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Abstract In this paper, the authors study the centered waves for the two-dimensional
(2D for short) pseudo-steady supersonic flow with van der Waals gas satisfied Maxwell’s
law around a sharp corner. In view of the initial value of the specific volume and the
properties of van der Waals gas, the centered waves at the sharp corner are constructed
by classification. It is shown that the supersonic incoming flow turns the sharp corner
by a centered simple wave or a centered simple wave with right-contact discontinuity or
a composite wave (jump-fan, fan-jump or fan-jump-fan), or a combination of waves and
constant state. Moreover, the critical angle of the sharp corner corresponding to the
appearance of the vacuum phenomenon is obtained.
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1 Introduction

The 2D steady supersonic flow around a bend or sharp corner was studied by Courant

and Friedrichs [7]. In this paper, we focus on the pseudo-steady flow with van der Waals gas

satisfied Maxwell’s law around a sharp corner. Based on this purpose, we pay attention to the

2D isentropic Euler equations











ρt + (ρu)x + (ρv)y = 0,

(ρu)t +
(

ρu2 + p
)

x
+ (ρuv)y = 0,

(ρv)t + (ρuv)x +
(

ρv2 + p
)

y
= 0,

(1.1)

where (u, v) , ρ, p are designated as the velocity, the density and the pressure respectively. Here,

we take van der Waals gas equation of state

p =
A

(τ − b)
δ+1

− a

τ2
, (1.2)
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in which τ = 1
ρ
is the specific volume, A > 0 is a constant depending on the entropy, a and b are

two positive constants representing the attraction between the particles and the compressibility

limit of the molecules in the gas respectively, 0 < δ < 1 is a constant. The equation (1.2) can

be seen as the dusty gas for the case a = 0 and the polytropic gas for the case a = b = 0.

As Figure 1, the straight ground and the ramp form a sharp corner at the origin O. The

incoming supersonic flow with a constant state (u0, 0, ρ0) goes along the straight ground wall

to point O and diffuses to vacuum. The problem is how the flow turns over the corner. Thus,

we discuss the system (1.1) with the initial data

(u, v, ρ) (x, y, 0) =

{

(u0, 0, ρ0) , (x, y) ∈ {x < 0, y > 0},
vacuum, (x, y) ∈ {x > 0, y ≥ 0} ∪ {y < 0, x > y cot θ}

(1.3)

and the boundary data

{

(ρv) (x, 0, t) = 0, (x, y) ∈ {x < 0, y = 0}, t ≥ 0,

(ρv) (x, y, t) = (ρu) (x, y, t) tan θ, (x, y) ∈ {y < 0, x = y cot θ}, t ≥ 0,
(1.4)

where u0, ρ0 are two constants, and −π < θ < 0 is the angle of the positive half of the x−axis

to the ramp.
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Figure 1 Initial boundary value conditions.

This is a kind of 2D initial boundary value Riemann problem. Two dimensional Riemann

problem is significant and well-studied in analysis and applications. Up to now, there are some

progresses for the system (1.1) (see [2, 3, 11–12, 17, 21, 24–29, 32, 36, 38, 41–43, 46, 51–52])

and its simplified models (see [5, 9–10, 15, 33, 35, 45, 47–49]).

Recently, many researches considered the expansion problem of a gas into vacuum. Sheng

and You [43–44] investigated the problem (1.1) with (1.3)–(1.4) for the polytropic gases p = ργ

at 1 < γ <
√
2 + 1. In their work, the centered simple wave is complete. After that, the same

problem is studied by Sheng and Yao [42], but the centered simple wave is incomplete. Lai

and Sheng [24] extended the range of γ to 1 < γ < 3 and got the global solution when the

incoming flow is sonic or subsonic. Chen et al. [4] discussed the problem with the Noble-Abel

gas p = Aργ

(1−aρ)γ , where A and a are two constants, and γ ∈ (1, 3). Li and Sheng considered the
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expansion problem with the isothermal flow p = ρ (see [30]) and van der Waals gas satisfied

some conditions (see [31]).

For the van der Waals gas equation of state, Maxwell pointed out that p′(τ) > 0 violates

the law of thermodynamic equilibrium (see [8]). According to the law of thermal stability,

p′ (τ) must be non-positive. Thus, the model we focus on may be seen as a van der Waals

type equation of state satisfied Maxwell’s law. In brief, Maxwell’s law introduces two constant

specific volumes b < τ1 < τ2 which are given by the thermodynamic equilibrium and limit the

mixture zone (see Figure 2). And in the region [τ1, τ2], the pressure is constant pm which is a

mean pressure. As a consequence, the pressure is always nonincreasing and its derivative (thus

the sound speed) vanishes in the mixture zone. The main difficulty is that p (τ) is discontinuous

at τ1 and τ2, which leads to a local degenerate problem. Indeed, such a problem, usually called

resonance, has been widely studied (see [6, 13, 18–20, 34–35, 39]). Moreover, Godlewski et

al. [14] studied the Riemann problem for the isothermal p-system of phase transition. In their

work, the equation of state is van der Waals gas satisfied Maxwell’s law. Sheng and Wang [40]

considered the Riemann problem and interaction of elementary waves to the Euler equations for

van der Waals gas satisfied Maxwell’s law. In their work, τ1 and τ2 are polished. In addition,

more studies related to van der Waals gas are referred to [1, 16, 22–23, 37, 50]. The main result

of this paper is as follows.

Theorem 1.1 (Main theorem) When u0 > c0, τ0 > b and θ ≤ min {θ2, θ4, θ6, θ8}, the

supersonic incoming flow turns the sharp corner O locally by a centered simple wave, a right-

contact discontinuity, a composite wave (jump-fan, fan-jump or fan-jump-fan), or a combination

of waves and constant state. Here, θ2, θ4, θ6 and θ8 are given by (4.11), (5.7), (5.15) and (5.20),

respectively.

This paper is organized as follows. In Section 2, we give some preliminaries on the equation

of state satisfied Maxwell’s law and 2D self-similar Euler equations. The centered waves at point

O as τ0 ∈ [τ2,+∞), τ0 ∈ [τ1, τ2) and τ0 ∈ (b, τ1) are constructed in Sections 3–5, respectively.

-
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Figure 2 The equation of state for the van der Waals gas and Maxwell’s law in (τ, p) plan.
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2 Preliminaries

2.1 Equation of state

Throughout this paper, we make the following assumptions which satisfy the Maxwell’s law

(see Figure 2):

(A1) p′ (τ) < 0 and p′′ (τ) > 0 for τ ∈ (b, τ1) ∪ (τ2,+∞).

(A2) p (τ) = pm for τ ∈ [τ1, τ2].

(A3) lim
τ→b+

p (τ) = +∞ and lim
τ→+∞

p (τ) = 0.

(A4) τp′′ (τ) + 2p′ (τ) > 0 for τ ∈ (b, τ1) ∪ (τ2,+∞).

In addition, we use the following notations in this paper for convenience

Λ (τ) =
2p′ (τ)

τp′′ (τ) + 2p′ (τ)
, c2 = −τ2p′ (τ) , α0 = arcsin

c0

u0
. (2.1)

2.2 2D self-similar Euler equations

By the self-similar transformation ξ = x
t
, η = y

t
, the system (1.1) can be rewritten as follows











U · ρξ + ρ · uξ + V · ρη + ρ · vη = 0,

U · uξ + V · uη + τ · pξ = 0,

U · vξ + V · vη + τ · pη = 0,

(2.2)

in which (U, V ) = (u− ξ, v − η) is called the pseudo-velocity.

The eigenvalues of system (2.2) are

λ0 =
V

U
, λ± =

UV ± c
√
U2 + V 2 − c2

U2 − c2
. (2.3)

Obviously, system (2.2) is hyperbolic as q2 > c2, degenerate-hyperbolic as q2 = c2 and elliptic-

hyperbolic as q2 < c2, where q2 = U2 + V 2.

If the flow is irrotational, namely, uy = vx, we get the pseudo-Bernoulli law by (2.2) as

follows
U2 + V 2

2
+

∫ τ

τ0

τp′ (τ) dτ + ϕ = Const., (2.4)

where the potential function ϕ satisfies ϕξ = U and ϕη = V .

We refer to α ( β ) as the characteristic angles of the C+ ( C− ) characteristic curves, i.e.,

tanα = λ+ and tanβ = λ−. Then we have

u− ξ = c
cosσ

sinω
, v − η = c

sinσ

sinω
. (2.5)

Here, σ = α+β
2 and ω = α−β

2 are the pseudo-flow characteristic angle and the pseudo-Mach

angle, respectively.
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3 The Centered Waves for τ0 ∈ [τ2,+∞)

In this section, we construct the centered waves at point O as τ0 ∈ [τ2,+∞). In addition,

we define c22 = −τ22 · lim
τ→τ

+

2

p′ (τ) in Section 3.

Theorem 3.1 Assume that the supersonic incoming flow (u0, 0, c0) satisfies τ0 ≥ τ2. Then

the incoming flow turns the sharp corner O locally by a C+ type centered simple wave R1, which

satisfies

R1 :



















u =
√

B (τ) +D1 cosα+ c sinα,

v =
√

B (τ) +D1 sinα− c cosα,

c =

∫ α

α0

1

1− Λ (τ)
·
√

B (τ) +D1 dα+ c0,

(3.1)

in which

B (τ) = − A

δ (τ − b)
(δ+2)

(

(δ + 1) (δ + 2) τ2 − 2 (δ + 2) bτ + 2b2
)

+
6a

τ
(3.2)

and

D1 = u2
0 − c20 +

A

δ (τ0 − b)(δ+2)
((δ + 1) (δ + 2) τ20 − 2 (δ + 2) bτ0 + 2b2)− 6a

τ0
. (3.3)

Moreover, we define

θ1 :=

∫ +∞

τ0

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ, (3.4)

where q2 = u2 + v2 = B (τ) +D1 + c2. Specifically, there are two cases :

(i) When θ ≤ θ1, the complete simple wave R1 connects the constant state (u0, 0, c0) and

vacuum (see Figure 3(b)).

(ii) When θ1 < θ < 0, the incomplete simple wave R1 connects two constant states (u0, 0, c0)

and (u3, v3, c3), where (u3, v3, c3) is governed by (3.1)–(3.3) and tan θ = v(α3)
u(α3)

(see Figure 3(c)).

-
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(a): τ0 on p (τ).

-

6

�
�
��

��
��*

   
  :````̀zHHHH

je
e
ee
R
B
B
BB

ξ

η

O

R1

(u0, 0, c0)

Vacuum

(b): θ ≤ θ1.

-

6

T
T
TT

��
��*

   
  :```̀z ξ

η

O

R1

(u0, 0, c0)

(u3, v3, c3)

(c): θ1 < θ < 0.

Figure 3 τ0 ∈ [τ2,+∞) .

Proof For the proof of this theorem, Li and Sheng [31] gave a detailed explanation. In

what follows, we explain briefly for completeness.

Near the point O, i.e., ξ → 0, η → 0, the centered simple wave (u, v, c) and ϕ satisfy


























sinα · dv
dα

+ cosα · du
dα

= 0,

1

2
(u2 + v2) +

A

(τ − b)
δ

(δ + 1

δ
+

b

τ − b

)

− 2a

τ
= Const.− ϕ (α0) ,

dϕ

dα
= 0,

u · sinα− v · cosα = c.

(3.5)
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We decompose pseudo-flow velocity (U, V ) along the directions (cosα, sinα) and (sinα,− cosα)

respectively. When ξ, η → 0, we have

g = q cosω = u cosα+ v sinα, c = q sinω = u sinα− v cosα, (3.6)

where g is a function of α and c is the sound speed. Then (3.6) yields

u = g cosα+ c sinα, v = g sinα− c cosα. (3.7)

Taking the derivatives of (3.7) with respect to α and combining with (3.5), one has

gα = −c (3.8)

and

(1− Λ (τ)) cαα − Λ′ (τ) · Λ (τ)
√

−p′ (τ)
· c2α + c = 0. (3.9)

Solving (3.9) with the initial data g2 (α0) + c20 = u2
0, we get (3.1)–(3.3).

Moreover, (3.5), u = q · cosσ and v = q · sinσ lead to

σ =

∫ τ

τ0

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + σ (τ0) , (3.10)

along the centered simple wave R1, in which q2 = u2 + v2 = B (τ) + D1 + c2. Letting θ1 :=

lim
τ→+∞

σ, by simple calculations, we find that
∫ +∞

τ0

−

√
−p′(τ)·

√
q2+τ2p′(τ)

q2
dτ converges absolutely.

That is to say, θ1 is a bounded quantity. Then the proof is completed.

4 The Centered Waves for τ0 ∈ [τ1, τ2)

The centered waves at point O locally as τ0 ∈ [τ1, τ2) and θ < θ2 is constructed in this

section, in which θ2 is given by (4.11). Then there is a point τ4 ∈ (τ2,+∞) such that (see

Figure 4)

p′ (τ4) =
p (τ4)− p (τ0)

τ4 − τ0
. (4.1)

-

6

q

q

p

τ
b τ1 τ2

τ0

τ4

Figure 4 τ0 on p (τ ) and τ0 ∈ [τ1, τ2).

Obviously, the incoming flow (u0, 0, c0) is connected to (u4, v4, c4) by a right-contact discon-

tinuity J1 and diffuses into the vacuum adjacent to the rarefaction wave.
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Lemma 4.1 Suppose that the incoming flow (u0, 0, c0) is supersonic and satisfies τ1 ≤ τ0 <

τ2. Then the system (2.2) exists a right-contact discontinuity J1 whose wave front is (u0, 0, c0)

and wave back is (u4, v4, c4). Here,































u4 =
u2
0 − τ0 (τ4 − τ0) p

′ (τ4)

u0
,

v4 =
(τ0 − τ4) ·

√

−p′ (τ4) (u2
0 + τ20 p

′ (τ4))

u0
,

dη

dξ

∣

∣

∣

J1

=
τ0
√

−p′ (τ4)
√

u2
0 + τ20 p

′ (τ4)
.

(4.2)

Proof Near the point O, the right-contact discontinuity J1 satisfies the Rankine-Hugoniot

condition

dη

dξ

∣

∣

∣

J1

[ρu] = [ρv] ,
dη

dξ

∣

∣

∣

J1

[

ρu2 + p
]

= [ρuv] ,
dη

dξ

∣

∣

∣

J1

[ρuv] =
[

ρv2 + p
]

, (4.3)

which gives






























dη

dξ

∣

∣

∣

J1

· (ρ0u0 − ρ4u4) = −ρ4v4,

dη

dξ

∣

∣

∣

J1

· (ρ0u2
0 + p0 − ρ4u

2
4 − p4) = −ρ4u4v4,

dη

dξ

∣

∣

∣

J1

· (−ρ4u4v4) = p0 − ρ4v
2
4 − p4.

(4.4)

By the last two equations of (4.4), one has

u4 =
u2
0 − τ0 (τ4 − τ0) p

′ (τ4)

u0
. (4.5)

Inserting (4.5) into the first equation of (4.4) yields

v4 = −dη

dξ

∣

∣

∣

J1

· ρ0u
2
0 − ρ4u

2
0 + τ0ρ4 (τ4 − τ0) p

′ (τ4)

ρ4u0
. (4.6)

Insert (4.5) and (4.6) into the last equation of (4.4) and let dη
dξ

∣

∣

J1
> 0 , which leads to

dη

dξ

∣

∣

∣

J1

=
τ0
√

−p′ (τ4)
√

u2
0 + τ20 p

′ (τ4)
. (4.7)

Moreover, inserting (4.5) and (4.7) into the first equation of (4.4), we have

v4 =
(τ0 − τ4) ·

√

−p′ (τ4) (u2
0 + τ20 p

′ (τ4))

u0
. (4.8)

Combining with (4.5) and (4.7)–(4.8), the proof is completed.

Remark 4.1 We take dη
dξ

∣

∣

J1
> 0 in proof of Lemma 4.1. In fact, according to the analysis,

the wave back (u4, v4, c4) of the right-contact discontinuity J1 is the wave front of the adjacent

rarefaction wave R2. Thus, it needs to satisfy dη
dξ

∣

∣

J1
= tanα (u4, v4, c4) =

u4v4+c4
√

u2
4
+v2

4
−c2

4

u2
4
−c2

4

. If

we take dη
dξ

∣

∣

J1
> 0, that is obviously true. But if we take dη

dξ

∣

∣

J1
< 0, we do not get that.
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Theorem 4.1 If τ1 ≤ τ0 < τ2 and θ ≤ θ2, then supersonic flow (u0, 0, c0) turns the sharp

corner O as follows :

(i) When θ = θ2, the incoming flow turns the sharp corner O by a right-contact discontinuity

J1(see Figure 5(a)).

(ii) When θ ≤ θ3, the composite wave made of J1 and a complete simple wave R2 connect the

constant state (u0, 0, c0) and vacuum (see Figure 5(b)). This type of composite wave is usually

called jump-fan (JF ).

(iii) When θ3 < θ < θ2, the composite wave (JF ) made of J1 and an incomplete simple wave

R2 connect two constant states (u0, 0, c0) and (u5, v5, c5) (see Figure 5(c)).

Here, J1 is given by Lemma 4.1 and R2 shows

R2 :



















u =
√

B (τ) +D2 cosα+ c sinα,

v =
√

B (τ) +D2 sinα− c cosα,

c =

∫ α

α4

1

1− Λ (τ)
·
√

B (τ) +D2 dα+ c4,

(4.9)

in which

D2 = u2
0 + τ20 p

′(τ4) +
A

δ(τ4 − b)(δ+2)
((δ + 1)(δ + 2)τ24 − 2(δ + 2)bτ4 + 2b2)− 6a

τ4
. (4.10)

Moreover, we get

θ2 = arcsin
(τ0 − τ4) ·

√

−p′ (τ4) (u2
0 + τ20 p

′ (τ4))

u0

√

u2
0 + (τ0 − τ4)

2
p′ (τ4)

(4.11)

and

θ3 =

∫ +∞

τ4

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + θ2, (4.12)

where q2 = B(τ)+D2+c2, B(τ) and p′(τ4) are given by (3.2) and (4.1), respectively, (u5, v5, c5)

is governed by (4.9)–(4.10) and tan θ = v(α5)
u(α5)

.
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(b): θ ≤ θ3.

-

6

T
T
T
T

�
�
��

��
���*

   
  :````̀z

ξ

η

O

J1

R2

(u0, 0, c0)

(u5, v5, c5)

(c): θ3 < θ < θ2.

Figure 5 θ ≤ θ2 and τ0 ∈ [τ1, τ2).

Proof The proof is similar to the proof of Theorem 3.1. For the centered simple wave R2,

we have






u = g cosα+ c sinα, v = g sinα− c cosα, gα = −c,

(1− Λ (τ)) cαα − Λ′ (τ) · Λ (τ)
√

−p′ (τ)
· c2α + c = 0.

(4.13)

Combining with the initial data g2 (α4) = u2
4 + v24 − c24 = u2

0 + τ20 · p′ (τ4), we get (4.9)–(4.10).
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Moreover, along the centered simple wave R2, one has

σ =

∫ τ

τ4

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + σ (τ4) , (4.14)

in which q2 = u2 + v2 = B (τ) +D2 + c2. By (4.2), we obtain q2 (τ4) = u2
0 + (τ0 − τ4)

2 · p′ (τ4).
We define

θ2 := σ (τ4) = arcsin
v4

q (τ4)
= arcsin

(τ0 − τ4) ·
√

−p′ (τ4) (u2
0 + τ20 p

′ (τ4))

u0

√

u2
0 + (τ0 − τ4)

2
p′ (τ4)

,

and obtain case (i) when θ = θ2.

When θ < θ2, incoming flow turns the sharp corner O by a composite wave made of a

right-contact discontinuity J1 and a simple wave R2. We define

θ3 :=

∫ +∞

τ4

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + θ2

and get case (ii) for θ ≤ θ3 and case (iii) for θ3 < θ < θ2.

Remark 4.2 If τ0 = τ1 and p′ (τ4) = lim
τ→τ−

1

p′ (τ), then J1 is a double-contact discontinuity.

5 The Centered Waves for τ0 ∈ (b, τ1)

In this section, we construct the centered waves at point O as τ0 ∈ (b, τ1) and θ ≤
min{θ4, θ6, θ8}. Here, θ4, θ6, and θ8 are given by (5.7), (5.15) and (5.20), respectively. In

addition, we define c21 = −τ21 · lim
τ→τ

−

1

p′ (τ) in Section 5.

Theorem 5.1 When the supersonic flow (u0, 0, c0) satisfies b < τ0 < τ1, the incoming flow

turns the sharp corner O by a C+ type centered simple wave R3 at first, where, R3 is

R3 :



















u =
√

B (τ) +D1 cosα+ c sinα,

v =
√

B (τ) +D1 sinα− c cosα,

c =

∫ α

α0

1

1− Λ (τ)
·
√

B (τ) +D1 dα+ c0,

(5.1)

in which B (τ) and D1 are given by (3.2) and (3.3), respectively.

Proof Obviously, the incoming flow turns the sharp corner O by a C+ type centered simple

wave. It is similar to the calculation of Theorem 3.1, the expression of R3 is (5.1).

In what follows, we make a line l through τ1 such that the line l is tangent to p = p (τ) at

point τ6 > τ2. Then, there are three cases as follows:

(1) The line l is also tangent to p = p (τ) at point τ1 (see Figure 6(a)), i.e.,

p′ (τ6) =
p (τ6)− p (τ1)

τ6 − τ1
= lim

τ→τ
−

1

p′ (τ) . (5.2)

(2) The slope of line l is greater than the slope of p = p (τ) at τ → τ−1 (see Figure 6(b)),

i.e.,

p′ (τ6) =
p (τ6)− p (τ1)

τ6 − τ1
> lim

τ→τ−

1

p′ (τ) . (5.3)
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(3) The slope of line l is less than the slope of p = p (τ) at τ → τ−1 (see Figure 6(c)), i.e.,

p′ (τ6) =
p (τ6)− p (τ1)

τ6 − τ1
< lim

τ→τ
−

1

p′ (τ) . (5.4)

-6

q

τ

p

τ1 τ2

τ6

(a): p′ (τ6) = lim
τ→τ

−

1

p′ (τ).

-6

q

τ

p

τ1 τ2

τ6

(b): p′ (τ6) > lim
τ→τ

−

1

p′ (τ).

-6

q

τ

p

τ1 τ2

τ6

(c): p′ (τ6) < lim
τ→τ

−

1

p′ (τ).

Figure 6 The relationship between l and p = p (τ ).

5.1 p′ (τ6) = lim
τ→τ

−

1

p′ (τ)

Theorem 5.2 If b < τ0 < τ1 and θ ≤ θ4, then supersonic flow (u0, 0, c0) turns the sharp

corner O as follows :

(i) As θ = θ4, the incoming flow turns the sharp corner O by a composite wave consist of a

simple wave R3 and a double-contact discontinuity J2 (see Figure 7(b)). This type of composite

wave is usually called fan-jump (FJ ).

(ii) As θ ≤ θ5, the composite wave consist of R3, J2 and a complete simple wave R4 connect

the constant state (u0, 0, c0) and vacuum (see Figure 7(c)). This type of composite wave is

usually called fan-jump-fan (FJF ).

(iii) As θ5 < θ < θ4, the composite wave (FJF ) consist of R3, J2 and an incomplete simple

wave R4 connect two constant states (u0, 0, c0) and (u7, v7, c7) (see Figure 7(d)).

Here, both the wave back of R3 and the wave front of J2 are (u1, v1, c1) which is governed

by (5.1) and τ = τ1. The wave back of J2 is (u6, v6, c6) satisfied (5.2) and



























ρ6 (ρ1u1 (u1 − u6) + p1 − p6)
2
= ρ1v

2
1 (ρ1ρ6 (u1 − u6)− (ρ1 − ρ6) (p1 − p6)) ,

v6 =
ρ1v1 (ρ6u6 (u1 − u6) + p1 − p6)

ρ6 (ρ1u1 (u1 − u6) + p1 − p6)
,

dη

dξ

∣

∣

∣

∣

J2

=
ρ1v1 (u1 − u6)

ρ1u1 (u1 − u6) + p1 − p6
.

(5.5)

Moreover, R4 shows

R4 :



















u =
√

B (τ) +D3 cosα+ c sinα,

v =
√

B (τ) +D3 sinα− c cosα,

c =

∫ α

α6

1

1− Λ (τ)
·
√

B (τ) +D3 dα+ c6,

(5.6)

in which D3 = u2
6 + v26 − c26 −B (τ6) and B (τ) is given by (3.2). In addition, we have

θ4 = arcsin
v6

√

u2
6 + v26

(5.7)
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and

θ5 =

∫ +∞

τ6

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + θ4, (5.8)

where q2 = B (τ) +D3 + c2, (u7, v7, c7) is given by (5.6) and tan θ = v(α7)
u(α7)

.
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(d) θ5 < θ < θ4.

Figure 7 θ ≤ θ4 and τ0 ∈ (b, τ1) with p′ (τ6) = lim
τ→τ

−

1

p′ (τ ).

Proof At first, we show that when b < τ0 < τ1 and θ ≤ θ4, there exists a double-contact

discontinuity J2 whose wave front is (u1, v1, c1) and wave back is (u6, v6, c6). The double-contact

discontinuity J2 satisfies Rankine-Hugoniot condition































dη

dξ

∣

∣

∣

J2

· (ρ1u1 − ρ6u6) = ρ1v1 − ρ6v6,

dη

dξ

∣

∣

∣

J2

·
(

ρ1u
2
1 + p1 − ρ6u

2
6 − p6

)

= ρ1u1v1 − ρ6u6v6,

dη

dξ

∣

∣

∣

J2

· (ρ1u1v1 − ρ6u6v6) = ρ1v
2
1 + p1 − ρ6v

2
6 − p6.

(5.9)

It is easy to get (5.5). After a calculation similar to that for Theorem 3.1, we obtain the

expression of R4, i.e., (5.6). Then, like Theorem 4.1, we prove Theorem 5.2.

5.2 p′ (τ6) > lim
τ→τ

−

1

p′ (τ)

Theorem 5.3 When b < τ0 < τ1 and θ ≤ θ4, the supersonic flow (u0, 0, c0) turns the sharp

corner O as follows :

(i) As θ = θ4, incoming flow turns the sharp corner O by a simple wave R3, a constant state

(u1, v1, c1) and a right-contact discontinuity J3 (see Figure 8(b)).

(ii) As θ ≤ θ5, the incoming flow turns the sharp corner O by R3, a constant state (u1, v1, c1),

a composite wave (JF ) consist of J3 and a complete simple wave R5 whose wave back is vacuum

(see Figure 8(c)).
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(iii) When θ5 < θ < θ4, the incoming flow turns the sharp corner O by R3, a constant state

(u1, v1, c1), a composite wave (JF ) consist of J3 and an incomplete simple wave R5 whose wave

back is (u7, v7, c7) (see Figure 8(d)).

Here, (u1, v1, c1) is governed by (5.1) and τ = τ1, τ6 is given by (5.3). Both the wave back

of J3 and the wave front of R5 are (u6, v6, c6) satisfied


























ρ6 (ρ1u1 (u1 − u6) + p1 − p6)
2 = ρ1v

2
1 (ρ1ρ6 (u1 − u6)− (ρ1 − ρ6) (p1 − p6)) ,

v6 =
ρ1v1 (ρ6u6 (u1 − u6) + p1 − p6)

ρ6 (ρ1u1 (u1 − u6) + p1 − p6)
,

dη

dξ

∣

∣

∣

J3

=
ρ1v1 (u1 − u6)

ρ1u1 (u1 − u6) + p1 − p6
.

(5.10)

Moreover, R5 shows

R5 :



















u =
√

B (τ) +D3 cosα+ c sinα,

v =
√

B (τ) +D3 sinα− c cosα,

c =

∫ α

α6

1

1− Λ (τ)
·
√

B (τ) +D3 dα+ c6,

(5.11)

in which D3 = u2
6 + v26 − c26 − B (τ6) and B (τ) is given by (3.2). In addition, θ4, θ5 and

(u7, v7, c7) are governed by Theorem 5.2.
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Figure 8 θ ≤ θ4 and τ0 ∈ (b, τ1) with p′ (τ6) > lim
τ→τ

−

1

p′ (τ ).

Proof The proof is similar to the proof of Theorem 5.2.

5.3 p′ (τ6) < lim
τ→τ

−

1

p′ (τ)

In view of (5.5), there is two points τ∗1 ∈ (b, τ1) and τ∗2 ∈ (τ6,+∞) such that

p′ (τ∗1 ) =
p (τ∗1 )− p (τ∗2 )

τ∗1 − τ∗2
= p′ (τ∗2 ) . (5.12)

Now, we discuss it in two cases τ0 ∈ (b, τ∗1 ) and τ0 ∈ [τ∗1 , τ1).
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5.3.1 τ0 ∈
(

b, τ∗

1

)

Theorem 5.4 When b < τ0 < τ∗1 and θ ≤ θ6, then supersonic flow (u0, 0, c0) turns the

sharp corner O as follows :

(i) For θ = θ6, the incoming flow turns the sharp corner O by a composite wave (FJ) made

of a simple wave R3 and a double-contact discontinuity J4 (see Figure 9(b)).

(ii) For θ ≤ θ7, the composite wave (FJF ) made of R3, J4 and a complete simple wave R6

connect the constant state (u0, 0, c0) and vacuum (see Figure 9(c)).

(iii) For θ7 < θ < θ6, the composite wave (FJF ) made of R3, J4 and an incomplete simple

wave R6 connect two constant states (u0, 0, c0) and (u8, v8, c8) (see Figure 9(d)).
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Figure 9 θ ≤ θ6 and τ0 ∈ (b, τ∗

1 ) with p′ (τ6) < lim
τ→τ

−

1

p′ (τ ).

Here, the wave back of R3 and the wave front of J4 are (u (τ∗1 ) , v (τ
∗
1 ) , c (τ

∗
1 )) governed by

(5.1) and τ = τ∗1 . The wave back of J4 is (u (τ∗2 ) , v (τ
∗
2 ) , c (τ

∗
2 )) which satisfies (5.12) and















































τ∗1

(

1
τ∗

1

u (τ∗1 ) · (u (τ∗1 )− u (τ∗2 )) + p (τ∗1 )− p (τ∗2 )
)2

= τ∗2 v
2 (τ∗1 )

(

1
τ∗

1
τ∗

2

(u (τ∗1 )− u (τ∗2 ))−
(

1
τ∗

1

− 1
τ∗

2

)

(p (τ∗1 )− p (τ∗2 ))
)

,

v (τ∗2 ) =
v (τ∗1 ) (u (τ

∗
2 ) (u (τ

∗
1 )− u (τ∗2 )) + τ∗2 (p (τ∗1 )− p (τ∗2 )))

u (τ∗1 ) · (u (τ∗1 )− u (τ∗2 )) + τ∗1 (p (τ∗1 )− p (τ∗2 ))
,

dη

dξ

∣

∣

∣

J4

=
v (τ∗1 ) · (u (τ∗1 )− u (τ∗2 ))

u (τ∗1 ) · (u (τ∗1 )− u (τ∗2 )) + τ∗1 (p (τ∗1 )− p (τ∗2 ))
.

(5.13)

Moreover, R6 is

R6 :























u =
√

B (τ) +D4 cosα+ c sinα,

v =
√

B (τ) +D4 sinα− c cosα,

c =

∫ α

α(τ∗

2 )

1

1− Λ (τ)
·
√

B (τ) +D4 dα+ c (τ∗2 ) ,

(5.14)
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where D4 = u2 (τ∗2 ) + v2 (τ∗2 )− c2 (τ∗2 )−B (τ∗2 ) and B (τ) is given by (3.2). In addition, we get

θ6 = arcsin
v (τ∗2 )

√

u2 (τ∗2 ) + v2 (τ∗2 )
(5.15)

and

θ7 =

∫ +∞

τ∗

2

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + θ6, (5.16)

in which q2 = B (τ) +D4 + c2, (u8, v8, c8) is given by (5.14) and tan θ = v(α8)
u(α8)

.

Proof The proof is similar to the proof of Theorem 5.2.

5.3.2 τ0 ∈
[

τ∗

1
, τ1

)

In this subsection, we have

p′ (τ9) =
p (τ9)− p (τ0)

τ9 − τ0
. (5.17)

Obviously, we have τ9 = τ∗2 as τ0 = τ∗1 .
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Figure 10 θ ≤ θ8 and τ0 ∈ [τ∗

1 , τ1) with p′ (τ6) < lim
τ→τ

−

1

p′ (τ ).

Theorem 5.5 If τ∗1 ≤ τ0 < τ1 and θ ≤ θ8, then supersonic flow (u0, 0, c0) turns the sharp

corner O as follows :

(i) For θ = θ8, the incoming flow turns the sharp corner O by a right-contact discontinuity

J5 whose wave front is (u0, 0, c0) and wave back is (u9, v9, c9) (see Figure 10(b)).

(ii) For θ ≤ θ9, the composite wave (JF) made of J5 and a complete simple wave R7 connect

the constant state (u0, 0, c0) and vacuum (see Figure 10(c)).
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(iii) For θ9 < θ < θ8, the composite wave (JF) made of J5 and an incomplete simple wave

R7 connect two constant states (u0, 0, c0) and (u10, v10, c10) (see Figure 10(d)). Here, (u9, v9, c9)

and J5 satisfy (5.17) and































u9 =
u2
0 − τ0 (τ9 − τ0) p

′ (τ9)

u0
,

v9 =
(τ0 − τ9) ·

√

−p′ (τ9) (u2
0 + τ20 p

′ (τ9))

u0
,

dη

dξ

∣

∣

∣

∣

J5

=
τ0
√

−p′ (τ9)
√

u2
0 + τ20 p

′ (τ9)
.

(5.18)

Moreover, R7 shows

R7 :



















u =
√

B (τ) +D5 cosα+ c sinα,

v =
√

B (τ) +D5 sinα− c cosα,

c =

∫ α

α9

1

1− Λ (τ)
·
√

B (τ) +D5 dα+ c9,

(5.19)

in which D5 = u2
9 + v29 − c29 −B (τ9) and B (τ) is given by (3.2). In addition, we get

θ8 = arcsin
(τ0 − τ9) ·

√

−p′ (τ9) (u2
0 + τ20 p

′ (τ9))

u0

√

u2
0 + (τ0 − τ9)

2
p′ (τ9)

(5.20)

and

θ9 =

∫ +∞

τ9

−
√

−p′ (τ) ·
√

q2 + τ2p′ (τ)

q2
dτ + θ8, (5.21)

where q2 = B (τ) +D5 + c2, (u10, v10, c10) is given by (5.19) and tan θ = v(α10)
u(α10)

. Specially, we

have (u9, v9, c9) = (u (τ∗2 ) , v (τ
∗
2 ) , c (τ

∗
2 )) as τ0 = τ∗1 . And at this time, J5 is a double-contact

discontinuity.

Proof The proof is similar to the proofs of Lemma 4.1 and the Theorem 4.1.

To sum up, we have completed the discussions and get Theorem 1.1.
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