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Abstract The authors prove a rigidity result of Lagrangian translating solitons in R
2n,

which extends the result of [Han, X. and Sun, J., Translating solitons to symplectic mean
curvature flows, Ann. Global Anal. Geom., 38(2), 2010, 161–169] to higher dimension.
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1 Introduction

Let J, ω be the standard complex structure on Cn ∼= R2n and the standard Kähler form on

Cn ∼= R2n, respectively. The closed complex-valued n-form is given by

Ω = dz1 ∧ · · · ∧ dzn,

where zj = xj + iyj are complex coordinates of Cn.

A smooth n-dimensional submanifold Σ in Cn is said to be Lagrangian if ω|Σ = 0. The

induced volume form dµΣ on a Lagrangian submanifold Σ is related to Ω by

Ω|Σ = eiθdµΣ = cos θdµΣ + i sin θdµΣ,

where θ is some multi-valued function called the Lagrangian angle and is well-defined up to an

additive constant 2kπ, k ∈ Z. Nevertheless, cos θ and sin θ are single valued functions on Σ.

If cos θ ≥ δ for some positive constant δ, then Σ is said to be almost calibrated. The relation

between the Lagrangian angle and the mean curvature is given by (see [13, 16])

H = J∇θ. (1.1)

Recall that Σn is said to be a translating soliton in R2n if it satisfies

H = V N0 , (1.2)

where V0 is a fixed vector in R
2n with unit length and V N0 denotes the orthogonal projection

of V0 onto the normal bundle of Σn.
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Huisken showed, in the seminal paper [8], that the closed convex hypersurfaces in Euclidean

space Rm+1(m > 1) contracts to a single point under the mean curvature flow in finite time

and the normalized flow (area is fixed) converges to a sphere of the same area in infinite time.

As time evolves, the mean curvature flow may develop singularities which can be classified as

Type I and Type II according to the blow up rate of the second fundamental form with respect

to time t. And Huisken [9] proved that after appropriate rescaling near the Type I singularity

the hypersurfaces converge to a self-similar solution of the mean curvature flow.

Due to the fact that the Lagrangian condition is preserved under the mean curvature flow

(see [17]), the Lagrangian mean curvature flow has attracted special attention. Smoczyk [18]

proved that there do not exist any compact Type I singularities with trivial Maslov class.

Afterward, Chen-Li [3] and Wang [23] showed independently that there is no finite time Type I

singularity along the almost calibrated Lagrangian MCF. Later, this result was extended to the

complete zero-Maslov class case by Neves [12]. Therefore it is of great interest to understand

the geometric and analytic nature of Type II singularities in the Lagrangian mean curvature

flow with zero-Maslov class.

One of the most important examples of Type II singularities is the translating soliton. There

are plenty of works on the subject of Lagrangian translating solitons, see [1–2, 4–6, 11, 16, 19–

22] and the references therein. Joyce-Lee-Tsui [10] constructed many translating solitons for

Lagrangian mean curvature flow with oscillation of the Lagrangian angle arbitrarily small, these

translating solitons are important in studying the regularity of Lagrangian mean curvature flow.

In [7], Han-Sun verified that any complete almost calibrated Lagrangian translating soliton

with nonnegative sectional curvature in R
4 must be an affine plane. Afterward, Neves-Tian [13]

showed that the Lagrangian translating soliton in R4 with L2-bound on the mean curvature has

to be an affine plane, so does the static and almost calibrated Lagrangian translating soliton

in R4. The dimension 4 of the ambient space is necessary, which was explained in their paper

[13]. So it natural to ask that whether we can generalize the result of [7] to higher dimension.

In this paper, by using the strategy of Xin’s work on translating solitons in [24] (see also

[15]), we prove the following rigidity result of Lagrangian translating solitons in R2n.

Theorem 1.1 Let X : Σn → R2n be an n-dimensional complete proper almost calibrated

Lagrangian translating soliton with nonnegative scalar curvature. Then Σ has to be an affine

n-plane.

Remark 1.1 Han-Sun [7] proved that any complete almost calibrated Lagrangian trans-

lating soliton in R4 with nonnegative sectional curvature must be flat (see also [14]). Hence the

above Theorem 1.1 extends their results to higher dimension.

Remark 1.2 By the example of “grim reaper” (x, y,− ln cosx, 0), |x| < π
2 , y ∈ R, we easily

know that cos θ ≥ δ > 0 is necessary. Moreover, Joyce-Lee-Tsui [10] showed that for any

0 < δ < 1, there exist nontrivial Lagrangian translating solitons which satisfy cos θ ≥ δ, where

θ is the Lagrangian angle. Thus we can not conclude that Σ is flat without the condition on

the scalar curvature in Theorem 1.1.
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2 Basic Notations

Let ∇,∇ be the Levi-Civita connection on the ambient space R2n and the submanifold Σn,

respectively. If there is no confusion, we also denote the normal connection on the normal

bundle NΣ by ∇.

The second fundamental form B of Σn in R2n is defined by B(U,W ) := (∇UW )N for

U,W ∈ Γ(TΣ). We use the notation (·)T and (·)N for the orthogonal projections into the

tangent bundle TΣ and the normal bundle NΣ, respectively. For ν ∈ Γ(NΣ) we define the

shape operator Aν : TΣ → TΣ by Aν(U) := −(∇Uν)
T . Taking the trace of B gives the mean

curvature vector H of Σ in R
2n and

H := trace(B) =
n
∑

i=1

B(ei, ei),

where {ei} is a local orthonormal frame field of Σ.

3 Proof of Theorem 1.1

Let V := V T0 and ∆V := ∆ + 〈V,∇·〉.

Proof Let {e1, · · · , en} be a local orthonormal frame field on Σ such that ∇ei = 0 at the

considered point. By (1.1), we get ei(θ) = 〈H, Jei〉.

It follows that

∆θ =

n
∑

i=1

ei〈H, Jei〉 =

n
∑

i=1

〈∇eiH, Jei〉+

n
∑

i=1

〈H,∇ei(Jei)〉. (3.1)

Since Σ is Lagrangian, we derive

n
∑

i=1

〈H,∇ei(Jei)〉 = 〈H, JH〉 = 0. (3.2)

The translating soliton equation (1.2) and (1.1) imply that

n
∑

i=1

〈∇eiH, Jei〉 =

n
∑

i=1

〈∇ei(V0 − V ), Jei〉 = −

n
∑

i=1

〈∇eiV, Jei〉

=−

n
∑

i=1

ei〈V, Jei〉+

n
∑

i=1

〈V,∇ei(Jei)〉

=

n
∑

i=1

〈V, J∇eiei〉 = 〈V, JH〉 = −〈V,∇θ〉. (3.3)

Substituting (3.2)–(3.3) into (3.1), we obtain

∆θ = −〈V,∇θ〉. (3.4)

By (3.4) and (1.1), we have

∆ cos θ = − cos θ|∇θ|2 − sin θ∆θ = − cos θ|∇θ|2 + sin θ〈V,∇θ〉 = − cos θ|H |2 − 〈V,∇ cos θ〉.
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Namely

∆V cos θ = − cos θ|H |2. (3.5)

From the translating soliton equation (1.2), we derive

∇ejH =
(

∇ej

(

V0 −

n
∑

k=1

〈V0, ek〉ek

))N

= −

n
∑

k=1

〈V0, ek〉Bjk

and

∇ei∇ejH = −

n
∑

k=1

〈V0, ek〉∇eiBjk −

n
∑

k=1

〈H,Bik〉Bjk,

where Bjk = B(ej , ek). Hence using the Codazzi equation, we obtain

∆V |H |2 =∆|H |2 + 〈V,∇|H |2〉 = 2

n
∑

i=1

〈∇ei∇eiH,H〉+ 2|∇H |2 + 〈V,∇|H |2〉

=− 2
n
∑

i,k=1

〈H,Bik〉
2 − 2〈∇V T

0

H,H〉+ 2|∇H |2 + 〈V,∇|H |2〉

=− 2

n
∑

i,k=1

〈H,Bik〉
2 −∇V |H |2 + 2|∇H |2 + 〈V,∇|H |2〉

=− 2

n
∑

i,k=1

〈H,Bik〉
2 + 2|∇H |2.

It follows that

∆V |H |2 ≥ 2|∇H |2 − 2|B|2|H |2. (3.6)

By the Gauss equation, we get R(ei, ej, ei, ej) = 〈B(ei, ei), B(ej , ej)〉 − 〈B(ei, ej), B(ej , ei)〉 ,

where R is the curvature operator of Σ. Thus the scalar curvature S of Σ satisfies

S =
∑

i,j

R(ei, ej, ei, ej) = |H |2 − |B|2. (3.7)

For any X = (x1, x2, · · · , x2n) ∈ R2n, let r = |X |, we have

∇r2 =2XT , |∇r| ≤ 1

∆r2 =2n+ 2〈H,X〉 ≤ 2n+ 2r.
(3.8)

Let ψ := 1−cos θ. By the assumption, cos θ ≥ δ for some positive constant δ. So we can choose

a constant b, such that 1− δ < b < 1. Let Ba(o) be the closed ball centered at the origin o with

radius a in R2n and Da(o) = Σn ∩Ba(o). Define f : Da(o) → R by f = (a2−r2)2|H|2

(b−ψ)2 .

Since f |∂Da(o)
= 0, f achieves an absolute maximum in the interior of Da(o), say f ≤ f(q),

for some q inside Da(o). We may also assume |H |(q) 6= 0. Then from ∇f(q) = 0,∆V f(q) ≤ 0,

we obtain the following at the point q

−
2∇r2

a2 − r2
+

∇|H |2

|H |2
+

2∇ψ

b− ψ
= 0, (3.9)

−
2∆V r

2

a2 − r2
−

2
∣

∣∇r2
∣

∣

2

(a2 − r2)2
+

∆V |H |2

|H |2
−

∣

∣∇|H |2
∣

∣

2

|H |4
+

2∆V ψ

b− ψ
+

2 |∇ψ|
2

(b− ψ)2
≤ 0. (3.10)
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Direct computation gives us

|∇|H |2|2 = |2〈∇H,H〉|2 ≤ 4|∇H |2|H |2, (3.11)

|∇ψ|2 = |∇ cos θ|2 ≤ |∇θ|2 = |H |2. (3.12)

It follows from (3.6) and (3.11) that

∆V |H |2

|H |2
≥

|∇|H |2|2

2|H |4
− 2|B|2. (3.13)

From (3.9), we obtain

|∇|H |2|2

|H |4
≤

4|∇r2|2

(a2 − r2)2
+

8|∇r2||∇ψ|

(a2 − r2)(b − ψ)
+

4|∇ψ|2

(b − ψ)2
. (3.14)

By (3.5), we get

∆V ψ = cos θ|H |2. (3.15)

Substituting (3.7)–(3.8) and (3.12)–(3.15) into (3.10), we have

( cos θ

b− ψ
− 1

)

|H |2 −
4r

(a2 − r2)(b− ψ)
|H | −

2n+ 4r

a2 − r2
−

8r2

(a2 − r2)2
+ S ≤ 0.

By the assumption that the scalar curvature S ≥ 0, we have

( cos θ

b− ψ
− 1

)

|H |2 −
4r

(a2 − r2)(b − ψ)
|H | −

2n+ 4r

a2 − r2
−

8r2

(a2 − r2)2
≤ 0.

It is easy to see that there is a constant C > 0 such that cos θ
b−ψ − 1 > C. Therefore, at the point

q,

|H |2 ≤max
{ 64r2

C2(a2 − r2)2(b− ψ)2
,
4(2n+ 4r)

C(a2 − r2)
+

32r2

C(a2 − r2)2

}

(3.16)

and

f(q) ≤ max
{ 64a2

C2(b − (1− δ))4
,

4(2n+ 4a)a2

C(b− (1 − δ))2
+

32a2

C(b− (1 − δ))2

}

.

Then for any point x ∈ D a
2
(o), we have

|H |2(x) ≤
(b− ψ)2

(a2 − r2)2
f(q)

≤
16b2

9a4
max

{ 64a2

C2(b− (1 − δ))4
,

4(2n+ 4a)a2

C(b − (1− δ))2
+

32a2

C(b− (1 − δ))2

}

. (3.17)

Hence we may fix x and let a→ ∞ in (3.17), we then derive that H ≡ 0. Then by (3.7) and the

assumption that the scalar curvature S ≥ 0, we have B ≡ 0. Namely, Σ is an affine n-plane.
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