
Chin. Ann. Math. Ser. B
46(3), 2025, 321–340
DOI: 10.1007/s11401-025-0018-z

Chinese Annals of
Mathematics, Series B
© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2025

Single-step Neural Operator Solver for Semilinear
Evolution Equations∗

Zhen LEI1 Lei SHI2 Xiyuan WANG3

Abstract The neural operator theory offers a promising framework for efficiently solving
complex systems governed by partial differential equations (PDEs for short). However,
existing neural operators still face significant challenges when applied to spatiotemporal
systems that evolve over large time scales, particularly those described by evolution PDEs
with time-derivative terms. This paper introduces a novel neural operator designed
explicitly for solving evolution equations based on the theory of operator semigroups. The
proposed approach is an iterative algorithm where each computational unit, termed the
single-step neural operator solver (SSNOS for short), approximates the solution operator
for the initial-boundary value problem of semilinear evolution equations over a single time
step. The SSNOS consists of both linear and nonlinear components: The linear part ap-
proximates the linear operator in the solution map; in contrast, the nonlinear part captures
deviations in the solution function caused by the equations nonlinearities. To evaluate the
performance of the algorithm, the authors conducted numerical experiments by solving the
initial-boundary value problem for a two-dimensional semilinear hyperbolic equation. The
experimental results demonstrate that their neural operator can efficiently and accurately
approximate the true solution operator. Moreover, the model can achieve a relatively high
approximation accuracy with simple pre-training.

Keywords Neural operator, Evolution equations, Semigroup of operators,
Predictor-corrector method

2020 MR Subject Classification 68T07, 65M22, 65J08

1 Introduction

PDEs are used to describe many systems in science and engineering, playing a vital role in

modeling various problems, such as determining the evolution trends of certain key variables

or inferring global information from local data. Traditional numerical methods, e.g., the finite

element and finite difference methods, solve PDEs by discretizing the domain, requiring fine

Manuscript received November 3, 2024. Revised February 26, 2025.
1School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary Applied Mathematics,
Center for Applied Mathematics, Fudan University, Shanghai 200433, China.
E-mail: zlei@fudan.edu.cn

2Corresponding author. School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary
Applied Mathematics, Center for Applied Mathematics, Fudan University, Shanghai 200433, China.
E-mail: leishi@fudan.edu.cn

3School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary Applied Mathematics,
Fudan University, Shanghai 200433, China. E-mail: 21110180059@m.fudan.edu.cn

∗This work was supported by the National Natural Science Foundation Major Program of China
(No. 12494544), the National Natural Science Foundation General Program of China (No. 12171039), the
New Cornerstone Science Foundation through the XPLORER PRIZE and Sino-German Center Mobility
Programme (No.M-0548) and the Shanghai Science and Technology Program (No. 21JC1400600).

322 Z. Lei, L. Shi and X. Y. Wang

meshes to achieve sufficiently accurate solutions. When solving dynamic evolving systems,

the modeled quantities usually depend on space and time. Solving evolving PDEs over time

with traditional numerical methods requires finer spatial-temporal grids and intensively solving

large-scale linear systems, making the process increasingly time-consuming. Additionally, in

most applications, the relevant PDEs often depend on parameters describing the physical or

geometric constraints of the equations. In some cases, the equations are solved repeatedly for

different parameter values.

To address these challenges, recent efforts have focused on developing PDE solvers based on

neural networks (NNs for short). Leveraging the strong approximation capabilities of NNs and

the automatic differentiation technique, NN-based solvers can directly approximate the true

solutions or solution mappings of PDEs without relying on mesh discretization of the domain.

One type of algorithm is based on the function approximation perspective (see [3–4, 6, 11, 23]),

which constructs NN approximations of the true PDE solution. Another class of algorithms,

commonly referred to as neural operators, focuses on NN-based operator learning, aiming to

approximate the mapping from the initial spacedescribing potential variations in geometric

configurations, physical properties, initial and boundary conditions, or source terms to the

solution space (see [13–16, 22]). This mapping is known as the solution operator of the PDE.

Recently, various neural operators have been designed to approximate the solution operator of

PDEs. A neural operator Gθ is typically constructed by composing several parameterized affine

operators {Lk}Nk=0 and nonlinear operators {σk}Nk=0, often represented as
Gθ(a) = LN ◦ σN ◦ LN−1 ◦ σN−1 ◦ · · · ◦ L1 ◦ σ1 ◦ L0(a),

Lkη = Wkη + bk, Wk ∈ Rnk+1×nk , bk ∈ Rnk+1 , ∀η ∈ Rnk , k = 0, 1, · · · , N,

θ = {(Wk, bk)}Nk=0,

(1.1)

where θ is a parametric vector in a finite-dimensional real vector space.

By selecting different nonlinear operators and linear subspaces of parameters for the neural

operator, various specialized neural operator structures can be obtained. Notable examples

include the graph and multi-pole graph neural operator (see [14]), the U-shaped neural operator

(see [22]), DeepONets (see [16]), and the Fourier neural operator (FNO for short) (see [15]).

Unlike previous methods, neural operators directly approximate the solution operator during

the training phase, while solving the equations during inference. Once these neural operators

are established, they often exhibit better efficiency in solving PDE systems compared to classical

methods.

Although neural operators have shown excellent performance in solving PDEs, designing

more efficient neural operators that incorporate the inherent properties of the equations remains

an urgent problem to be solved. Particularly when solving semilinear evolving PDEs over time,

it is crucial to have reasonable control over discretization error and approximation error as the

solving process progresses, and correct the nonlinear terms of the system along the continuously

changing time trajectories; this is a key to designing neural operators that efficiently solve such

equations. In this work, we propose a novel neural operator architecture for solving nonlinear

partial differential evolution equations that can be used to perform real-time batch solving tasks.

Many time-evolving systems involved in various applications exhibit specific spatiotemporal

structures, where the time variables have characteristics of linear dynamics, while the spatial

variables are governed by more complex and possibly highly nonlinear equations. This special

SSNOS for Semilinear Evolution Equations 323

spatiotemporal decoupling is the so-called semi-linear form, which can be expressed as the

following evolution equation:

∂u

∂t
= −Au+ f(u), u(0) = u0, (1.2)

where u(t) ∈ B represents the solution at time t in some Banach space (B, ∥ · ∥B), which itself

is a function of the spatial variables x, A is a linear bounded operator on B. The operator

f represents the nonlinear term of the equation and is generally assumed to satisfy certain

continuity conditions with respect to the function u.

The design of our neural operator is inspired by the theory of operator semigroups, which is

used to solve evolution PDEs (see [8, 21]). According to semigroup theory, if the linear operator

A is the infinitesimal generator of a C0-semigroup {S(t) : B → B, t ≥ 0} on the Banach space

B, satisfying ∥S(t)∥B ≤ Mewt for some M ∈ (0, 1) and w ≥ 0, then the solution u(t) ∈ B of

equation (1.2) exists and is given by:

u(t) = S(t)u0 +

∫ t

0

S(t− τ)f(u(τ))dτ, (1.3)

where the initial function u0 belongs to the dense subset D(A) ⊂ B, the domain of A. The

integral in this expression represents the Bochner integral (see [18]) of S(t− τ)f(u(τ)) over the

interval [0, t].

Inspired by classical schemes for solving PDEs, operators that map functions to functions

can be transformed into discrete operators between finite-dimensional vector spaces. Therefore,

we can write the expression (1.3) above in a discrete form:

ud(t) = Sd(t)ud,0 +

∫ t

0

Sd(t− τ)f(ud(τ))dτ,

where ud, ud,0 and Sd are finite-dimensional, representing the discretized solution, initial func-

tion and operator, respectively.

When the operator and the nonlinear term satisfy certain regularity requirements, it is

straightforward to show that

ud(t) = Sd(t)ud,0 +

∫ t

0

Sd(t)f(ud,0)dτ +O(t2)

= Sd(t)(ud,0 + tf(ud,0)) +O(t2), (1.4)

where the term O(t2) denotes terms of order t2 as t → 0.

An alternative approach useful in numerical integration is the trapezoidal rule. By applying

this rule, we obtain another approximate solution to the evolution equation:

ud(t) = Sd(t)ud,0 +
t

2
(Sd(t)f(ud,0) + f(ud(t))) +O(t2). (1.5)

Finally, the operators involved in the expressions for the approximate solutions u1 and u2

are approximated by neural operators of the form (1.1). We can define the neural operator

structure as

U1(t) = Nd(t)(ud,0 + tf(ud,0)) + λ1Nr(ud,0, t),

U2(t) = Nd(t)ud,0 +
t

2
(Nd(t)f(ud,0) + f(U1(t))) + λ2Nt(ud,0, t),

(1.6)

324 Z. Lei, L. Shi and X. Y. Wang

where Nd(t) is a neural operator approximating the discretized operator corresponding to the

semigroup of operators and includes only linear transformations. The operators Nr and Nt

are nonlinear neural operators designed to approximate the infinitesimal operators in (1.4) and

(1.5), respectively. The hyperparameters λ1, λ2 ∈ {0, 1} determine whether to include the

infinitesimal approximation operator in the network architecture.

It is worth noting that, for a given error tolerance ε > 0, the variable t must be chosen

sufficiently small to control the approximation error. For larger value of t, we can consider the

above structure as recurrent units within a recurrent neural network, obtaining the inferred

solution through multiple iterations.

Due to its advantages in interpretability, theoretical analysis and efficiency, which we sum-

marize below, this model is a valuable tool for solving differential equations using neural oper-

ators.

(1) The single-step neural operator solver consists of three deep neural operators: One

linear operator and two infinitesimal operators that correspond to components in the discretized

equations (1.4)–(1.5) for solving a semilinear evolution equation. The functional diversity of

these operators enhances their interpretability. Moreover, in practical applications, different

operators can undergo targeted optimizations specific to their roles.

(2) Our proposed algorithm incorporates design principles from classical algorithms, facili-

tating the adaptation of their theoretical results for error analysis. The model can be seen as

an extension of the predictor-corrector method (see [9–10]) from classical algorithms into the

deep neural operator domain for solving evolution equations. Thus, operator convergence the-

ory associated with the predictor-corrector method and semigroups of operators can be directly

applied to the theoretical analysis of our model.

(3) Compared to traditional nonlinear numerical algorithms, the single-step neural operator

solver, as a forward-solving method, skips the complex computation of repeated iterations

during inference. Simultaneously, it approximates the residual error using infinitesimal neural

operators, which helps to reduce errors during the training process. Since deep neural operators

perform the solving during inference, the operator approximation process can be decoupled from

the solving process, thereby enhancing computational efficiency.

The rest of the paper is organized as follows. In Section 2, we introduce the theory of

evolution equations and semigroups of operators. Following the introduction of the theory, we

provide some common examples in Section 2. These examples serve to illustrate the practical

application of the methods for identifying operator semigroups. Section 3 explains the rela-

tionship between finite element methods and numerical algebra. Additionally, we analyze the

characteristics of the finite element method and neural networks in solving nonlinear equations.

In Section 4, we provide detailed parameters of the deep operator network and introduce the

method for constructing the dataset. In Section 5, we present the results of numerical experi-

ments and analyze the performance of the algorithm. In Section 6, we conclude the paper.

2 Theory of Operator Semigroups

In this section, we consider functions defined on a specific spacial domain Ω ⊂ Rd. It

moreover satisfies certain regular conditions. The theory of operator semigroups is based on

linear function spaces. Generally, the functions mentioned above must be selected from a

complete normed space, namely, a Banach space B, where the functions automatically satisfy

SSNOS for Semilinear Evolution Equations 325

the corresponding regularity conditions due to the definition of the space.

In PDE theory, the most common Banach spaces are the standard Lebesgue integrable

function spaces Lp(Ω), p > 1 and Sobolev spaces Wm,p(Ω), m ∈ N∗, p > 1. The norms

associated with the above spaces are defined as

∥u∥Lp =
(∫

Ω

|u(x)|pdx
) 1

p

,

∥u∥Wm,p =
∑

|α|≤m

∥∂αu∥Lp ,

where the multi-index α ∈ Nd represents the various orders of partial derivatives of the function

in the sense of distributions by

∂αu = ∂α1∂α2 · · · ∂αdu, α = (αi)
d
i=1 ∈ Nd, |α| =

d∑
i=1

αi.

Specifically, when p = 2, the Sobolev spaces become Hilbert spaces denoted by Hm(Ω).

Further details related to Sobolev spaces can be found in [7, 24].

Under the setting of evolution equations, we consider mappings that map the elements in

time interval I = [0, Tf], Tf > 0 to Banach space B. Such a mapping

f : I → B

can also be regarded as a function on I, with its values being elements in B. It is also convenient

to view it as a generalization of vector-valued functions, namely, a function-valued function.

In this sense, we can also define the continuity and differentiability of the function above.

Definition 2.1 A function f : I → B is continuous with respect to t0 ∈ I if

lim
t→t0

∥f(t)− f(t0)∥B = 0.

The linear space of all continuous functions is denoted by C(I, B).

Definition 2.2 A function f : I → B is differentiable with respect to t0 ∈ I if there exists

a function g ∈ B such that

lim
t→t0

∥∥∥f(t)− f(t0)

t− t0
− g
∥∥∥
B
= 0.

We denote the first derivative of f on t by

f ′(t) = g.

Function f is continuously differentiable if

f ′ ∈ C(I, B).

The linear space of all continuously differentiable functions is denoted by C1(I, B).

Similar definitions can be established for other regularity definitions, such as Lebesgue

integrability. In the theory of solving PDEs, functions that belong to Sobolev space Wm,p(Ω)

326 Z. Lei, L. Shi and X. Y. Wang

are typically considered, where m represents the highest order of the partial derivatives and p

represents the parameter of the Lebesgue p-norm.

Using Dku to denote the spatial partial derivatives of a function u of each order k ∈ N∗, we

can express the form of an n-order PDE problem that only involves spacial derivatives of the

function u as

F(u,Du,D2u, · · · , Dnu) = 0.

Besides, we can represent the linear and nonlinear parts of the equation separately by

F(u,Du, · · · , Dnu) = L(u,Du, · · · , Dnu) + f(u,Du, · · · , Dnu),

where L and f are the linear and nonlinear operators in the PDE, respectively.

An evolution equation is a PDE that involves the time variable t. Similar to the expression

above, the evolution equation can be expressed as

F
(
u,

∂u

∂t
, · · · , ∂

ntu

∂tnt
, Du, · · · , Dnu

)
= 0.

Specifically, the equations considered in the theory of semigroups are mainly semilinear

equations, which are often expressed as

∂u

∂t
= −Au+ f(u),

where A is a linear operator that maps the function u to the differential form Au and f is the

nonlinear operator that depends only on u.

Generally speaking, the domain and range of the operator A are not the same. Considering

the Laplace operator on H2(Ω) as an example, it is easy to see that its range is L2(Ω). The

linear differential operators considered in the theory of operator semigroups map functions to

a Banach space B. We denote the domain by D(A), a subspace of B.

On the other hand, a semigroup {S(t) : B → B, t ≥ 0} of operators that is able to solve a

linear problem

∂u

∂t
= −Au

is called a strongly continuous semigroup of contractions or a C0-semigroup in a Banach space.

If the initial function is denoted by u0 and belongs to D(A), the solution to the equation can

be expressed as

u(t) = S(t)u0, t ≥ 0,

and satisfies

∂u

∂t
(t) = −AS(t)u0 = −S(t)Au0, t ≥ 0.

For an equation that can be solved using a semigroup of operators, the corresponding linear

operator A is related to the semigroup. Specifically, linear operator A and the semigroup

{S(t), t ≥ 0} satisfy the condition:

−Au = lim
t→0

S(t)u− u

t
, u ∈

{
u ∈ B | ∃v ∈ B, lim

t→0

∥∥∥S(t)u− u

t
− v
∥∥∥
B
= 0
}
.

SSNOS for Semilinear Evolution Equations 327

In this sense, we have

D(A) =
{
u ∈ B | ∃v ∈ B, lim

t→0

∥∥∥S(t)u− u

t
− v
∥∥∥
B
= 0
}
. (2.1)

The linear operator A is called the infinitesimal generator of the C0-semigroup of opera-

tors {S(t) : B → B, t ≥ 0}. The remarkable Hille-Yosida Theorem provides the necessary and

sufficient conditions for a linear operator A to be the infinitesimal generator of a semigroup.

Theorem 2.1 (Hille-Yosida Theorem) (see [8, 21]) Assume that B is a Banach space and

A is a linear operator

A : D(A) ⊂ B → B.

The necessary and sufficient conditions for A to be an infinitesimal generator of a linear

semigroup are

(1) A is a densely defined operator in B, i.e., D(A) is a dense subset of B,

(2) for all λ > 0, λI +A is a one-to-one and onto mapping, and

∥λ(λI +A)−1∥ ≤ 1.

Furthermore, if B is a Hilbert space, the necessary and sufficient conditions for A to be an

infinitesimal generator of a semigroup becomes

Re⟨Ax, x⟩ ≥ 0, ∀u ∈ D(A),

R(I +A) = B,
(2.2)

where the notation Re⟨Ax, x⟩ represents the real part of the inner product ⟨Ax, x⟩ and the

notation R(I +A) is the range of the operator I +A.

In the case of semilinear evolution equations, semigroup theory also provides an existence

and uniqueness theorem for the solution. This theorem can be regarded as the theoretical

foundation for constructing our deep neural solution operator framework.

Theorem 2.2 (Existence and uniqueness theorem of C0-semigroups) (see [8]) Suppose that

A is an infinitesimal generator of an C0-semigroup of linear operators {S(t) : B → B, t ≥ 0}
on a reflexive space B, and f is a nonlinear operator from D(A) to D(A), satisfying the local

Lipschitz condition

∥f(u)− f(v)∥ ≤ LM∥u− v∥, ∀u, v ∈ B s.t. ∥u∥, ∥v∥ ≤ M, ∀M > 0.

Considering the initial value problem of the semilinear evolution equation
∂u

∂t
= −Au+ f(u),

u(0) = u0 ∈ B

(2.3)

for each u0 ∈ D(A), there is a positive constant T > 0 depending on u0 such that the initial

value problem has a unique Lipschitz continuous classical solution u in [0, T], satisfying

u ∈ C([0, T], D(A)) ∩ C1([0, T], B).

The solution u also satisfies the condition

u(t) = S(t)u0 +

∫ t

0

S(t− τ)f(u(τ))dτ, ∀t ∈ [0, T].

328 Z. Lei, L. Shi and X. Y. Wang

Since Hilbert spaces are reflexive Banach spaces, there is a straightforward corollary about

the existence and uniqueness of the solution of problem (2.3) defined on a Hilbert space H.

We provide an example of the initial-boundary value problem of wave equation to illus-

trate how the Banach space B and linear operator A are determined. The wave function is a

hyperbolic equation that involves the second derivative with respect to time t,

∂2u

∂t2
= ∆u,

where ∆ represents the Laplace operator that for a sufficiently smooth function u,

∆u =

d∑
i=1

∂2

∂x2
i

u.

To use the solution expression provided by semigroup theory, the wave equation must be

transformed into a form that only involves the first derivative with respect to time t. The

technique is to invite a new variable

v =
∂u

∂t
.

By doing this, it is easy to see
∂u

∂t
= v,

∂v

∂t
= ∆u,

or in a matrix expression formally as

∂

∂t

(
u

v

)
= −

(
0 −I

−∆ 0

)(
u

v

)
.

By observing the above expression, we can identify the linear operator A that generates the

semigroup as

A =

(
0 −I

−∆ 0

)
.

Furthermore, to determine the space B and the domain of A, it is needed to consider

the boundary conditions of the initial-boundary value problem. Taking the Dirichlet initial-

boundary value problem as an example, we have
∂2u(t, x)

∂t2
= ∆u(t, x), ∀t > 0, x ∈ Ω,

u(0, x) = u0(x), ut(0, x) = ut,0(x), ∀x ∈ Ω,

u(t, x) = 0, ∀t > 0, x ∈ ∂Ω

and a natural selection of spaces for u and v are H1
0 (Ω) and L2(Ω), respectively. Based on the

above spaces and the energy estimates of wave functions, we can establish a Hilbert space H

by

H = H1
0 (Ω)× L2(Ω),

SSNOS for Semilinear Evolution Equations 329

⟨(u1, v1), (u2, v2)⟩H = ⟨∇u1,∇u2⟩L2 + ⟨v1, v2⟩L2 ,

where ⟨·, ·⟩ represents an inner product on a certain Hilbert space.

The domain can be determined by definition (2.1),
H1 = H1

0 (Ω) ∩H2(Ω),

H2 = H1
0 (Ω),

D(A) = H1 ×H2.

(2.4)

3 Hybrid Numerical Solving Algorithm for Evolution Equations

The main idea behind using deep neural networks for operator learning methods is to ap-

proximate the solution operator of PDEs through the network structure. In the above process,

the input and output of the dataset are the initial-boundary conditions of the equation and the

solution to the equation, respectively. Therefore, it is necessary to generate a series of initial-

boundary conditions in advance and solve them using traditional numerical methods, finally

forming the dataset.

The finite element method is an important approach for solving PDEs on irregular domains,

while the finite difference method is effective for equations on regular domains [2, 5, 19]. By

combining the two methods, evolution equations on irregular domains can be solved using a

temporal finite difference method together with a spatial finite element method.

Assume that A is a linear operator defined in a Hilbert space H and the infinitesimal

generator of a C0-semigroup of operators {S(t) : H → H, t ≥ 0}. f : D(A) → D(A) is a

nonlinear operator satisfying the local Lipschitz condition. The goal is to find an approximate

solution of the classical solution u ∈ C1([0, T], H)∩C([0, T], D(A)) for some T > 0 that satisfies
∂u

∂t
= −Au+ f(u),

u(0) = u0 ∈ D(A).

(3.1)

Further, assume that both the trial space and the test space of the finite element method

are a finite-dimensional subspace Hh of D(A), and the finite-dimensional approximate solution

is uh ∈ Hh. The weak form of the finite-dimensional problem can be expressed as
〈∂uh

∂t
, v
〉
= ⟨−Auh + f(uh), v⟩, ∀v ∈ Hh,

⟨uh(0), v⟩ = ⟨u0, v⟩, ∀v ∈ Hh.

Next, the function is discretized with respect to time. Fix a series of time for discretization

0 = t0 < t1 < · · · < tN = T, N ∈ N∗.

The discretized solution can be represented by finite-dimensional vectors, denoted by (uk)
N
k=1,

where uk = (uk,j)
d
j=1 ∈ Rd represents the linear coefficients of the approximate solution at time

tk ∈ [0, T].

Assume that a basis of Hh is {φj ∈ Hh}dj=1. The linear operator that maps the linear

coefficients to the corresponding function can be denoted by

Π : Rd → Hh,

330 Z. Lei, L. Shi and X. Y. Wang

β = (βj)
d
j=1 7→

d∑
j=1

βjφj .

Furthermore, by applying the Crank-Nicolson scheme for time discretization of the function,

the solution vector satisfies that for all v ∈ Rd,〈Π(uk+1 − uk)

δtk+1

,Πv
〉
=
〈
−A

Π(uk+1 + uk)

2
+

(f(Πuk+1) + f(Πuk))

2
,Πv

〉
,

where

δtk+1
= tk+1 − tk.

Equivalently, we can rewrite it in the form of an operator equation,

Π∗
(
I +

δtk+1

2
A
)
Πuk+1

= Π∗
(
I −

δtk+1

2
A
)
Πuk +

δtk+1

2
Π∗(f(Πuk+1) + f(Πuk)). (3.2)

Assume that λ is an eigenvalue of the matrix and there exists a non-zero vector α ∈ Rd such

that

Π∗
(
I +

δtk+1

2
A
)
Πα = λα.

By (2.2),

λ∥α∥2 = λα∗α = α∗Π∗
(
I +

δtk+1

2
A
)
Πα

= ∥Πα∥2 + ⟨AΠα, Πα⟩ ≥ ∥Πα∥2 ≥ λmin(Π
∗Π)∥α∥2.

Since Π is degenerate by definition, it can be shown that λmin(Π
∗Π) > 0. Therefore, matrix

Π∗(I + δtk+1

2 A
)
Π is invertible.

Up to this point, the approximate solution satisfies the nonlinear equation (3.2). The re-

maining step is to linearize these nonlinear equations at each step. For a fixed v ∈ Rd and some

sufficiently small δt > 0, assume Tδt,v : Rd → Rd satisfies

Tδt,v(α) = Φ−1
(
Π∗
(
I − δt

2
A
)
Πv +

δt
2
Π∗(f(Πα) + f(Πv))

)
,

where

Φ = Π∗
(
I +

δt
2
A
)
Π.

The goal is to prove that Tδt,v is a contraction mapping on Rd. Let v0 ∈ Rd and satisfy

v0 = Φ−1
(
Π∗
(
I − δt

2
A
)
Πv +

δt
2
Π∗f(Πv)

)
.

Let B be a subset of Hh,

B = B(v0, 1) = {w ∈ Rd | ∥w − v0∥ ≤ 1},

SSNOS for Semilinear Evolution Equations 331

and a local upper bound LB > 0 be established to satisfy

∥f(Πw)∥ ≤ LB, ∀w ∈ B.

Therefore,

∥Tδt,v(α)− v0∥ =
∥∥∥δt
2
Φ−1Π∗f(Πα)

∥∥∥ ≤ ∥Φ−1Π∗∥LB

2
δt.

Let δt ≤ 1
∥Φ−1Π∗∥LB

, it holds that

Tδt,v(α) ∈ B, ∀α ∈ B.

On the other hand, for α1, α2 ∈ B,

∥Tδt,v(α1)− Tδt,v(α2)∥ =
δt
2
∥Φ−1Π∗(f(Πα1)− f(Πα2))∥ ≤ 1

2
.

It is now proved that if δt is sufficiently small at each step k = 1, 2, · · · , N , the sequence

{uj
k}∞j=1 that satisfies u0

k = uk−1,

uj
k = Tδt,uk−1

(uj−1
k), j ∈ N∗

will converge to u∗
k such that

Tδt,uk−1
(u∗

k) = u∗
k.

Clearly, if uk−1 is the approximate solution at time tk−1, u∗
k will become the approximate

solution uk at time tk.

To conclude, the local approximate solution of the semilinear evolution problem (3.1) can

be obtained step by step. To enhance precision, multiple iterations are needed at each step of

numerical computation.

4 Structure of Single-step Neural Operator Solver

Traditional numerical methods for solving differential equations often require repeatedly

solving systems of linear equations. When dealing with nonlinear equations, the situation can

become more complicated. As shown in the last section, at each step of time, the numeri-

cal scheme requires multiple iterations, and each iteration involves solving systems of linear

equations, significantly reducing the algorithm’s computational efficiency.

Neural network frameworks show great potential in handling nonlinear problems. Using all

kinds of nonlinear activation functions, neural networks can effectively approximate nonlinear

operators.

The goal of the single-step neural operator solver proposed in this paper is to approximate

the expression for solutions of evolution equations provided by the theory of semigroups of

operators. The term single-step is in contrast to the overall solver of an evolution equation.

332 Z. Lei, L. Shi and X. Y. Wang

Moreover, the approximated overall solution of the equation can be obtained by repeatedly

applying the single-step method.

According to Theorem 2.2, for δt > 0, the solution of a semilinear evolution equation in the

form of (3.1) at time t+ δt, t > 0 can be expressed as

u(t+ δt) = S(δt)u(t) +

∫ δt

0

S(δt − s)f(u(t+ s))ds,

if the solution at t+ δt exists.

Based on the properties of the semigroup of operators (see [8, 21]) and Theorem 2.2, it holds

that

lim sup
s→0

∥S(δt − s)f(u(t+ s))− S(δt)f(u(t))∥
s

< +∞,

lim sup
s→0

∥S(δt − s)f(u(t+ s))− f(u(t+ δt))∥
s

< +∞,

or equivalently

∥S(δt − s)f(u(t+ s))− S(δt)f(u(t))∥ ∼ O(s),

∥S(δt − s)f(u(t+ s))− f(u(t+ δt))∥ ∼ O(s).
(4.1)

Thus, we can discretize the integral term in equation (1.4) using the trapezoidal rule and

obtain a numerical scheme

u(t+ δt) = S(δt)u(t) +
δt
2
(S(δt)f(u(t)) + f(u(t+ δt))) + Gt(u(t), δt) (4.2)

for an approximate solution of the semilinear evolution equation. Furthermore, it is straight-

forward to show that the discretized error of numerical integration is O(δ2t) and Gt(u(t), δt)

converges to 0 on a fixed interval [0, T], T > 0, while δt tends to 0.

In order to construct a structure in the form of forward propagation, it is also necessary to

preprocess the function uh(t + δt) on the right side of the equation. An explicit-form method

is applied to obtain the preprocessed function.

By (4.1), it holds that{
u(t+ δt) = S(δt)u(t) + δtS(δt)f(u(t)) + Gr(u(t), δt),

Gr(uh(t), δt) ∼ O(δ2t).
(4.3)

Operators appeared in the above schemes are further approximated by different neural

operators (see Table 1) to construct the final neural network structure. The linear neural

operator Nd,δt , δt > 0 is used to approximate the operator S(δt) in the semigroup of operators.

To reduce the dimensionality of neural network parameters and accelerate model inference, the

linear operator can be represented by the multiplication of several low-rank matrices. And for

infinitesimal operators, Nr and Nt, various nonlinear deep operator frameworks can be used

as approximation modules, such as DeepONet, Fourier Neural Operators, or a fully connected

network. To improve the flexibility of the network structure, the nonlinear terms Nr and Nt

are optional for model training and inference.

SSNOS for Semilinear Evolution Equations 333

Table 1 Notations of neural operators and the task of each neural operator.

notation task
Nd : Rd → Rd approximating the linear operator S(δt)

Nt : Rd × R → Rd approximating the infinitesimal operator Gt(uh(t), δt)
Nr : Rd × R → Rd approximating the infinitesimal operator Gr(uh(t), δt)

The network structure to solve a semilinear evolution equation with time-stepping with

respect to a sufficiently small δt can be expressed as

U1(δt) = Nd(δt)(ud,0 + δtf(ud,0)) + λ1Nr(ud,0, δt),

U2(δt) = Nd(δt)ud,0 +
δt
2
(Nd(δt)f(ud,0) + f(U1(δt))) + λ2Nt(ud,0, δt),

where λ1, λ2 ∈ {0, 1} are hyperparameters representing the optionality of infinitesimal opera-

tors.

The single-step neural operator solver takes discretized initial functions or solutions at the

previous time as inputs, and takes discretized solutions as outputs at the next step. Since there

are two approximate solutions U1 and U2 in the network structure, the loss function l for model

training is also adjusted so that both approximate solutions can converge to the real solution,

l : Rd × Rd × Rd → R

(U1, U2, u) 7→
1

2
(MSE(U1, u) +MSE(U2, u)),

where MSE stands for the mean squared error.

One advantage of using a neural operator solver is that a significant amount of computation

can be completed during the offline training process, and there is no need to solve many equa-

tions repeatedly for real-time massive solving tasks. Methods for reducing the dimensionality

of neural network parameters can also accelerate the model’s speed for inference.

5 Numerical Analysis

The single-step neural operator solver is applied to a test problem to evaluate its perfor-

mance. SSNOS is also compared with DeepONet and FNO in an experimental study, and the

results indicate that the model demonstrated competitive training performance compared to

other models.

Due to the model’s strong interpretability, we also split the training process in experiments:

first, training the linear operator Nd, followed by training the other operators. This training

approach demonstrated even better approximation results compared to other models.

On the other hand, due to the computational characteristics of neural operator networks,

SSNOS can simultaneously handle large-scale batch-solving tasks. As a result, the model boasts

a significantly faster average inference speed when compared to classical algorithms, a testament

to its efficiency and speed.

5.1 Problem description

The problem is an initial-boundary problem of a two-dimensional semilinear evolution PDE

∂2u

∂t2
= ∆u+ u− u3.

334 Z. Lei, L. Shi and X. Y. Wang

The initial value (u0, ut,0) of the problem is sampled from function space D(A) = (H1
0 (Ω)∩

H2(Ω))×H1
0 (Ω), and the boundary condition of the problem is Dirichlet boundary condition.

By (2.4), the initial value problem is at least locally solvable with respect to time t.

5.2 Data generation

Training and test data are obtained by applying the hybrid numerical solving algorithm for

PDEs mentioned in Section 3, which solves spatial equations by a finite element method at

each step and solves the temporal equation by a finite difference method, involving multiple

iterations at each step.

The domain Ω of the functions is the unit square [0, 1]2 ⊂ R2, and is represented by 33×33 =

1089 degrees of freedom after discretization.

The discretized inputs, targets and outputs of the single-step neural operator solver are real

vectors representing (δt, u0, ut,0), (u(δt), ut(δt)) and (U1(δt), U2(δt)), respectively, where

δt > 0, u0, ut,0, u(δt), ut(δt) ∈ R1089, U1(δt), U2(δt) ∈ R2178.

To generate initial vectors for solving the evolution problems, a conditioned Gaussian field

X|BX = b, X ∼ N (µ,Σ)

is selected for sampling, where N (µ, Σ) is a Gaussian field defined on R2178 and BX = b

represents the Dirichlet boundary condition.

The training data consists of 60000 samples generated by solving problems using FENICS

(see [1]) with initial functions sampled from X and the testing data consists of 13200 samples

generated in the same way. The data is further batched in groups of 16 entries each for training

and testing.

5.3 Operator structure and parameter selection

The linear operator is selected to be the product of two lower-rank matrices

Nd = A1A2, A1 ∈ R2178×700, A2 ∈ R700×2178.

The infinitesimal operator Nt is removed, and Nr is selected to be a fully-connected neural

network with 3 hidden layers, where the dimensions of each hidden layer are 600, 400 and 300,

respectively. The robustness of our model is further enhanced by the use of LeakyReLU acti-

vation in each layer, including the final layer, a choice that ensures the stability and reliability

of our system.

In the sense of distributions, the nonlinear operator of the equation can be expressed as

⟨f(u), v⟩ = ⟨g(T(·)(u)), v⟩, ∀u ∈ D(A), v ∈ D(A)∗,

where

g : R → R
y 7→ y − y3,

Tx : D(A) → R, ∀x ∈ Ω

u 7→ u(x).

To approximate the Dirac measures T(·) more accurately, we use a neural linear transforma-

tion NT to represent the approximate operator of the measure once again. Similar to Nd, we

use two matrices A3 ∈ R2178×600 and A4 ∈ R600×2178 to compose this linear transformation.

SSNOS for Semilinear Evolution Equations 335

5.4 Experiments and results

5.4.1 Comparison with DeepONet and FNO

Taking a batch size as 16, each training epoch requires completing 3750 iterations. The

comparison experiment between DeepONet, FNO and our model was conducted over 30 epochs,

resulting in 112500 iterations. To compare the model’s training efficiency, we used a learning

rate of 10−3 and the SGD optimization method to train both models. In addition, the models’

number of parameters is adjusted to achieve a consistent magnitude. The training code for

training SSNOS and DeepONet is written using PyTorch (see [20]) and DeepXDE (see [17]).

And the training code for training FNO is written using PyTorch (see [20]) and NeuralOperator

(see [12–13]).

The error results for model training are shown in Figure 1. The results show that the SSNOS

model, with 10310156 parameters, performs comparably to DeepONet, which has 7376301

parameters regarding training efficiency.

Figure 1 Error trend chart for SSNOS and DeepONet. The error recording interval is set to once
every 1000 iterations. It is worth noting that the 112500 iterations of training are

equivalent to 30 epochs of training for SSNOS.

With more epochs of training, SSNOS’s fitting performance gradually improves. Figure 2

shows the model’s inference performance after training for different epochs. By observing the

changes in the predicted solution with respect to the number of training epochs, as shown in

Figure 2, we can see that the model efficiently captures the contour information of the actual

solution during training and subsequently learns the finer local details. This demonstrates the

strong approximation ability of our model.

336 Z. Lei, L. Shi and X. Y. Wang

Figure 2 Comparison chart of model prediction performance at various stages of training,

with data taken from the 1023rd sample in the test dataset.

SSNOS for Semilinear Evolution Equations 337

5.4.2 Pre-training techniques for linear operators

One of the critical advantages of SSNOS is its clear division of roles among its components,

which enhances its interpretability and operational flexibility. Based on the structure of the

model, we know that Nd is used to approximate the linear part of the solution operator S(δt) for

the differential equation. On the other hand, Sd is the solution operator to the linear equation
∂u

∂t
= −Au,

u(0) = u0 ∈ D(A).

Therefore, we can pre-train Nd separately by constructing linear equation solutions as a

dataset, and then embed Nd into the SSNOS model for further training. The pre-trained

version of SSNOS and the standard version of the model are trained for 1000 epochs, and a

performance comparison is conducted. As shown in Figure 3, the model with the pre-trained

module starts with a significantly smaller error at the beginning of training and can further

reduce the error throughout the training process.

Figure 3 Error trend chart of model training. The statistical error is the average MSE error

calculated on the test dataset after each completed epoch.

According to the relationship between batch size and dataset size, the two models trained

in the first experiment are equivalent to models that have completed 30 training epochs. Figure

4 illustrates the inference performance of the two models mentioned above and the pre-trained

model after training for 30 epochs. It can be observed that the performance of the model with

simple pre-training significantly surpasses that of the models above under the same training

conditions. A detailed statistical Table 2 compares each model’s inference performance.

Based on the experimental data, it can be observed that the model is capable of quickly and

effectively approximating the solution operator through training, gradually capturing detailed

information as the training progresses. In addition, SSNOS boasts a significantly faster inference

speed, far surpassing that of traditional algorithms.

338 Z. Lei, L. Shi and X. Y. Wang

Figure 4 Comparison chart of actual and predicted solutions, with data taken from the 217th

sample in the test dataset.

Table 2 Model inference capability comparison table. The pre-trained models correspond to those
trained for 30 and 1000 epochs, respectively. The normal SSNOS model and DeepONet are

trained for 112500 iterations. The FNO model is trained for 30 epochs.

Model Number of parameters Training error Test error Inference time
FEM+FDM - - - 60000× 0.02451s

Pretrained-1000 10310156 0.00060 0.00059 0.00141s
Pretrained-30 10310156 0.00206 0.00204 0.00164s

Normal 10310156 0.27739 0.27343 0.00160s
Deeponet 7376301 0.32061 0.31763 1.06322s
FNO 10369490 0.01218 0.01224 0.00037s

SSNOS for Semilinear Evolution Equations 339

6 Conclusions

This work introduces a unique neural operator framework, specifically designed to solve

initial boundary problems of semilinear evolution PDEs. The framework’s novelty lies in its

ability to separate the operator training process from the operator inference process, thereby

accelerating the model’s inference speed. This framework is based on the theory of semigroups

of operators, leading to a class of neural network operator solvers. As a neural operator, this

model can separate the operator training process from the operator inference process, thereby

accelerating the model’s inference speed.

In the context of the increasing demand for large-scale high-dimensional problem solving,

the limitations of classical numerical algorithms based on numerical algebra, including the finite

element method, in terms of solving speed are becoming increasingly pronounced. To overcome

this challenge, designing solution schemes that leverage the characteristics of neural operators

is a crucial optimization approach. Compared to traditional methods, neural operator methods

often exhibit a certain decrease in solution accuracy but achieve significantly higher inference

speed. Therefore, when performing small-scale high-precision tasks, traditional methods still

have an advantage in solution accuracy and are better suited for such tasks. However, when

handling large-scale batch-solving tasks, the parallel-solving capability of neural operator meth-

ods makes them more suitable for these scenarios. In order to combine the advantages of both

and create a high-precision large-scale solver, a feasible approach is to generate as much high-

quality data as possible using traditional methods during the model training phase, allowing the

neural operator to better approximate the solution operator of the equation. The experiments

in the article strongly demonstrate the feasibility and potential of this integrated approach.

The simulation results show that the single-step neural operator solver can efficiently ap-

proximate the operator, allowing it to quickly and accurately predict the function solutions in

future instances. Even more noteworthy is that the model can efficiently achieve high-precision

training through a straightforward pre-training phase and attain a strong approximation capa-

bility. Furthermore, the SSNOS model, designed based on the theory of semigroups of operator,

can naturally incorporate a pre-training stage during training. According to the experimental

results, the pre-trained model achieves the highest accuracy among all compared models. These

qualities make the model a very promising neural operator framework.

In addition to the model’s current potential for operator approximation, the flexibility of its

architecture can be further explored. Currently, the solution framework accomplishes operator

approximation through supervised training. The model’s data is obtained through numerical

solutions using traditional methods such as the finite element method. Using unsupervised

methods, such as incorporating the principles of physics-informed neural networks, to train the

model is also feasible. Besides, to enhance the fitting efficiency of the model, adopting network

structures that are better suited for representing function operators, as opposed to the original

fully connected networks, is also a viable optimization approach.

Declarations

Conflicts of interest Zhen LEI is a deputy editor-in-chief for Chinese Annals of Math-

ematics Series B and was not involved in the editorial review or the decision to publish this

article. All authors declare that there are no conflicts of interest.

340 Z. Lei, L. Shi and X. Y. Wang

References

[1] Alnæs, M., Blechta, J., Hake, J., et al., The FEniCS project version 1.5, Archive of numerical software, 3,
2015, http://api.semanticsholar.org/CorpusID:61220975.

[2] Ames, M. F., Numerical Methods for Partial Differential Equations, Academic press, InC., Boston, MA,
1992.

[3] Cai, S. Z., Mao, Z. P., Wang, Z. C., et al., Physics-informed neural networks (PINNs) for fluid mechanics:
A review, Acta Mechanica Sinica, 37(12), 2021, 1727–1738.

[4] Cuomo, S., Schiano, D. C., Vincenzo, F., et al., Scientific machine learning through physics–informed
neural networks: Where we are and whats next, Journal of Scientific Computing, 92(3), 2022, 88, 62.

[5] Dhatt, G., Lefrançois, E. and Touzot, G., Finite Element Method, John Wily & Sons, 2012.

[6] E, W. N., Han, J. Q. and Jentzen, A., Algorithms for solving high dimensional PDEs: From nonlinear
Monte Carlo to machine learning, Nonlinearity, 35(1), 2022.

[7] Evans, L. C., Partial Differential Equations, 19, American Mathematical Society, Providence, RI, 2010.

[8] Goldstein, J. A., Semigroups of Linear Operators and Applications, Dover Publications, Inc. Mineola, NY,
2017.

[9] Gragg, W. B. and Stetter, H. J., Generalized multistep predictor-corrector methods, Journal of the ACM
(JACM), 11(2), 1964, 188–209.

[10] Hamming, R. W., Stable predictor-corrector methods for ordinary differential equations, Journal of the
ACM (JACM), 6, 1959, 37–47.

[11] Han, J. Q., Jentzen, A. and E, W. N., Solving high-dimensional partial differential equations using deep
learning, Proceedings of the National Academy of Sciences of the United states of America, 115(34), 2018,
8505–8510.

[12] Kossaifi, J., Kovachki, N., Li, Z. Y., et al., A library for learning neural operators, 2024, arXiv: 2412.10354.

[13] Kovachki, N., Lanthaler, S. and Mishra, S., On universal approximation and error bounds for Fourier
neural operators, Journal of Machine Learning Research, 22, 2021, 290.

[14] Kovachki, N., Li, Z. Y., Liu, B., et al., Neural operator: Learning maps between function spaces with
applications to pdes, Journal of Machine Learning Research, 24, 2023, 89.

[15] Li, Z. Y., Kovachki, N., Azizzadenesheli, K., et al., Fourier neural operator for parametric partial differential
equations, 2020, arXiv: 2010.08895.

[16] Lu, L., Jin, P. Z., Pang, G. F., et al., Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators, Nature machine intelligence, 3, 2021, 218–229.

[17] Lu, L., Meng, X. H., Mao, Z. P. and Karniadakis, G. E., DeepXDE: A deep learning library for solving
differential equations, SIAM Review, 63(1), 2021, 208–228.

[18] Mikusiński, J., The Bochner Integral, Birkhäuser Verlag, Basel-Stuttgart, 1978.

[19] Nikishkov, G. P., Introduction to the finite element method, University of Aizu, Aizu-wakamatsu, 2004.

[20] Paszke, A., Gross, S., Massa, F., et al., Pytorch: An imperative style, high-performance deep learning
library, Advances in neural information processing systems, 2019, arXiv: 1912.01703, 32.

[21] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, 44, Springer-
Verlag, New York, 1983.

[22] Rahman, M. A., Ross, Z., E. and Azizzadenesheli, K., U-no: U-shaped neural operators, 2022, arXiv:
2204.11127.

[23] Sirignano, J., and Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equa-
tions, Journal of computational physics, 375, 2018, 1339–1364.

[24] Sloan, D., Süli, E. and Vandewalle, S., Partial Differential Equations, Numerical Analysis 2000, 7, Elsevier
Science Publisher, B. V. Amsterdam, 2001.

