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Global Tangentially Analytical Solutions of the 3D
Axially Symmetric Prandtl Equations*
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Abstract In this paper, the authors will prove the global existence of solutions to the
three dimensional axially symmetric Prandtl boundary layer equations with small initial
data, which lies in H' Sobolev space with respect to the normal variable and is analytical
with respect to the tangential variables. The main novelty of this paper relies on careful
constructions of a tangentially weighted analytic energy functional and a specially designed
good unknown for the reformulated system. The result extends that of Paicu-Zhang in
[Paicu, M. and Zhang, P., Global existence and the decay of solutions to the Prandtl
system with small analytic data, Arch. Ration. Mech. Anal., 241(1), 2021, 403-446].
from the two dimensional case to the three dimensional axially symmetric case, but the
method used here is a direct energy estimates rather than Fourier analysis techniques
applied there.

Keywords Global existence, Tangentially analytical solutions, Axially symmetric,
Prandtl equations
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1 Introduction

The main purpose of this paper is to study the well-posedness of the initial-boundary value
problem for the three dimensional axially symmetric Prandtl boundary layer equations in the
domain {(t,z,y,2) € R*: ¢t >0, (z,y) € R2, z > 0}.

The general three dimensional Prandtl boundary layer equations read as follows,

O + (U0, + 00y, + w0, )u + dpp = 924,

N + (U0, + 00y + WA,V + Oyp = 027,

Ou+ 0yv+ 0, w =0,

(U, 0,w)|.=0 =0, lim (a,v) = (U(t,z,y),V(t z,y)),

z—+00

(1.1)

where (U(t,z,y),V(t,x,y)) and p(t,z,y) are respectively the tangential velocity fields and
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pressure of the Euler flow, satisfying

{BtU—l—UBwU-i-VByU-i-amp:O, 12)

OV + U,V +Va,V +d,p=0.

Here we write u = (u,v,w) and U = (U(t, z,y), V(t,2,y)).

The Prandtl equations were proposed by Prandtl [26] in 1904 in order to explain the mis-
match between the no slip boundary condition of the Navier-Stokes equations and the corre-
sponding Euler equations when the vanishing viscosity limit v — 0. Reader can see [23] and
references therein for more introductions on the boundary layer theory and check [10] for some
recent development on this topic.

Since Prandtl equations (1.1) have no tangential diffusion and the advection term will cause
one order tangential derivative loss when we perform finite-order energy estimates, local in time
well-posedness of the Prandtl equations in Sobolev spaces for general data without structure
assumptions is still an open question.

For data in Sobolev spaces, under the monotonic assumption on the tangential velocity of the
outflow, Oleinik and Samokhin [23] proved the local existence and uniqueness by using Crocco
transform for the two dimensional Prandtl equations. Recently, in [2] (see also [22]), the second
author of the present work and their collaborators introduced a nice change of variable such
that the cancellation property of the bad term was discovered and the local well-posedness in
Sobolev spaces was proved by direct weighted energy estimates. Ill-posedness in Sobolev spaces
for the Prandtl equations around non-monotonic outflow can be found in E and Engquist [6],
Gerard-Varet and Dormy [7], and Gerard-Varet and Nguyen [9]. For the three dimensional
Prandt] equations, Liu, Wang and Yang [20] proved the local well-posedness of solutions in
Sobolev spaces under some constraints on the flow structure in addition to the monotonic
assumption. While this flow structure is violated, in [19], they showed the ill-posedness of the
3D Prandtl equations in Sobolev spaces, which indicates that the monotonicity condition on
tangential velocity fields is not sufficient for the well-posedness of the three-dimensional Prandtl
equations.

As for the long time behavior of the Prandtl equations in Sobolev spaces, Oleinik and
Samokhin [23] showed global regular solutions existence when the tangential variable belongs
to a finite interval with the amplitude being small. Xin and Zhang [29] proved the global
existence of weak solutions under an additional favorable sign condition on the pressure p, and
the regularity and uniqueness results are obtained in the recent paper [30]. The second author
of the present paper and Zhang [31] proved that the lifespan of the solution is O(In é) if the
initial datum is a small € perturbation around the monotonic shear flow in Sobolev spaces. All
the above results are discussed in the two-dimensional spaces.

For data in analytical spaces, Sammartino and Caflisch [27] established the local well-
posedness in both tangential and normal variables by using the abstract Cauchy-Kowalewski
theorem. The analyticity on the normal variable was removed in [21]. Later in [14], Kukavica
and Vicol gave an energy-based proof of the local well-posedness result with data analytical
only with respect to the tangential variable. The above results are both valid for the two and
three dimensional Prandtl equations. To relax the analyticity condition is not easy. In the case
where the data has a single non-degenerate critical point in the normal variable at each fixed
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tangential variable point, Gérard-Varet and Masmoudi [8] proved the local well-posedness of
the two dimensional Prandtl equations in Gevrey class % with respect to the tangential variable,
which was extended to Gevrey class 2 in [15] for data that are small perturbations of a shear flow
with a single non-degenerate critical point for the three-dimensional Prandtl equations. Note
that this exponent 2 is optimal in view of the instability mechanism of [7]. Recently, Dietert
and Gérard-varet [5] improved the well-posedness to Gevrey class 2 by removing the hypothesis
on the number and order of the critical points for the two-dimensional Prandtl equations, which
was extended to the three-dimensional case in [16].

For the long time existence of the Prandtl equations with analytical data, the first result
appeared in Zhang and Zhang [32] where authors proved that the lifespan of the tangentially
analytical solution is (’)(5%4) if the datum is an ¢ size and the outflow is of size £3 for the two
and three-dimensional Prandtl equations. Later, an almost global existence result was proved
in [12] in two-dimensional case, where a good unknown combining the tangential component
of the velocity and its derivative on the normal variable is introduced to extend the existence
time. This result was extended to the three cases in [17]. Most recently, global existence of
tangentially analytical solutions with small data was proved in [24] for the two dimensional
Prandt] equations. This result was improved to the optimal Gevrey class 2 in [28]. As far as
the authors know, there is not any results concerning on the global existence of tangentially
analytical solutions for the three Prandtl equations.

The main purpose of this paper is to study the global existence of tangentially analytical
solutions for the three-dimensional axially symmetric Prandtl equations. As far as the authors
know, study on the axially symmetric flow has attracted more and more attention recently, such
as pointwise blow-up criteria and Liouville type theorems for the axially symmetric Navier-
Stokes equations in [3-4, 13, 25] and references therein. Most recently, Albritton, Brué and
Colombo obtained the non-uniqueness of Leray solutions of the forced axially symmetric Navier-
Stokes equations in [1]. The novelty of our present work lies in the followings: First, we will
construct an energy functional which involves in a polynomial weight on the tangential variables.
This carefully constructed energy is based on the special structure of the axially symmetric
Prandtl equations and mainly set to overcome the order mismatch between the tangentially
radial velocity u”, and the normal velocity u?, with respect to the distance to the symmetric
axis r, when we use the divergence free condition to connect them each other. Second, the
unknown acted on by the energy functional is specially designed, which is a combination of
the tangentially radial velocity «", and its primitive one in the normal variable. This quantity
has a sufficiently fast decay-in-time rate for our constructed weighted analytical energy, which
ensures the positive lower bound of the analytical radius for any time. Its two dimensional
originality can be traced to Paicu-Zhang [24].

2 Reformulation of the Problem and the Main Theorem

2.1 Reformulation of the equations

In the following, we give a derivation of the three dimensional axially symmetric Prandlt
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equations in cylindrical coordinates (r, 6, z), i.e., for & = (x, y, 2) € R3,
r=+/z?2+y%, 0=arctan Y.
x

A solution of (1.1) and (1.2) are said to be an axisymmetic solution, if and only if
W=1"(t,r, 2)e, + U (t, 7, 2)eq + U (L, 1, 2)es,
U=U"(t,rz2)e.+Ut,r 2)ep,
p=p(t,r)

satisfy the system (1.1) and (1.2), separately, where the components of @ and U in cylindrical

coordinates are independent of # and the basis vectors e,., eg, e, are

e'r:(fvgvo)v 69:(_g7£70)7 ez:(ovoal)'
rr rr

Then in cylindrical coordinates, systems (1.1) and (1.2) satisfy

@92 )
ou” + (w0, + u*d,)u" — . + 0,p=0:u",
~0~r
B + (W0, + W)W + L = 9%,
N r (2.1)
&) 4 g3 =0,
(@, a’,u*)| _, =0, lim (u",a%) =U",U°%

z—+00

and

UQ
U +U"0,U — 7" +0,p=0,

ury?
U + U, U? + . =0.

Now we consider that the flow is swirl free, which means u’ = U? = 0. Also we consider the
simple case of the outflow U" = 0, which indicates that 9,p = 0. Then (2.1) is simplified to

8" + (W0, + WO, )T — 0% =0,
&) 4 o, =o, (2.2

(,ﬁrﬂ ,ﬁz)lz:() = 07 ZBI_’I}OO u” = 0.

This simplified axially symmetric boundary layer equations (2.2) have appeared in [23,
Chapter 4.1]. If the axially symmetric velocity u = u"(t,r, z)e, + u’(t,r, z)eq + u*(t,r, 2)e, is

smooth and divergence free, we can deduce that

=0.

’ﬁr‘r:() = ' |r:0

See (reference [18]). Then there is not singularity for the quantity ETT at r =0.

Set the new unknowns
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which satisfy the following new formation of axially symmetric Prandtl boundary layer equations

opu” + (ru” 0y + u0,)u" — 0%u” + (u")* =0,

ropu” + 2u” + 0,u® =0, (2.3)
(u",w?)| _, =0, Jim " =0.

2.2 The linearly good unknown

We assume that v, u* decay sufficiently fast as z — oo and define

o(t,r,z) = — /+OO u”(t,r, z)dz, (2.4)

which also decays sufficiently fast at z infinity. By integrating (2.3); on [z,4o00] with respect

to z variable, we have

Orp — 0% — u"u + / (u")?dz — 2/ d,u"u*dz =0,
9.¢|,_,=0, lim ¢=0,

200
Ol =0 = /OO u” (0,7, 2)dz.
And (u",u?) is obtained from ¢ as
u' =0,0, u®=—-rd-¢—20¢.

Inspired by the good unknown in [24], we define

9i= 00+ gemd=u'+

o) — P, (2.5)

2(t)
which satisfies

Lu‘Z 0.(z0) +

1
g+ (ru" 0, +u*0.)g — 029+ —g + (u)* — 20

{t)

L OOUTZE_i > uruz 7=
+2<t>/z (u)d <t>/z Petudz =0, (2.6)

g|Z:0 =0, lim ¢g=0,

z—+o0

u" P

s z
g|t:0 =gdo=1u (077.72) + §¢0(T72)'

The introduced g can control the velocity u” and u* nicely with a lower order time weight
which leads to the possibility of closing our energy functional defined below for any ¢ > 0.

2.3 Energy functional spaces and the main result

Set

2

0(t, z) := exp (827)
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For A € R, set
2?2
t = — ).

) o (1)

Then for any A\, u € R, Oy, =0y -0,.
Denote
1 4
ani(n—’—' ) s 6}?:(931632, O[:(O[]_,OZQ)EN2
n!

and

=2+ 1)E=Va2+y>+ 1, ()=(t+1), (z,y) R t>0.
For a positive time-dependent function 7 := 7(¢), we introduce the Sobolev weighted semi-norms

Xn = Xn(g,7) = Z 0¢r)" O gllL2T" My, n € N;

|a|=n
Dy =Dy(g,7) = Y 0(r)"050:9]| 127" My = X0 (D29,7), n€N; (2.7)
|a|=n
Yo =Yulg,7) = D 100)" 05 gll 27" 'nMy, n € (N/{0}).
|a]=n

We consider the following functional space that is real-analytic in @, = (x,y) and lies in a
weighted L? space with respect to z,

X, = {Ya e N2, (112 g(t,r, 2) € L*(R3;0*dzdydz) : ||g||x, < oo},

where

lgllx, = Xnlg, 7).

n=>0

Remark 2.1 In the first equation of (2.7), there is a weight (r)™ for the tangential nth
order derivative, which is set to match and control the term 79, g appeared in (2.6).

We also define the semi-norm

lglly, = Yulg,7),

n>1

which encodes the one-derivative gain in the analytic estimates. Note that for 5 > 1, we have
lally, <7l sup (n8~") < Cor gl
n_

The gain of a z derivative shall be encoded in the dissipative semi-norm

lgllp, = Dulg,7) = 0:9]l. -

n=0

Having introduced the functional spaces in our paper and before presenting the main results,
we give a definition of solution to the reformulated Prandtl equation (2.6).
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Definition 2.1 (Classical in tangential variables and weak in normal variable) For a fized
time t > 0, let H be the closure of the set of functions

{f(t,z,y,2) € CF(R* x [0, +00)) = fl=0 =0}

under the space norm

1762 2}/|@ftx%new(@Q¢MMz

|a|<3

For T > 0, we say that a function g is classical in x,y and weak in z solution of (2.6) if
lg®)lls € L=([0,T)) and  [0:9(t)|l» € L*([0,T)),

and (2.6) holds when tested by C°([0,T) x R? x [0, +00)).

Theorem 2.1 Let go(r, z) be tangentially analytical with radius of analyticity being o > 0.
Then, for any 0 < § < i, there exists a €9, depending only on § and Ty, such that for any

e <eo, if [y u(0,r,z)dz =0 and

HgOHXm <e,

then (2.6) has a globally in-time solution g, which is tangentially analytical with the radius of
analyticity (t) > %7’0 and for any t > 0, it satisfies

)

@%mmmm+ﬁlaﬁ4mwmwﬂﬁ4mwm@m

g 1
—l—Co/O (s Z( ) (lg(s)ll 2o, + ()TNl g(8) D, o) g ()3, 0y ds < llgoll,, < o 2.8)

Remark 2.2 Tt follows from the estimates in Lemma (3.1) and Lemma (3.2) below that
bounds on g, d.g in (2.8) in X, imply similar estimates on u” and u®. So global existence
and uniqueness of tangentially analytical solutions in Theorem 2.1 indicates global existence
and uniqueness of tangentially analytical solutions for the original system (2.3) and (2.2). The
proof of Theorem 2.1 mainly consists of a priori estimates (cf. Section 3) and the local well-
posedness. Since the local existence and uniqueness of the tangentially analytical solutions has
already shown in many references, e. g. [14, 32|, here we only present the a priori estimate
(2.8).

Remark 2.3 In the model (2.2), we only consider the case that the outflow U" = 0.
Actually the proof can be also applied to the case that U" = ref(t), where € > 0 is sufficiently
small and f(t) decays sufficiently fast as ¢ — +o00. The computation will be more elaborated
and complicated. For simplicity and convenience of presenting the main idea, we omit this
extension and leave it to the interested reader.

Remark 2.4 Here we only consider the the axially symmetric Prandtl equation, and ex-
tensions of Theorem 2.1 to the axially symmetric MHD boundary layer system and in the
tangential Gevrey spaces will be considered in our future work.
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For a function f(t,x,y,2) and 1 < p,q < 400, define

IfOlrrre = (/0+°° (/]1{2 |f(t,x,y,z)|pd:z:dy)%dz)%.

If p = ¢, we simply write it as || f||L» and besides, if p = ¢ = 2, we will simply denote it as
[IfIl. Throughout the paper, Cy p ... denotes a positive constant depending on a, b, ¢, - - - which
may be different from line to line. We also apply A Sqp.c,... B to denote A < Cgp,...B. For a
two dimensional multi-index oo = (1, a2) € N?, we write 95 = 99195 and o = {025 |a| = k}.
For a norm || -], we use ||(f, g, )| to denote | f|| + [lg]l + - .

3 A Priori Estimates and Proof of the Main Theorem

First, we state a simple version of the local well-posedness result on the three dimensional
Prandtl equations in tangentially analytical spaces (see [14, Theorem 3.1, Remark 3.3]).

Theorem 3.1 (see [14, Theorem 3.1] with the outflow being zero in three dimensional
spaces) Fiz the constant v > %, denote (z) :== 1+ z. For a function f(t,z,y,z) and 7(t) > 0,
define

Hf X ® . Z Z || Uaa t z’y’z)HQL?(Ri)T%(lﬁ)Mﬁ

n>0 |a|=

Then, for o > 0, if the solution to (1.1) with the outflow U being zero satisfies
(@, )= := (W0, To) € Xy,

then there exists a T, = T.(v, 70, ||(d0,?0)|| 5 ) > 0, such that the three dimensional Prandtl
70

equations (1.1) have a unique real-analytical solution in [0,T.) satisfying for any t € [0,T%),

7(t) > 0 and

1@ D)), < +oo.

Based on the above local well-posedness result of the three dimensional Prandtl equations,
The proof of Theorem 2.1 is simplified to continuity argument and the following a prior estimate,
stated as Proposition 3.1.

Proposition 3.1 ForT > 0, let g be the tangentially analytical solution of (2.6) and go(r, 2)
1

1
there ezists a €g, depending only on & and 1o such that for any € < eq, if fo "(0,r,2z)dz =0

be tangentially analytical with radius of analyticity being 79 > 0. Then, for any 0 < § <

and

||g()||X7—0 < g,

then for any 0 < t < T, the solution g satisfies

(3902, + 5 / (N9 + ()37 9(5) 2 ) )ds

§-0 1
#00 [ a6+ 6110606l < oo, < o

and the tangentially analytical radius 7(t) > $70.
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Before proving Proposition 3.1, we give two lemmas which concern on bounds of ", u*, ¢

in terms of g.
3.1 Bounds of u”, u®, ¢ in terms of g

Lemma 3.1 Let (u",u*) be the solution of (2.3), ¢ and g be respectively the functions
defined in (2.4) and (2.5). For anyn € N, |a| =n and 0 < X < 1, we have

105 ()" O D] S Or1 () T [10(r) "5 gl 12, (3.1)

Ox(r)" O u"| Sx [0x(r)" O g + = <> —Ox_1[|0(r)" 05 gl .2 (3.2)

and

n (0% T Z n (0% n (0%
|Ox(r)" O 0. u"| Sa o |0x ()" O g(2)] + |0 ()" O}, D2 4]
2

1 z 1 .
+ (g + ) 0100l e (33)

Proof We only show the proof of that n = 0 since the case n > 0 follows the same line.
From the second equation of (2.3), we have

rﬁr/ w,dz + 2/ u,dz = —/ O,u.dz = u,(t,r,0) =0,
0 0 0

r/ u"dz = 0.
0

Since when r > 0, the above equality implies that fooo u"dz = 0 for r > 0, then continuity of u"

/ uw"dz = 0.
0

By the definitions of ¢ and g in (2.4)—(2.5), we have

which indicates that

indicates that

az L =9,
¢+2<lﬁ>(ZS I (3.4)

¢|z:0 =0.

Solving the ODE, we get

52

o(t,r,z) = exp ( - %) /OZ g(t,r, z) exp (ﬁ)dz. (3.5)

For any 0 < A < 1, by multiplying the above equality with 6, we have

Or = 01 ( / 0(2)0(z) exp (5 <1t>(22—z2))d2. (3.6)
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Differentiating (3.5) on z gives that

2 52

u"(t,r,2) = 0,4 = —ﬁ exp ( - ﬁ) /OZ g(t,r, Z) exp (4Z—t>)d2 +g.

Multiplying (3.7) by 0, gives that

" =tg ~ 57001(2) [ 0ENa@)exp (2 - )z

Differentiating (3.7) on z and multiplying the resulted equation by 6, give that

z
000.u" = 0,0.9 — %9/\9

1 z

) .
~ (57~ 1)1 [ 0@ en (s (22 = 27 )az

Using the fact that for any g > 0,

sup Q'Be_cz < Cg,
€20

we have

Then a change of variable indicates that

/OZ exp (ﬁ(? - zz))dé < e (t).

Here ( = —2. In (3.6), by using Holder inequality on z, we have

Vo

o 201 gl ([ e (557 2)az)

<Or—11109]l L2 (8)F (1 + €)™
<Or—1]l6g]l 2 ()7,

which is (3.1) for n = 0.
n (3.8), by using Holder inequality and (3.10), we have

1

r z # 1 2 2 \ 2
> J— 2 N —
|0xu"| > |0xg| + <t>9A—1”99”LZ(/0 eXp(4<t> (z°—2 ))dz)
z
< [0xg] +
1079 <t

Ox-1109| 2,

Vi

which is (3.2) for n = 0.

(3.10)

(3.11)
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In (3.9), by using Holder inequality and (3.10), we have

z

{t)

22 1 1
+ (% + W)ek—l<t>4 10gllLz(1+¢)2
1

z Z2 1
A 7 10291+ 1630291 + (5 + W>9H<t>4 169112,

|9>\azur| <a

which is (3.3) for n = 0.
By applying (r)"05" to (3.6) and (3.8)—(3.9), the above derivation from (3.11) also stands
by replacing ¢, u”, 0,u” and g by (r)"0y¢, (r)"Opu”, (r)"0y0,u" and (r)"d;'g, respectively.
Based on the rough estimates in Lemma 3.1, we have the following much more subtle
integration controls of u”, u* and ¢ in terms of the weighted L? norm of g.

Lemma 3.2 (Bounds of u”, u*, ¢ in terms of g) For anyn € N, |a| =n and 0 < X\ < 1,

we have the following estimates

163 (r)" 05 8ll 2 S (1) 2[104r)" O gl 2, (3.12)
[0 (r)" O w" || L2 S (10¢r)™ O gl L2, (3.13)
n—+2
> I0A () Opu | e re Sa (n 4 1) Z 10¢r)1* 05 gl 2, (3.14)
lee|=n le|=
102 ()" O u" || L2 Lo S ||9<T>n8}?(978z9)||L2a (3.15)
n—+2
D lOa(r) g g re Sx (n+1)? Z 16(r)1*187 (g, 029) | 2, (3.16)
lee|=n. o=
10x(r)" O ull 2 Lo S <t>i||9<T>"3;?(T3r9,9)||L27 (3.17)
n+2
Y 0 O e S (n+ V20T Y 60)107 (4D, g, 9)]] 1, (3.18)
|a|=n |a|=n
103 (r)" 050" |[ 2 Sx (87 2116(r)" 05t gl 12 + 104r)" 05 D=9 12, (3.19)

D 1A () R 0u" | Loz

|a]=n
n+2 .
Sx (17 > (0771010 g]l 2 + (1005 0.g]| 2. (3.20)
|| =n

Proof From (3.1), we have

105 (r)" 05 Pl 2 Sx 10x-1llL2(8) * 10(r)" O gl 12
Sa (02 116¢r)" 9y gl Lz,

where we have used the fact that when A — 1 < 0,

1
0x-1llz2 Sa ()7,
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Hence, we have obtained (3.12).

C. J Xu
From (3.2), we have
105 (r)" O u" | L2 Sx 10x ()" O gl 2 + | = < > 7Ox—1ll22(10(r)" 05 gl L2
Sx 10(r) 959l L2, (3.21)
which is (3.13).
Using the two-dimensional Sobolev inequality
Ifllzge S W Fllzz + 105l Lz,
we have
10z (r) O | e re S NOA()" 0w |l 2 12 + 110205 ()" OFu"] || 2 12 (3.22)
It is easy to show that for n € N/{0}

n o, T 7’L+1 2 & n « r
wh au ” ( <T>2) Z (r) +|'y\3h+'vu I

(3.23)
[v[=0
Inserting (3.23) into (3.22) and summing over |a| = n, we have

n—+2
S0 O erz S (0 + 1)

)2 oA ogur| e (3.24)
lee|=n lee|=n
Inserting (3.21) into (3.24), we obtain (3.14)
Also from (3.2), we have

n Ao, T n Qo < n Qo
16 ()" O w" || Lee < (10 (r) athLZ"+||—<t>%9)\—1”L§°”9<T> Mgl
-1 n o
SA NN O gl e + (6) 7 0(r)" O gl 2 (3.25)
Using one-dimensional Sobolev embedding

10x(r)" O gllLze < 108 ()" 05 gl £2110= (O (r)" D)l £

n o % pate? <
< 10x ()" 05 g1 103 ()"0 0=l + |

Sa 10¢r) 05 gll 2 + [10(r)™ 05 0=g]| L2
Inserting the above inequality into (3.25), we can have

()" oy

1
2
LJ

[0 (r)" O u" (| Lee S 10¢r)" 05 (9, 029) Il 2 (3.26)
The bound (3.15) follows from taking L? norms in z,y variables of the above inequality
(3.26).

Similar to (3.24), we can have

n+2
Sl O e S (1S H(9A<r>‘ala;;ur o (3.27)
|a|=n |a|=n h==
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Integrating (3.26) on the tangential variables and inserting the resulted inequality into (3.27),

we can get (3.16).
From the incompressible condition, i.e., the second equation of (2.3), we have

= —/ 0.u*(z)dz =/ (rou” + 2u")(2)dz,
then we can get
[Ox(r)" Oy u”llLee < [|0A(r)" O (rOpu” + 2u”)| 2

S 164r)" O (ropu” + 2u”) || L2[|0a—1]| L2

Sx (B[00 (rdyu” + 2u”)| 2. (3.28)
From (3.2), we have

[0x(r)" O (rOru” + 2u”)| 12
S [0x(r)" 05 (ry + 2)

| l6m)mog o, + gl

S 10(r) 05 (ror + 2)g] L2

Similar to (3.24), we can have

n+2
D 0Ar) O e nee Sx (n+1)7 > [10a (M) Op | 2 e (3.29)
|a|=n |a|=n

Inserting (3.17) into (3.29), we can get (3.18).
Inserting the above inequality into (3.28) and then integrating the resulted equation in the

tangential variables imply that
n o, z 1 n Qo
102 (r)" O w12 Loe Sx (0T [10(r)" O (1O + 2)g]| L2,

which corresponds to (3.17).
Similar to (3.24), using the estimate (3.17), we can get (3.18).
From (3.3), we can get

103 ()" 05 0" [ 12 S | = Oa—1[leee 104r) " O gl o + 16(r)" 05 D= 12

{t)

Gy + gl

Sx (e ||9<7“>”<9h9||L2 +110(r)" 05 0: ]| L2,

O 16(r)" 05 gl 1>

2
z

which is (3.19).
Then almost in the same as (3.24), we can get

n+2

S 10s(r 0RO iz S (04 107 3 10000 s
o= lee|=n.
n+2
Sa(n+1)2 ) ()2 l10)oRglle + (10(r) 190, g 2),
|a|=n

which is (3.20).
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3.2 Weighted energy estimates for the good unknown g

Now we perform the weighted energy estimates for the good unknown g. Rewrite the first
equation of (2.6) as

2 1 _ r z r\2 1 z z r
Og — 029 + _<t> =—(ru"0r + u*0.)g — (u")* + —2<t>u 0.(z0) — —<t>u 1)
-z h u")2dz = - u"u*dz
2<t>/z (u")*dz + <t>/z 0. dz. (3.30)

Let n > 0 and |a| = n. Applying (r)"05 to (3.30) and multiplying the resulted equation with
62 (r)"05'g, and then integrating over R%, we give

1d

3 n o
S 100 D5l

4(t)
- / 0(r)" 05 (u"rdrg)0(r)" 95 g — / 0(r)" 5 (u*9.9)0(r)"d5'g
/9 (r)" o (u")*0(r)" 05 g + L/9<7“>"5;‘$(uzﬁz(f2*¢))9<7°>"5;‘$g
- [rarerenuors - 5o [0 [ wronae pazo o
1 > n Qo T,z = n Qo
+ E/zﬂ/z (r)"op (0 u"u?)dz0(r)" 0} g
7
=y I

Here for a function f(t,x,y,z), we have denoted [ps f(t,,y,2)dadydz simply by [ f if no
+

—10(r)" 05 gll7= + 16(r)" 050: 917> +

confusion is caused.
Dividing the above equality by [|6(r)"05 ¢||r> and multiplying the resulted equation by
7"(t)M,,, then by summing for || = n, we can get that for n > 0,

|0r)"0p0. )%, 3
X T WA Zh=90L2 | 2 X = ()Y, + (331
Z [0ty opgl: T A 0 Z G naggnpz (3:31)

where when n = 0, we set Yy = 0.
Here we present a lemma to characterize the quantitative relation between ||6(r)" 05 g||3.
and [|0(r)"050.gl|3 ..

Lemma 3.3 Let g be a smooth enough function in x,y variables and belong to H' in z

variable, which decays to zero sufficiently fast as z — +o0o. Then we have
1
mllﬂﬂ"@ﬁgﬂiz < [|6¢r)" 95 0-9/7 - (3.32)

Inequality (3.32) is a special case of Treves inequality that can be found in [11]. Proof of
Lemma 3.3 can be found in [24, Lemma 3.1] (see also [12, Lemma 3.3]). Here, we omit the
details.

Using (3.32), from (3.31) we can obtain

d 1 3
Xyt =Dy + Xy < ()Y + § § e 3.33
dt 2(t) A(t) H9 "Bﬁgllm (3.33)
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3.3 Proof of Proposition 3.1 and the main theorem
First, we state a proposition concerning on the estimates of the nonlinear terms in (3.33).

Proposition 3.2 (Estimates of the nonlinear terms) For the nonlinear terms in (3.33), we

have the following estimate

2 2 T naz*gnmzf

n20|a|=

< Cr2(M(lgllx, + O 5 lgllo) gl + Cr2@) gl + ) 2 llgllo.) gl x.

We postpone the proof of Proposition 3.2 till Section 4 and continue to prove the a priori

estimate in Proposition 3.1.

Proof of Proposition 3.1 From (3.33), by summing on n > 0, we get for a uniform
constant Cy,

EH I +L|| [ +i|| [
a9 gy P A
< (++ Cor 20 (gl v, + ® Fllgll))llglly.

(
+Cor2(®)(lgllx. + T lgllp)lgllx. (3.34)

By using (3.32), for any small 4; > 0, we have

1 0 (1—101)
WHQHDT = —2<t> lgllp, + 50
01 (1-467)

=20 lgllo, + 200)
51 1 351

0 >||9HD 7 >H9IIXT + Wllgl\x :

3.34), we obtain that

lgllp.

gl x,

—~

Inserting the above inequality into

§_3
4 271

d 501 01 o1
gilolle + A= gl + (g lolls, +—=lollo.)

< (74 Cor > (Ollgllx, + )3 lgllo ) glly, +Cor >(0)llgllx, + ()3 lgllo,)llg .-

For 6 € (0,1], by choosing §; = 2, we have
4 3
d 5 _1s 5.1 1
—llgllx, + -2 20 lgllx, + = (= llgllx, + —=llgllp,)
dt {t) 6 (t) )
< (7 + Cor2t)(|lgll . + ) |gllp.))lglly,
+Cor () (llgllx, + ()7 llgllp,) gl x, - (3.35)

Now, we assume the a prior assumption that for any ¢ > 0,

- 1
gl <200, 7(8) 2 770, (3.36)
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Using this a priori assumption (3.36) and by choosing suitable 7(t) and sufficiently small ¢,
depending on 7y and ¢§, we will show that

5_ 1
O lgllx, <eo, T(t) = F0- (3.37)

Then continuity argument insures that (3.37) stands for any ¢ > 0.
First, inserting (3.36) into (3.35), we have

d 51 5/ 1 1
Slallx, + A= lglx, + 2 (lgle, + —=llgllo,)

{t) 6\ (t) v40)

. - 1 32e0C 1

< G+ Cor gl + 0 lgllo Dol + == lolv, + @ lgllo,)
0

N

15, then we can have

By choosing ¢¢ such that 3257—020" <
0

Lighae, + L1l + 2 (L lglle, + —=lglo.)
g9 Ty e T gy Wl T 9
< (7 + Cor 2O llgllx, + ) gllp,))lglly, - (3.38)
We choose 7(t) such that
20y X
T+T2—(t)(||g|\2¢+<t>4|\9||DT):0- (3.39)

Then (3.38) indicates that

L OE gl + 2 (0 gl + 6 lallp,)

dt 12
Colt)i=? 1
+ =g (gl + O lgllo ) lglly, <0. (3.40)
Integrating (3.40), we can have
5_ § [t 1 3_
@ﬂﬂw&+ﬁé«W6mm+@ﬁWmum
t 5.5
(s)4 1
+Co | gy Usle + () ¥lgllo)lglly, ds < lollx,, < <o (3.41)

which implies that

b s 12
/O(<S>4 %\ gllx, + (s)3 5||9|\Df)dségé?o-

Then from (3.39), we see that

t
() =15 - 600/0 (lgllx, + (s)Tllgllp,)ds

720050 1 3
TG (1)
= Ty 5 = 27-0 ’
by choosing small £y9. Then by choosing small €y, depending on 79 and ¢, we obtain (3.37) and
(3.41), which finishes the proof of Proposition 3.1.

End Proof of Theorem 2.1 Combining the local existence and uniqueness of the tangen-
tially analytical solutions in Theorem 3.1 and continuity argument, we can obtain the validity
of Theorem 2.1.
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4 Technical Estimates of the Nonlinear Terms

In this section, we give the technical estimates for the nonlinear terms on the righthand of
(3.33). When summing over n > 0, we can get the following tangentially analytical estimates

for the nonlinear terms.

Lemma 4.1 (Estimates of the nonlinear terms separately) We have the following estimates
for the the nonlinear terms on the righthand of (3.33).

I T
>3 1'n3a “(llglx. + lglo)llgly. (4.1)
2 2= 160 ol

I T _ 1
> 2 '2'n o <2 (gl + llly)llgllo, (4.2)
2 &= T ahgn

|I3 I ( |16 |7 (
>y (gl +llglo gl (43)

100l nasgnm PP o nasgn :
n>0 |a|= n>0 |a|=

I _ 1
2. 2. |' 4'naag| ST gl + lglly)lgl, (1.4)
n>0|a‘

18T
> 2 '5'naa (g, + lglo)lgll.. (4.5)
2 &= T hgn

|I7 |T" (¢ < _2 -1 1 L6
2. 2. g s S 720 ol + @ oo (o, + ol (16)
n>0 |a|= h

Proof Before the proof, we give the following simple claim.

Claim For any k € N, 1 < p,q < 400,

Z [[0(r) 6h Targ)HLPL H9<7’>k+15}?9||L,’;LZ +k Z ||9<7“>k3;?9”LfLLZ~ (4.7)
la|=k || =k+1 la|=k

Proof of the Claim Without loss of generality, we assume k > 1, since the claim is
obvious for £ = 0. We write r0, = 20, + y0, := x5,05. Then using Leibniz formula, we have

|(r)* o5 (ro.g)| = |(r)F 05 (210ng)|

= | edpong + > ) (5)on ongdjan
B<a,|Bl=1
< ()M 07 Ongl + 2k(r)* 107 g1. (4.8)

Then from (4.8), we can easily obtain (4.7).
In later calculations, for multi-indices «a, 8 with § < a, we will frequently use

(Z) - ({gD c%—:nm—%@aﬁba_ﬁ ) (mz—:k aﬁ)(w;_kbv) )

for all sequences {ag} and {b,}.
Now we are ready to prove Lemma 4.1.
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Estimate for term I, For the term I, by using (4.9), we have

Z IR ()M
H "5;3‘9||L2

<MY (1) (X e g ) (D0 166050 (r0rg) ez )

k=0 Ivl=n—k |81=k

w10t gles) (X 10050 0,01 ).

k=[3]+1 [v|=n—Fk |Bl=Fk

Then by using (3.15)—(3.16), and noting that M, (Z) = (Slfikl))!z!, we have
Z |11 7" (¢
- 100r) 359 2 "aﬁgllm

<Z ot Do) g 3 100040 00,) e
|Bl=F

n 2
_ k+1
+770 3 (Xoksi + Dogra) S (166 05 (rg)| 2. (4.10)
k=[3]+1i=0 M 181=k

Then by the same Sobolev embedding estimate as that in (3.24) and using (4.7), we can get

> 10050, (10, 9) s 2

|Bl=k
k+2
Sk+1)2 > (100710 (ro,g)|| .2
|8l=k
k+3 k+2
Sk+12 3T 007l + (b + 12181 > 10019} gl .
|B|=k+1 |8|=Fk

Then it is not hard to check that

3

o Z 16(r)% 0}, (rovg)l| ez S 772 Vi, (4.11)
|Bl=k 1=0

where, when k = i = 0, we have set Yy = 0.
Also by using (4.7), we can obtain

k+1
> 1000 (rorg)llze S Vi + Yiga, (4.12)
|B|=k

where we used that 7 < 7y since later we will chosen 7(t) to be a decreased function of ¢ .
Inserting (4.11)—(4.12) into (4.10), we can get

n 2 3
Z |1 |Tn ‘ < 23S (Knoseti + Do) 3 Yiew. (4.13)
|| athH i=0

k=0 i=0
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Then by using the following inequality
n
YD) IIINTNED it it an
n>0 k=0 k>0 >0
we can get from (4.13),

> Y i 7Y (X D) S = 72 (Il + o) ol

n Ho
n>0 |a|=n 8hg”L2 k>0 k>0

which is (4.1) for term I.

Estimate for term I, Now we come to estimate term [». By using (4.9), we have

|I2 |T" (¢
Z 00r) 059 2

"8;?9||L2

< OMY (1) S M) R e Y 1600 00-g) nere

k=0 [v[=n—k |Bl=k

Z () > ) o e Y 104 00zl o (4.15)

k=(2]+ Ivl=n—k |B1=k

Then by using (3.17)—-(3.18), and noting that M, (Z) A e have

(n—k)IkD>
3 (13 |7" (t) M,
[10¢r) O glle

T, n—Fk+1)* e
SUMRUID s S SR (LA X P SRR R P
k=0 T yl=n—k |8l=k
P (k4 DA n— k4 1)2 "
sy B S 0l 3 100)*0}0ual2).
k=[3]+1 o B —_— |BI=k

By using Sobolev embedding, we have

1 k B8 <(k+1)2 - 18198 <
EHG<T> 9y,0:9llLeer2 S I Z [6¢r)""10, 0292 S T~ ZDk+z

|Bl=k =0

Combining the above two inequalities, we obtain

Z |I2 [T (¢
H >"3ﬁ‘gIIL2

o T (n— k4 1) :

S (1) a2 N0 0.9l Y i
k=0 ’ |y|=n—Fk i=0
n Tn_k n— o n—k+2
D M e el DN [GLL A PP (1.16)

[v|=n—k
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We have that

R — k4 1)* e
e I 0.0 S Xt Yok Yok (07
' ly|l=n—k
7k — k1) L S
Y I 00.0.0)ie < Xk 7Y Vi (418)
' [v|=n—Fk 1=0

Inserting the above two inequalities into (4.16), we can obtain

n

3 2
Z I||IQ T Mn -2 3 (X + D Yarkti) D Dis (4.19)
i=0 =0

nasgnm

Summing (4.19) over n > 0 and using (4.14), we can obtain (4.2).

Estimate for term Is Now we come to estimate term [3. By using (4.9), we have

Z |I3 |T" (¢
' 116¢ "3;3‘9||L2

< OM Y (1) D0 1030 O iz e Do 1050 05U e e

k=0 " |yl=n—k 181=k

WM, > (1) X 10y T e Y N0y O ur e (420)

k=[3]+1 Ivl=n—k |Bl=k

Then by using (3.13)—(3.16), and noting that M, (Z) = (El"ji,j))!;, we have

3 L5 " (8) M,
10¢r)" 95 gll 2

(5] 2 n 2
ST Xk +Dni) Y Xipi 472 > Y (Xnhpi + Doy X (4.21)
k=0 i=0 i=[B]+1 i=0
n 2 2
STY Y (Xnksi + Doiri) Y Xigs.
k=0 i=0 i=0

Summing (4.21) over n > 0 and using (4.14), we can obtain (4.3) for term I5.

Estimate for term I, For the terms I}, from the first equation of (3.4), we first have

2

0,(z9) = (1 - %)(ﬁ—l— 2g.

Then from (3.12), we have, for |o| = k,
105 (r) 050 (20) .2
<[16x(r)* o 61|z + HeA

<V D10 () 59l L2 + ||9# (r)f 3h¢||L2 + /(1022 (1) 07 gl 2

, HllOxz () gl 2
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<VD16(r) o5 gl L2 (4.22)

Now we come to estimate term I. By using (4.9) and (4.22), we have

|I4 [T (t
Z 100 95l

naﬁ‘gHH
<O oM, Y S (5)10,0) 0w g e 00970 1
lo=n 255,
O My Y 3 ()10 ) ot 041 9] g o
lal=n  #%a

1B1>1%1]

Then almost in the same estimate as that in (4.15) by replacing 0,¢ with ¢ indicates a similar
estimate as (4.19) as follows:

3 2
Z |||I4 |T - —2 Z ( ek + Z Yn—k-i-i) ZX]H_Z.' (423)
=0 =0

"3;?9HL2
Summing (4.23) over n > 0 and using (4.14), we can obtain (4.4).

Estimate for term I5 It is easy to see that, from (3.12),

10 (r)* 05 (20) L2 Sx V(D102 (N RSl L2 Sx D0 gl 2. (4.24)
By using (4.9) and (4.24), we have

Z |15 |7'
H 8ffg”Lz

n n n— T
STOM (1) Y I T e D 166) 0 gl ngers

k=0 " |y|=n—k |Bl=k
n - n n— s
M, Y () X IO e Y 1000 07l e
k=[5]+1 [v|=n—k |Bl=k

Then by using (3.15)—(3.16), and noting that M, (Z) = (D0 e have

(n—R)I&D
s 1B,
~ 0l ozl .

L

w3

k
-
S (Xn—k'i‘Dn—k)F > 10(r)* 0 gl Lo 2
=0 " |Bl=k

=

2
> (Xn—kti + Dnipi) X (4.25)
]+1 i=0

M:

k=

wl:

By using Sobolev embedding, it is easy to check that

2

Z 10(rY 0 gl Leer2 S T_QZXkH-

= i=0
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Inserting the above inequality into (4.25), we can obtain

n 2
Z ||I5 |7 ( 57723 S (X ki + Do ZXW (4.26)

"8,0;g|\L2 : k=0 i=0

to»—-

Summing (4.26) over n > 0 and using (4.14), we can obtain (4.5).

Estimate for term Ig First, we have

L i P Rl N2 (23 2
oty argle: = 1200 >/Z (r)" 0 (u")2(2)dz]
1 >~ n Qo T — —
= -3 (203 () / (Y38 () (2)cdz]

%Ilzﬂ 1(2)llger2llfg (= )/Zw<r>”3;?(ur)2(5)dillLiLgo

<

< (1) %03 (2) / o ()3 g e
while
Jos [~ rapareas],
<swp {031 ([ 05 002) }ne (=) oR ()P
(1102 () ()" 05 (u)? | 2.
Then
M naoa/, r\2
> H gl STOMa 3 07 95 (P (4.27)
|a|=n

lo]=
The rest is the same as I§ in (4.20) by replacing + with I which indicates (4.3) for term Ig".

Estimate for term Iy Repeating the proof for (4.27), we can get

I T n z s
Z ||9| 717 ( gHLz < Z 163 () (r)" 05 (u0-u") | 2.

le|=

By using (4.9), we have
Z |I7 7" (
160" O g2 "@?gl\m

< OMa Y (1) 0 10z Oz Y 107 (1 07001

k=0 [v|=n—Fk |Bl=F

oM, S (1) X 0z o e Y 107 (1) 0700

k=[3]+1 Iy[=n—k |Bl=Fk
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Then by using (3.17)—(3.20), and noting that M, (Z) = (Slfi,:)),;, we have

3 177" () M,

16¢r)" 05 gl 12

|| =n
L _o 5] (n —k+ 1)4Tn_k k 2 1
ST Y Yo T (r0rg. g)llez D (07 Xiwi + D)
k=0 (n—k)! y|=n— i=0
y|=n—k i
1 o (n —k+ 1)27-n_k " vl 9y -3
HOt Y T Y I 19000, 0) s () X+ Do)
k(3141 C hl=n—k
Then using (4.17)—(4.18), we obtain
|12 |7 (t) M, L o > 2 ,
S o SN (X + Y Vo) DU X+ Dia). (4.28)
lal=n 16¢r)" 05 gll k=0 =0 =0

Summing (4.28) over n > 0 and using (4.14), we can obtain (4.6).
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