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1 Introduction

We work over the field C of complex numbers. For any normal projective variety X , let

ρ(X) be the Picard number of X .

Let X be a klt Fano surface, i.e., a klt projective surface such that −KX is ample. It is

interesting to ask when the number of singular points of X is bounded from above, and to give

an estimate of the maximal number of singular points on X .

For simplicity, for any surface X , let n(X) be the number of singular points on X . When X

is klt Fano, Keel and McKernan showed that n(X) ≤ 5 when ρ(X) = 1 (see [20, p. 72]). This

is strengthened by Belousov who showed that n(X) ≤ 4.

Theorem 1.1 (see [1, Theorem 1.2, 2, Theorem 1.1]) Let X be a klt Fano surface such

that ρ(X) = 1. Then n(X) ≤ 4.

This bound is optimal even for Fano surfaces with canonical singularities by [23] (see also

[12, 27–29] and Example 4.2(1)). In this note, we show that n(X) is bounded from above by a

number depending only on ρ(X).

Theorem 1.2 Let X be a klt Fano surface. Then n(X) ≤ 2ρ(X) + 2.

It is easy to see that Theorems 1.1–1.2 are equivalent when ρ(X) = 1.

In fact, we can relax the assumption “klt Fano” to “(X,B) is klt log Calabi-Yau for some

boundary B 6= 0” without changing the bound 2ρ(X)+ 2. Moreover, we can relax the assump-
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tion “klt Fano” to “(X,B) is lc and −(KX + B) is nef for some boundary B” if we allow a

small increase on the bound 2ρ(X) + 2. We have the following result.

Theorem 1.3 Let (X,B) be an lc surface pair such that −(KX +B) is nef. Then

(1) n(X) ≤ max{2ρ(X) + 10, 16}.

(2) If X is of Fano type, then n(X) ≤ 2ρ(X) + 2.

(3) If X is klt and KX 6≡ 0, then n(X) ≤ 2ρ(X) + 4.

(4) If X is klt but not canonical and KX ≡ 0, then n(X) ≤ 2ρ(X) + 7.

(5) If X is canonical and KX ≡ 0, then n(X) ≤ 16.

(6) If X is not klt, then n(X) ≤ 2ρ(X) + 10.

(7) If X is not klt and −KX is big and nef, then n(X) ≤ 2ρ(X) + 7.

Remark 1.1 (1) The assumption of Theorem 1.3(2) includes the case when X is klt Fano,

hence immediately implies Theorem 1.2.

(2) Theorem 1.2 may be well-known to experts, but we cannot find any references except

[1–2, 20], and we cannot find any similar results in papers citing (see [1–2, 20]), so we believe

that Theorem 1.2 is new.

(3) The assumption “−(KX+B) is nef ” in Theorem 1.3 cannot be further relaxed to “−KX

is pseudo-effective” even when X is canonical and −KX is effective (see Example-Proposition

4.1(1)).

(4) The assumption “(X,B) is lc” in Theorem 1.3 cannot be further relaxed even when

ρ(X) = 1 and X is Fano, otherwise n(X) may be unbounded (see Example 4.2(3)).

(5) The bounds for Theorem 1.3(2)–(3) are optimal at least for low Picard numbers and the

bounds for Theorem 1.3(5) are optimal. We do not know if the bounds for Theorem 1.3(4) and

(6) are optimal even for small values of ρ(X) (see [6, Theorem D, 30, Theorem 4.1]), however

2ρ(X) + 2 is not satisfied even when ρ(X) = 1 and X is Fano (see Example 4.2(2)).

(6) We expect some boundedness results on singular points to hold in high dimensions (see

Section 5). We prove the boundedness on the number of torus invariant singular points for

toric varieties with bounded Picard numbers (see Theorem 5.1), but one needs to be careful for

non-toric varieties due to Example-Proposition 5.1.

2 Preliminaries

We adopt the standard notation and definitions in [4, 21].

2.1 Pairs and singularities

Definition 2.1 A pair (X,B) consists of a normal quasi-projective variety X and an R-

divisor B ≥ 0 such that KX +B is R-Cartier. If B ∈ [0, 1], then B is called a boundary.
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Let E be a prime divisor on X and D be an R-divisor on X. We define multE D to be the

multiplicity of E along D. Let φ : W → X be any log resolution of (X,B) and let

KW +BW := φ∗(KX +B).

The log discrepancy of a prime divisor D on W with respect to (X,B) is 1−multD BW and it

is denoted by a(D,X,B). We say that (X,B) is lc (resp. klt) if a(D,X,B) ≥ 0 (resp. > 0) for

every log resolution φ : W → X as above and every prime divisor D on W .

A germ X ∋ x consists of a normal quasi-projective variety X and a closed point x ∈ X.

Definition 2.2 Let f : X 99K Y be a birational map which does not extract any divisor,

p : W → X and q : W → Y be a common resolution, and D be an R-Cartier R-divisor on X

such that DY := f∗D is R-Cartier. We say that f is D-negative if

p∗D = q∗DY + E

for some E ≥ 0, and Supp(p∗E) equals the set of f -exceptional divisors.

Definition 2.3 Let X be a normal projective variety. We say that X is Fano if −KX is

ample. We say that X is of Fano type if (X,B) is klt and −(KX + B) is ample for some

boundary B on X. We say that (X,B) is log Calabi-Yau if KX +B ≡ 0.

2.2 Surfaces

Definition 2.4 A surface is a normal quasi-projective variety of dimension 2. For any

non-negative integer m, the Hirzebruch surface Fm is given by PP1(OP1 ⊕OP1(m)).

In some references, a klt Fano surface is also called a log del Pezzo surface.

Definition 2.5 (Dual graph) Let n be a non-negative integer, and C =
n⋃

i=1

Ci be a collection

of irreducible curves on a smooth surface U . We define the dual graph D(C) of C as follows.

(1) The vertices vi = vi(Ci) of D(C) correspond to the curves Ci.

(2) For i 6= j, the vertices vi and vj are connected by Ci · Cj edges.

For any birational morphism f : Y → X between surfaces, let E =
n⋃

i=1

Ei be the reduced

exceptional divisor for some non-negative integer n. We define D(f) := D(E).

A dual graph is called a tree if the graph contains no cycles.

Lemma 2.1 (1) Let f ′ : Y ′ → X ∋ x be a resolution of a klt surface germ X ∋ x. Then

D(f ′) is a tree whose vertices are all smooth rational curves.

(2) Let f ′ : Y ′ → X be a projective morphism between smooth surfaces. Then D(f ′) is a

tree whose vertices are all smooth rational curves.

Proof (1) Follows from [17, Lemma 3.10] and the classification of klt surface singularities

by taking f : Y → X to be the minimal resolution of X ∋ x. (2) Follows from (1) because Y ′

is a resolution of X .
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Lemma 2.2 Let (X,B) be an lc surface pair. Then KX is Q-Cartier.

Proof Pick any closed point x ∈ X . If (X, 0) is numerically dlt near x, then KX is Q-

Cartier near x by [21, Proposition 4.11]. If (X, 0) is not numerically dlt near x, since (X,B) is

lc, (X,B) is numerically lc near x. By [21, Corollary 4.2], x 6∈ B, hence KX is Q-Cartier near

x. Thus KX is Q-Cartier.

2.3 g-Pairs

We need the following definitions on generalized pairs (g-pairs for short). See [5] for more

details.

Definition 2.6 (b-divisors) Let X be a normal quasi-projective variety. We call Y a bira-

tional model over X if there exists a projective birational morphism Y → X.

Let X 99K X ′ be a birational map. For any valuation ν over X, we define νX′ to be the

center of ν on X ′. A b-divisor M over X is a formal sum M =
∑
ν

rνν where ν are valuations

over X, such that νX is not a divisor except for finitely many ν. If in addition, rν ∈ Q for

every ν, then M is called a Q-b-divisor. The trace of M on X ′ is the R-divisor

MX′ :=
∑

νi,X′ is a divisor

riνi,X′ .

If MX′ is R-Cartier and MY is the pullback of MX′ on Y for any birational model Y of X ′,

we say that M descends to X ′, and write M = MX′ . If X is projective and M is a b-divisor

over X, such that M descends to some birational model Y over X and MY is nef, then we say

that M is nef.

Definition 2.7 (g-Pairs) A projective g-pair (X,B,M) consists of a normal projective

variety X, an R-divisor B ≥ 0 on X, and a nef b-divisor M over X, such that KX +B+MX

is R-Cartier. If B is a Q-divisor and M is a Q-b-divisor, then we say that (X,B,M) is a

Q-g-pair.

Let (X,B,M) be a projective g-pair, φ : W → X any log resolution of (X, SuppB) such

that M descends to W , and

KW +BW +MW := φ∗(KX +B +MX).

We say that (X,B,M) is glc if the coefficients of BW are ≤ 1.

For any projective glc g-pair (X,B,M) and R-Cartier R-divisor D ≥ 0 on X, we define

glct(X,B,M;D) := sup{t | (X,B + tD;M) is glc}

to be the glc threshold of D with respect to (X,B,M).
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3 Proofs of the Main Theorems

Lemma 3.1 Let (X,B) be an lc pair such that (X,B) is lc and −(KX + B) is nef (resp.

KX +B ≡ 0). Then there exists a Q-divisor B′ on X such that (X,B′) is lc and −(KX +B′)

is nef (resp. KX +B ≡ 0).

Proof See [15, Proposition 2.6], [16, Corollary 3.5] and [14, Lemma 5.4, Theorem 5.6].

Lemma 3.2 Let X be a klt surface, f : X → Y be a KX-negative divisorial contraction

of a curve C. Then C contains at most 2 singular points of X.

Proof We may assume that C contains n singular points of X for some integer n ≥ 3. Let

g : W → X be the minimal resolution of X near C with exceptional divisors E1, · · · , Em for

some integer m ≥ n. Let CW := g−1
∗ C. Possibly reordering indices, we may assume that CW

intersects E1, E2 and E3.

Since f ◦ g is a resolution of Y ∋ y := f(C), by Lemma 2.1(1), CW
∼= P1. If C2

W ≤ −2 then

f ◦ g is actually the minimal resolution of Y ∋ y. But a(C, Y, 0) > 1 since f is KX-negative,

thus C is not contained in the minimal resolution of Y ∋ y. Hence C2
W = −1 and we may let

p : W → T be the contraction of CW . Then there exists an induced morphism h : T → Y

which is a resolution of Y ∋ y. Let Ei,T := p∗Ei for each i, then Ei,T · Ej,T ≥ 1 for every

i, j ∈ {1, 2, 3} with i 6= j. Thus D
( m⋃
i=1

Ei,T

)
= D(h) is not a tree, which contradicts Lemma

2.1(1).

Lemma 3.3 Let X be a klt surface, f : X → Z be a KX-Mori fiber space such that

dimZ = 1, and z ∈ Z be a closed point. If f∗z is reduced, then X is smooth near f−1z.

Proof Since f : X → Z is a KX-Mori fiber space, f−1z is an irreducible curve and

Rif∗OX = 0 for any i > 0. Since Z is regular and X is Cohen-Macaulay, f is flat (see [22,

Theorem 23.1]). If f∗z is reduced, then by Cohomology and Base change (see [18, III 12.11]),

H1(Xz,OXz
) = 0 so Xz

∼= P1. Combining with the fact that f is flat, we deduce that X is

regular along f−1z because both Xz = f−1z and Z are regular (see [22, Theorem 23.7]).

Lemma 3.4 Let (X,B) be an lc projective surface pair such that −(KX + B) is nef, and

f : X → Z be a KX-Mori fiber space such that dimZ = 1. Then

(1) any fiber of f contains at most 2 singular points of X,

(2) (a) at most four fibers of f contain singular point (s) of X, and

(b) if X is of Fano type, then at most three fibers of f contain singular point (s) of X.

Proof By Lemma 3.1, we may assume that B is a Q-divisor. There exists a non-negative

integer n, closed points z1, · · · , zn ∈ Z and fibers Fi := f−1zi for each i, such that F1, · · · , Fn

are the only closed fibers of f which contain singular points of X . If n = 0, there is nothing

left to prove, so in the rest of the proof, we may assume that n ≥ 1.
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First we prove (1). Suppose that there exists a fiber F of f , such that F contains at least

3 singular points of X and F = f−1z for some closed point z ∈ Z. We let g : W → X be

the minimal resolution of X , E1, · · · , Em be the g-exceptional divisors for some integer m ≥ 3

such that centerX Ei ∈ F for each i, and FW := g−1
∗ F . Then E2

i ≤ −2 for each i. Possibly

reordering indices, we may assume that FW intersects E1, E2, E3.

We may run a KW -MMP over Z, which induces a birational contraction h : W → Y

between smooth projective varieties and a KY -Mori fiber space f ′ : Y → Z, such that Y is a

geometrically ruled surface. In particular, h contracts m elements of {FW , E1, · · · , Em}. Since

Y is smooth and X is not smooth, FW is contracted by h. Since W is smooth, h is a KW -MMP

over Z and E2
i ≤ −2, we have that FW

∼= P1 and F 2
W = −1. Thus we may let p : W → T be

the contraction of FW , and there is an induced morphism q : T → Y . Let Ei,T := p∗Ei for

each i, then Ei,T ·Ej,T ≥ 1 for every i, j ∈ {1, 2, 3} with i 6= j. Thus D
( m⋃
i=1

Ei,T

)
is not a tree,

hence D(q) is not a tree, which contradicts Lemma 2.1(2).

Now we prove (2)(a). Let MX := −(KX + B) and M := MX . Then (X,B,M) is a

projective glc Q-g-pair. By the generalized canonical bundle formula (see [10, Theorem 1.4, 16,

Theorem 1.2]), we have

0 = KX +B +MX ∼Q f∗(KZ +BZ +MZ)

such that MZ is pseudo-effective and

multz BZ = 1− glct(X,B,M; f∗z)

for any point z ∈ Z. By Lemma 3.3, each f∗zi is not reduced, hence multzi BZ ≥ 1
2 for each i.

Thus

0 = deg(KZ +BZ +MZ) ≥ −2 + n ·
1

2
+ 0 = −2 +

n

2
,

which implies that n ≤ 4. Since n ≥ 1, we have deg(KZ) < 0, so Z ∼= P1. Moreover, n = 4 if

and only if MZ ∼Q 0 and BZ = 1
2

4∑
i=1

zi.

Under the assumptions of (2)(b), we can find a boundary B̃ ∼Q −KX such that (X, B̃) is

klt. We can further assume that Supp B̃ contains a general smooth fiber Xz′ , which is away

from the singular points on X . Now let

KX + B̃ ∼Q f∗(KZ + B̃Z + M̃Z)

be the canonical bundle formula for KX + B̃. Assume that n = 4, then as the above shows,

M̃Z ∼Q 0 and B̃Z = 1
2

4∑
i=1

zi. However, by the definition of the canonical bundle formula, we

have

multz′ B̃Z = 1− lct(X, B̃; f∗z′) > 0

since Xz′ = f∗z′ is contained in the support of B as our assumption. Therefore z′ (as a divisor

on Z) should be contained in the support of B̃Z . It is impossible since z′ 6= zi by our assumption

on Xz′ .



Number of Singular Points on Projective Surfaces 719

Proof of Theorem 1.3(2)–(3) Since KX is not pseudo-effective, we may run a KX-MMP

which terminates with a Mori fiber space f : Y → Z. Let g : X → Y be the induced morphism

and BY := g∗B, then −(KY +BY ) is nef. Moreover, if (X,B) is of Fano type, then (Y,BY ) is

of Fano type.

Case 1 dimZ = 0. In this case, ρ(Y ) = 1 and Y is klt Fano, so g is a composition of

ρ(X)− 1 divisorial contractions between klt surfaces. By Lemma 3.2 and Theorem 1.1,

n(X) ≤ n(Y ) + 2(ρ− 1) ≤ 4 + 2(ρ− 1) = 2ρ+ 2.

Case 2 dimZ = 1. In this case, ρ(Y ) = 2, so f is a composition of ρ(X) − 2 divisorial

contractions between klt surfaces. By Lemma 3.2, n(X) ≤ n(Y ) + 2(ρ − 2). By Lemma

3.4, n(Y ) ≤ 8 and n(Y ) ≤ 6 when (X,B) is of Fano type. Thus n(X) ≤ 2ρ(X) + 4 and

n(X) ≤ 2ρ(X) + 2 when (X,B) is of Fano type.

Proof of Theorem 1.3(4) Since X is klt but not canonical and KX ≡ 0, there exists an

extraction f : Y → X of a prime divisor E such that Y is klt and KY + aE = f∗KX ≡ 0 for

some positive real number a. By Theorem 1.3(3),

n(Y ) ≤ 2ρ(Y ) + 4 = 2ρ(X) + 6,

thus n(X) ≤ n(Y ) + 1 ≤ 2ρ(X) + 7.

Proof of Theorem 1.3(5) By abundance, KX ∼Q 0, hence there exists the smallest

positive integer m such that mKX ∼ 0. Since KX is Cartier, there exists an étale cyclic cover

Y → X of degree m such that KY ∼ 0. In particular, Y is canonical and n(X) ≤ n(Y ) (see

[21, Lemma 2.51]).

Let f : W → Y be the minimal resolution of Y . Then KW = f∗KY ∼ 0, hence W is either

an abelian surface or a smooth K3 surface. If W is an abelian surface, then W does not contain

any rational curves, so W = Y and hence n(Y ) = 0. If W is a smooth K3 surface, then Y

is a K3 surface with at most canonical singularities. By [24, Corollary 4.6], n(Y ) ≤ 16. Thus

n(X) ≤ n(Y ) ≤ 16.

Lemma 3.5 Let X ∋ x be a surface germ that is lc but not klt. Then there exists a birational

morphism f : Y → X which extracts a prime divisor E over X ∋ x, such that a(E,X, 0) = 0

and Y is klt.

Proof Let E be any lc place in the dual graph of the minimal resolution of X ∋ x and let

f : Y → X be the extraction of E. Then (Y,E) is lc and all lc centers of (Y,E) are contained

in E. Thus Y is klt.

Proof of Theorem 1.3(6)–(7) By Lemma 2.2, KX is Q-Cartier. By assumption X is not

klt, hence there exists at least 1 point on X where X is not klt. By applying the connectedness

theorem (see [25, Proposition 3.3.2, 13, Theorem 1.2, 3, Theorem 1.2(1)]) to (X,B) (or apply
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[11, Theorem 1.1] to the g-pair (X,B,M := −(KX +B)); see also [26, Lemma 6.9]), we know

that there exist at most 2 points on X where X is not klt. If −KX is big and nef, then by the

Shokurov-Kollár connectedness principle, there exists exactly 1 point on X where X is not klt.

By Lemma 3.5, there exists an extraction f : Y → X and a divisor E ≥ 0 on X , such that

Y is klt, 1 ≤ ρ(Y ) − ρ(X) ≤ 2, KY + E = f∗(KX + B), (Y,E) is lc and −(KY + E) is nef.

Moreover, ρ(Y ) − ρ(X) = 1 when −KX is big and nef. In particular, KY 6≡ 0. By Theorem

1.3(3), n(Y ) ≤ 2ρ(Y )+4, hence n(X) ≤ n(Y )+2 ≤ 2ρ(X)+10 and n(X) ≤ n(Y )+1 ≤ 2ρ(X)+7

when −KX is big and nef.

Proof of Theorem 1.3 We are only left to prove (1), which follows from (3)–(6).

Proof of Theorem 1.2 It follows from Theorem 1.3(2).

4 Examples on Surfaces

In this section, we discuss how far our bounds in Theorem 1.3 are away from being optimal.

The following Example-Proposition shows that even when ρ(X) = 2,

(1) the assumption “−(KX +B) is nef ” is necessary in Theorem 1.3,

(2) Theorem 1.3(2) is optimal even when X is klt Fano, and

(3) Theorem 1.3(3) is optimal.

Example-Proposition 4.1 Let n be a positive integer, Z := P1×P1, and zi := (ui, vi) ∈ Z

closed points in Z for any i ∈ {1, 2, · · · , n} such that ui 6= uj for any i 6= j. Let p1 : Z → P1

and p2 : Z → P1 be the first and second projection of Z to P1, and Li := p∗1ui and Ri := p∗2vi

for each i.

Let f : Y → Z be the blow-up of z1, · · · , zn. For each i, let Ei be the exceptional curve of

f over zi, Li,Y := f−1
∗ Li, Ri,Y := f−1

∗ Ri and yi := Li,Y ∩ Ei.

Let g : X → Y be the blow-up of y1, · · · , yn. For each i, let Fi be the exceptional curve of

g over yi, Li,X := g−1
∗ Li,Y , Ri,X := g−1

∗ Ri,Y and Ei,X := g−1
∗ Ei.

Let h : X → S be the contraction of E1,X , · · · , En,X and L1,X , · · · , Ln,X . For each i, let

Fi,S := h∗Fi, Ri,S := h∗Ri,X , si := h(Ei,X) and ti := h(Li,X). Then s1, · · · , sn and t1, · · · , tn

are the only singular points on S and are 1
2 (1, 1) singularities.

(1) When v1 = v2 = · · · = vn, −KS is effective.

(2) When n = 4 and v1 = v3 6= v2 = v4, (S,B) is lc log Calabi-Yau for some B.

(3) When n = 3 and vi 6= vj for any i 6= j, S is klt Fano.

Proof Most of the proofs are elementary computations on pullbacks and pushforwards of

divisors which we omit. In (1), −KS ∼ 4F1,S+2R1,S ≥ 0. In (2), we may pick B = R1,S+R2,S .

In (3), −KS ∼ 2Ri,S , R
2
i,S = 1

2 , si ∈ Ri,S and ti ∈ Rj,S for any i 6= j. Thus −KS is nef and

big and we may let φ : S → T be the ample model of −KS .

If S 6= T , then −KS is not ample, and φ contracts an irreducible curve C ⊂ S such that
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−KS · C = 0. Since ρ(S) = 2, T is a klt Fano variety and ρ(T ) = 1. Since −KS ∼ 2Ri,S for

any i and R2
i,S > 0, C does not intersect Ri,S for any i, so C is contained in the smooth locus

of S. Thus n(T ) ≥ n(S) = 6, which contradicts Theorem 1.1.

Thus S = T , hence −KS is ample, and we are done.

The following example shows that even when ρ(X) = 1 and X is Fano,

(1) Theorem 1.1 is optimal,

(2) the bound “2ρ(X) + 2” is not enough if X is not klt, and

(3) the assumption “(X,B) is lc” is necessary for Theorem 1.3.

Example 4.2 Assumptions and notations as in Example-Proposition 4.1 and assume that

t1 = t2 · · · = tn. Let R
′ := p∗2v for some v 6= v1 and R′

S := h∗((f◦g)
−1
∗ R′). Since the intersection

matrix of R1,X

n⋃
i=1

(Ei,X ∪ Li,X) is negative definite, there exists a contraction φ : S → T of

R1,S . In particular, ρ(T ) = 1. Since

D := −
(
KS +

2(n− 2)

n
R1,S

)
∼ 4F1,S +

4

n
R1,S

is big and nef and φ-trivial, and since nD ∼ 4nF1,S + 4R1,S ∼ 4nF2,S + 4R1,S ∼ 4R′
S , |nD| is

base-point-free and defines φ. Thus nD ∼ φ∗φ∗(nD), and in particular, −KT = φ∗D is ample.

Since a(R1,S , T, 0) =
4−n
n

, we have

(1) when n = 3, T is a klt Fano surface, ρ(T ) = 1 and n(T ) = 4.

(2) When n = 4, T is an lc Fano surface, ρ(T ) = 1 and n(T ) = 5 > 2ρ(T ) + 2.

(3) When n ≥ 5, T is a non-lc Fano surface, ρ(T ) = 1 and n(T ) = n+ 1. When n → +∞,

n(T ) → +∞.

The following well-known example shows that Theorem 1.3(5) is optimal.

Example 4.3 Some Kummer surfaces are canonical K3 surfaces with 16 singular points.

We do not know if Theorem 1.3(4) and (6) are optimal or not even when ρ(X) = 1, and

we do not know if Theorem 1.3(2)–(3) are optimal when ρ(X) is large. We guess that under

the assumption of Theorem 1.3, n(X) ≤ ρ(X)+C for some constant number C, but we do not

know how to prove this yet. The next example shows that the linear term ρ(X) is necessary in

an expression of an upper bound of n(X) even when X is klt Fano.

Example 4.4 Fix a positive integer n ≥ 2, let e1 = (1, 0), e2 = (0, 1) ∈ R2 and u−1 =

−e1, ui = ie1 + (i2 − 1)e2 (0 ≤ i ≤ n). Then each ui is primitive. Now let Σ be the complete

fan in NR = R2 generated by rays u−1, u0, · · · , un. Then the projective toric surface XΣ is klt

Fano with ρ(XΣ) = n+2− 2 = n. The number of singular points corresponds to the number of

non-smooth maximal cones in Σ(2) = {Cone(ui−1, ui),Cone(un, u−1) | 0 ≤ i ≤ n}. Notice that

Cone(un, u−1),Cone(ui−1, ui) (2 ≤ i ≤ n) are not smooth because none of {un, u−1}, {ui−1, ui}

(2 ≤ i ≤ n) generates N = Z2. Thus XΣ has exactly n singular points.
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5 Discussions

For toric varieties, the singular locus is torus invariant and thus can be nicely described as

a disjoint union of torus orbits.

Theorem 5.1 If X is a proper Q-factorial toric variety of dimension d, then for any

2 ≤ k ≤ d, there exists a polynomial hk of degree ≤ min{k, d− 1} such that the number of torus

invariant singular points of codimension k on X is ≤ hk(ρ(X)).

Proof Let Σ be the complete fan in NR
∼= Rd which defines X , then the cones in Σ are all

simplicial and naturally give a triangulation of Sd−1 ∼= {Rd − 0}/(x ∼ λx), where each cone of

dimension k ≥ 1 corresponds to a (k − 1)-simplex.

Recall Σ(k) is the set of k dimensional cones in Σ, then we have ρ(X) + d = |Σ(1)| and

|Σ(k)| ≤
(
|Σ(1)|

k

)
. Thus any |Σ(k)| (1 ≤ k ≤ d − 1) is bounded by a polynomial of ρ(X)

with degree ≤ k. Also, we have 1 − (−1)d = χ(Sd−1) =
d∑

k=1

(−1)k−1|Σ(k)|. Hence |Σ(d)| is

bounded by a polynomial of ρ(X) with degree ≤ d − 1. Since the torus invariant singular

points correspond to torus orbits in Sing(X), the statements follows directly by the orbit-cone

correspondence theorem.

It is natural to ask whether we can have a bound on the number of singular points in high

dimensions for non-toric klt Fano varieties with bounded Picard number as well. However, the

first question is: Since the singular locus may be of dimension > 0, how can we effectively define

the “number of singular points” for a non-toric variety?

The most straightforward idea is to consider the number of isolated singular points. Un-

fortunately, we have the following counterexample for klt Fano varieties with only isolated

singularities of Picard number 1 even in dimension 3. This example is given by Chen Jiang.

Example-Proposition 5.1 Fix a positive integer k. Let X = X6k+3 ⊂ P(1, 3, 3, 3k +

1, 3k + 2) be a general hypersurface of degree 6k + 3. Then

(1) X is quasismooth klt Fano of Picard number 1, and

(2) X contains exactly the following singularities:

(a) A cyclic quotient singularity of type 1
3k+1 (1, 3, 3),

(b) a cyclic quotient singularity of type 1
3k+2 (1, 3, 3), and

(c) (2k + 1) cyclic quotient singularities of type 1
3 (1, 1, 2).

Proof (1) Follows from [19, Theorem 8.1] (see also [8, Theorem 2.7, 9, Theorem 3.2.4(i)].

(2) Follows from (1) and [19, Section 9–10] (see also [8, Theorem 2.8]).

Nevertheless, we may still ask the following questions. These questions arise in personal

communications of the first author with Paolo Cascini, Christopher D. Hacon, Jingjun Han

and Chen Jiang during the summer of 2020.

Question 5.1 Let d, ρ be two positive integers. Does there exist a positive integer N1 =
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N1(d, ρ), such that for any klt Fano variety X of dimension d with ρ(X) ≤ ρ, the number of

isolated non-terminal singularities of X is ≤ N1?

Question 5.2 Let d, ρ be two positive integers. Does there exist a positive integer N2 =

N2(d, ρ), such that for any klt Fano variety X of dimension d with ρ(X) ≤ ρ, the number of

codimension 2 singularities of X is ≤ N2?

Theorem 1.2 answers these two questions when d = 2, but both questions seem to be widely

open in dimension ≥ 3 even when ρ = 1. We remark that if we have satisfactory answers for

these questions in the Picard number 1 case, then the methods used in our paper are expected

to be applied to prove the bounded Picard number cases.

For similar questions and results, we also refer the readers to [7].
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