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Abstract The present paper is devoted to the well-posedness of a type of multi-dimensional
backward stochastic differential equations (BSDE for short) with a diagonally quadratic
generator. The author gives a new priori estimate, and prove that the BSDE admits a
unique solution on a given interval when the generator has a sufficiently small growth of
the off-diagonal elements (i.e., for each i, the i-th component of the generator has a small
growth of the j-th row zj of the variable z for each j 6= i). Finally, a solvability result is
given when the diagonally quadratic generator is triangular.
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1 Introduction

Bismut [2] first introduced Backward stochastic differential equation (BSDE for short):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−

∫ T

t

ZsdWs, t ∈ [0, T ], (1.1)

where (Wt)t∈[0,T ] is a d-dimensional standard Brownian motion defined on some complete

probability space (Ω,F ,P), and (Ft)t∈[0,T ] is the augmented natural filtration generated by

the standard Brownian motion W . The terminal value ξ is an FT -measurable n-dimensional

random vector, the generator function f(ω, t, y, z) : Ω × [0, T ] × R
n × R

n×d→R
n is (Ft)-

progressively measurable for each pair (y, z), and the solution (Yt, Zt)t∈[0,T ] is a pair of (Ft)-

progressively measurable processes with values in R
n×R

n×d which almost surely verifies BSDE

(1.1). In 1990, Pardoux and Peng [18] established the existence and uniqueness result for B-

SDE with an L2-terminal value and a generator satisfying a uniformly Lipschitz continuous

condition. When the generators have a quadratic growth in the state variable z, the situation is

more complicated. In the one-dimensional case, Kobylanski [16] established the first existence

and uniqueness result for quadratic BSDE with bounded terminal values, Tevzadze [19] gave a

fixed-point argument, Briand and Elie [3] provided a constructive approach to quadratic BSDE
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with and without delay. Briand and Hu [4–5], Delbaen et al. [7–8], Barrieu and El Karoui [1]

and Fan et al. [9] considered the unbounded terminal value case.

For multi-dimensional quadratic BSDE, when the terminal value is small enough in the

supremum norm, Tevzadze [19] proved a general existence and uniqueness result for multi-

dimensional quadratic BSDE. Frei and Dos Reis [12] provided a counterexample which shows

that multi-dimensional quadratic BSDE with a bounded terminal value may fail to have a global

solution. Frei [11] introduced the notion of split solution and studied the existence of solution

by considering a special kind of terminal value. Cheridito and Nam [6] and Xing and Žitković

[20] obtained the solvability for multi-dimensional quadratic BSDE in the Markovian setting.

Jamneshan et al. [14] provided solutions for multi-dimensional quadratic BSDE with separated

generators. Cheridito and Nam [6], Hu and Tang [13] and Luo [17] obtained local solvabil-

ity of systems of BSDE with sub-quadratic, diagonally quadratic and triangularly quadratic

generators respectively, which under additional assumptions on the generator can be extended

to global solutions. When the terminal value is unbounded, Jamneshan et al. [14] provided

solutions when the terminal value is small in the BMO-sense, and Fan et al. [10] obtained

global solutions when the generator is convex or concave.

As a continuation of Hu and Tang [13] and Fan et al. [10], we are devoted to the solvability

of multi-dimensional diagonally quadratic BSDE when the generator has a small growth of the

off-diagonal elements. The local solution is constructed directly by [13, Theorem 2.2]. Together

with the new priori estimate we build and a special kind of “intermediate value” property of the

S∞-norm of the local solution, we are able to stitch local solutions to get the global solution.

In contrast to [13, Theorem 2.3] and [10, Theorem 2.4], we allow the generator to have a small

growth of the off-diagonal elements. In contrast to [10, Theorem 2.5] and [17], we do not

assume that the generator is strictly quadratic. Finally, assuming that for each i = 1, · · · , n,

the i-th component f i of the generator f is diagonally quadratic, depends only on the first i

components of the state variable y and the first i rows of the state variable z, we prove existence

and uniqueness of the global solution to the multi-dimensional diagonally quadratic BSDE with

a bounded terminal value.

The rest of the paper is organized as follows. In Section 2, we prepare some notations

and state the main results of this paper. In Section 3, we give an estimate and prove our main

results. In Section 4, we prove a global solvability result for triangular and diagonally quadratic

BSDE.

2 Preliminaries and Statement of Main Results

2.1 Notations

Let W = (Wt)t≥0 be a d-dimensional standard Brownian motion defined on a complete

probability space (Ω,F ,P), and (Ft)t≥0 be the augmented natural filtration generated by W .

Throughout this paper, we fix a T ∈ (0,∞). We endow Ω× [0, T ] with the predictable σ-algebra

P and R
n with its Borel σ-algebra B(Rn). All the processes are assumed to be (Ft)t∈[0,T ]-

progressively measurable, and all equalities and inequalities between random variables and

processes are understood in the sense of P-a.s. and dP × dt-a.e., respectively. The Euclidean
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norm is always denoted by | · |, and ‖ · ‖∞ denotes the L∞-norm for one-dimensional or multi-

dimensional random variable defined on the probability space (Ω,F ,P).

We define the following four Banach spaces of stochastic processes. By Sp(Rn) for p ≥ 1 ,

we denote the set of all Rn-valued continuous adapted processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=
(
E[ sup

t∈[0,T ]

|Yt|
p]
) 1

p

< +∞.

By S∞(Rn), we denote the set of all Rn-valued continuous adapted processes (Yt)t∈[0,T ] such

that

‖Y ‖S∞ :=
∥∥∥ sup

t∈[0,T ]

|Yt|
∥∥∥
∞

< +∞.

By Hp(Rn×d) for p ≥ 1, we denote the set of all Rn×d-valued (Ft)t∈[0,T ]-progressively measur-

able processes (Zt)t∈[0,T ] such that

‖Z‖Hp :=
{
E

[(∫ T

0

|Zs|
2ds

) p
2
]} 1

p

< +∞.

By BMO(Rn×d), we denote the set of all Z ∈ H2(Rn×d) such that

‖Z‖BMO := sup
τ

∥∥∥Eτ

[ ∫ T

τ

|Zs|
2ds

]∥∥∥
1
2

∞
< +∞.

Here and hereafter the supremum is taken over all (Ft)-stopping times τ with values in [0, T ],

and Eτ denotes the conditional expectation with respect to Fτ .

The spaces Sp

[a,b](R
n), S∞

[a,b](R
n), Hp

[a,b](R
n×d), and BMO[a,b](R

n×d) are identically defined

for stochastic processes over the time interval [a, b]. We note that for Z ∈ BMO(Rn×d), the

process
∫ t

0 ZsdBs, t ∈ [0, T ], is an n-dimensional BMO martingale. For the theory of BMO

martingales, we refer the reader to Kazamaki [15].

For i = 1, · · · , n, denote by zi, yi and f i the i-th row of matrix z ∈ R
n×d, the i-th component

of the vector y ∈ R
n and the generator f , respectively.

2.2 Statement of the main results

The main result of this paper concerns global solutions for bounded terminal value case.

Consider the multi-dimensional BSDE (1.1) of the following structured quadratic generator:

f i(t, y, z) = gi(t, zi) + hi(t, y, z), i = 1, · · · , n. (2.1)

We need the following assumptions.

(H1) There exist two positive real constants γ and C and a real constant δ ∈ [0, 1), such

that for i = 1, · · · , n, gi : Ω × [0, T ] × R
d→R and hi : Ω × [0, T ]× R

n × R
n×d→R satisfy the

following inequalities:

|gi(t, z)| ≤
γ

2
|z|2, ∀z ∈ R

d;

|gi(t, z1)− gi(t, z2)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|, ∀z1, z2 ∈ R
d;

|hi(t, 0, 0)| ≤ C;

|hi(t, y1, z1)− hi(t, y2, z2)| ≤ C|y1 − y2|+ C(1 + |z1|
δ + |z2|

δ)|z1 − z2|, ∀y1, y2 ∈ R
n,

z1, z2 ∈ R
n×d.
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(H2) There exists a three-dimensional non-negative deterministic vector function (αt, βt,

ηt)t∈[0,T ] and a positive constant r ∈ (0, 1 + δ] such that for i = 1, · · · , n, hi satisfies

sgn(yi)hi(t, y, z) ≤ αt + βt|y|+ ηt|z|
r, ∀y ∈ R

n, z ∈ R
n×d.

(H3) There exist four non-negative constants C0, C1, C2 and C3 such that

‖ξ‖∞ ≤ C0,

∫ T

0

αtdt ≤ C1,

∫ T

0

βtdt ≤ C2,

∫ T

0

(ηt + η
2

1−δ

t )dt ≤ C3.

Our main result ensures existence and uniqueness for the diagonally quadratic BSDE (1.1).

Theorem 2.1 There exists a constant r0 > 0 (depending only on the vector of parameters

(n, γ, δ, C0, C1, C2, C3)) such that if (H1)–(H3) holds for r ∈ (0, r0), then BSDE (1.1) has a

unique solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d) on [0, T ].

The proof is given in Section 3.

Example 2.1 Assuming that T = 1, then the following generator f satisfies (H1)–(H3)

with (αt, βt, ηt) = (2, 1, 1) and (γ, δ, C1, C2, C3) = (2, 0.5, 2, 1, 2) when r ∈ (0, 1.5]:

f i(t, y, z) = |zi|2 + |y|+ sin(|z|
3
2 ) + |z|r1{|z|>1} + |z|1{|z|≤1}, i = 1, · · · , n.

The second result of this paper concerns a special type of diagonally quadratic BSDE as

follows:

Y i
t = ξi +

∫ T

t

ki(s, Ys, Zs)ds−

∫ T

t

Zi
sdWs, 0 ≤ t ≤ T, 1 ≤ i ≤ n. (2.2)

For each i = 1, · · · , n, H ∈ R
n×d, z ∈ R

1×d, Y ∈ R
n and y ∈ R, define by H(z; i) the matrix

in R
n×d whose i-th row is z and whose j-th row is Hj for any j 6= i, define by Y (y; i) the vector

in R
n whose i-th component is y and whose j-th component is Y j for any j 6= i. We make the

following assumptions.

(A1) There exists a constant α ∈ (−1, 1) and a positive constant K1 such that for i =

1, · · · , n, the function ki : Ω × [0, T ]× R
n × R

n×d→R depends only on the first i components

of y and the first i rows of z, and

|ki(t, y, z)| ≤ K1

(
1 +

i∑

j=1

|yj |+

i−1∑

j=1

|zj |1+α + |zi|2
)
, ∀y ∈ R

n, z ∈ R
n×d.

(A2) There exists a non-negative constant β and a positive constant K2 such that for

i = 1, · · · , n and each (Y, Z, y1, y2, z1, z2) ∈ R
n ×R

n×d ×R×R×R
1×d ×R

1×d, the function ki

satisfies:

|ki(t, Y (y1; i), Z(z1; i))− ki(t, Y (y2; i), Z(z2; i))| ≤ β|y1 − y2|+K2(1 + |z1|+ |z2|)|z1 − z2|.

(A3) There exists a non-negative constant K3 such that ξ = (ξ1, · · · , ξn)∗ satisfies

‖ξ‖∞ ≤ K3.

We have the following result.
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Theorem 2.2 Let (A1)–(A3) be satisfied. Then BSDE (2.2) has a unique solution (Y, Z) ∈

S∞(Rn)× BMO(Rn×d) on [0, T ].

The proof is given in Section 4.

Remark 2.1 In Theorem 2.2, we do not require (H1)–(H3).

Example 2.2 The following generator k satisfies (A1)–(A2) in Theorem 2.2:

k1(t, y, z) = 1 + y1 + sin(y1) + |z1|2;

ki(t, y, z) = 1 +
i∑

j=1

yj + sin(yi−1)yi +
i−1∑
j=1

|zj|1+α + cos(|zi−1|)|zi|2, i = 2, · · · , n.

3 Diagonally Quadratic BSDE

We first give an estimate.

Lemma 3.1 Let (H1)–(H3) hold, (Y, Z) ∈ S∞
[t0,T ](R

n) × H2
[t0,T ](R

n×d) is a solution of

BSDE (1.1) on [t0, T ], then there exist two positive constants C4, C5 (depending on the vector

of parameters (n, γ, δ, C0, C1, C2, C3)) such that

‖Y ‖S∞

[t0,T ]
≤ C4 + C5 exp

( rγ

1− δ
‖Y ‖S∞

[t0,T ]

)
. (3.1)

Proof Define

u(x) =
exp(γ|x|)− γ|x| − 1

γ2
, x ∈ R.

Then we have that for x ∈ R,

u′(x) =
exp(γ|x|)− 1

γ
sgn(x), u′′(x) = exp(γ|x|), u′′(x) − γ|u′(x)| = 1.

Using Itô’s formula to compute u(Y i
t ) and using the assumption (H2), we have

u(Y i
t ) = u(ξi) +

∫ T

t

[
u′(Y i

s )
(
gi(s, Zi

s) + hi(s, Ys, Zs)
)
−

1

2
u′′(Y i

s )|Z
i
s|

2
]
ds−

∫ T

t

u′(Y i
s )Z

i
sdWs

≤ u(ξi)−

∫ T

t

u′(Y i
s )Z

i
sdWs

+

∫ T

t

[exp(γ|Y i
s |)− 1

γ

(γ
2
|Zi

s|
2 + αs + βs|Ys|+ ηs|Zs|

r
)
−

1

2
exp(γ|Y i

s |)|Z
i
s|

2
]
ds

= u(ξi)−

∫ T

t

u′(Y i
s )Z

i
sdWs

+

∫ T

t

[
−

1

2
|Zi

s|
2 +

exp(γ|Y i
s |)− 1

γ
(αs + βs|Ys|+ ηs|Zs|

r)
]
ds (3.2)

Using Hölder’s inequality, we get

ηs|Zs|
r = ε

r
2 |Zs|

r · ε−
r
2 ηs ≤

r

2
ε|Zs|

2 +
2− r

2
(ε−

r
2 ηs)

2
2−r . (3.3)

Taking

ε =
γ

nr
exp(−γ‖Y ‖S∞

[s,T ]
),
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we have

ηs|Zs|
r ≤

γ

2n
exp(−γ‖Y ‖S∞

[s,T ]
)|Zs|

2 +
2− r

2
η

2
2−r
s

( γ

nr
exp(−γ‖Y ‖S∞

[s,T ]
)
)− r

2−r

. (3.4)

From 0 < r ≤ 1 + δ < 2, we have

2− r

2
≤ 1, 1 ≤

2

2− r
≤

2

1− δ
,

r

2− r
≤

1 + δ

1− δ
.

Therefore

η
2

2−r
s ≤ η

2
1−δ
s + ηs,

(nr
γ

) r
2−r

≤
(2n
γ

) r
2−r

≤
(2n
γ

) 1+δ
1−δ

+ 1.

From (3.4), we deduce

ηs|Zs|
r ≤

γ

2n
exp(−γ‖Y ‖S∞

[s,T ]
)|Zs|

2 + (η
2

1−δ
s + ηs)

((2n
γ

) 1+δ
1−δ

+ 1
)
exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

)
. (3.5)

Let

ks = (η
2

1−δ
s + ηs)

((2n
γ

) 1+δ
1−δ

+ 1
)
.

From (3.2) and (3.5), we have

u(Y i
t ) ≤ u(ξi)−

∫ T

t

u′(Y i
s )Z

i
sdWs +

∫ T

t

[
−

1

2
|Zi

s|
2 +

1

2n
|Zs|

2
]
ds

+

∫ T

t

exp(γ|Y i
s |)

γ

(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

))
ds. (3.6)

Hence it holds that

n∑

i=1

u(Y i
t ) ≤

n∑

i=1

u(ξi)−

∫ T

t

n∑

i=1

u′(Y i
s )Z

i
sdWs

+
1

γ

∫ T

t

(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

)) n∑

i=1

exp(γ|Y i
s |)ds. (3.7)

Noting that
exp(γ|x|)− 2

2γ2
≤ u(x) ≤

exp(γ|x|)

γ2
,

we have

n∑

i=1

exp(γ|Y i
t |)− 2

2γ2

≤
n exp(γ‖ξ‖∞)

γ2
−

∫ T

t

n∑

i=1

u′(Y i
s )Z

i
sdWs

+
1

γ

∫ T

t

(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

)) n∑

i=1

exp(γ|Y i
s |)ds. (3.8)
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Taking conditional expectation with respect to Fτ for τ ∈ [t0, t], we show

E

[ n∑

i=1

exp(γ|Y i
t |)|Fτ

]

≤ 2n(exp(γ‖ξ‖∞) + 1) +

∫ T

t

2γ
(
αs + βs‖Y ‖S∞

[s,T ]

+ ks exp
( rγ

2− r
‖Y ‖S∞

[s,T ]

))
E

[ n∑

i=1

exp(γ|Y i
s |)|Fτ

]
ds. (3.9)

Using Gronwall’s inequality, we get

E

[ n∑

i=1

exp(γ|Y i
t |)|Fτ

]

≤ 2n(exp(γ‖ξ‖∞) + 1)· exp
(∫ T

t

2γ
(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

))
ds

)
. (3.10)

Setting τ = t and noting r ≤ 1 + δ, we have

n∑

i=1

exp(γ|Y i
t |)

≤ 2n(exp(γ‖ξ‖∞) + 1) exp
(∫ T

t

2γ
(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

1− δ
‖Y ‖S∞

[s,T ]

))
ds

)
.

Using Jensen’s inequality, we obtain

n∑

i=1

exp(γ|Y i
t |) ≥ n exp

(
n∑

i=1

γ|Y i
t |

n

)
≥ n exp

(γ|Yt|

n

)
.

Combining the preceding inequalities and the assumption (H3), we have

|Yt| ≤
n

γ
log(2 exp(γ‖ξ‖∞) + 2) +

∫ T

t

2n
(
αs + βs‖Y ‖S∞

[s,T ]
+ ks exp

( rγ

1− δ
‖Y ‖S∞

[s,T ]

))
ds

≤
n

γ
log(2 exp(γC0) + 2) + 2nC1 + 2n

∫ T

t0

ks exp
( rγ

1− δ
‖Y ‖S∞

[s,T ]

)
ds

+

∫ T

t

2nβs‖Y ‖S∞

[s,T ]
ds. (3.11)

Let

K0 :=
n

γ
log(2 exp(γC0) + 2) + 2nC1 + 2n

∫ T

t0

ks exp
( rγ

1− δ
‖Y ‖S∞

[s,T ]

)
ds.

We have

‖Y ‖S∞

[t,T ]
≤ K0 +

∫ T

t

2nβs‖Y ‖S∞

[s,T ]
ds, ∀t ∈ [t0, T ]. (3.12)



862 G. Yang

Using Gronwall’s inequality and the assumption (H3), we have

‖Y ‖S∞

[t0,T ]
≤ K0 exp

( ∫ T

t0

2nβsds
)

≤ exp(2nC2)
(n
γ
log(2 exp(γC0) + 2) + 2nC1

+ 2n

∫ T

t0

ks exp
( rγ

1− δ
‖Y ‖S∞

[s,T ]

)
ds

)
. (3.13)

Let

C4 = exp(2nC2)
(n
γ
log(2 exp(γC0) + 2) + 2nC1

)
, C5 = 2nC3 exp(2nC2)

((2n
γ

) 1+δ
1−δ

+ 1
)
.

From the definition of ks and the assumption (H3), we get (3.1). The proof is complete.

From Lemma 3.1, we get the following proposition.

Proposition 3.1 There exists a constant r0 > 0 (depending on the vector of parameters

(n, γ, δ, C0, C1, C2, C3)) such that if (H1)–(H3) holds for r ∈ (0, r0), and (Y, Z) ∈ S∞
[t0,T ](R

n)×

H2
[t0,T ](R

n×d) is a solution of BSDE (1.1) on [t0, T ], then

‖Y ‖S∞

[t0,T ]
≤ C4 + 2C5, (3.14)

where C4 and C5 are given by (3.1).

Proof Define

F (x) = C4 + C5 exp
( rγx

1− δ

)
− x, x ≥ 0.

Then we have

F ′(x) =
rγC5

1 − δ
exp

( rγx

1− δ

)
− 1, F ′′(x) =

r2γ2C5

(1− δ)2
exp

( rγx

1− δ

)
> 0.

Let

r0 =
(1 − δ) log 2

γ(C4 + 2C5)
.

For a given r ∈ (0, r0), let

x0 =
1− δ

rγ
log

1− δ

C5rγ
.

Then we have

r < r0 <
1− δ

γC5
, x0 > 0, F ′(x0) = 0.

Hence, F is decreasing on [0, x0] and increasing on [x0,+∞), and

F (C4 + 2C5) = C4 + C5 exp
(rγ(C4 + 2C5)

1− δ

)
− C4 − 2C5

= C5

(
exp

(rγ(C4 + 2C5)

1− δ

)
− 2

)

< C5

(
exp

(r0γ(C4 + 2C5)

1− δ

)
− 2

)
= 0.
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Then F (x) = 0 has two zeros x1, x2 and they satisfy

C0 < C4 < x1 < C4 + 2C5 < x2, {x : F (x) ≥ 0} = [0, x1] ∪ [x2,+∞). (3.15)

From Lemma 3.1, we obtain that

F (‖Y ‖S∞

[t,T ]
) ≥ 0, ∀t ∈ [t0, T ].

Hence

‖Y ‖S∞

[t,T ]
∈ [0, x1] ∪ [x2,+∞), ∀t ∈ [t0, T ].

Define

t̂ = inf{t ∈ [t0, T ] : ‖Y ‖S∞

[t,T ]
≤ x1}.

Notice that

‖Y ‖S∞

[T,T ]
= ‖ξ‖∞ ≤ C0 < x1.

t̂ is well defined. ‖Y ‖S∞

[t,T ]
is decreasing and right-continuous about t, so we have ‖Y ‖S∞

[t̂,T ]
≤ x1.

If t̂ > t0, then

‖Y ‖S∞

[t,T ]
> x1, ∀t ∈ [t0, t̂).

Therefore

‖Y ‖S∞

[t,T ]
≥ x2, ∀t ∈ [t0, t̂).

From (3.13), we deduce that

x2 ≤ lim sup
t→t̂−

‖Y ‖S∞

[t,T ]

≤ lim sup
t→t̂−

[
C4 + 2n exp(2nC2)

∫ T

t

ks exp
( rγ

1− δ
‖Y ‖S∞

[s,T ]

)
ds

]

= C4 + 2n exp(2nC2)

∫ T

t̂

ks exp
( rγ

1− δ
‖Y ‖S∞

[s,T ]

)
ds

≤ C4 + 2n exp(2nC2)
((2n

γ

) 1+δ
1−δ

+ 1
)
C3 exp

( rγ

1− δ
‖Y ‖S∞

[t̂,T ]

)

≤ C4 + C5 exp
( rγx1

1− δ

)
= F (x1) + x1 = x1. (3.16)

This is a contradiction. Hence t̂ = t0, and

‖Y ‖S∞

[t0,T ]
≤ x1 < C4 + 2C5.

The proof is complete.

Proof of Theorem 2.1 For the number r0 given in Proposition 3.1 and a given r ∈ (0, r0),

define

λ := C4 + 2C5,

where C4 and C5 are the same as in Lemma 3.1. From (3.15), we have

‖ξ‖∞ ≤ C0 ≤ C4 ≤ λ.
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From [13, Theorem 2.2, p. 1072], there exists tλ > 0 which depends on constants (n,C, γ, δ, λ),

such that BSDE (1.1) has a local solution (Y, Z) ∈ S∞(Rn)×BMO(Rn×d) on [T − tλ, T ]. From

Proposition 3.1, we obtain

‖YT−tλ‖∞ ≤ ‖Y ‖S∞

[T−tλ,T ]
≤ λ.

Taking T − tλ as the terminal time and YT−tλ as the terminal value, BSDE (1.1) has a local

solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d) on [T − 2tλ, T − tλ]. Stitching the solutions we have

a solution (Y, Z) ∈ S∞(Rn) × H2(Rn×d) on [T − 2tλ, T ] and ‖YT−2tλ‖∞ ≤ λ. Repeating the

preceding process, we can extend the pair (Y, Z) to the whole interval [0, T ] within finite steps

such that Y is uniformly bounded by λ and Z ∈ H2(Rn×d). We now show that Z ∈ BMO(Rn×d).

Identical to the proofs of inequalities (3.5)–(3.6), we have

ηs|Zs|
r ≤

γ

4n
exp(−γ‖Y ‖S∞

[s,T ]
)|Zs|

2 + (η
2

1−δ
s + ηs)

((4n
γ

) 1+δ
1−δ

+ 1
)
exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

)
(3.17)

and

u(Y i
t ) ≤ u(ξi)−

∫ T

t

u′(Y i
s )Z

i
sdWs +

∫ T

t

[
−

1

2
|Zi

s|
2 +

1

4n
|Zs|

2
]
ds

+

∫ T

t

exp(γ|Y i
s |)

γ

(
αs + βs‖Y ‖S∞

[s,T ]
+ k̂s exp

( rγ

2− r
‖Y ‖S∞

[s,T ]

))
ds, (3.18)

where

k̂s = (η
2

1−δ
s + ηs)

((4n
γ

) 1+δ
1−δ

+ 1
)
.

Summing i from 1 to n and taking conditional expectation with respect to Ft, we have

1

4
E
[ ∫ T

t

|Zs|
2ds|Ft

]
≤

n exp(γC0)

γ2
+

n exp(γλ)

γ

(
C1 + C2λ+ C3

((4n
γ

) 1+δ
1−δ

+ 1
)
exp

( rγλ

2− r

))
.

Hence Z ∈ BMO(Rn×d). Finally, the uniqueness on the given interval [0, T ] is a consequence

of [13, Theorem 2.2, p. 1072] via a pasting technique.

Remark 3.1 Assumptions (H1)–(H3) of Theorem 2.1 are different from those of [13, The-

orem 2.3, p. 1072] and [10, Theorem 2.4]. We allow the generator to have a small growth of the

off-diagonal elements. They are different from those of [10, Theorem 2.5] in that the generator is

not required to be strictly quadratic. For example, the following generator f satisfies Theorem

2.1 rather than the others when r is sufficiently small:

f i(t, y, z) = |zi|2 sin
(
log(|zi|+ 1)

)
+ |y|+ sin(|z|1+δ) + |z|r1{|z|>1} + |z|1{|z|≤1}, i = 1, · · · , n.

Remark 3.2 When C3 is sufficiently small such that C5 < exp
(
− γ(1+δ)(1+C4)

1−δ

)
, taking

r0 = 1 + δ, then for r ∈ (0, r0], we have

F (C4 + 1) = C5 exp
(γ(1 + δ)(1 + C4)

1− δ

)
− 1 < 0.

In a similar way we have Theorem 2.1. In particular, when C3 = 0 we have C5 = 0, then we

have ‖Y ‖S∞

[t0,T ]
≤ C4 by (3.1) and thus Theorem 2.1 holds, which is the case of [10, Theorem

2.4].
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Remark 3.3 From [10, Theorem 2.1], (H1) and (H2) can be replaced with the following in

Theorem 2.1.

(H1′) There exist a deterministic scalar-valued positive function (αt)t∈[0,T ], a deterministic

nondecreasing continuous function φ(·) : [0,+∞)→[0,+∞) with φ(0) = 0 and several real

constants γ > 0, C ≥ 0, δ ∈ [0, 1) such that for i = 1, · · · , n and each (y, y, z, z) ∈ R
n × R

n ×

R
n×d × R

n×d, f i satisfies the following inequalities:

|f i(t, y, z)| ≤ αt + φ(|y|) +
γ

2
|zi|2 + C

∑

j 6=i

|zj|1+δ,

|f i(t, y, z)− f i(t, y, z)|

≤ φ(|y| ∨ |y|)
[
(1 + |z|+ |z|)(|y − y|+ |zi − zi|) + (1 + |z|δ + |z|δ)

∑

j 6=i

|zj − zj |
]
.

(H2′) There exist a two-dimensional non-negative deterministic vector function (βt, ηt)t∈[0,T ]

and a positive constant r ∈ (0, 1 + δ] such that for i = 1, · · · , n and (y, z) ∈ R
n × R

n×d, the

function f i satisfies:

sgn(yi)f i(t, y, z) ≤ αt + βt|y|+ ηt|z|
r +

γ

2
|zi|2.

4 Diagonally Quadratic and Triangular BSDE

To prove Theorem 2.2, we need the following lemma.

Lemma 4.1 We consider the following one-dimensional BSDE:

Yt = η +

∫ T

t

l(s, Ys, Zs)ds−

∫ T

t

ZsdWs, 0 ≤ t ≤ T. (4.1)

The terminal value η and the generator l satisfy the following assumptions:

(B1) ∀K > 0, the function l : Ω× [0, T ]× R× R
1×d→R satisfies:

sup
t∈[0,T ]

∥∥∥E
[
exp

(
K

∫ T

t

|l(s, 0, 0)|ds
)∣∣∣Ft

]∥∥∥
∞

< +∞.

(B2) There exist a non-negative constant β and a positive constant C such that for each

(y, y, z, z) ∈ R× R× R
1×d × R

1×d, the function l satisfies:

|l(t, y, z)− l(t, y, z)| ≤ β|y − y|+ C(1 + |z|+ |z|)|z − z|.

(B3) There exists a non-negative constant C1 such that η satisfies:

‖η‖∞ ≤ C1.

Then BSDE (4.1) has a unique solution (Y, Z) ∈ S∞(R)× BMO(R1×d) on [0, T ].

Proof When β = 0, l is independent of y. From [13, Lemma 2.1], we know that the result

holds. When β > 0, for y ∈ S∞(R), we define a map ϕ(y) = Y , where Y is given by

Yt = η +

∫ T

t

l(s, ys, Zs)ds−

∫ T

t

ZsdWs, 0 ≤ t ≤ T.
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From the preceding result, we know that ϕ is well-defined and maps S∞(R) to itself. For

y, y ∈ S∞(R), let Y = ϕ(y), Y = ϕ(y). Denote δY = Y −Y , δy = y− y, δZ = Z−Z. We have

δYt =

∫ T

t

[l(s, ys, Zs)− l(s, ys, Zs)]ds−

∫ T

t

δZsdWs

=

∫ T

t

(βsδys + δZsαs)ds−

∫ T

t

δZsdWs.

Here |βs| ≤ β, |αs| ≤ C(1 + |Zs|+ |Zs|), therefore α ·W is a BMO martingale. Define

W̃t := Wt −

∫ t

0

αs ds, t ∈ [0, T ]; dP̃ := E (α ·W )T0 dP.

Then, P̃ is a new probability equivalent to P, and W̃ is a Brownian motion with respect to P̃.

We have

δYt =

∫ T

t

βsδysds−

∫ T

t

δZsdW̃s.

Taking the conditional expectation with respect to P̃, we have

‖δY ‖S∞ ≤

∫ T

t

β‖δy‖S∞ds ≤ βT ‖δy‖S∞.

When T ≤ 1
2β , ϕ is a contraction map and and the statement follows from the Banach fixed

point theorem. For general T , we can repeat the preceding process and get the result within

finite steps. The proof is complete.

Proof of Theorem 2.2 We will solve BSDE (2.2) in order. For the first equation, noting

that ‖ξ1‖∞ ≤ K3, |k
1(s, 0, 0)| ≤ K1, from [16] we know that it has a unique solution (Y 1, Z1) ∈

S∞(R)×BMO(R1×d). Suppose that we already solve the first (i−1) equations with (Y j , Zj) ∈

S∞(R)× BMO(R1×d), j = 1, · · · , i− 1. For the i-th equation, we have that ∀K > 0,

E

[
exp

(
K

∫ T

t

|ki(s, Ys(0; i), Zs(0; i))|ds
)∣∣∣Ft

]

≤ exp(KTK1) · E
[
exp

(
KK1

∫ T

t

( i−1∑

j=1

|Y j
s |+

i−1∑

j=1

|Zj
s |

1+α
)
ds

)∣∣∣Ft

]

≤ exp
(
KTK1 +KTK1

i−1∑

j=1

‖Y j‖S∞

)
· E

[
exp

(
KK1

∫ T

t

i−1∑

j=1

|Zj
s |

1+αds
)∣∣∣Ft

]
. (4.2)

By Hölder’s inequality and Young’s inequality we get

E

[
exp

(
KK1

∫ T

t

i−1∑

j=1

|Zj
s |

1+αds
)∣∣∣Ft

]

≤
( i−1∏

j=1

E

[
exp

(
KK1(i − 1)

∫ T

t

|Zj
s |

1+αds
)∣∣∣Ft

]) 1
i−1

(4.3)

and

L|Zj
s |

1+α = ε
1+α
2 |Zj

s |
1+α · Lε−

1+α
2 ≤

1 + α

2
ε|Zj

s |
2 +

1− α

2
L

2
1−α ε−

1+α
1−α , ∀L > 0.
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Let ε be sufficiently small such that 1+α
2 ε‖Zj‖2BMO ≤ 1

2 . From John-Nirenberg inequality (see

[15, Theorem 2.2]), we have that for 1 ≤ j ≤ i− 1,

E

[
exp

(
L

∫ T

t

|Zj
s |

1+αds
)∣∣∣Ft

]
≤

1

1− 1+α
2 ε‖Zj‖2BMO

exp
(1− α

2
L

2
1−α ε−

1+α
1−αT

)

≤ 2 exp
(1− α

2
L

2
1−α ε−

1+α
1−α T

)
, ∀t ∈ [0, T ]. (4.4)

Combining (4.2)–(4.4), we obtain that ∀K > 0,

sup
t∈[0,T ]

∥∥∥E
[
exp

(
K

∫ T

t

∣∣ki(s, Ys(0; i), Zs(0; i))
∣∣ds

)∣∣∣Ft

]∥∥∥
∞

< +∞. (4.5)

Therefore, we can apply Lemma 4.1 to see the i-th equation admits a unique solution (Y i, Zi) ∈

S∞(R)× BMO(R1×d) on [0, T ]. The proof is complete.

5 Conclusion Remark

We study the well-posedness of the multi-dimensional BSDE (1.1) with a diagonally quadrat-

ic generator. When the generator has a small growth of the off-diagonal elements, we build

a new priori estimate and get the existence and uniqueness of the global solution, which gen-

eralizes the results in Hu and Tang [13] and Fan et al. [10]. Besides, when the generator is

diagonally quadratic and triangular, we get the global solvability of the multi-dimensional BS-

DE (2.2) without the small growth condition. Finally, when the generator is non-triangular and

has a general sub-quadratic growth of the off-diagonal elements, the existence and uniqueness of

the global solutions are interesting and challenging, which remains to be studied in the future.
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