5)

with Ui ∈ Mri×ri(C). In this way, we identify FlO(a1, · · · , as; 2n+1) with SO(2n+1;C)/Pa1,··· ,as
.
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Denote the Lie algebras of SO(2n + 1;C) and Pa1,··· ,as
by g and p, respectively. Then g

consists of the matrices of the following form

(5.6)

where C and D are skew-symmetric matrices.

Let T be the maximal torus in SO(2n + 1;C) consisting of the matrices of the following

form

diag(1, t1, · · · , tn, t−1
1 , · · · , t−1

n ), ti ∈ C
∗, i = 1, · · · , n

and let t be its Lie algebra. Choose an ordering on t∗ such that the simple roots of SO(2n+1;C)

are

λ1 − λ2, · · · , λn−1 − λn, λn, (5.7)

where λi(X) = Xi, ∀X = diag(0, X1, · · · , Xn,−X1, · · · ,−Xn) ∈ t, 1 ≤ i ≤ n. Let ηj be the

j-th simple root in (5.7). By a direct computation, one can show that the parabolic subalgebra

associated to ηj consists of the matrices of the following form

, (5.8)

where A,B,C,E are arbitrary matrices of given sizes, D,F,G are skew-symmetric matrices

and α1, α2, β are row vectors. Hence Pa1,··· ,as
is exactly the parabolic subgroup associated to

ηa1
, · · · , ηas

, and its Lie algebra p consists of the matrices of the following form

, (5.9)

where D,F,G are skew-symmetric matrices, B,C,E are arbitrary matrices whose sizes are

indicated in (5.9) and A is a block lower triangular matrix

(5.10)

with Ai ∈ Mri×ri(C). By (5.9) the weights of the adjoint representation of Pa1,··· ,as
on g/p are:

{λi + λj | 1 ≤ i < j ≤ as}
∪{λi ± λj | 1 ≤ i ≤ as, as + 1 ≤ j ≤ n}
∪{λi − λj | am−1 + 1 ≤ i ≤ am, am + 1 ≤ j ≤ as,m = 1, · · · , s− 1}
∪{λi | 1 ≤ i ≤ as}.

(5.11)
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By (5.11), we have

dimFlO(a1, · · · , as; 2n+ 1) =

(
as
2

)
+ 2as(n− as) +

∑

1≤i<j≤s

rirj + as. (5.12)

The quotients of the universal bundles can be written as homogeneous vector bundles in the

following way. Let πi be the representation of Pa1,··· ,as
on Cri given by

πi(g)(v) = Ui · v, ∀v ∈ C
ri (5.13)

for any element g ∈ Pa1,··· ,as
in the form (5.4). Then we have

Ei/Ei−1 = SO(2n;C)×Pa1,··· ,as ,πi
C

ri . (5.14)

Hence the Chern roots of Ei/Ei−1 are −uai−1+1, · · · ,−uai
, where

ui =
1

2π
√
−1

λi.

Let K be a compact real form of SO(2n + 1;C), H = K ∩ Pa1,··· ,as
and S = K ∩ T be

the common maximal torus of K and H . Let WK and WH be the Weyl groups of K and H

with respect to S. By a direct computation, WK is generated by all permutations of λ1, · · · , λn

and all sign changes. WH is generated by permutations of {λai−1+1, · · · , λai
}, i = 1, · · · , s,

permutations of {λas+1, · · · , λn} and all sign changes of λas+1, · · · , λn.

5.2 Torus action on FlO(a1, · · · , as; 2n + 1)

As in Section 4, the fixed points of the torus action are also indexed by the set F . For any

(I; J) ∈ F , the corresponding fixed point PI;J is the following flag

span
{
ei, fj

∣∣∣ i ∈ I1,
j ∈ J1

}
⊂ span

{
ei, fj

∣∣∣ i ∈ I2,
j ∈ J2

}
⊂ · · · ⊂ span

{
ei, fj

∣∣∣ i ∈ Is

j ∈ Js

}
. (5.15)

The weights of the tangent space at PI;J are

{λ̃i + λ̃j | i, j ∈ Is ∪ Js, i < j}
∪{λ̃i + λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js} ∪ {λ̃i − λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js}
∪{λ̃i − λ̃j |i ∈ Im ∪ Jm, j ∈ (Is ∪ Js) \ (Im ∪ Jm),m = 1, · · · , s}
∪{λ̃i | i ∈ Is ∪ Js}

(5.16)

and the weights of Ei/Ei−1 at PI;J are

{−λ̃j | j ∈ Ii ∪ Ji}. (5.17)

For any (Sr1 ×· · ·×Srs)-invariant polynomial Q(x1, · · · , xk), we again use Atiyah-Bott-Berline-

Vergne formula to express

IB(Q) =

∫

FlO
Q̃(cT1 ((E1/E0)∗), · · · , cTr1((E1/E0)∗), · · · ,

cT1 ((Es/Es−1)
∗), · · · , cTrs((Es/Es−1)

∗)), (5.18)
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as sums over fixed points

∑

(I;J)∈F

Q(ũi; i ∈ Is ∪ Js)
∏

i,j∈Is∪Js,
i<j

(ũi + ũj)
∏

i∈Is∪Js,
j /∈Is∪Js

(u2
i − u2

j)
s∏

m=1

∏
i∈Im∪Jm,

j∈(Is∪Js)\(Im∪Jm)

(ũi − ũj)
∏

i∈Is∪Js

(ũi)
. (5.19)

To avoid nested subscript, we again denote as by k. By modifying the proof of Theorem 4.1

slightly, one can prove (see [14, Theorem 4.26]) the following theorem.

Theeorem 5.1

IB(Q)

= (−1)k
2k

r1! · · · rs!
Res∞

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
s∏

m=1

∏
am−1+1≤i<j≤am

(zi − zj)

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)

dz. (5.20)

Taking lim
u→0

in (5.20), we have the following corollary.

Corollary 5.1 Let uap−1+1, · · · , uap
be the Chern roots of (Ep/Ep−1)

∗, Then

∫

FlO(a1,··· ,as;2n)

Q(u1, · · · , uk)

=
2k

r1! · · · rs!
Resz=0

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
∏

1≤m≤s
am−1<i<j≤am

(zi − zj)

(z1 · · · zk)2n
dz. (5.21)

6 Flag Varieties of Type C

6.1 The flag varieties of type C

Consider the vector space C2n, and fix a nondegenerate skew-symmetric bilinear form S on

it. Denote by FlS = FlS(a1, · · · , as; 2n) the flag variety parametrizing the isotropic flags

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ C
2n, (6.1)

satisfying dimC Ei = ai, i = 1, · · · , s. FlS(a1, · · · , as; 2n) is always connected.
Fix a basis e1, · · · , en, f1, · · · , fn of C2n such that S(ei, ej) = 0 = S(fi, fj),S(ei, fj) = δij .

With respect to this basis, S has the following matrix representation

(
0 I
−I 0

)
,

where I is the n×n identity matrix. Let Sp(2n;C) be the group of linear isomorphisms of C2n

preserving S. Sp(2n;C) acts on FlS(a1, · · · , as; 2n) transitively, and we denote by Pa1,··· ,as

the isotropy group at the following flag

span{f1 · · · , fa1
} ⊂ span{f1 · · · , fa2

} ⊂ · · · ⊂ span{f1 · · · , fas
} ⊂ C

2n. (6.2)
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With respect to the basis e1, · · · , en, f1, · · · , fn, matrices in Pa1,··· ,as
take the following form

, (6.3)

where U is a block upper-triangular matrix

(6.4)

with Ui ∈ Mri×ri(C). In this way, we identify FlS(a1, · · · , as; 2n) with Sp(2n;C)/Pa1,··· ,as
.

Denote the Lie algebras of Sp(2n;C) and Pa1,··· ,as
by g and p, respectively. Then g consists

of matrices of the following form

(
A B
C −At

)
, (6.5)

where B and C are symmetric matrices.

Let T be the maximal torus in Sp(2n;C) consisting of matrices of the following forms

diag(t1, · · · , tn, t−1
1 , · · · , t−1

n ), ti ∈ C
∗, i = 1, · · · , n,

and let t be its Lie algebra. Choose an ordering on t∗ such that the simple roots of Sp(2n;C)

are

λ1 − λ2, · · · , λn−1 − λn, 2λn, (6.6)

where λi(X) = Xi, ∀X = diag(X1, · · · , Xn,−X1, · · · ,−Xn) ∈ t, 1 ≤ i ≤ n. Let ηj be the

j-th simple root in (6.6). By a direct computation, one can show that the parabolic subalgebra

associated to ηj consists of the matrices of the following form

, (6.7)

where A,B,C,E are arbitrary matrices of given sizes and D,F,G are symmetric matrices.

Hence Pa1,··· ,as
is exactly the parabolic subgroup associated to ηa1

, · · · , ηas
, and its Lie algebra

p consists of the matrices of the following form

, (6.8)
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where D,F,G are symmetric matrices, B,C,E are arbitrary matrices whose sizes are indicated

in (6.8) and A is a block lower triangular matrix

(6.9)

with Ai ∈ Mri×ri(C). By (6.8) the weights of the adjoint representation of Pa1,··· ,as
on g/p are

{2λi | 1 ≤ i ≤ as} ∪ {λi + λj |1 ≤ i < j ≤ as}
∪{λi ± λj | 1 ≤ i ≤ as, as + 1 ≤ j ≤ n}
∪{λi − λj | am−1 + 1 ≤ i ≤ am, am + 1 ≤ j ≤ as,m = 1, · · · , s− 1}.

(6.10)

By (6.10), we have

dimFlS(a1, · · · , as; 2n) =
(
as
2

)
+ 2as(n− as) +

∑

1≤i<j≤s

rirj + as. (6.11)

By a similar argument as in Section 4, the Chern roots of Ei/Ei−1 are −uai−1+1, · · · ,−uai
,

where ui =
1

2π
√−1

λi.

Let K,H, S,WK ,WH be as in the previous cases. By a direct computation, WK is generated

by all permutations of λ1, · · · , λn and all sign changes. WH is generated by

permutations of {λai−1+1, · · · , λai
}, i = 1, · · · , s,

permutations of {λas+1, · · · , λn},
sign changes of λas+1, · · · , λn.

6.2 Torus action on FlS(a1, · · · , as; 2n)

As in Section 4, the fixed points are also indexed by the set F . For any (I, J) ∈ F , the

corresponding fixed point PI,J is the following flag

span
{
ei, fj

∣∣∣ i ∈ I1,
j ∈ J1

}
⊂ span

{
ei, fj

∣∣∣ i ∈ I2,
j ∈ J2

}
⊂ · · · ⊂ span

{
ei, fj

∣∣∣ i ∈ Is

j ∈ Js

}
. (6.12)

The weights of the tangent space at PI,J are

{λ̃i | i ∈ Is ∪ Js} ∪ {λ̃i + λ̃j | i, j ∈ Is ∪ Js, i < j}
∪{λ̃i + λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js} ∪ {λ̃i − λj | i ∈ Is ∪ Js, j /∈ Is ∪ Js}
∪{λ̃i − λ̃j | i ∈ Im ∪ Jm, j ∈ (Is ∪ Js) \ (Im ∪ Jm),m = 1, · · · , s},

(6.13)

where

λ̃m =

{
λm, if m ∈ Js,

−λm, otherwise.

Similarly, the weights of Ei/Ei−1 at PI,J are

{−λ̃j | j ∈ Ii ∪ Ji}. (6.14)
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For any (Sr1×· · ·×Srs)-invariant polynomial Q(x1, · · · , xk), by the Atiyah-Bott-Berline-Vergne

formula, the following integral

IC(Q)

=

∫

FlS
Q̃(cT1 ((E1/E0)∗), · · · , cTr1((E1/E0)∗), · · · , cT1 ((Es/Es−1)

∗), · · · , cTrs((Es/Es−1)
∗)) (6.15)

can be expressed as the sums over fixed points

∑

(I,J)∈F

× Q(ũi; i ∈ Is ∪ Js)
∏

i,j∈Is∪Js,
i<j

(ũi + ũj)
∏

i∈Is∪Js,
j /∈Is∪Js

(u2
i − u2

j)
s∏

m=1

∏
i∈Im∪Jm,

j∈(Is∪Js)\(Im∪Jm)

(ũi − ũj)
∏

i∈Is∪Js

(2̃ui)
. (6.16)

Note that this expression differs from (5.19) only in the factor 2k, where as before k = as.

Hence by dividing 2k in Theorem 5.1 and Corollary 5.1, we immediately obtain the correspond-

ing formulas for FlS(a1, · · · , as; 2n) (see [14, Theorem 4.22]).

Theorem 6.1

IC(Q) =
(−1)k

r1! · · · rs!
Res∞

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
s∏

m=1

∏
am−1+1≤i<j≤am

(zi − zj)

n∏
i=1

k∏
j=1

(zj − ui)(zj + ui)

dz. (6.17)

Corollary 6.1 Let uap−1+1, · · · , uap
be the Chern roots of (Ep/Ep−1)

∗. Then

∫

FlS(a1,··· ,as;2n)

Q(u1, · · · , uk)

=
1

r1! · · · rs!
Resz=0

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
∏

1≤m≤s
am−1<i<j≤am

(zi − zj)

(z1 · · · zk)2n
dz. (6.18)

We remark that the absense of 2k in these two formulas is caused by the presence of the

weights 2λi, i = 1, · · · , k in the adjoint representation.

7 Reprove Darondeau-Pragacz’s Formulas

In this section, we use our nonequivariant formulas (4.36), (5.21) and (6.18) to reprove the

formulas (in the case that the base manifold is a single point) in [7]. To state the formulas in

[7], for any monomial m and any laurent polynomial f , we denote by [m](f) the coefficient of

m in f .

The formula for flag varieties of types B and D in [7, Theorem 3.1] is

∫

FlO(a1,··· ,as;m)

Q(u1, · · · , uk) = 2k[ze11 · · · zekk ]
(
Q(z1, · · · , zk)

∏

1≤i<j≤k

(z2i − z2j )
)
, (7.1)
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where m = 2n or 2n+1, ej = m− 1− i and i is determined by the equation j = k− al + i with

l ∈ {1, · · · , s} and i ∈ {1, · · · , rl}.
The formula for flag varieties of type C in [7, Theorem 2.1] is

∫

FlS(a1,··· ,as;2n)

Q(u1, · · · , uk) = [ze11 · · · zekk ]
(
Q(z1, · · · , zk)

∏

1≤i<j≤k

(z2i − z2j )
)
, (7.2)

where ej = 2n− i and i is determined by the equation j = k − al + i with l ∈ {1, · · · , s} and

i ∈ {1, · · · , rl}.
We only give the proof for the Grassmannian OG(k; 2n) = FlO(k; 2n) since the other cases

are essentially the same. In the case of OG(k; 2n), the formula (7.1) takes the following form
∫

OG(k;2n)

Q(u1, · · · , uk) = 2k[z2n−2
1 z2n−3

2 · · · z2n−1−k
k ]

(
Q(z1, · · · , zk)

∏

i<j

(z2i − z2j )
)

= 2k[z−1
1 z−2

2 · · · z−k
k ]

(Q(z1, · · · , zk)
∏
i<j

(z2i − z2j )

(z1 · · · zk)2n−1

)
. (7.3)

However, by (4.36), we have

∫

OG(k;2n)

Q(u1, · · · , uk) =
2k

k!
Resz=0

Q(z1, · · · , zk)
∏
i>j

(z2i − z2j )
∏
i<j

(zi − zj)

(z1 · · · zk)2n−1

=
2k

k!
Resz=0

Q(z1, · · · , zk)
∏
i<j

(z2i − z2j )

(z1 · · · zk)2n−1

∏

i>j

(zi − zj). (7.4)

We are going to show the right hand sides of (7.3) and (7.4) are equal. Since the right hand

sides of (7.3) and (7.4) both vanish unless deg(Q) = dimOG(k; 2n) =
(
k
2

)
+ 2k(n − k), we

assume deg(Q) =
(
k
2

)
+ 2k(n− k). Let f(z1, · · · , zk) =

Q(z1,··· ,zk)
∏

i<j

(z2
i −z2

j )

(z1···zk)2n−1 . By

∏

i>j

(zi − zj) =

∣∣∣∣∣∣∣

1 z1 · · · zk−1
1

...
...

. . .
...

1 zk · · · zk−1
k

∣∣∣∣∣∣∣
,

we see that

f(zσ(1), · · · , zσ(k)) = (−1)sgn(σ)f(z1, · · · , zk). (7.5)

In particular, for any monomial zp1

1 · · · zpk

k , we have

[zp1

σ(1) · · · z
pk

σ(k)](f) = (−1)sgn(σ)[zp1

1 · · · zpk

k ](f). (7.6)

Also note that ∏

i>j

(zi − zj) =
∑

σ∈Sk

(−1)sgn(σ)z0σ(1)z
1
σ(2) · · · zk−1

σ(k). (7.7)

Hence the right hand side of (7.4) equals

2k

k!

∑

σ∈Sk

(−1)sgn(σ)[z−1
σ(1)z

−2
σ(2) · · · z−k

σ(k)](f), (7.8)
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which by (7.6) equals

2k

k!

∑

σ∈Sk

[z−1
1 z−2

2 · · · z−k
k ](f) = 2k[z−1

1 z−2
2 · · · z−k

k ](f). (7.9)

The proof is completed.
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