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Abstract The authors prove a sharp logarithmic Sobolev inequality which holds for com-

pact submanifolds without boundary in Riemannian manifolds with nonnegative sectional

curvature of arbitrary dimension and codimension. Like the Michael-Simon Sobolev in-

equality, this inequality includes a term involving the mean curvature. This extends a

recent result of Brendle with Euclidean setting.
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1 Introduction

In 2019, Brendle [5] proved a Sobolev inequality which holds on submanifolds in Euclidean

space of arbitrary dimension and codimension. The inequality is sharp if the codimension is

at most 2. Soon, he (cf. [6]) proved a sharp logarithmic Sobolev inequality which holds on

submanifolds in Euclidean space of arbitrary dimension and codimension at the same year. In

2020, he (cf. [3]) extended the result of the Sobolev inequality to Riemannnian manifolds with

nonnegative curvature which gives the asymptotic volume ratio due to the Bishop-Gromov vol-

ume comparison theorem. Inspired by [3–4, 6], we extend the result of the logarithmic Sobolev

inequality to ambient Riemannian manifolds with nonnegative sectional curvature under an

assumption.

Let (M, g) be a complete noncompact Riemannian manifold of dimension k with nonnegative

Ricci curvature. Define the asymptotic volume ratio of M :

θ = AVR(M, g) := lim
r→∞

|Br(p)|

ωkrk

for some (any) fixed point p ∈ M , where Br(p) denotes the geodesic ball in M , |Br(p)| denotes

its volume and ωk denotes the volume of the unit ball in R
k. By Bishop-Gromov volume

comparison theorem, the limit exists and 0 ≤ θ ≤ 1. Moreover, by L’Hospital’s rule,

lim
r→∞

|∂Br(p)|

kωkrk−1
= θ.
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We have the following result.

Theorem 1.1 Let M be a complete noncompact Riemannian manifold of dimension n+m

with nonnegative sectional curvature and Euclidean volume growth (i.e., θ > 0). Let Σ be

a compact n-dimension submanifold of M without boundary, and let f be a positive smooth

function on Σ. Then

∫

Σ

f
(

log f + n+
n

2
log(4π) + log θ

)

d vol−

∫

Σ

|∇Σf |2

f
d vol−

∫

Σ

f |H |2d vol

≤
(

∫

Σ

fd vol
)

log
(

∫

Σ

fd vol
)

,

where H denotes the mean curvature vector of Σ.

Minimal submanifolds have been studied for hundreds of years. We refer the readers to

[11, 17]. One of the topic is the nonexistence of closed submanifolds. For codimension 1,

Kasue [15] and Agostiniani, Fogagnolo and Mazzieri [1] have got the nonexistence of closed

minimal hypersurfaces in complete noncompact Riemannian manifolds with nonnegative Ricci

curvature and Euclidean volume growth. For higher codimension, Chen [8] have obtained

the nonexistence of closed minimal submanifolds of any co-dimension in R
n. For complete

noncompact Riemannian manifold with nonnegative sectional curvature, we have the following

two equivalent results which have not been found in the literatures by us until now.

Corollary 1.1 If (M, g) is a complete noncompact Riemannian manifold of dimension n

(≥ 2) with nonnegative sectional curvature and Euclidean volume growth (i.e., θ > 0), then

there does not exist any closed minimal submanifold in M .

Corollary 1.2 Let (M, g) be a complete noncompact Riemannian manifold of dimension n

(≥ 2) with nonnegative sectional curvature. If there exists some closed minimal submanifold of

some co-dimension k in M , then M does not have maximum volume growth, i.e., AVR(M, g) =

0.

Remark 1.1 The above two corollaries can be deduced from Brendle’s paper [3]. Indeed,

for co-dimension m ≥ 2, assume that (M, g) is a complete noncompact Riemannian manifold of

dimension n+m with nonnegative sectional curvature and Euclidean volume growth (i.e., θ > 0)

and Σ is a closed minimal submanifold of M of dimension n, taking f = 1 in [3, Theorem 1.4],

we obtain that 0 ≥ n
( (n+m)|Bn+m|

m|Bm|

)
1
n θ

1
n |Σ|

n−1
n > 0 which is a contradiction. For co-dimension

1, by the same method, one can deduce the conclusion from [3, Corollary 1.5] since the corollary

also holds in the co-dimension 1 setting which has been mentioned in the paragraph behind [3,

Corollary 1.7]. We will give a proof of Corollary 1.1 in Section 4 by using Theorem 1.1.

The logarithmic Sobolev inequality has been studied by numerous authors (cf. [9, 12, 14,

16]). Our proof of main result, Theorem 1.1, is in the spirit of ABP-techniques in [3, 6]. ABP-

techniques have been applied to various classes of linear and nonlinear elliptic equations in the

Euclidean space for a long time. Due to some difficulties, it was not until 1997 that Cabré [7]

developed them to Riemannnian manifolds.

This paper is organized as follows. In Section 2, we give some properties of the asymptotic

volume ratio. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give the proof
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of Corollary 1.1.

2 Preliminaries

In order to make it convenient to use the asymptotic volume ratio, we get the following two

results.

Lemma 2.1 Let M be a complete noncompact Riemannian manifold of dimension k with

nonnegative Ricci curvature. Then

lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)
)

= θ

for any point p ∈ M .

Proof Given a fixed point p ∈ M , let Bk
s denote the ball of radius s centered at the origin

in R
k. By Bishop-Gromov volume comparison theorem (cf. [10, Chapter 1, §11.2]), we have

θkωks
k−1 = θ|∂Bk

s | ≤ |∂Bs(p)| ≤ |∂Bk
s | = kωks

k−1

for all s > 0. By co-area formula, we get that

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x) =

∫ ∞

0

(

∫

∂Bs(p)

(4π)−
k
2 r−ke−

s2

4r2 d vol
)

ds

=

∫ ∞

0

(4πr2)−
k
2 e−

s2

4r2 |∂Bs(p)|ds.

Since
∫

Rk(4π)
− k

2 e−
|y|2

4 dy = 1, we have

θ = θ

∫

Rk

(4πr2)−
k
2 e−

|y|2

4r2 dy

= θ

∫ ∞

0

(4πr2)−
k
2 e−

s2

4r2 |∂Bk
s |ds

≤

∫ ∞

0

(4πr2)−
k
2 e−

s2

4r2 |∂Bs(p)|ds

= (4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x).

We conclude that

θ ≤ lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)
)

.

On the other hand, since lim
s→∞

|∂Bs(p)|
kωksk−1 = θ, for any ε > 0, we can find a positive number

s0 = s0(ε) > 0 such that
|∂Bs(p)|

kωksk−1
< θ + ε

for s ≥ s0. Thus

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)

=

∫ ∞

0

(

∫

∂Bs(p)

(4π)−
k
2 r−ke−

s2

4r2 d vol
)

ds
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=

∫ s0

0

(4πr2)−
k
2 e−

s2

4r2 |∂Bs(p)|ds+

∫ ∞

s0

(4πr2)−
k
2 e−

s2

4r2 |∂Bs(p)|ds

≤

∫ s0

0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1ds+ (θ + ε)

∫ ∞

s0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1ds

≤

∫ s0

0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1
0 ds+ (θ + ε)

∫ ∞

0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1ds

=

∫ s0

0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1
0 ds+ (θ + ε)

∫

Rk

(4πr2)−
k
2 e−

|y|2

4r2 dy

=

∫ s0

0

(4πr2)−
k
2 e−

s2

4r2 kωks
k−1
0 ds+ (θ + ε).

Taking lim sup
r→∞

on both sides of the above inequalities, we have

lim sup
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)
)

≤ θ + ε.

Letting ε → 0, we get that

lim sup
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)
)

≤ θ.

Thus, the limit lim
r→∞

(

(4π)−
k
2 r−k

∫

M
e−

d(x,p)2

4r2 d vol(x)
)

exists, and

lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p)2

4r2 d vol(x)
)

= θ.

Then, the lemma follows.

Lemma 2.2 Let M be a complete noncompact Riemannian manifold of dimension k with

nonnegative Ricci curvature. Then the limit lim
r→∞

(

(4π)−
k
2 r−k

∫

M
e−

d(x,p(x))2

4r2 d vol(x)
)

exists,

and

lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

= lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

for any point p0 ∈ M , any compact subset K ⊂ M and any Borel map p : M → K.

Proof Given a fixed point p0 ∈ M , a compact subset K ⊂ M and a Borel map p : M → K,

define a nonnegative constant

C := sup{d(p0, p(x)) : x ∈ M}.

For any ε > 0, by triangle inequality we have

−
d(x, p(x))2

4r2
= −

d(x, p0)
2

4r2
·
d(x, p(x))2

d(x, p0)2

≥ −
d(x, p0)

2

4r2
·
|d(x, p0) + d(p0, p(x))|

2

d(x, p0)2

= −
d(x, p0)

2

4r2

(

1 +
d(p0, p(x))

d(x, p0)

)2
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≥ −
d(x, p0)

2

4r2
(1 + Cε)2

for all x ∈ M \Bε−1(p0). Similarly, we have

−
d(x, p(x))2

4r2
≤ −

d(x, p0)
2

4r2
(1 − Cε)2

for all x ∈ M \Bε−1(p0). Thus,

(1 + Cε)−k lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

= lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2
(1+Cε)2d vol(x)

)

= lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M\B
ε−1 (p0)

e−
d(x,p0)2

4r2
(1+Cε)2d vol(x)

)

≤ lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M\B
ε−1 (p0)

e−
d(x,p(x))2

4r2 d vol(x)
)

= lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

≤ lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M\B
ε−1 (p0)

e−
d(x,p0)2

4r2
(1−Cε)2d vol(x)

)

= lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2
(1−Cε)2d vol(x)

)

=(1 − Cε)−k lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

.

Letting ε → 0, we conclude that

lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

= lim inf
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

.

Similarly, we have

lim sup
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

= lim sup
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

.

By Lemma 2.1, the limit lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

exists, and

lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p(x))2

4r2 d vol(x)
)

= lim
r→∞

(

(4π)−
k
2 r−k

∫

M

e−
d(x,p0)2

4r2 d vol(x)
)

.

Then, the lemma follows.

3 Proof of Theorem 1.1

Recall the definition of the second fundamental form h of Σ with respect to M :

〈h(X,Y ), V 〉 = 〈DXY, V 〉 = −〈DXV, Y 〉,

where X,Y are tangent vector fields, V is a normal vector field and D denotes the connection

on M . Moreover, the mean curvature vectorH is defined as the trace of the second fundamental

form h.
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We now give the proof of Theorem 1.1. We first consider the special case that Σ is connected.

By scaling, we may assume that

∫

Σ

f log fd vol−

∫

Σ

|∇Σf |2

f
d vol−

∫

Σ

f |H |2d vol = 0.

From functional analysis and standard elliptic theory, we can find a smooth function u : Σ → R

such that

divΣ(f∇
Σu) = f log f −

|∇Σf |2

f
− f |H |2.

In the following, we fix a positive number r. Define the contact set

A =
{

(x, y) ∈ T⊥Σ : ru(x) +
1

2
d(x, expx(r∇

Σu(x) + ry))2

≥ ru(x) +
1

2
r2(|∇Σu(x)|2 + |y|2), ∀x ∈ Σ

}

.

Moreover, we define a map Φ : T⊥Σ → M by

Φ(x, y) = expx(r∇
Σu(x) + ry)

for all (x, y) ∈ T⊥Σ.

Lemma 3.1 Suppose that (x, y) ∈ A. Then

d(x,Φ(x, y))2 = r2(|∇Σu(x)|2 + |y|2).

Proof Let γ(t) := expx(rt∇
Σu(x) + rty) for t ∈ [0, 1]. From the definition of A, we have

ru(x) +
1

2
d(x, expx(r∇

Σu(x) + ry))2 ≥ ru(x) +
1

2
r2(|∇Σu(x)|2 + |y|2).

Thus, d(x,Φ(x, y))2 ≥ r2(|∇Σu(x)|2 + |y|2). On the other hand,

r2(|∇Σu(x)|2 + |y|2) = |γ′(0)|2

=
(

∫ 1

0

|γ′(t)|dt
)2

≥ d(x,Φ(x, y))2.

Then, the lemma follows.

Lemma 3.2 Φ(A) = M .

Proof Fix a point p ∈ M . Since Σ is compact without boundary, the function x 7→

ru(x) + 1
2d(x, p)

2 must attain its minimum at some point denoted by x on Σ. Moreover, we

can find a minimizing geodesic γ : [0, 1] → M such that γ(0) = x and γ(1) = p. For every path

γ : [0, 1] → M satisfying γ(0) ∈ Σ and γ(1) = p, we obtain

ru(γ(0)) + E(γ) ≥ ru(γ(0)) +
1

2
d(γ(0), p)2

≥ ru(x) +
1

2
d(x, p)2
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= ru(γ(0)) +
1

2
|γ′(0)|2

= ru(γ(0)) + E(γ),

where E(γ) denotes the energy of γ. In other words, the path γ minimizes the functional

ru(γ(0)) + E(γ) among all paths γ : [0, 1] → M satisfying γ(0) ∈ Σ and γ(1) = p. Hence, the

formula for the first variation implies

γ′(0)− r∇Σu(x) ∈ T⊥
x Σ.

Consequently, we can find a vector y ∈ T⊥
x Σ such that

γ′(0) = r∇Σu(x) + ry.

It remains to show (x, y) ∈ A. For each point x ∈ Σ, we have

ru(x) +
1

2
d(x, expx(r∇

Σu(x) + ry))2 = ru(x) +
1

2
d(x, p)2

≥ ru(x) +
1

2
d(x, p)2

= ru(γ(0)) +
1

2
|γ′(0)|2

= ru(x) +
1

2
r2(|∇Σu(x)|2 + |y|2).

The lemma follows.

Lemma 3.3 Suppose that (x, y) ∈ A, and let γ(t) := expx(rt∇
Σu(x) + rty) for t ∈ [0, 1].

If Z is a vector field along γ satisfying Z(0) ∈ TxΣ and Z(1) = 0, then

r(D2
Σu)(Z(0), Z(0))− r〈h(Z(0), Z(0)), y〉

+

∫ 1

0

(|DtZ(t)|2 −R(γ′(t), Z(t), γ′(t), Z(t)))dt ≥ 0.

Lemma 3.4 Suppose that (x, y) ∈ A. Then g + rD2
Σu(x)− r〈h(x), y〉 ≥ 0.

Lemma 3.5 Suppose that (x, y) ∈ A, and let γ(t) := expx(rt∇
Σu(x) + rty) for t ∈ [0, 1].

Moreover, let {e1, · · · , en} be an orthonormal basis of TxΣ. Suppose that W is a Jacobi field

along γ satisfying W (0) ∈ TxΣ and 〈DtW (0), ej〉 = r(D2
Σu)(W (0), ej) − r〈h(W (0), ej), y〉 for

each 1 ≤ j ≤ n. If W (τ) = 0 for some 0 < τ < 1, then W vanishes identically.

Lemma 3.6 The Jacobian determinant of Φ satisfies

|detDΦ(x, y)| ≤ rmdet(g + rD2
Σu(x)− r〈h(x), y〉)

for all (x, y) ∈ A.

The proofs of Lemmas 3.3–3.6 are identical to Lemmas 3.1–3.3 and Lemma 3.6 in [2],

respectively. We omit them. Lemma 3.3 is needed to proof Lemma 3.4, and Lemma 3.5 is

needed to proof Lemma 3.6. The assumption of nonnegative sectional curvature is necessary.
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Lemma 3.7 The Jacobian determinant of Φ satisfies

e−
d(x,Φ(x,y))2

4r2 |detDΦ(x, y)| ≤ rn+mf(x)e
n
r
−ne−

|2H(x)+y|2

4

for all (x, y) ∈ A.

Proof Given a point (x, y) ∈ A, using the identity divΣ(f∇
Σu) = f log f − |∇Σf |2

f
− f |H |2,

we have

∆Σu(x)− 〈H(x), y〉 = log f(x)−
|∇Σf(x)|2

f(x)2
− |H(x)|2

−
〈∇Σf(x),∇Σu(x)〉

f(x)
− 〈H(x), y〉

= log f(x) +
|∇Σu(x)|2 + |y|2

4

−
|2∇Σf(x) + f(x)∇Σu(x)|2

4f(x)2
−

|2H(x) + y|2

4

≤ log f(x) +
|∇Σu(x)|2 + |y|2

4
−

|2H(x) + y|2

4
.

Using Lemmas 3.4, 3.6 and the elementary inequality λ ≤ eλ−1, we have

|detDΦ(x, y)| ≤ rmdet(g + rD2
Σu(x)− r〈h(x), y〉)

= rn+mdet
(g

r
+D2

Σu(x)− 〈h(x), y〉
)

≤ rn+me
n
r
+∆Σu(x)−〈H(x),y〉−n

≤ rn+me
n
r
+log f(x)+

|∇Σu(x)|2+|y|2

4 −
|2H(x)+y|2

4 −n

= rn+mf(x)e
n
r
−ne−

|2H(x)+y|2

4 e
d(x,Φ(x,y))2

4r2 .

The lemma follows.

By Lemma 3.2, for any p ∈ M , we choose some point (xp, yp) ∈ A arbitrarily such that

Φ(xp, yp) = p. Using Lemmas 3.2, 3.7 and area formula in geometric measure theory (cf. [13]),

we have
∫

M

e−
d(xp,p)2

4r2 d vol(p) ≤

∫

M

(

∫

{(x,y)∈A:Φ(x,y)=p}

e−
d(x,Φ(x,y))2

4r2 dH
0
)

d vol(p)

=

∫

Σ

(

∫

T⊥
x Σ

e−
d(x,Φ(x,y))2

4r2 |detDΦ(x, y)|1A(x, y)dy
)

d vol(x)

≤

∫

Σ

(

∫

T⊥
x Σ

rn+mf(x)e
n
r
−ne−

|2H(x)+y|2

4 1A(x, y)dy
)

d vol(x)

≤

∫

Σ

(

∫

T⊥
x Σ

rn+mf(x)e
n
r
−ne−

|2H(x)+y|2

4 dy
)

d vol(x)

= rn+me
n
r
−n(4π)

m
2

∫

Σ

f(x)d vol(x),

where H 0 denotes the counting measure. After dividing by rn+m, by Lemmas 2.1–2.2 , letting

r → ∞ on both sides of the above inequalities, we have

(4π)
n+m

2 θ ≤ e−n(4π)
m
2

∫

Σ

f(x)d vol(x).
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Consequently,

n+
n

2
log(4π) + log θ ≤ log

(

∫

Σ

fd vol
)

.

Combining this inequality with the normalization

∫

Σ

f log fd vol−

∫

Σ

|∇Σf |2

f
d vol−

∫

Σ

f |H |2d vol = 0

gives

∫

Σ

f
(

log f + n+
n

2
log(4π) + log θ

)

d vol−

∫

Σ

|∇Σf |2

f
d vol−

∫

Σ

f |H |2d vol

=

∫

Σ

f
(

n+
n

2
log(4π) + log θ

)

d vol

≤
(

∫

Σ

fd vol
)

log
(

∫

Σ

fd vol
)

.

It remains to consider the case when Σ is disconnected. For completeness, we list Brendle’s

proof (cf. [6]). In that case, we apply the inequality to each individual connected component

of Σ, and sum over all connected components. Since

a log a+ b log b < a log (a+ b) + b log (a+ b) = (a+ b) log (a+ b)

for a, b > 0, we conclude that

∫

Σ

f
(

log f + n+
n

2
log(4π) + log θ

)

d vol−

∫

Σ

|∇Σf |2

f
d vol−

∫

Σ

f |H |2d vol

<
(

∫

Σ

fd vol
)

log
(

∫

Σ

fd vol
)

,

if Σ is disconnected. This completes the proof of Theorem 1.1.

4 Proof of Corollary 1.1

We prove the corollary by contradiction. Assume that (Σ, g|Σ) is a closed minimal k-

submanifold of (M, g). For any positive number ε, we choose the rescaled metric ε2g onM . Then

(M, ε2g) is also a complete noncompact Riemannian manifold of dimension n with nonnegative

sectional curvature. Moreover, the asymptotic volume ratio of (M, ε2g),

AVR(M, ε2g) = lim
r→∞

|Bε2g
r (p)|ε2g
ωnrn

= lim
r→∞

εn|Bg

rε−1(p)|g

ωnrn
= AVR(M, g),

where Bg0
r (p) denotes the geodesic ball of radius r centered at the point p with respect to some

metric g0 on M and | · |g0 denotes the volume with respect to some metric g0 on M . So we can

denote both AVR(M, ε2g) and AVR(M, g) by θ. Note that (Σ, ε2g|Σ) is also a closed minimal

k-submanifold of (M, ε2g). By Theorem 1.1, choosing f = 1 for (M, ε2g), we have
(

n+
n

2
log(4π) + log θ

)

|Σ|ε2g|Σ ≤ |Σ|ε2g|Σ log(|Σ|ε2g|Σ),

i.e., |Σ|ε2g|Σ ≥ (4π)
n
2 θen(> 0), where |Σ|ε2g|Σ denotes the area of Σ with respect to the met-

ric ε2g|Σ on Σ. Note that |Σ|ε2g|Σ = εk|Σ|g|Σ . Thus εk|Σ|g|Σ ≥ (4π)
n
2 θen > 0 which is a
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contradiction provided that ε is chosen sufficiently small. This contradiction completes the

proof.

Acknowledgements The authors are very grateful to Professor Simon Brendle for ex-

plaining the optimal constant in Euclidean space. We would like to thank Professor Guofang

Wei for helpful discussions, valuable suggestions and pointing out some mistakes in an earlier

version of the paper. We would also like to thank Professor Jia-Yong Wu and Yukai Sun for

helpful discussions. We also express our thanks to the reviewers for their comments which make

our paper more elegent.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

[1] Agostiniani, V., Fogagnolo, M. and Mazzieri, L., Sharp geometric inequalities for closed hypersurfaces in
manifolds with nonnegative Ricci curvature, Invent. Math., 222, 2020, 1033–1101.

[2] Brendle, S., Sobolev inequalities in manifolds with nonnegative curvature, Communications on Pure and
Applied Mathematics, arXiv: 2009.13717v3.

[3] Brendle, S., Sobolev inequalities in manifolds with nonnegative curvature, Communications on Pure and
Applied Mathematics, arXiv: 2009.13717v5.

[4] Brendle, S., Minimal hypersurfaces and geometric inequalities, Preprint, to appear in Annales de la Faculté
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