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Abstract Costa first constructed a family of complete minimal surfaces which have genus
1 and 4 planar ends by use of Weierstrass-℘ functions. They are Willmore tori of Willmore
energy 16π. In this paper, the authors consider the geometry of conjugate surfaces of these
surfaces. It turns out that these conjugate surfaces are doubly periodic minimal surfaces
with flat ends in R
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1 Introduction

Minimal surface in R
3, as critical surfaces of area functional, plays important roles in the

development of differential geometry. In 1984, Costa [7] first succeed in the construction of a

complete minimal surface of genus 1 with 3 embedded ends by use of Weierstrass−℘ functions.

Hoffman and Meeks [10] soon proved that Costa surface is embedded in R
3. Its discovery

has led to an enormous amount of progress. We refer to the book by Colding and Minicozzi

[5–6] for recent progress. On the other hand, concerning the famous Willmore conjecture,

Bryant considered Willmore surfaces and proved surprisingly that a Willmore 2-sphere in R3 is

conformally equivalent to a complete minimal surface of genus 0 with planar ends (flat embedded

ends). This means that minimal surfaces with planar ends are of importance in view of the

Willmore problem. The existence of such surfaces are non-trivial: For obvious reasons, there

are no complete minimal surfaces (see [1-2, 15–16]) of genus 1 with 1 or 2 planar ends. Kusner
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and Schmitt [12] proved that there are no complete minimal surface of genus 1 with 3 planar

ends. Costa [9] constructed a family of complete minimal surfaces of genus 1 with 4 planar ends

in R3, which are conformally equivalent to Willmore tori with Willmore energy 16π. In 2005,

Shamaev [16] constructed a complete minimal surface of genus 1 with n flat ends, where n is

even and n ≥ 6.

In this note, we want to consider furthermore the properties of the family of complete

minimal surfaces of genus 1 with 4 planar ends by Costa in 1993. In particular, it is of interest

and of importance to consider the geometry of conjugate surfaces of Costa’s examples. A

careful discussion indicates that the conjugate surfaces are in fact doubly-periodic in R3 and

hence we obtain new examples of doubly periodic minimal surfaces with infinitely many planar

ends. Moreover, it turns out that after suitable transformation, one can perform Lorentzian

deformations introduced in [4, 13, 17]. In this way we obtain a 2-parameter family of complete

space-like stationary surfaces of genus 1 with 4 planar ends in four-dimensional Minkowski space

R4
1.

We first recall Costa’s examples (see [9]). Consider the lattice L(iτ) (here τ ≥ 1):

 L(iτ) = {m+ niτ ∈ C, m, n ∈ Z}. (1.1)

Set

w0 = 0, w1 =
1

2
, w2 =

1 + iτ

2
, w3 =

iτ

2
. (1.2)

Theorem 1.1 (see [9]) Let Tτ = C/L(iτ) be the torus with its canonical projection π : C →

Tτ = C/L(iτ). Set Mτ = Tτ \ {P0, P1, P2, P3} with Pk = π(wk) for 0 ≤ k ≤ 3 (see Figure

1). There exist C∞-functions α(τ), β(τ), c(τ) : [1,+∞) → R\{0}, such that for any τ ≥ 1, the

following Weierstrass representation defines complete minimal surfaces Iτ : Mτ → R3 (τ ≥ 1)

with 4 planar ends :

Iτ =
1

2
Re

∫
(Φ1,Φ2,Φ3)dz =

1

2
Re

∫
(f(1 − g2), if(1 + g2), 2fg)dz. (1.3)

Here, f and g are chosen to be
{
g = gτ = a(τ)℘(z) + b(τ)℘(z − w3) + e3c(τ),

fdz = fτdz = (℘(z − w1) + ℘(z − w2) + e3)dz,
(1.4)

where a(τ) = b(τ) = α(τ) + iβ(τ), ek = ℘(wk), k = 1, 2, 3.

Figure 1 Fundamental domain of Mτ .
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To prove Theorem 1.1, Costa [9] needs only to consider the real parts of the integrals

appeared in (1.3). Recall that a conjugate surface of Iτ is

Ĩτ =
1

2
Re

∫
(if(1 − g2),−f(1 + g2), 2ifg)dz.

The study of the conjugate surfaces involve the imaginary parts of the integrals appeared in

(1.3). It turns out that the imaginary parts are not as good as the real parts. By discussions

on the imaginary parts, we obtain the following theorem.

Theorem 1.2 We retain the notion of Theorem 1.1. Then the conjugate surface Ĩτ : M →

R3 of Iτ is a family of complete, doubly-periodic, minimal surfaces with infinitely many planar

ends in R3. Here M = C \ Λ, where Λ = {ωk +m+ niτ | m,n ∈ Z, 0 ≤ k ≤ 3} (see Figure 2).

In particular, the periodiciy of Ĩτ can be represented as follows :
{
Ĩτ (z + 1) = Ĩτ (z) + (0, T2, 0),

Ĩτ (z + iτ) = Ĩτ (z) + (T1, 0, T3).
(1.5)

Here T1, T2 and T3 are some non-zero constants determined by Iτ (see (3.11)).

Figure 2 M ⊂ C.

This paper is organized as follows: In Section 2, we recall the Weierstrass representation

of minimal surfaces, basic properties of elliptic functions and basic notations of the Costa’s

minimal surfaces with 4 planar ends of [7]. Then in Section 3, we derive the proof of Theorem

1.2. In Section 4, by Lorentz deformations, we obtain a 2-parameter family of complete space-

like stationary surfaces of genus 1 with 4 flat embedded ends in R4
1.

2 Weierstrass Representation for Minimal Surfaces and Weierstrass

℘ Functions

2.1 Weierstrass representation of minimal surfaces in R
3

Definition 2.1 (see [14]) LetM be a Riemann surface, andM = M\{p1, · · · , pn}. Suppose

that f is a holomorphic function on M and g is a meromorphic function on M , satisfying :
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(1) A point z ∈M is a pole of g of degree m if and only if z is a zero of f of degree 2m.

(2) Every divergent path γ in M has infinite length.

(3) For any closed path γ in M ,
∮

γ

fg2dz =

∮

γ

fdz, Re

∮

γ

fgdz = 0. (2.1)

Then the following Weierstrass representation

X =
1

2
Re

∫
((1 − g2)f, i(1 + g2)f, 2fg)dz (2.2)

defines a complete minimal surface X : M → R3. Moreover, its conjugate surface X̃ ⊂ R3 is

defined to be

X̃ =
1

2
Re

∫
(i(1 − g2)f,−(1 + g2)f, 2 ifg)dz. (2.3)

Note that X̃ may not be defined on M in general. Moreover, the associated family Xθ of X is

defined by

Xθ =
1

2
Re

∫
eiθ((1 − g2)f, i(1 + g2)f, 2fg)dz. (2.4)

Here θ is a constant taking values in [0, π]. Note that Xπ

2
= X̃.

2.2 Weierstrass representation of a space-like stationary surface in R4

1

The 4-dimensional Minkowski space R4
1 is the space R4 equipped with the Lorentzian inner

product

〈X,X〉 = x21 + x22 + x23 − x24.

Let X : M → R4
1 be a complete space-like stationary surface. Let z = u + iv be a local

complex coordinate of M such that the induced Riemannian metric in Σ is ds2 = e2ω |dz|
2
.

The Weierstrass representation of the space-like stationary surface in R4
1 is given by [13],

X = 2Re

∫
(φ+ ψ,−i(φ− ψ), 1 − φψ, 1 + φψ)dh, (2.5)

where dh is a holomorphic 1-form and φ, ψ are meromorphic functions. From this we see

Xzdz = (φ+ ψ,−i(φ− ψ), 1 − φψ, 1 + φψ)dh. (2.6)

Theorem 2.1 (see [13]) Given a holomorphic 1-form dh and two meromorphic functions

φ, ψ on a Riemann surface M . If dh, φ and ψ satisfy the following conditions

(1) φ 6= ψ̄ and they do not have same poles ;

(2) a point is a pole of φ or ψ of degree m if and only if it is a zero of dh of degree m ;

(3) every divergent path γ in M has infinite length ;

(4) for any closed path γ in M ,
∮

γ

φdh = −

∮

γ

ψdh, Re

∮

γ

dh = 0 = Re

∮

γ

φψdh. (2.7)

Then (2.5) determines a complete space-like stationary surface X : M → R
4
1. Conversely, if

X : M → R
4
1 is a complete space-like stationary surface, then there exists a holomorphic 1-form

dh and two meromorphic functions φ, ψ on M such that the above conditions and (2.5) hold.
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2.3 On Elliptic functions

Here we will collect some basic properties of the Weierstrass-℘ function. We refer to [3, 7]

for more details.

Definition 2.2 (see [3]) Consider the torus T 2(ν1, ν2) = C/L(ν1, ν2), with its lattice L(ν1,

ν2) ⊂ C being

L = L(ν1, ν2) = {mν1 + nν2 ∈ C,m, n ∈ Z} with Im
(ν2
ν1

)
> 0.

The Weierstrass-℘ function is a doubly periodic meromorphic function of T 2(ν1, ν2), defined by

℘(z) =
1

z2
+

∑

Ω∈L(ν1,ν2)\{0}

( 1

(z − Ω)2
−

1

Ω2

)
. (2.8)

It is well-known that the Weierstrass-℘ function satisfies (see [3])

℘′(z)2 = 4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3) (2.9)

with

e1 + e2 + e3 = 0, e1 > e2 > e3, (2.10)

where

ej = ℘(Wj), j = 1, 2, 3 with W1 =
ν1
2
, W2 =

ν1 + ν2
2

, W3 =
ν2
2
. (2.11)

In particular, when (ν1, ν2) = (1, i), we have e1 = −e3 ≈ 6.875185, e2 = 0.

2.4 On Costa’s minimal surfaces with 4 planar ends

This subsection is mainly a summary of Costa’s notations and results in [9]. Now we will

have a detailed discussion on Costa’s minimal surfaces Iτ with 4 planar ends, where the lattice

will be L(1, iτ). First we recall the Weierstrass data of Iτ in [9] as follows:

{
g = gτ = a(τ)℘(z) + b(τ)℘(z − w3) + e3c(τ),

fdz = fτdz = (℘(z − w1) + ℘(z − w2) + e3)dz.

Here (see [9, (2.12) to (2.17)])

a(τ) = b(τ) = α(τ) + iβ(τ). (2.12)

In fact, α(τ), β(τ) ∈ R+ are positive real functions of τ , τ ≥ 1, which will be determined in

(2.18) (see Remark 2 for the details on [9, p. 1286]).

Set

η1 = −
1

2

∮

l1

℘(z)dz, η3 = −
1

2

∮

l3

℘(z)dz, (2.13)

where the paths l1 and l3: [0, 1] → C/L(1, iτ) are

l1(t) = t+
iτ

3
, l3(t) =

1

3
+ iτt. (2.14)
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Definition 2.3 (see [9]) Set

Sj = 2η1 + ej, ej = ℘(wj), j = 1, 2, 3, S = S1 + S2, b4 = −S + 2η1

(τS
π

− 2
)
. (2.15)

By [9, p. 1285], all of {η1, b4, ej, Sj , j = 1, 2, 3} are real functions about τ . We define

furthermore the real-valued functions c, αj , βj , γj as follows :

c = c(τ) = −
2(e1S2 + e2S1)

e3S
α ∈ R\{0}, (2.16)





α1 = 4(S2
1 + S2

2 + S1S2),

α2 = 2(e1S
2
1 + e2S

2
2 − 2e3S1S2),

β1 = −4S1S2,

β2 = 2((e3 − e2)S2
1 + (e3 − e1)S2

2 + 2e3S1S2),

γ1 = τ
S

π
− 2,

γ2 = −S + 2η1

(
τ
S

π
− 2

)
.

(2.17)

Lemma 2.1 (see [9, Lemma 1]) The positive functions α and β are determined as follows :





(e1 − e2)2

S2
(α2 − β2) =

β2γ1 − β1γ2
α1β2 − α2β1

,

(e1 − e2)2

S2
(α2 + β2) =

α1γ2 − α2γ1
α1β2 − α2β1

.

(2.18)

In particular, when τ = 1, we have





α =

√
(e1 + 2π)4(e21 + 2π2)

4e31(e41 + 8e31π + 23e21π
2 + 26eπ3 + 12π4)

≈ 0.132915,

β =

√
π(e1 + 2π)4

4e31(e41 + 8e31π + 23e21π
2 + 26eπ3 + 12π4)

≈ 0.0510109.

(2.19)

Lemma 2.2 (see [9, (15)–(16) ]) The functions f, g in (1.4) satisfy the following equations :

gf = a1℘(z − w1) + a2℘(z − w2) + a0,

g2f = b0℘(z) +
3∑

j=1

bj℘(z − wj) + b4,
(2.20)

where aj , bj are defined as follows (recalla(τ) = b(τ) = α(τ) + iβ(τ)) :





a0 = −2e1e2(a+ b) + e23c, a1 = e1a+ e2b+ e3c, a2 = e2a+ e1b+ e3c,

b0 = (e1 − e2)2a2, b1 = a21, b2 = a22, b3 = (e1 − e2)
2b2,

b4 = −S + 2η1

(τS
π

− 2
)
.

(2.21)

Proof See [9, pp. 1283–1285] for a detailed proof, the Zeros and poles of {f, g, fg, fg2} is

illustrated in Figure 3.
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Figure 3 Zeros and poles of {f, g, fg, fg2} (see [9, (13)–(14)]).

3 Geometry of the Conjugate Surface of Iτ

In this section, we will first consider the periodic problems of the conjugate surfaces Ĩτ of

the Costa’s minimal surfaces Iτ (see Figure 4). Then we will give the proof of Theorem 1.2.

We will retain the notion of Subsection 2.4.

(a) Main view of Iτ (b) Rear view of Iτ

Figure 4 Picture of Iτ , where τ = 1 and z ∈ [0.01, 0.49] × [0.01, 0.49].

The following picture (see Figure 5) shows the behaviour of asymptotic planes Σk of Iτ .
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(a) Main view of Iτ (b) Left view of Iτ

Figure 5 The asymptotic planes Σk of Iτ , τ = 1.

3.1 Periodic property of the conjugate surfaces Ĩτ

The Weierstrass representation of the conjugate surfaces Ĩτ is (here f, g are given by (1.4))

Ĩτ =
1

2
Re

∫
(Φ′

1,Φ
′
2,Φ

′
3)dz =

1

2
Re

∫
(if(1 − g2),−f(1 + g2), 2 ifg)dz (3.1)

from [9], the ends P0, P1, P2 and P3 are all planar ends. So we have the following lemma.

Lemma 3.1 (see [9]) The residue of Φ′
j at each end Pk is 0 for 1 ≤ j ≤ 3 and 0 ≤ k ≤ 3.

Now concerning the periodic properties, we have the following lemma.

Lemma 3.2 On the two closed paths l1 and l3 of (2.14), the following equations hold:

∫

l1

(1 − g2)fdz = 0,

∫

l1

(1 + g2)fdz = 2e3 − 8η1,

∫

l1

gfdz = 0 (3.2)

and 



∫

l3

(1 − g2)fdz = −2i(τ(4η1 − e3) − 4π),

∫

l3

(1 + g2)fdz = 0,

∫

l3

gfdz = i(4e3(c− α)(π − τη1) + τ(e23c− 4e1e2α)).

(3.3)

Proof By (1.4) and (2.20), we can obtain (see [9])
∫

lk

gfdz = −(a1 + a2)2ηk + 2wka0, k = 1, 3, (3.4)

∫

lk

g2fdz = −2
( 3∑

j=0

bj

)
ηk + 2wkb4, k = 1, 3, (3.5)

∫

lk

fdz = −4ηk + 2wke3, k = 1, 3. (3.6)

Substituting (2.16) and (2.21) into (3.4), we have
∫

l1

gfdz = −2(a1 + a2)η1 + 2w1a0
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= −4(e3(c− α)η1 + e1e2α) + e23c

= 0. (3.7)

Here the second equality can be obtained by using the first equality, of (2.21) the third equality

can be obtained by using the second equality of (2.16).

Similarly, we have
∫

l3

gfdz = −2(a1 + a2)η3 + 2w3a0

= i(4e3(c− α)(π − τη1) + τ(e23c− 4e1e2α)), (3.8)

where 2η3 = iτ(2η1)− 2πi by the Legendre’s relation. Substituting (1.2), (2.15) and (2.21) into

(3.5), we have

∫

l1

g2fdz = −2
( 3∑

j=0

bj

)
η1 + 2w1b4 = e3 − 4η1,

∫

l3

g2fdz = −2
( 3∑

j=0

bj

)
η3 + 2w3b4 = i(τ(4η1 − e3) − 4π).

(3.9)

Similarly, substituting (1.2), (2.15) and (2.21) into (3.6), we have
∫

l1

fdz = e3 − 4η1,

∫

l3

fdz = −i(τ(4η1 − e3) − 4π).

(3.10)

Summing up we finish the proof of the lemma.

Lemma 3.3 Set




T1 = −τ(4η1 − e3) + 4π,

T2 = 4η1 − e3,

T3 = 4e3(c− α)(π − τη1) + τ(e23c− 4e1e2α),

(3.11)

when τ ≥ 1, Tj ∈ R\{0}, j = 1, 2, 3. Moreover, the conjugate surface Ĩτ is doubly periodic.

Proof By [9, Proposition 1(10)], we get Sk = 2η1 + ek > 0, k = 1, 2 and ek ∈ R. Together

with e1 + e2 + e3 = 0, we obtain T2 ∈ R+.

By [9, pp. 1281–1282, p. 1285], when τ ≥ 1, α, c and ej , j = 1, 2, 3 are all real. So we

have T3 ∈ R. We show by contradiction that T3 6= 0. Suppose that T3 = 4e3(c− α)(π − τη1) +

τ(e23c− 4e1e2α) = 0, i.e.,

c =
4e3α(π − τη1) + 4e1e2ατ

e23τ + 4e3(π − τη1)
.

By (2.15)–(2.16), we have

4e3α(π − τη1) + 4e1e2ατ

e23τ + 4e3(π − τη1)
= c =

4α(η1e3 − e1e2)

e3(4η1 − e3)
. (3.12)
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i.e,
η1e3 − e1e2

4η1 − e3
=
e1e2τ + e3π − e3τη1

4π − 4τη1 + e3τ
=

(e1e2 − η1e3)τ + e3π

4π − τ(4η1 − e3)
. (3.13)

Then (3.13) is equivalent to e23 = 4e1e2. Since e1 + e2 + e3 = 0, this is equivalent to e1 = e2,

contradicting to the fact that e1 > e2. So T3 6= 0.

Finally, by [9, p. 1285], η1 and e3 are real functions when τ ≥ 1. So T1 ∈ R. Moreover, we

claim that T1 < 0 for any τ . See Figure 6 for the picture of T1(τ).

Figure 6 Picture of T1(τ ), here τ ≥ 1.

To prove this, first, by [8, proof of Proposition 5, pp. 613–614], we have

2η1 + e1 ≥ π2, 2η1 + e2 = 8π2
∞∑

n=1

Rn(τ) with Rn(τ) =
(−1)n+1ne−πnτ

1 − e−2πnτ
.

So
T1 = −τ(4η1 − e3) + 4π

= 4π − τ(2η1 + e1 + 2η1 + e2)

= 4π − τ(2η1 + e1) − τ
(

8π2
∞∑

n=1

Rn(τ)
)

with T1(1) = 2π − e1 < 0. From (28)–(32) appearing on [8, p. 614 ], we obtain

|Rn(τ)| > |Rn+1(τ)| > 0 R2k(τ) < 0 and R2k+1(τ) > 0, n, k ∈ Z
+, (3.14)

i.e., −R2k(τ) > R2k+1(τ) > −R2k+2(τ) > 0 for k ∈ Z+. Together with 2η1+e1 ≥ π2, we obtain

T1(τ) ≤ −π2τ + 4π + τ
(

8π2
∞∑

n=1

(−Rn(τ))
)

= −π2τ + 4π + τ
(

8π2
(
−

e−πτ

1 − e−2πτ
+

2e−2πτ

1 − e−4πτ
+

∞∑

n=3

(−Rn(τ))
))

≤ −π2τ + 4π + 8π2τ
(
−

e−πτ

1 − e−2πτ
+

2e−2πτ

1 − e−4πτ

)
.

Set

F (τ) = −π2τ + 4π + 8π2τ
(
−

e−πτ

1 − e−2πτ
+

2e−2πτ

1 − e−4πτ

)
.
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We have

F ′(τ) = −π2 + 8π2
(
−

e−πτ

1 − e−2πτ
+

2e−2πτ

1 − e−4πτ

)

+ 8π3τ
( −8e−6πτ

(1 − e−4πτ )2
+

−4e−2πτ

1 − e−4πτ
+

2e−3πτ

(1 − e−2πτ )2
+

e−πτ

1 − e−2πτ

)
. (3.15)

Let

G(τ) = 8π3τ
( −8e−6πτ

(1 − e−4πτ )2
+

−4e−2πτ

1 − e−4πτ
+

2e−3πτ

(1 − e−2πτ )2
+

e−πτ

1 − e−2πτ

)
.

When τ ≥ 1, G(τ) < π2 by Lemma 5.1 of Appendix 5. Then we have

F ′(τ) < −π2 + 8π2
(
−

e−πτ

1 − e−2πτ
+

2e−2πτ

1 − e−4πτ

)
+ π2 < 0. (3.16)

So F (τ) is a decreasing function and hence F (τ) ≤ F (1) ≈ −0.426756 < 0. As a consequence,

T1(τ) ≤ F (τ) < 0.

3.2 The proof of Theorem 1.2

From Lemma 3.3, we have





T1 = −τ(4η1 − e3) + 4π ∈ R
−,

T2 = 4η1 − e3 ∈ R
+,

T3 = 4e3(c− α)(π − τη1) + τ(e23c− 4e1e2α) ∈ R\{0}.

By (3.2)–(3.3) of Lemma 3.2, we have




Ĩτ (z + 1) = Ĩτ (z) + (0, T2, 0),

Ĩτ (z + iτ) = Ĩτ (z) + (T1, 0, T3).
(3.17)

In particular, when τ = 1, (T1, T2, T3) ≈ (−0.5920, 13.1584, 5.9999). The pictures of Ĩ1 are as

follows (see Figures 7–8):

(a) Ĩ1(z) (b) Ĩ1(z + 1) (c) Ĩ1(z + i)

Figure 7 |z| ≤ 2
√

2

5
, τ = 1.



938 Y. L. Shi, P. Wang and X. Z. Wang

(a) the horizontal period, |z| ≤
√

17

2
(b) the vertical doubly period, |z| ≤

√
17

2

(c) |z| ≤
√
2 (d) |z| ≤ 2

√
2

Figure 8 The double periodic conjugate surfaces Ĩ1(z).

4 Lorentz Deformation of Costa’s Minimal Surfaces Iτ in R
4

1

In this section, by orthogonal transformation and Lorentz deformation of Costa’s minimal

surfaces Iτ , we can get a 2-parameters family of complete space-like stationary surfaces of genus

1 with 4 planar ends in R4
1.

4.1 Lorentz deformation of minimal surfaces in R3

First we recall the Lorentz deformation for minimal surfaces in R3.

Definition 4.1 (see [17]) Let Xzdz = (Θ1,Θ2,Θ3)dz be the holomorphic differential of the

minimal surface X : M → R3 in R3. The Lorentz deformation X̃ in R4
1 of the minimal surface

X is defined by the following equation

X̃zdz =
(

Θ1,Θ2,
ζ + ζ−1

2
Θ3,

ζ − ζ−1

2
Θ3

)
dz (4.1)
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with

φt = e−itφ, ψt = −e−it 1

φ
, dht = eitdh, eit ∈ C\iR. (4.2)

Here ζ = eit ∈ C\iR is the parameter. Note that when ζ = 1, X̃ reduces to X.

Theorem 4.1 (see [17]) Let X : M → R3 be a complete minimal surface with no real or

imaginary vertical period, i.e.,

∫
γ

Θ3dz = 0 for any closed curve γ on M .

Then for any ζ = eit ∈ C\iR, {φt, ψt, dht} in (4.2), we define a 2-parameter family of complete

stationary surfaces X̃ fully immersed in R4
1.

4.2 Lorentz deformation of Costa’s minimal surfaces Iτ

We retain the notion of Section 3. Recall that (see (1.3))

(Iτ )zdz = (Φ1,Φ2,Φ3)dz

with f and g defined in (1.4). Set

A =




µ1 0 −µ2

0 1 0
µ2 0 µ1


 with µ1 =

T1√
T 2
1 + T 2

3

, µ2 =
T3√

T 2
1 + T 2

3

, (4.3)

where T1, T2, T3 are non-zero real constants given by (3.11). Set

(IIτ )z = (Φ̃1, Φ̃2, Φ̃3) = (Φ1,Φ2, Φ3)A = (µ1Φ1 + µ2Φ3,Φ2,−µ2Φ1 + µ1Φ3). (4.4)

By (3.2)–(3.3), we get

1

2

∫

l1

(Φ̃1, Φ̃2, Φ̃3)dz = i(0, T2, 0),
1

2

∫

l3

(Φ̃1, Φ̃2, Φ̃3)dz = i
(√

T 2
1 + T 2

3 , 0, 0
)
. (4.5)

Now consider the surface IIτ in R3 ⊂ R4
1. We have

(IIτ )zdz = (µ1Φ1 + µ2Φ3,Φ2,−µ2Φ1 + µ1Φ3, 0)dz

= (φ+ ψ,−i(φ− ψ), 1 − φψ, 1 + φψ)dh (4.6)

with

φ =
(µ1 + 2)g2 − 2µ2g − (µ1 − 2)

µ2g2 + 2µ1g − µ2
, ψ = −

1

φ
, dh =

−f(µ2g
2 + 2µ1g − µ2)

2
dz, (4.7)
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Proposition 4.1 Set

φt = e−itφ, ψt = e−itψ, dht = eitdh with eit ∈ C\iR, (4.8)

where {φ, ψ, dh} of IIτ is given by (4.7). Then the Weirestrass representation data {φt, ψt, dht}

defines a complete stationary surface IIτ,t : Mτ → R4
1, which has genus 1 and 4 planar ends.

Moreover when eit 6∈ R, Πτ,t is full in R4
1 for all τ ≥ 1.

Proof First note that the Lorentz deformation (4.2) does not change the shape of the end.

By (4.5) and the properties of ends of IIτ ,
∫
γ

Φ̃3dz = 0 for any closed curve γ on M . By

Theorem 4.1, the proposition holds.

Remark 4.1 By the Willmore energy formula in [1] and [11], we can obtain the Willmore

energy of the surface IIτ,t, as follows:

W (IIτ,t) =

∫

Mτ

(H2 −K)dMτ = −

∫

Mτ

KdMτ = −2π(2 − 2g − 2r) = 16π, (4.9)

where g is the genus of Mτ , and r is the number of ends.

5 Appendix

Lemma 5.1 The inequality G(τ) = 8π3τ
(

−8e−6πτ

(1−e−4πτ )2 + −4e−2πτ

1−e−4πτ + 2e−3πτ

(1−e−2πτ )2 + e−πτ

1−e−2πτ

)
< π2

holds for all τ ≥ 1.

Proof Letting x = eπτ , we have

G′(τ) = 8π3
( −8e−6πτ

(1 − e−4πτ )2
+

−4e−2πτ

1 − e−4πτ
+

2e−3πτ

(1 − e−2πτ )2
+

e−πτ

1 − e−2πτ

)
+ 8π4τ

( 64e−10πτ

(1 − e−4πτ )3

+
64e−6πτ

(1 − e−4πτ )2
+

8e−2πτ

1 − e−4πτ
−

8e−5πτ

(1 − e−2πτ )3
−

8e−3πτ

(1 − e−2πτ )2
−

e−πτ

1 − e−2πτ

)

= −8π3eπτ
(−1 + eπτ + 3e2πτ + 5e3πτ + 5e4πτ + 3e5πτ )

(1 + eπτ )3(1 + e2πτ )3

− 8π3eπτ
e6πτ − πτ + 5eπτπτ + 9e2πτπτ + 11e3πτπτ − 11e4πτπτ

(1 + eπτ )3(1 + e2πτ )3

− 8π3eπτ
(−9e5πτπτ − 5e6πτπτ + e7πτπτ − e7πτ )

(1 + eπτ )3(1 + e2πτ )3

= −8π3x
(−1 + x+ 3x2 + 5x3 + 5x4 + 3x5)

(1 + x)3(1 + x2)3

− 8π3x
x6 − πτ + 5xπτ + 9x2πτ + 11x3πτ − 11x4πτ

(1 + x)3(1 + x2)3

− 8π3x
(−9x5πτ − 5x6πτ + x7πτ − x7)

(1 + x)3(1 + x2)3
.
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When τ ≥ 1, by πτ ≥ π > 3 and x = eπτ ≥ eπ > 23, we have

− 9x5πτ − 5x6πτ + x7πτ − x7

≥ −9x5πτ − 5x6πτ + 2x7

= (x7 − 9x5πτ) + (x7 − 5x6πτ)

= x5(x2 − 9πτ) + x6(x− 5πτ)

> 0, (5.1)

where the functions x2 − 9πτ and x− 5πτ are increasing about τ . Then we have

x2 − 9πτ ≥ e2π − 9π > 0, x− 5πτ ≥ eπ − 5π > 0.

Similarly, we have

x6 − πτ + 5xπτ + 9x2πτ + 11x3πτ − 11x4πτ

= (x6 − 11x4πτ) + (5xπτ − πτ) + 9x2πτ + 11x3πτ

= x4(x2 − 11πτ) + (5x− 1)πτ + 9x2πτ + 11x3πτ

> 0 (5.2)

and

−1 + x+ 3x2 + 5x3 + 5x4 + 3x5 > 0. (5.3)

Combing (1 + x)3(1 + x2)3 > 0, −8π3x < 0 with (5.1)–(5.3) , we get that G′(τ) < 0 for any

τ ≥ 1, i.e, G(τ) is a decreasing function and G(τ) < G(1) ≈ 8.92656 < π2.
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