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The Parabolic Quaternionic Monge-Ampere Type
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Abstract This paper proves the long-time existence and uniqueness of solutions to a
parabolic quaternionic Monge-Ampere type equation on compact hyperKéahler manifolds.
Moreover, it is shown that after normalization, the solution converges smoothly to the
unique solution of the Monge-Ampere equation for (n — 1)-quaternionic psh functions.
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1 Introduction

A hypercomplex manifold is a smooth manifold M together with a triple (I, J, K') of complex
structures satisfying the quaternionic relation IJ = —JI = K. A hyperhermitian metric on a
hypercomplex manifold (M, I, J, K) is a Riemannian metric g which is hermitian with respect
to I, J and K.

On a hyperhermitian manifold (M, I, J, K, g), let Q@ = w; — iwgx where w; and wk are
the fundamental forms corresponding to J and K, respectively. Then g is called hyperKéahler
(HK for short) if d©2 = 0, and called hyperKahler with torsion (HKT for short) if 92 = 0.
Throughout this paper we use 0 and 0 to denote the complex partial differential operator with
respect to the complex structure I.

Analogous to the complex Calabi-Yau equation on Kéhler manifolds which was solved by Yau
[26], Alesker and Verbitsky introduced a quaternionic Calabi-Yau equation on hyperhermitian

manifolds in [4],
Q+00,u)" =/ Q"
( su) 1)
Q+00;u >0,

where f is a given smooth function on M and d; := J~ ' odo.J. They conjectured that

the equation is solvable on HKT manifolds with holomorphically trivial canonical bundle with
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respect to I and further obtained the C° estimate in this setting (cf. [4]). Alesker [1] solved the
equation on a flat hyperKéhler manifold and the parabolic case was solved by Bedulli-Gentili-
Vezzoni [5] and Zhang [27]. In [2], Alesker and Shelukhin proved the C° estimate without
any extra assumptions and the proof was later simplified by Sroka [22]. Recently Dinew and
Sroka [11] solved the equation on a compact HK manifold. Bedulli, Gentili and Vezzoni [6]
considered the parabolic method. More partial results can be found in [3-5, 16-17, 23, 27] and
the conjecture remains open.

By adopting the techniques of Dinew and Sroka [11], we solved the quaternionic form-type
Calabi-Yau equation in [15] on compact HK manifolds, which is parallel to the complex case
where the form-type Calabi-Yau equation was proposed by Fu, Wang and Wu [13-14] and solved
by Tosatti and Weinkove [25] on Kéhler manifolds.

Specifically, let (M, I, J, K, g,)) be a hyperhermitian manifold of quaternionic dimension n,
and go be another hyperhermitian metric on M with induced (2,0)-form 4. Given a smooth

function f on M, the quaternionic form-type Calabi-Yau equation is
Qr = efthon (1.2)
in which b is a uniquely determined constant, and €, is determined by
Qr = Q7+ 005 (uQm ), (1.3)
where Q™" + 00 (uQ"~2) is strictly positive. When 2 is HKT, i.e., 9Q = 0, (1.2) is equivalent

to the following Monge-Ampere equation for (n — 1)-quaternionic psh functions

1
n—1
1

QU+ —— ((%Awu){) — 00,u) >0,

(Qh+ ((%A,,gu)a - anu))" — ot

(1.4)

where Qy, is related to Qy by (n — 1)! % Q) = Qg_l with * being a Hodge star-type operator.
This is explained in [15, Section 2].

On locally flat compact HK manifolds which admits quaternionic coordinates, Gentili and
Zhang solved a class of fully non-linear elliptic equations including (1.4) in [19] and the parabolic
case in [18]. In [15], using the approach by Dinew and Sroka [11], we solved (1.4) on compact
HK manifolds without the flatness assumption in [19].

In this article, we consider the parabolic version of (1.4) on a compact hyperKéahler manifold

(2 + ! ((%Al,gu)g—amu))”

n—1

prih log O —f (1.5)
with u(-,0) = uyg € C*°(M,R) satistying
1 1
QU+ —— ((§A,,guo)9 . 83Ju0) > 0. (1.6)

Our main result is as follows.
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Theorem 1.1 Let (M,I,J,K,g,Q) be a compact hyperKdihler manifold of quaternionic
dimension n, and Q, be a strictly positive (2,0)-form with respect to I. Let f be a smooth
function on M. Then there exists a unique solution u to (1.5) on M X [0, 00) with u(-,0) = ug

satisfying (1.6). And if we normalize u by

/ uQ"AQ" .

M
/ Qr A Q"
M

then u converges smoothly to a function Us, ast — 0o, and s s the unique solution to (1.4)

uUi=u—

up to a constant beR.

This gives a parabolic solution to the original equation (1.4). There are plenty of results on
parabolic flows on compact complex manifolds, for example, [8, 10, 12, 20-21, 28].

The article is organized as follows. In Section 2, we introduce some basic notations and
useful lemmas. In Section 3, we prove the u; and the C° estimate. We derive the C! estimate
in Section 4 and the complex Hessian estimate in Section 5. The Theorem 1.1 is proved in

Section 6.

2 Preliminaries

On a hyperhermitian manifold (M, I, J, K, g) of quaternionic dimension n, we denote the
(p, q)-forms with respect to I by AP4(M). A form o € A2 °(M) is called J-real if Jo = @, and

denoted by « € A??@O(M). In particular, we have Q = w; — iwg is a J-real (2,0)-form.

Definition 2.1 (cf. [15, Definition 2.2]) A J-real (2,0)-form « is said to be positive (resp.
strictly positive) if a(X, X J) > 0 (resp. a(X,XJ) > 0) for any non-zero (1,0)-vector X. We
denote all strictly positive J-real (2,0)-forms by A?:%(M)>o.

Note that Q is determined by ¢ and is strictly positive. Conversely any ) € A??@O(M )>0

induces a hyperhermitian metric by g = Re(€(-,-J)). Thus there is a bijection between strictly
positive J-real (2,0)-forms and hyperhermitian metrics.

Definition 2.2 For x € A?:%(M), define

ot A

Sm(X) aOn for0 <m <n. (2.1)
In particular for u € C*°(M,R) we have
S1(005u) = %ALgu. (2.2)
For convenience we denote
Q=0q,+ ﬁ(sl(aa,um — 90 u). (2.3)

It is easily checked that Q is a J-real (2,0)-form, thus one can define the corresponding hyper-
hermitian metric and the induced fundamental form by

gu = Re(Q(+, ), wy = gu(-I,"). (2.4)
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Lemma 2.1

W = o + ﬁ (51(@0u) %(i&gu —iJ50u)). (2.5)

Proof Tt is shown in [23, Proposition 3.2] that
Re(00 u(-1,-J)) = %(iﬁgu —1JO0u).

Hence by definition

Wy = gu('Iv ) = RQ(Q(I, J))
— Re((1,-J)) + ﬁ(sl (00,u) Re(Q(-1, -J)) — Re(8dyu(-I,-7)))

1 .-
= wp + 1 (Sl (00 u)w — 5(188u - 1J83u)).

We also need the following lemma.

Lemma 2.2 (cf. [15, Lemma 3.2])

Sl (Baju) = Sl (Q) — Sl (Qh), (26)
00 u = (n — 1), — S1(Q)Q + 51 ()2 — (n — 1)Q. (2.7)
Remark 2.1 On a hyperhermitian manifold (M, I, J, K, g, Q) of quaternionic dimension n,

we can find local I-holomorphic geodesic coordinates such that  and another J-real (2,0)-form

Q are simultaneously diagonalizable at a point x € M, i.e.,

n—1 n—1
Q= Z dz% A d22i+1, Q= Z QgigH_le% A\ d22i+1,
i=0 =0

and the Christoffel symbol of V€ and first derivatives of .J vanish at z, i.e.,

T _ o _ g _

ki =i =g =0

Such local coordinates which were introduced in [11] , are called the normal coordinates around
the point .

The linearized operator P of the flow (1.5) is derived in the following lemma.
Lemma 2.3  The linearized operator P has the form:

AN, ()

P =
(v) = v o

: (2.8)

where A = %(Sn_l(ﬁ)ﬂn_l — Q1) and v € C*L1(M x [0,T)).
Proof Let w(s) be the variation of u and v = %‘Szow(s). It is sufficient to compute the

variation of Q" = (D + =15 (51(00,u)2 — aa]u))". We have

n—1

sy = &

ds

(ot ﬁ(sl (90,0()92 ~ 90 u(s))) "
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- -0 A (81(00,0)2 — 90,v)
n—
n o o~ nQ" =1 A 99 v n o o~
— Qn—l Q- _ Qn—l
1 A On — A 900 v
=S, (A — — QL A D
n—1 n—1
= AN0Ov.
Then
Qn ANDD;(v
Pv) =wv —(5(logm) =v — Tn‘]()
as claimed.

3 The u; Estimate and C° Estimate

We first prove the uniform estimate of u;.
Lemma 3.1 Let u be a solution to (1.5) on M x [0,T). Then there exists a constant C
depending only on the fized data (I,J,K,qg,Q,Qp) and f such that

sup |u| < C. (3.1)
Mx[0,T)

Proof One can see that u; satisfies

Pln) = g ) — 22200

For any Tj € (0,7"), by maximum principle,

max |uz| < max |ut(x,0)]
Mx[0,T0] M

1 n
Qpn + m(Sl (88JU0)Q — 8&]’&0)
Qn

< .
7mj\:}x‘log ‘+mj\:}x|f|

Since Tj is arbitrary, we have the desired estimate.

Using the C estimate for the elliptic equation, which has been proved by Sroka [23] and
Fu, Xu and Zhang [15], we have the following Lemma.

Lemma 3.2 Let u be a solution to (1.5) on M x[0,T). Then there exists a uniform constant
C' depending only on the fived data (I,J, K, g,Q,Qp) and f such that

sup |ﬂ| S sup ( sup U(Jj,t) - lnf U(J?,t)) S O (33)
Mx[0,T) te[0,T) \zeM zeEM

Proof The flow is equivalent to the following

Q" = e tIQn, (3.4)
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Since u; is uniformly bounded, we can apply the C%-estimate for the elliptic equation such that
for any ¢t € (0,7),

|u(x,t) —supu(-,t)] < C, Vae M. (3.5)
M

Since [, u(-,t) Q" AQ" =0, there exists 29 € M such that @(zo,t) = 0. Then we have
|a(x7t)| = |a(x7t) - a(x(ht)' = |u(x7t) - u(xo,t)|
<J|u(z,t) —supu(-,t)| + |u(zo,t) — supu(-,t)|
M M

<2C, Vre M.

Hence the CY estimate follows.

4 The C' Estimate

Although the gradient estimate is unnecessary for the proof of the main result, we provide

it as the gradient estimate for fully nonlinear equations has independent interest.

Theorem 4.1 Let u be a solution to (1.5) on M x [0,T). Then there exists a constant C
depending only on the fized data (I,J,K,qg,Q,Qp) and f such that

sup |dul, < C. (4.1)
M x[0,T) ’

Proof A simple computation in local coordinates shows that
n—1 1 20n
nou A dyu A =Z|du|gQ .
Define
1
Following [7], we consider

where ¢ is a function to be determined and u is the normalization of w. For any Ty € (0,7,
suppose max G = G(po,tog) with (po,to) € M x[0,Tp]. We want to show 3(po, to) is uniformly

M x[0,Tp]
bounded. If ty = 0, we have the estimate. In the following, we assume tg > 0.

We choose the normal coordinates around py (see Remark 2.1) and all the calculation is at
(p07 to)a

O<atG_%_ /~t7
ap
oG =22 _ Jou—o;
B
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90,6 OB NP

00;G = 5 7 —"Ou N Oyu— ' 00;u
_ 5‘%’5 (@) + ¢")Ou A Dyu — DDy,
Then we have
0<PG) =g, 202GAAND"
QA"
/88J£n/\/\Aﬁ/1\z Q". (4.2)

We first deal with 0;/3. By taking 0; on both sides of BQ™ = ndu A dyu A Q" 1, we get

2n—1

By = Z (ut_,juj—-—k ujut_j). (4.3)

J=0

We next compute 99;3. Taking 07 on both sides of Q" = ndu A dju AQ" ! and noticing
079 = 0 (since © is hyperKéhler), we have

OBNQ" = na]gu/\a_Ju/\ﬁn_l — ndu A 8]8_JU/\ﬁn_1
Then taking 0 on both sides, we obtain

00,8 N Q" = ndd;0uhOu A Q"+ nd;oun 00 un QT
—nddu A8 0,uNQ" "+ nduA OB u A QL

From the equation
Q" = et (4.4)
by taking 0 on both sides we get
n(851(00u) A QL —000,u) A = (n —1)(@e™t A Q" — ndQ, A Q).
The left hand side can be calculated as the following:

n(951 (80 u) A Q — 80D u) A Q!

— ( L(8Du) A Q" - QATKNT—éanuAﬁ”—l)
_ (g(an”AQn : ") -8, 1(0) — B00u A O

= (Sp_1(DQ" ' — Q") AndOdsu
= (n— 1)A A 900 yu.

Hence we obtain

A A NI u = —n2Qnt A 0y, + nde T A QM.
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By taking 7 on both sides of (4.4), we obtain
A A0 u = —n2Qn1 A 0,0, + ndyet AQn.

Thus for the third term of (4.2), we have

D0;BNANQ" =11 + 1y + n0s0un 00 u ANQ " A A—nddund;0unQ A

where
I = (—n2Q" " A B, + nde™ A QM) ADju AT
Iy = (nQQ"_l A Q, — ndse A QM) Adu A [Vl
By direct computation,
070U = Z uj—iJ_ld; Adzd,
005u = Zuijdzj AJ7e,
O0u = Z uﬁdzi Adz,
870 5u = Z uﬁJ_ld; A JEdE
the third term of (4.5) becomes

nd;0u 90 u NN A
n—12n—1

k 0 j=0 ik Q2121—%1

and the forth term

—nduNI;OuANQ A A

n—12n—1

k 0 j=0 ik 92121—1-1

For I; and Is we have

I = —n2Q0" A9, ADu AQY Y — ndyu A ettt A QP AT

n—12n—1 2n—1

:_Z Z () 2121+1] JQnAﬁn+ Z uj(ut—l—f);ﬁn/\ﬁn

i=0 j=0 Q2121+1 j=0

and

I, = nQ" 1 A 8_JQh ANOUAQ "+ Ound et AQr At
n—12n— 1 2n—1

:—ZZ 2z2z+l7J JQ"/\Q +Z Ut+f) Qn/\Q

i=0 j=0 Q2121+1 j=0
Combining (4.6)—(4.9), we obtain estimate of (4.5),

DO BNANQY
B AQ"

(Juzks|® + luznsr; D) AQ",

) taig P + g 151202 AT

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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1 Z () ginipr 545 + ()2 juz
b=~ Q2i2i41
(wj(ug + f)] + u;(ut + 1))

1 & 3 wakj|* + [uanr15]? + g5 ]? + [ugy 7]

— (4.10)
(n—1)8 k=0 j=0 iZk Q2i0i1

Again by direct computation, the forth term of (4.2) is

n—1
OuNOjuNANQ" = ! Z Z — ! )(|U2i|2+ lugirr|2)" AQ™. (4.11)
n—1 i=0 ki Q2k2k+1

For the fifth term of (4.2), we compute

n nﬁn—l/\ﬂ n—1 __n—1
88Ju/\A—n_188Ju/\(TQ —0 )
" -(51(90,u)Q2 — 00 yu) A Qnt
—

(@ — O A DY),

By compactness of M, there exists ¢ > 0 such that €;, > (). Hence we obtain
Qu AL A
Q" AQ"

1

,005u NANQ" el !
L %

(4.12)

< n(pl —E(plnz

-1
i=0 QQiQi—i— 1

We assume 8 >> 1 otherwise we are finished. By (4.3) and (4.10)—(4.12), the inequality (4.2)
becomes

= )(|U2i|2 + [ugisa|?)

n—1 i=0 ki Q2k2k+1

Slu; Sluzly =1 _
[ — Oy | J|) — — o'y (4.13)
B B )= Qi

+ny’ — (E(pl -

The first term is bounded from above. Now we take
log(2s + C
o(s) = ¥7
where Cj is determined by C° estimate. Then (4.13) becomes

n—1 n—1
1

Cy>Ci Y (Z _ )(|um|2 luzi?) + G5 Y = L (4.14)

i=0  k#i Qok2k+1 i—0 S%42i2i+1
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Thus for any fixed i,
_ Cs
Dojoing > —2 > C.
202041 2 5 2
By (4.4) we also have
1 n—1

= = " ] Qoj2ji1 >
D2i2it1 oy

supeTH, 0§z§n—l
M

Then by (4.14) we obtain § is uniformly bounded.
5 Bound on 99 ;u

Theorem 5.1 Let u be a solution to (1.5) on M x [0,T). Then there exists a constant C
depending only on the fized data (I,J,K,g,Q,Qp) and f such that

sup |00yul, < C. (5.1)
Mx[0,T)
Proof For simplicity denote
n = S1(00 u).

Consider the function
G =logn — p(u),
where ¢ is the same as before. For any Ty € (0,7), suppose max G = G(po,to) with

Mx[0,T0]
(po,to) € M x [0,1p). We want to show n(po, to) is uniformly bounded. We choose the normal

coordinates around py. All the calculations are carried at (pg,to). We have

OS&tG: ﬁ—(pl’ljt,
n

8G=%—tp’8u=0,

8JG = % - (p/a]u = 0,
00;G = 8&]77 — ((@/)2 + QOH)BU AOju — cp’(’?&;u.
We further have
0<PG) =Gy — 90sGAANY
Q" AQ"
e ,.  O00mANANQ" o g OUNOuNANQ"
- — — U — ——=——— + + = —
P AT ()" +¢") NG
ANQ"
’—%anA —2 . (5.2)
Q" AQ

The last two terms were dealt with in the previous section. Since

nQ" = nddyu A Q1
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by taking d; on both sides we have for 7; in the first term
N = Ut pp- (5.3)
We now focus on 997 in the third term of (5.2). By definition 7 is real, and
Q" =nddyu A [P
Under the hyperKéahler condition d2 = 0, differentiating twice the above equation gives
00 A Q" =ndd;00,u NQ" " =ndd,00,u N
We know that (see (2.7))
80 yu = (n — 1), — S1 ()2 + 51(2)Q — (n — 1)Q.
Thus
00,00u=(n—1)00,0 —00;5 (%) AQ+8,5 () AQ— (n—1)83,9, (5.4)
where we used the hyperKéhler condition on 2. Now we have

DO MNANQ =nANDD;00;u Q"
=nn—1)AANII QN AQ" " =00 S () ANAAQAQT!
+n00;8 (A AANQAQ" ™ —n(n—1)ANDIQAQ" (5.5)

Note that
ANQ =" (8, 1 () =) AQ =S, 1 ()Q"
and
00,51 (D)AQ" =nddQAQ"
The third term of (5.5) becomes

ndd; S ANANQAQ ™ =nd 8,51 (Q)

= 7’L2Sn_1 (Q)

AQ™ - S () AQ
IONQEAQE
The forth term is
nn—1)ANIOQAQ" " =028, 1 (Q)FIQAQ AL — 20" AD,0 A0
The first two terms of (5.5) are similar and we get
DOmAANQ =n200,QA Q0" T AQ = n200,0, AQTIAQYT!
and

dOmAAND" nﬁ&,ﬁ AQrLAQ ! B nﬁ&;ﬂh AQrLAQ!
"t A Q" " A Q" "t A Q"
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—12n—1 § —12n—1
_ lnz nz Doizit1,p5 lnz nz (Qn)2i2i+1,pp
o Qain; U Qain;
i=0 p=0 212i+1 i=0 p=0 2i2i+1
1 n—12n—1 ’Q o _ C n—1 1
L o0
n i=0 p=0 QQi2i+l n i=0 Q21’21'4-1

We now rewrite the right hand side of (5.6) using the equation
PE(Q;) = e PR(Q;), (5.7)
where Q" = nIPf(Q;;)dz A -+ Adz?"~!. Take logarithm of both sides
log P£(€;) = uy + f + log PE(Qy;). (5.8)
Since 952 = 0, we have OPf(Q2) = 0. By taking 0 of (5.8) and using Pf((NZij)Q = det(ﬁij), we get
1 o
2 > 0I5 =g+ fo (5.9)
By taking 0 of both sides we obtain
1=~ ~ L=~ m =i
2 > i, = B D 0* Q95+ fop + Ut (5.10)

In local coordinates, the left hand side of (5.10) is

1 ~oini 1< 1 o o Qoivitt vm
5 Z Q2z2z+1 Q2i+l2i7pﬁ + 5 Z Q2l+l2lﬂ2i2i+l7pﬁ _ Z % (511)
24241

It was proved in [15] that the first term of the right hand side of (5.10) is nonnegative, i.e.,

> 0002 Q5 > 0. (5.12)
Hence we obtain
DOmAAND" 1 Ot 1 1
‘mn,n—_n Z —A]_’gf — —1 Z = + —Ut,pp- (513)
T]Q A 2n n i—o QQi2i+1 n

Inserting (5.3), (5.13) and (4.11)—(4.12) into (5.2), we have

n—1

1 /N2 + 1
(R GO o
27] n—1 i=0 ki Q2k2k+l

)(|U2i|2 + |ugi+1)?)

O\ 21

N7 =5 Q2izia

— . (5.14)

Assuming 7 > 1, we obtain from (5.14),

n—1
1
Cy>Csy =
i=0 2121+1

(5.15)

Hence all 521'21'4_1 are uniformly bounded. Since n = S1(90,u) = Sl(ﬁ) — 51(Qp), we can
therefore obtain a uniform bound on 7.
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6 Proof of the Main Theorem

In [24], Tosatti, Wang, Weinkove and Yang derived C*“ estimates for solutions of some
nonlinear elliptic equations based on a bound on the Laplacian of the solution, which was
improved and extended to parabolic equations by Chu [9]. Bedulli, Gentili and Vezzoni [6]
proved the C*® for the quaternionic complex Monge-Ampere equation. In this section we
apply their techniques to derive the C>® estimates in our setting. Then the longtime existence
and convergence follows.

We first need to rewrite (1.5) in terms of real (1, 1)-forms, which can be done by using the
following relation

Q*AQ" oW
W2~ e

And the equation is reformulated as
wi" = 62(“‘+-f)w2", (6.1)

where w and w,, are induced by 2 and ﬁ, respectively.

Lemma 6.1 Let u be a solution to (1.5) on M x [0,T) and € € (0,T), then we have
||V2U||co<(Mx[a,T)) < Ceas (6.2)

where the constant Cy o > 0 depending only on (I,J, K, g,92,Q), f, € and a.

Proof The proof here follows from [9-10, 24]. For any point p € M, choose a local
chart around p that corresponds to the unit ball By in C?" with I-holomorphic coordinates
(20,---,2*"71). We have w = /=1g,;dz" A dz/ where (9;7(x)) is a positive definite 2n x 2n
hermitian matrix given by the metric at any point « € B;. We introduce the real coordinates
by 2! = 2t + /12>t for i = 0,--- ,2n — 1.

The complex structure I corresponds to an endomorphism of the real tangent space which

we still denote by I, written in matrix form

A
= o)

where I5,, denotes the identity matrix.
For any 2n x 2n hermitian matrix H = A 4+ +/—1B, the standard way to identify H with a

real symmetric matrix ¢(H) € Sym(4n) is defined as

J(H) = (_AB f) .

Let Q4,4 (r) denote the domain B, (r) x (t — r?,t]. We want to check (6.1) is of the following
form as in [9, p. 14],

ug(z,t) — F(S(x,t) + T(Diu,z,t),z,t) = h(z,t), (6.3)
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where v is defined in Qgy(1) up to scaling and translation, DZu is the real Hessian and the

functions F', S and T are defined as the following:

F :Sym(4n) x Qo,0)(1) = R, F(N,x,t):= %1ogdet(]\7),
S Qo,0)(1) — Sym(4n), S(xz,t):= L(gﬁ(a:))

and

T : Sym(4n) x Q0,0)(1) — Sym(4n),

T(N.2t) = — (% tr(e(g;7(x)) " p(N))ulg;7(x)) — G(N, :z:)),
where

p(N) = %(N +'INT),
G(N,z):= i(p(N) + ("I (@)p(N)e(J (2)))-

Here we are using J(x) as the matrix representation of the complex structure J. Observe that
p(D3u) = 2u(D3u), we have

DR ) = 3 () + U FUDRW G @) = SURe(DDu(-T, 1) 5)(x).

Moreover, one can verify that
tr(u(g;5 ()~ p(D3w) = 4te(g -} (@) DRu) = 4 yu.
Notice that for a hermitian matrix H, det(:(H)) = det(H)?, hence we get
ug(z,t) — F(S(x,t) + T(Dgu, x,t), x,t)
= tosdet (sg;5(r) + — ((38050) g5 (w) — SiRe(00u(1, 1)) @)
= logdet (95(2) + —— ($1(00s)955(x) — 5u(Re(@Dyu(-1, 7)) 5)(x) )
= —2f(a) ~ log det(g5(x)).

Thus (6.1) is indeed of form (6.3).
It remains to verify that the functions F', S and T defined above satisfies all the assumptions
in [9, H1-H3, p. 14]. From Theorem 5.1 we have tr,g, < C, thus we get

Cy M ap < S(x,t) + T(Dgu, x,t) < Colay.
Take the convex set £ to be the set of matrices N € Sym(4n) with
Cy ' un < N < Colyp.

It is straightforward that H1, H3 and H2(1), H2(2) hold (cf. [9]). For H2(3), we choose local
- and J%H non-

zero, while p(P) is diagonal with eigenvalues A1, A1, -+, Aan, A2, > 0. Then one computes

coordinates such that g(z) = Id and J is block diagonal with only J2 N
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the eigenvalues of T'(P,z,t) are 3 > Ai 2 0. Thus for P > 0 we have T'(P,z,t) > 0 and let
K =2(n—1), then 7
KNP < T(Pa,t)]| < K|P]|.
Finally, to apply [9, Theorem 5.1], we need overcome the lack of C° bound of u using the

same argument as in [10, Lemma 6.1]. Specifically, we split into two cases T'< 1 and T > 1. If
T < 1 then we have a CY bound on u since by Lemma 3.1 sup |u| < C. Hence, [9, Theorem

Mx[0,T)
5.1] applies directly in this case.
If T > 1, for any b € (0,7 — 1), we consider
up(z,t) = u(x,t +b) — Mxl[?,£+1) u(z,t)

for all t € [0,1). By Lemma 3.2, we have sup |up(x,t)| < C. Moreover, it is obvious that wy,
Mx[0,1)
also satisfies the equation, thus we have a Laplacian bound on wu,. By applying Theorem 5.1 in

[9] to up, for any € € (0,1), we have

V2t co(arxpept1)) = VU]l coarx(e,1)) < Ceyas

where C. , is a uniform constant depending only on the fixed data (I, J, K, g,Q,Q4), f, € and

a. Since b € (0,7 — 1) is arbitrary, we obtain the estimate.

Proof of Theorem 1.1 Once we have the C*® estimates, we obtain the longtime exis-
tence and the exponential convergence of @ similar as the argument in [20]. Let uo, = tlim a(-,t),
—00

then ., satisfies

Q) + L ((%Awaw)ﬂ - aa]aoo))n

E:(/MQ”AQ")_l/M(log( — - r)eran,
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