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Abstract By virtue of Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy
reduction technique, the general breather, soliton and rational solutions in the (2 + 1)-
dimensional Hirota equation are constructed. These solutions are expressed in terms of
Gram determinants and Schur polynomials. The Nth-order breather and soliton solu-
tions contain 2N free complex parameters, while Nth-order rational ones possess N free
complex parameters. By utilizing the Hermitian matrices, the range of free parameters is
determined such that it ensures the regularity of these breather and soliton solutions. For
the rational solutions, their non-singularity is proved and the parity-time-symmetric con-
dition is derived. Furthermore, the rich dynamic patterns of breather, soliton and rational
solutions are established by various choices of free parameters.
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1 Introduction

In the 1840s, Scott Russell reported the solitary waves on the water surface (see [1]). Hence-

forth, solitary waves were studied extensively in mathematics and physics (see [2–4]). They

retained shapes and velocities after collisions. In 1979, several breathers were investigated.

Especially, Ma breathers and Akhmediev breathers were spatially and temporally periodic, re-

spectively (see [5–6]). The Akhmediev-Kuznetsov-Ma breathers were spatiotemporally periodic

(see [7]). Recently, rogue waves have also attracted considerable attention. They are localized

waves in both space and time, described as large and spontaneous waves in oceanography (see

[8]). Rogue waves have also been derived in experiments (see [9]). Similarly, lumps were just

localized waves in space for higher-dimensional integrable systems (see [10]). These phenomena

were observed in various fields such as optics (see [11–14]), plasma physics (see [15]) finance
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(see [16]), etc.

Up to now, the soliton, breather, rogue wave, and lump solutions have been established in

nonlinear evolution equations by using various methods, including the inverse scattering tech-

nique (see [17]), Darboux transformation (see [18]), algebraic geometry approach (see [19]),

Hirota’s bilinear method (see [20]), etc. In recent years, based on Hirota’s bilinear method,

the Kadomtsev-Petviashvili hierarchy reduction technique was explored to construct the soli-

ton, breather, rogue wave, and lump solutions of several nonlinear integrable equations. In

2012, Yang and Ohta proposed the Kadomtsev-Petviashvili hierarchy reduction technique to

derive the general rogue waves of the nonlinear Schrödinger equation (NLSE for short) (see

[21]). By virtue of this technique, general rogue waves of other bilinear integrable equation-

s were also discovered, including Davey-Stewartson I equation (see [22]), Davey-Stewartson

II equation (see [23]) and Mel’nikov equation (see [24]). Subsequently, Chen et al. (2018)

tried to extend this technique to derive the higher-order rogue waves of the long-short wave

resonance equation and Schrödinger-Boussinesq equation (see [25–26]). However, the iterated

relation is too complex to derive the explicit expression of higher-order rogue waves. Up to

2020, Yang et al. introduced an innovative differential operator to solve the above problem,

and then they successfully established the general rogue waves of many bilinear integrable e-

quations, including Boussinesq equation (see [27]), generalized derivative Schrödinger equation

(see [28]), the three-wave resonance interaction equation (see [29]) and the massive Thirring

model (see [30]). These solutions were expressed elegantly and concisely in terms of Gram

determinants. We note that the solutions of these equations were derived from first- or second-

order equations in the Kadomtsev-Petviashvili hierarchy. In this work, we would like to extend

this technique to (2 + 1)-dimensional Hirota equation from the third-order equations in the

Kadomtsev-Petviashvili hierarchy.

The (2 + 1)-dimensional Hirota equation has the following form

iΦt +Φxy + iβΦxxx − ΦΨ+ 6iβ|Φ|2Φx = 0,

Ψx + 2(|Φ|2)y = 0,
(1.1)

where Φ is a complex function and Ψ is a real function with respect to space variables x, y and

time t, and β is a real nonzero parameter representing the strength of higher-order linear and

nonlinear effects. (1.1) was derived from (1 + 1)-dimensional Hirota equation by employing an

asymptotically exact reduction method (see [31]). If y = x, (1.1) will be transformed into the

(1 + 1)-dimensional Hirota equation describing the wave propagation of ultrashort light pulses

in optical fibers (see [32–33]). The general higher-order rogue waves of (1 + 1)-dimensional

Hirota equation have been discovered by utilizing Hirota’s bilinear method (see [34]). For (1.1),
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using the bilinear transformation method, they obtained general higher-order rogue waves (see

[35]). However, these results did not include lump solutions, and these researchers did not

analyze breather and soliton ones. This work is to center around general breather, soliton and

rational solutions of (1.1) by using Hirota’s bilinear method and Kadomtsev-Petviashvili hier-

archy reduction technique. We focus on the range of free parameters to satisfy the regularity of

breather and soliton solutions, and demonstrate that obtained rational solutions are nonsingu-

lar. The parity-time-symmetric condition for rational solutions is also discussed. Furthermore,

we display the various dynamic patterns of breather, soliton and rational solutions to (1.1).

In particular, the superpositions of the breather and soliton solutions exhibit interesting dy-

namic patterns. We also discover that these rational solutions have both rogue wave and lump

solutions in the framework of (2 + 1)-dimensional Hirota equation (1.1).

The structure of this paper is organized as follows: In Section 2, the explicit expressions of

the general breather, soliton and rational solutions for (1.1) are presented in terms of the Gram

determinant. In Section 3, the derivation of these solutions is demonstrated with the aid of

two types of Gram determinants. Furthermore, the regularity and symmetry of obtained solu-

tions are discussed. In Section 4, the dynamic behaviors of fundamental breather, soliton and

rational solutions are investigated analytically and graphically. Moreover, the superpositions

of the breather and soliton solutions are explored. Finally, the main results of the paper are

summarized in Section 5.

2 Breather, Soliton and Rational Solutions of (2 + 1)-Dimensional
Hirota Equation

The general breather and soliton solutions in (1.1) are given by the following theorem.

Theorem 2.1 The (2+1)-dimensional Hirota equation (1.1) possesses the Nth-order breather

and soliton solutions as follows

Φ =
σ1

σ0
, Ψ = −2(lnσ0)xy. (2.1)

Here,

σn = det
1≤u,v≤N

(m(n)
u,v), (2.2)

whose matrix elements are defined as

m(n)
u,v =

1

pu1 + pv1

(
− pu1

pv1

)n

eξu+ξ
v +

1

pu1 + pv2

(
− pu1

pv2

)n

eξu

+
1

pu2 + pv1

(
− pu2

pv1

)n

eξv +
1

pu2 + pv2

(
− pu2

pv2

)n

,
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where

ξu = (pu1 − pu2)(x− [4(pu1 + pu2)
2 − 4pu1pu2 + 6]βt)

+ 3i(p2u1 + p2u2)βy + ξ0u

with the “¯” representing complex conjugation. In addition, ξ0u are arbitrary complex constants

and the complex free parameters pu1, pu2 satisfy the following constraints

pu1 · pu2 = 1, u = 1, 2, · · · , N. (2.3)

The derivation of this theorem will appear in Section 3. Note that since there are forms

1
p
um̃

+p
vñ

(u, v = 1, 2, · · · , N, m̃, ñ = 1, 2) in Theorem 2.1, the pum̃ and pvñ should satisfy

that the values of pum̃ + pvñ are nonzero. From the parameter relations (2.3), these Nth-

order breather and soliton solutions (2.1) contain 2N free complex parameters pu1, ξ
0
u (u =

1, 2, · · · , N). With the help of these free parameters, we can establish various superposition

patterns of the breather and soliton solutions. We note that the solutions (2.1) are soliton types

when pu1 are real while the solutions (2.1) are breather solutions when pu1 are non-real. It is

well known that breather solutions could become rational solutions in the limit case, which can

contain rogue waves or lump solutions. For the (2 + 1)-dimensional Hirota equation (1.1), our

general rational solutions are represented by Theorem 2.2 as follows.

Theorem 2.2 The (2 + 1)-dimensional Hirota equation (1.1) has the Nth-order rational

solutions

Φ =
τ1

τ0
, Ψ = −2(ln τ0)xy, (2.4)

here,

τn = det
1≤u,v≤N

(m̂
(n)
2u−1,2v−1),

whose matrix elements are defined as

m̂(n)
u,v =

(p∂p + ξ′ + n)u

u!

(q∂q + η′ − n)v

v!

(p+ 1)(q + 1)

2(p+ q)

∣∣∣∣
p=q=1

,

where

ξ′ = px+ 6iβp2y − 6β(p+ 2p3)t+

∞∑

r=0

â2r+1 ln
2r(p),

η′ = qx− 6iβq2y − 6β(q + 2q3)t+

∞∑

r=0

â2r+1 ln
2r(q)

and â2r+1 (r = 0, 1, 2, · · · , N) are free complex parameters.
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The proof of Theorem 2.2 will also be presented in Section 3. In contrast to the previous

works [35], our results have different matrix elements, which will give rise to new types of

solutions. Specifically, the rational solutions in [35] are nonlocalized in the planes (x, y) and

(y, t), that is, these rational solutions are normal algebraic solitons. However, our rational

solutions will exhibit lump solutions in the plane (x, y) and rogue wave solutions in the plane

(y, t). Interestingly, these results are different from other bilinear integrable systems, such as

the Davey-Stewartson equation (see [22–23]), the Mel’nikov equation (see [24]), the (2 + 1)-

dimensional dispersive long wave system (see [36]), etc.

3 Derivation of the Breather, Soliton and Rational Solutions to the
(2+1)-Dimensional Hirota Equation

In this section, we focus on constructing the breather, soliton and rational solutions of (1.1)

by using Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduction technique.

Firstly, using the independent variable transformation (see [35])

Φ =
g

f
, Ψ = −2(ln f)xy, (3.1)

where f is a real function and g is a complex function with respect to variables x, y and t, (1.1)

is transformed into the bilinear forms

(D2
x + 2)f · f = 2gg, (3.2)

(iβD3
x +DxDy + 6iβDx + iDt)g · f = 0, (3.3)

where D is the Hirota’s bilinear differential operator defined by

P (Dx, Dy, Dt)[g(x, y, t) · f(x, y, t)]

≡ P (∂x − ∂′x, ∂y − ∂′y, ∂t − ∂′t)g(x, y, t)f(x
′, y′, t′)|x′=x, y′=y, t′=t.

The solutions of bilinear equations (3.2)–(3.3) can be obtained based on the following lemma.

Lemma 3.1 (see [34]) If functions m̃
(n)
u,v, ϕ̃

(n)
u and ψ̃

(n)
v of variables (x−1, x1, x2, x3) satisfy

the following differential and difference relations

∂x1
m̃(n)

u,v = ϕ̃(n)
u ψ̃(n)

v ,

∂x2
m̃(n)

u,v = (∂x1
ϕ̃(n)
u )ψ̃(n)

v − ϕ̃(n)
u (∂x1

ψ̃(n)
v ),

∂x3
m̃(n)

u,v = ∂2x1
ϕ̃(n)
u ψ̃(n)

v − ∂x1
ϕ̃(n)
u ∂x1

ψ̃(n)
v + ϕ̃(n)

u ∂2x1
ψ̃(n)
v ,

∂x−1
m̃(n)

u,v = −ϕ̃(n−1)
u ψ̃(n+1)

v , m̃(n+1)
u,v = m̃(n)

u,v + ϕ̃(n)
u ψ̃(n+1)

v

(3.4)
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and

∂x1
ϕ̃(n)
u = ϕ̃(n+1)

u , ∂x1
ψ̃(n)
v = −ψ̃(n−1)

v ,

∂x2
ϕ̃(n)
u = ∂2x1

ϕ̃(n)
u , ∂x2

ψ̃(n)
v = −∂2x1

ψ̃(n)
v ,

∂x3
ϕ̃(n)
u = ∂3x1

ϕ̃(n)
u , ∂x3

ψ̃(n)
v = ∂3x1

ψ̃(n)
v ,

∂x−1
ϕ̃(n)
u = ϕ̃(n−1)

u , ∂x−1
ψ̃(n)
v = −ψ̃(n+1)

v ,

(3.5)

then the function

τ̃n = det
1≤u,v≤N

(m̃
(n)
iu,jv

) (3.6)

satisfies the higher-dimensional bilinear equations in the Kadomtsev-Petviashvili hierarchy

(Dx1
Dx−1

− 2)τ̃n · τ̃n + 2τ̃n+1 · τ̃n−1 = 0, (3.7)

(D3
x1

+ 3Dx1
Dx2

− 4Dx3
)τ̃n+1 · τ̃n = 0. (3.8)

Here, (i1, i2, · · · , iN) and (j1, j2, · · · , jN ) are arbitrary sequences of indices.

Next, we restrict τ̃n to satisfy the dimensional reduction and conjugate conditions

(∂x−1
+ ∂x1

)τ̃n = Cτ̃n, (3.9)

τ̃−n = τ̃n, (3.10)

where C is an arbitrary constant. Substituting (3.9) into (3.7), we obtain

(D2
x1

+ 2)τ̃n · τ̃n − 2τ̃n+1 · τ̃n−1 = 0. (3.11)

From (3.10), we can define

f = τ̃0, g = τ̃1, g = τ̃−1.

Then, substituting the above formulas into (3.11) and (3.8), we obtain

(D2
x1

+ 2)f · f = 2gg, (3.12)

(D3
x1

+ 3Dx1
Dx2

− 4Dx3
)g · f = 0. (3.13)

Subsequently, through the coordinate transformation

x1 = x− 6βt, x2 = 3iβy, x3 = −4βt, (3.14)

the bilinear equations (3.12)–(3.13) become the bilinear equations (3.2)–(3.3), respectively. Fi-

nally, using variable transformation (3.1), we derive the solutions of (1.1).
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Proof of Theorem 2.1 In order to construct the breather and soliton solutions of the

(2 + 1)-dimensional Hirota equation (1.1) in Theorem 2.1, we introduce m̃
(n)
u,v, ψ̃

(n)
u and ϕ̃

(n)
v as

follows (see [37])

m̃(n)
u,v =

∫
ϕ̃(n)
u ψ̃(n)

v dx1 =

2∑

m̃,ñ=1

1

pum̃ + qvñ

(
− pum̃

qvñ

)n

eξum̃
+η

vñ ,

ϕ̃(n)
u = pnu1e

ξu1 + pnu2e
ξu2 , ψ̃(n)

v = (−qv1)−neηv1 + (−qv2)−neηv2 ,

(3.15)

where

ξum̃ =
1

pum̃
x−1 + pum̃x1 + p2um̃x2 + p3um̃x3 + ξ0um̃,

ηvñ =
1

qvñ
x−1 + qvñx1 − q2vñx2 + q3vñx3 + η0vñ.

Here, pum̃, qvñ, ξ
0
um̃ and η0vñ are arbitrary complex parameters. We select sequences (i1, i2, · · · ,

iN) and (j1, j2, · · · , jN ) as natural sequence (1, 2, 3, · · · , N), and rewrite τ function (3.6) as

τ̃n = det
1≤u,v≤N

(m̃(n)
u,v) =

N∏

u=1

eξu2+ηu2σn, σn = det
1≤u,v≤N

(m(n)
u,v), (3.16)

where

m(n)
u,v = eξu1−ξu2+ηv1−ηv2Fn(pu1, qv1) + eξu1−ξu2Fn(pu1, qv2)

+ eηv1−ηv2Fn(pu2, qv1) + Fn(pu2, qv2)

with

Fn(p, q) =
1

p+ q

(
− p

q

)n

,

ξu1 − ξu2 = (pu1 − pu2)x1 − (p2u1 − p2u2)x2 + (p3u1 − p3u2)x3

+
( 1

pu1
− 1

pu2

)
x−1 + ξ0u1 − ξ0u2,

ηu1 − ηu2 = (qu1 − qu2)x1 − (q2u1 − q2u2)x2 + (q3u1 − q3u2)x3

+
( 1

qu1
− 1

qu2

)
x−1 + η0v1 − η0v2.

Note that

(∂x1
+ ∂x−1

)m(n)
u,v = [[G(pu1, pu2) +G(qv1, qv2)]Fn(pu1, qv1)e

ξu+ηv

+G(pu1, pu2)Fn(pu1, qv2)e
ξu +G(qv1, qv2)Fn(pu2, qv1)e

ηv ],

where

ξu = ξu1 − ξu2, ηu = ηu1 − ηu2,
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G(p, q) = (p− q) +
1

p
− 1

q
= (p− q)

(
1− 1

pq

)
.

Thus, by taking

pu1 · pu2 = 1, qu1 · qu2 = 1,

we can obtain

∂x1
σn =

N∑

u,v=1

∆u,v∂x1
m(n)

u,v = −
N∑

u,v=1

∆u,v∂x−1
m(n)

u,v = −∂x−1
σn,

where ∆u,v denotes the (u, v)-cofactor of the matrix (m
(n)
u,v). Therefore, the dimensional reduc-

tion condition (3.9) is satisfied. From the above form together with the gauge freedom of τ̃n in

(3.6), it yields

(D2
x1

+ 2)σn · σn = 2σn+1 · σn−1,

(D3
x1

+ 3Dx1
Dx2

− 4Dx3
)σn+1 · σn = 0.

Next, setting

qum̃ = pum̃, η0um̃ = ξ
0

um̃, u = 1, 2, · · · , N, m̃ = 1, 2,

we have ξum̃ = ηum̃ under the coordinate transformations (3.14), which implies

m(−n)
u,v =

1

pu1 + pv1

(
− pv1
pu1

)n

eξu1−ξu2+ξ
v1

−ξ
v2 +

1

pu2 + pv2

(
− pv2
pu2

)n

+
1

pu1 + pv2

(
− pv2
pu1

)n

eξu1−ξv2 +
1

pu2 + pv1

(
− pv1
pu2

)n

eξu1
−ξ

u2

=
1

pv1 + pu1

(
− pv1
pu1

)n

eξu1−ξu2+ξ
v1

−ξ
v2 +

1

pv2 + pu2

(
− pv2
pu2

)n

+
1

pv2 + pu1

(
− pv2
pu1

)n

eξu1−ξv2 ++
1

pv1 + pu2

(
− pv1
pu2

)n

eξv1−ξ
u2

= m(n)
v,u,

i.e.,

σn = σ−n.

Finally, defining

σ0 = f, σ1 = g, σ−1 = g,

together with coordinate transformations (3.14), we arrive at the bilinear equations (3.2)–(3.3)

of (1.1). Since the bilinear equations (3.2)–(3.3) do not contain derivation of the variable x−1,

we set x−1 = 0 for convenience. Thus, this completes the proof of Theorem 2.1.
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Proof of Theorem 2.2 In order to derive the rational solutions of the (2+1)-dimensional

Hirota equation (1.1) in Theorem 2.2, we select m̃
(n)
u,v, ψ̃

(n)
u and ϕ̃

(n)
v as follows

m̃(n)
u,v =

∫
ψ̃(n)
u ϕ̃(n)

v dx1 =
(p∂p)

u

u!

(q∂q)
v

v!

(p+ 1)(q + 1)

2(p+ q)

(
− p

q

)n

eξ+η,

ψ̃(n)
u =

(p∂p)
u

u!

pn(p+ 1)

2
eξ, ϕ̃(n)

v =
(q∂q)

v

v!
(−q)−n(q + 1)eη,

(3.17)

where

ξ =
1

p
x−1 + px1 + p2x2 + p3x3 +

∞∑

r=1

âr

r
lnr(p),

η =
1

q
x−1 + qx1 − q2x2 + q3x3 +

∞∑

r=1

b̂r

r
lnr(q).

Here, p, q, âr and b̂r are arbitrary complex constants. Particularly, setting the sequences

(i1, i2, · · · , iN) and (j1, j2, · · · , jN ) as odd sequence (1, 3, 5, · · · , 2N − 1) and taking p = q = 1,

the determinant (see [21])

τn = det
1≤u,v≤N

(m̂
(n)
2u−1,2v−1|p=q=1)

satisfies the dimension reduction condition

(∂x−1
+ ∂x1

)τn = 4Nτn.

Furthermore, let free parameters

âr = b̂r, r = 1, 2, · · · , N.

Then, under the coordinate transformation

x1 = x− 6βt, x2 = 3iβy, x3 = −4βt,

one can readily find that

ξ|p=q=1 = η|p=q=1, m̂(n)
u,v|p=q=1 = m̂

(−n)

v,u |p=q=1,

i.e.,

τn = τ−n.

Thus, we can define

τ0 = f, τ1 = g, τ−1 = g.
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Substituting the above results into bilinear equations (3.7)–(3.8) together with coordinate trans-

formations (3.14), we also arrive at the bilinear equations (3.2)–(3.3) of (1.1). Similar to the

proof of Theorem 2.1, we set x−1 = 0. Finally, using the operator relations

p∂pp
neξ = pneξ[p∂p + ξ′ + n],

q∂q(−q)−neη = (−q)−neη[q∂q + η′ − n],

where

ξ′ = p(x− 6βt) + 6ip2βy − 12p3βt+

∞∑

r=0

âr+1 ln
r(p), (3.18)

η′ = q(x− 6βt)− 6iq2βy − 12q3βt+
∞∑

r=0

âr+1 ln
r(q), (3.19)

we have the rational solutions of (1.1),

Φ =
τ1

τ0
, Ψ = −2(ln τ0)xy. (3.20)

Here

τn = det
1≤u,v≤N

(m̂
(n)
2u−1,2v−1),

whose matrix elements are defined as

m̂(n)
u,v =

(
− q

p

)n

eξ+η (p∂p + ξ′ + n)u

u!

(q∂q + η′ − n)v

v!

(p+ 1)(q + 1)

2(p+ q)

∣∣∣∣
p=q=1

,

where

ξ′ = p(x− 6βt) + 6iβp2y − 12p3βt+
∞∑

r=0

âr+1 ln
r(p),

η′ = q(x− 6βt)− 6iβq2y − 12q3βt+

∞∑

r=0

âr+1 ln
r(q).

Due to the gauge freedom of τ̃n function, we remove the formula
(
− q

p

)n
eξ+η. In the end,

similar to NLSE (see [21]), we may also take â2 = â4 = · · · = â2N−2 = 0. Thus, this completes

the proof of Theorem 2.2.

Discussions of Regularity Next, we discuss the regularity of the obtained breather,

soliton and rational solutions of (1.1). From (3.15), we find that τ̃0 can be given by the

determinant of a Hermite matrix

M1 = (m̃(0)
u,v)

N
u,v=1, m̃(0)

u,v =

∫
(eξu1 + eξu2)(eξv1 + eξ̃v2)dx1.
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For any zero vector s = (s1, s2, · · · , sN)T and au1 > 0 (u = 1, 2, · · · , N, au1 is real part of pu1),

we have

s†M1s =

N∑

u,v=1

sum̃
(0)
u,vsv =

∫ x1

−∞

N∑

u,v=1

susv(e
ξu1 + eξu2)(eξv1 + eξ̃v2) dx1

=

∫ x1

−∞

∣∣∣
N∑

u=1

su(e
ξu1 + eξu2)

∣∣∣
2

dx1 > 0,

where the symbol “†” indicates the conjugate transpose. It is shown that the Hermite matrix

M1 is positive definite, hence τ̃0 > 0. From (3.16), we have σ0 > 0. Similarly, when au1 < 0 for

u = 1, 2, · · · , N , it leads to σ0 < 0. Thus, we have the following theorem.

Theorem 3.1 Assuming the free complex parameters pu1 = au + ibu, for u = 1, 2, · · · , N ,

when real parameters au > 0 or au < 0 for all u ≥ 1, the breather and soliton solutions (2.1) of

(1.1) in Theorem 2.1 are nonsingular.

Furthermore, from (3.17), we find that τ0 can also be given by the determinant of a Hermite

matrix

M2 = (m̂
(0)
2u−1,2v−1)

N
u,v=1,

m̂(0)
u,v =

∫ x1

−∞

(p∂p)
u

u!

(q∂q)
v

v!

(p+ 1)(q + 1)

2
eξ+ξ

∣∣∣
p=q=1

dx1.

Thus, it leads to

s†M2s =

N∑

u,v=1

susv
(p∂p)

2u−1

(2u− 1)!

(q∂q)
2v−1

(2v − 1)!

(p+ 1)(q + 1)

2

∫ x1

−∞
eξ+ξ

∣∣∣
p=q=1

dx1

=

∫ x1

−∞

∣∣∣
N∑

u=1

su
(p∂p)

2u−1

(2u− 1)!

√
2(p+ 1)

2
eξ
∣∣∣
p=1

∣∣∣
2

dx1 > 0.

It implies that the Hermite matrix M2 is positive, i.e., τ0 > 0. Therefore, the rational solutions

in Theorem 2.2 are nonsingular.

Finally, we analyze the parity-time-symmetric condition of rational solutions (2.4) for (1.1)

in Theorem 2.2. Our derivation is based on the rational solutions expressed in terms of the

Schur polynomial defined by

∞∑

r=0

Sr(x)κ
r = exp

( ∞∑

r=1

xrκ
r
)
, (3.21)

where x = (x1, x2, · · · ). Applying the simplification technique (see [21]), we have the following

Nth-order rational solutions of (1.1) from Theorem 2.2.

Lemma 3.2 (1.1) has Nth-order rational solutions

Φ =
σ̂1

σ̂0
, Ψ = −2(ln σ̂0)xy.
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Here

σ̂n = det
1≤u,v≤N

(m̂
(n)
2u−1,2v−1), (3.22)

whose elements are

m̂(n)
u,v =

min(u,v)∑

j=0

1

4j
Su−j(x

+(n) + js)Sv−j(x
−(n) + js),

where vectors x±(n) = (x±1 (n), x
±
2 (n), · · · ) are defined as

{
x+1 (n) = x+ 6iβ(y + 3it) + n+ â1,

x−1 (n) = x− 6iβ(y − 3it)− n+ â1,

and for all r ≥ 1,




x+2r(n) = x−2r(n) = 0,

x+2r+1(n) =
1

(2r + 1)!
(x+ 6iβ[22ry + i(1 + 2 · 32r)t]) + â2r+1,

x−2r+1(n) =
1

(2r + 1)!
(x− 6iβ[22ry − i(1 + 2 · 32r)t]) + â2r+1.

In addition, the components sr of vector s = (s1, s2, · · · ) are defined as

∞∑

r=1

srκ
r = ln

[ 2
κ
tanh

(κ
2

)]
, (3.23)

and â2r+1 (r = 0, 1, 2, · · · ) are free complex parameters.

By taking a2r+1 = 0 for all r ≥ 0 in Lemma 3.2, we have

x±r (−x,−t) = −x∓r (x, t), r ≥ 1.

Because s1 = s3 = · · · = sodd = 0 from (3.23), we obtain

Ŝu(x
±(n) + js) = Su(−x∓1 , js2,−x∓3 , js4, · · · ),

where Ŝu(x, t) = Su(−x,−t). According to the definition of Schur polynomial (3.21), one can

readily obtain

Ŝu(x
±(n) + js) = (−1)u

⌊ u

2
⌋∑

r=0

Su−2r(x
∓(n) + js).

Finally, substituting the above formula into (3.22) and using simple row manipulations, we find

Φ(−x,−y,−t) = Φ(x, y, t), Ψ(−x,−y,−t) = Ψ(x, y, t).

Thus, we have the following theorem.

Theorem 3.2 When free complex parameters â2r+1 = 0 (r = 0, 1, 2, · · · ) in Theorem 2.2,

the rational solutions (2.4) of (1.1) are parity-time-symmetric.
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4 Dynamic Analysis

In this section, we delineate the dynamic behaviors of the general breather, soliton and

rational solutions of (1.1).

4.1 First-order breather and soliton solutions

By setting N = 1 and p11 = a1 + ib1 in Theorem 2.1, we derive the first-order breather and

soliton solutions of (1.1),

Φ1 = −1− g1

f1
, Ψ1 = −2(ln f1)xy,

g1 =
a1 + ib1
a21 + b21

eξ1(eξ1 + 1) + (a1 − ib1)(e
ξ1 + 1), (4.1)

f1 =
1

2a1
(e2ξ11 + a21 + b21) +

2a1
a21 + b21 + 1

cos(ξ12)e
ξ11 ,

where ξ1 = ξ11 + iξ12 and

ξ11 = α1x− α3y − α5t+ ℜ(ξ01),

ξ12 = α2x+ α4y − α6t+ ℑ(ξ01),

α1 = a1

(
1− 1

a21 + b21

)
, α3 = 6a1b1β

(
1 +

1

(a21 + b21)
2

)
,

α2 = b1

(
1 +

1

a21 + b21

)
, α4 = 3β(a21 − b21)

(
1− 1

(a21 + b21)
2

)
,

α5 = 4a1β(a
2
1 − 3b21)

(
1− 1

(a21 + b21)
3

)
+ 6a1β

(
1− 1

a21 + b21

)
,

a6 = 4b1β(3a
2
1 − b21)

(
1 +

1

(a21 + b21)
3

)
+ 6b1β

(
1 +

1

a21 + b21

)
.

Here, ℜ(ξ01) and ℑ(ξ01) represent the real part and imaginary ones of ξ01 , respectively. It is

shown that when α2, α4, α6 6= 0, the solutions Φ1,Ψ1 exhibit periodicity in both x, y and t,

with periods 2π
α2

, 2π
α4

and 2π
α6

, respectively. The family of the first-order breather and soliton

solutions (4.1) for (1.1) contains three parameters a1, b1 and ξ01 . Hence, there are various

shapes of breather and soliton solutions. Firstly, we consider the first-order breather solutions

in the plane (x, y). Taking t = 0 for convenience, we obtain such breather solutions as depicted

in Figure 1. As illustrated in Figure 1, the first-order breather solutions in the plane (x, y)

propagate along the straight line α1x − α3y = 0 and admit bidirectional travel. Furthermore,

by fixing y = 0, the “normal” waves are observed when α2 is small and α1 is comparatively large

(see Figure 2(a)). Conversely, spindle-like waves emerge when α1 is small and α2 is significantly

larger than α1 (see Figure 2(b)). From Figure 1, it is noted that the structures of Φ and Ψ are

similar; therefore, we omit the discussions of the real function Ψ in subsequent analysis.
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Figure 1 The first-order breather solutions (4.1) of (1.1) with parameters β =

1, ξ01 = 0 and t = 0. (a) The breather solutions |Φ| (top) and Ψ (bottom) are

periodic along the y-axis with p11 =
√
2. (b) The breather solutions |Φ| (top) and

Ψ (bottom) are periodic along the x-axis with p11 =
√

2

2
+

√
2

2
i.

Figure 2 Shape of breather solutions given by (4.1) at y = t = 0. (a) A normal

shape of |Φ| (top) and Ψ (bottom) with parameters β = 1, p11 = 2 + 1

2
i, ξ01 = 0.

(b) The spindle shape of |Φ| (top) and Ψ (bottom) with parameters the same as

(a) except p1 = 1 + 10i.

Next, we explore the first-order breather solutions in the space-time plane (x, t). Setting

y = 0, β = − 1

12
, a1 = b1 =

√
2

2
, ξ01 = 0, (4.2)

we obtain the first-order breather solutions of (1.1) in plane (x, t) depicted in Figure 3(c). As

shown in Figure 3(c), this solution is periodic in both x and t with oscillations moving along
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the line x = t. Interestingly, by selecting the parameters

y = 0, β = 1, a1 = b1 =

√
2

2
, ξ01 = 0, (4.3)

we obtain a first-order line breather solution. Unlike the normal breather solutions discussed

previously, the line breather solutions maintain a stable peak height, resembling soliton solutions

on the periodic background (see Figure 3(b)).

Figure 3 The first-order breather and soliton solutions Φ of (1.1) with parameters

ξ01 = 0 and y = 0. (a) A soliton solution with β = 1, p11 =
√
2. (b) A line

breather solution with β = 1, p11 =
√

2

2
+

√
2

2
i. (c) A breather solution with

β = − 1

12
, p11 =

√
2

2
+

√
2

2
i.

Furthermore, if α2 = α6 = 0, i.e., b1 = 0 in (4.1), we can obtain the first-order soliton

solutions of (1.1) in the space-time plane (x, t). The soliton solution is illustrated in Figure

3(a) with parameters β = 1, p11 =
√
2, ξ011 = 0 and y = 0. As shown in Figure 3(a), the soliton

solutions of (1.1) possess

|Φ|2Amp =
[(

1 +
(a21 − 1)2 cos(θ)

|a1|(a21 + 1) + 4a21 cos(θ)

)2

+
( (a41 − 1)2 sin(θ)

|a1|(a21 + 1) + 4a21 cos(θ)

)2]
,

where θ = 3β
(
a21 − 1

a2

1

)
y + ℑ(ξ01), and top trajectory

x(t) =
(
a21 +

1

a21
+ 10

)
βt+

a1(ℜ(ξ01)− ln |a1|)
a21 − 1

.

4.2 Higher-order breather and soliton solutions

In order to obtain the second-order breather and soliton solutions, we set N = 2 in Theorem

2.1. In this case, we have

Φ2 =
g2

f2
, Ψ2 = −2(ln f2)xy,

g2 =

∣∣∣∣∣∣
m

(1)
1,1 m

(1)
1,2

m
(1)
2,1 m

(1)
2,2

∣∣∣∣∣∣
, f2 =

∣∣∣∣∣∣
m

(0)
1,1 m

(0)
1,2

m
(0)
2,1 m

(0)
2,2

∣∣∣∣∣∣
,

(4.4)
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where the functions m
(1)
u,v, m

(0)
u,v (u, v = 1, 2) are given in (2.2). Because the explicit expressions

of f2, g2 are very cumbersome, we omit them. It is well known that the second-order breathers

describe the interactions between two first-order breathers. To illustrate characteristics of

superpositions of breathers in (1.1), we plot Figure 4(a), were the parameters β = 1, p11 =

2, p21 =
√
3
2 + 1

2 i, ξ
0
1 = ξ02 = 0 and t = 0.

Figure 4 The superpositions of breathers and solitons with the parameters β = 1

and ξ01 = ξ02 = 0. (a) A superposition of two breathers with p11 = 2, p21 =
√
3

2
+ 1

2
i

and t = 0. (b) A superposition of two solitons with p11 =
√
2, p21 = 2

√
2

and y = 0. (c) A superposition of one soliton and one breather with p11 =√
2, p21 =

√
2

2
+

√
2

2
i and y = 0. (d) A superposition of two breathers with

p21 =
√

2

2
+

√
2

2
i, p11 =

√
3

2
+ 1

2
i and y = 0.

Furthermore, we can also construct the second-order breather and soliton solutions in the

space-time plane (x, t) by selecting appropriate values of free parameters. We plot three kinds

of superpositions of the breather and soliton solutions in Figure 4. Figure 4(b) describes the

interaction between two first-order solitons. We can see clearly that the shapes and velocities of

solitons are maintained after collision except for some phase shifts, indicating that this collision

is elastic. Similarly, we may obtain the superposition of one breather and one soliton (see

Figure 4(c)) and of the two breathers (see Figure 4(d)). By setting N ≥ 3 in Theorem 3.1,

one can readily derive Nth-order breather and soliton solutions for (1.1). Generally, the Nth-

order breather and soliton solutions describe the superpositions between u (u = 1, 2, · · · , N)

first-order solitons and N -u first-order breathers. Due to their complexity, explicit expressions

are not provided here. This discussion focuses on the case of N = 3. Results for different

choices of free parameters, such as third-order breather and soliton solutions, are illustrated

in Figures 5–6. As shown in Figure 5(a), three first-order breathers can interact in pairs or

collide simultaneously. Figure 5(b) demonstrates how the free parameters ξ0u can be adjusted to
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manipulate the collision points between first-order breathers, which can be useful to construct

various dynamic patterns. In addition, we display the four superposition patterns of breather

and soliton solutions in Figure 6.

Figure 5 The third-order breather solutions Φ of (1.1) for the parameters β =

1, t = 0, p11 =
√

2

2
+

√
2

2
i, p21 =

√
3

2
+ 1

2
i, p31 = 2 + 2i, ξ01 = ξ02 = 0 with (a)

ξ03 = 0 and (b) ξ03 = 50.

Figure 6 The superpositions of breathers and solitons with the parameters β =

1, ξ01 = ξ02 = ξ03 = 0 and y = 0. (a) A superposition of three solitons with

p11 =
√
2, p21 = 2, p31 = 2

√
2. (b) A superposition of two solitons and one

breather with p11 =
√
2, p21 = 2

√
2, p31 =

√
2

2
+

√
2

2
i. (c) A superposition of one

soliton and two breathers with p11 =
√
2, p21 =

√
2

2
+

√
2

2
i, p31 = 1

2
+

√
3

2
i. (d) A

superposition of three breathers with p11 =
√

2

2
+

√
2

2
i, p21 =

√
3

2
+ 1

2
i, p31 = 1

2
+

√
3

2
i.
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4.3 The rational solutions of (2 + 1)-dimensional Hirota equation

Taking N = 1 in Theorem 2.2, we obtain the first-order rational solutions

Φ1r = 1− G

F
, Ψ1r =

H

F 2
,

G = 12iβy + â1 − â1 + 1,

H = 8(6iβy + â1 − â1)(x − 18t+ â1 + â1),

F = (x+ 6iβ(y + 3it) + â1)(x− 6iβ(y − 3it) + â1) +
1

4
.

(4.5)

From this formula, we see that regardless of the arbitrary value chosen for the time variable

t, the first-order rational solutions (4.5) exhibit structures similar to the Peregrine soliton of

NLSE (see [11]). These are identified as lump solutions of (1.1). In order to understand the

dynamic behaviors of these lumps, we plot the first-order lump solution in Figure 7.

Figure 7 The first-order rational solutions Φ and Ψ of (1.1) with parameters

β = 1, â1 = 0 and t = 0.

Next, fixing t = 0, we find that the intensities Φ1r and ψ1r tend to the constant backgrounds

1 and 0 as x, y → ∞. |Φ1r|2 has one local maximum 3 at (x1, y1) and two local minima 0 at

points (x±2 , y
±
2 ). Meanwhile, Ψ1r also has two local maximum 24|β| at (x±3 , y±3 ) and two local

minima −24|β| at points (x±4 , y±4 ) . Here, the four critical points are defined by

(x1, y1) =
(1
2
, 0
)
, (x±2 , y

±
2 ) =

(1±
√
3

2
, 0
)
,

(x±3 , y
±
3 ) =

(2±
√
2

4
,
±
√
2

24β

)
, (x±4 , y

±
4 ) =

(2∓
√
2

4
,
±
√
2

24β

)
.

Therefore, for the first-order lump solutions Φ1r and Ψ1r, it gives rise to

W1 =
√
3, W2 =

√
2(108 + 72

√
2)β2 + 2

12|β| ,
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where W1 and W2 are wave widths of |Φ1r| and Ψ1r, respectively. Therefore, the parameter β

does not effect the amplitude of lumps Φ1r, but influences the duration of Peregrine solitons Φ1r

and Ψ1r. Furthermore, we plot other patterns of the first-order rational solution at the different

planes, which are displayed in Figures 8–9. Similarly, by setting N = 2, β = 1 and â1 = â3 = 0

in Theorem 2.2, we plot the second-order rational solution in Figure 10. Figure 10(a) displays

a lump whose maximum amplitude is 5 and whose structure is similar to second-order rogue

waves of NLSE. As shown in Figure 10(b), the second-order rational solutions belong to the

type of rogue waves of modified Korteweg-de Vries equation in the plane (x, t) (see [36]). (1.1)

also possesses rogue waves, as shown in Figure 10(c).

Figure 8 The first-order rational solutions Φ and Ψ of (1.1) with parameters

β = 1, â1 = 0 and y = 1.

Figure 9 The first-order rational solutions Φ and Ψ of (1.1) with parameters

β = 1, â1 = 0 and x = 0.
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Figure 10 Three patterns of second-order rational solutions Φ of (1.1) for the parameters

β = 1, â1 = 0 and â3 = 0. (a) t = 0, (b) y = 1, (c) x = 0.

5 Conclusions

In this paper, utilizing Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy re-

duction technique, we have constructed the general breather, soliton and rational solutions

of (1.1). These solutions are explicitly presented in terms of Gram determinant. We discuss

their regularity and symmetry. The superpositions of the breathers and solitons of (1.1) are

established by different choices of free parameters. Furthermore, we analyze dynamic behaviors

of fundamental rational solutions and obtain three kinds of dynamic patterns in (1.1). These

results demonstrate that Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduc-

tion technique effectively investigate the breather, soliton and rational solutions of nonlinear

integrable equations. Utilizing this method to study higher-order integrable systems may be an

interesting topic in the future.
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