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Breather, Soliton and Rational Solutions for the
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Abstract By virtue of Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy
reduction technique, the general breather, soliton and rational solutions in the (2 4 1)-
dimensional Hirota equation are constructed. These solutions are expressed in terms of
Gram determinants and Schur polynomials. The Nth-order breather and soliton solu-
tions contain 2N free complex parameters, while Nth-order rational ones possess N free
complex parameters. By utilizing the Hermitian matrices, the range of free parameters is
determined such that it ensures the regularity of these breather and soliton solutions. For
the rational solutions, their non-singularity is proved and the parity-time-symmetric con-
dition is derived. Furthermore, the rich dynamic patterns of breather, soliton and rational
solutions are established by various choices of free parameters.

Keywords Hirota’s bilinear method, Kadomtsev-Petviashvili hierarchy reduction
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1 Introduction

In the 1840s, Scott Russell reported the solitary waves on the water surface (see [1]). Hence-
forth, solitary waves were studied extensively in mathematics and physics (see [2-4]). They
retained shapes and velocities after collisions. In 1979, several breathers were investigated.
Especially, Ma breathers and Akhmediev breathers were spatially and temporally periodic, re-
spectively (see [5-6]). The Akhmediev-Kuznetsov-Ma breathers were spatiotemporally periodic
(see [7]). Recently, rogue waves have also attracted considerable attention. They are localized
waves in both space and time, described as large and spontaneous waves in oceanography (see
[8]). Rogue waves have also been derived in experiments (see [9]). Similarly, lumps were just
localized waves in space for higher-dimensional integrable systems (see [10]). These phenomena

were observed in various fields such as optics (see [11-14]), plasma physics (see [15]) finance
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(see [16]), etc.

Up to now, the soliton, breather, rogue wave, and lump solutions have been established in
nonlinear evolution equations by using various methods, including the inverse scattering tech-
nique (see [17]), Darboux transformation (see [18]), algebraic geometry approach (see [19]),
Hirota’s bilinear method (see [20]), etc. In recent years, based on Hirota’s bilinear method,
the Kadomtsev-Petviashvili hierarchy reduction technique was explored to construct the soli-
ton, breather, rogue wave, and lump solutions of several nonlinear integrable equations. In
2012, Yang and Ohta proposed the Kadomtsev-Petviashvili hierarchy reduction technique to
derive the general rogue waves of the nonlinear Schrodinger equation (NLSE for short) (see
[21]). By virtue of this technique, general rogue waves of other bilinear integrable equation-
s were also discovered, including Davey-Stewartson I equation (see [22]), Davey-Stewartson
IT equation (see [23]) and Mel'nikov equation (see [24]). Subsequently, Chen et al. (2018)
tried to extend this technique to derive the higher-order rogue waves of the long-short wave
resonance equation and Schrodinger-Boussinesq equation (see [25-26]). However, the iterated
relation is too complex to derive the explicit expression of higher-order rogue waves. Up to
2020, Yang et al. introduced an innovative differential operator to solve the above problem,
and then they successfully established the general rogue waves of many bilinear integrable e-
quations, including Boussinesq equation (see [27]), generalized derivative Schrodinger equation
(see [28]), the three-wave resonance interaction equation (see [29]) and the massive Thirring
model (see [30]). These solutions were expressed elegantly and concisely in terms of Gram
determinants. We note that the solutions of these equations were derived from first- or second-
order equations in the Kadomtsev-Petviashvili hierarchy. In this work, we would like to extend
this technique to (2 + 1)-dimensional Hirota equation from the third-order equations in the
Kadomtsev-Petviashvili hierarchy.

The (2 + 1)-dimensional Hirota equation has the following form

i®; + @y +i8Prpy — U+ 6i8|P|° D, = 0, )

v, +2(0f%), =0, "
where @ is a complex function and W is a real function with respect to space variables =,y and
time ¢, and (8 is a real nonzero parameter representing the strength of higher-order linear and
nonlinear effects. (1.1) was derived from (1 4 1)-dimensional Hirota equation by employing an
asymptotically exact reduction method (see [31]). If y = x, (1.1) will be transformed into the
(1 + 1)-dimensional Hirota equation describing the wave propagation of ultrashort light pulses

in optical fibers (see [32-33]). The general higher-order rogue waves of (1 + 1)-dimensional

Hirota equation have been discovered by utilizing Hirota’s bilinear method (see [34]). For (1.1),
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using the bilinear transformation method, they obtained general higher-order rogue waves (see
[35]). However, these results did not include lump solutions, and these researchers did not
analyze breather and soliton ones. This work is to center around general breather, soliton and
rational solutions of (1.1) by using Hirota’s bilinear method and Kadomtsev-Petviashvili hier-
archy reduction technique. We focus on the range of free parameters to satisfy the regularity of
breather and soliton solutions, and demonstrate that obtained rational solutions are nonsingu-
lar. The parity-time-symmetric condition for rational solutions is also discussed. Furthermore,
we display the various dynamic patterns of breather, soliton and rational solutions to (1.1).
In particular, the superpositions of the breather and soliton solutions exhibit interesting dy-
namic patterns. We also discover that these rational solutions have both rogue wave and lump
solutions in the framework of (2 + 1)-dimensional Hirota equation (1.1).

The structure of this paper is organized as follows: In Section 2, the explicit expressions of
the general breather, soliton and rational solutions for (1.1) are presented in terms of the Gram
determinant. In Section 3, the derivation of these solutions is demonstrated with the aid of
two types of Gram determinants. Furthermore, the regularity and symmetry of obtained solu-
tions are discussed. In Section 4, the dynamic behaviors of fundamental breather, soliton and
rational solutions are investigated analytically and graphically. Moreover, the superpositions
of the breather and soliton solutions are explored. Finally, the main results of the paper are

summarized in Section 5.

2 Breather, Soliton and Rational Solutions of (2 + 1)-Dimensional
Hirota Equation

The general breather and soliton solutions in (1.1) are given by the following theorem.

Theorem 2.1 The (2+1)-dimensional Hirota equation (1.1) possesses the Nth-order breather

and soliton solutions as follows

01

O=—, U=-2(n00)zy- (2.1)
]
Here,
- (n)
On 1§g,%t§N(m“’“)’ (22)
whose matrix elements are defined as
mom — L ( _ @)"e&ﬁ& Lyt ( - @)"egu
’ Pu1 +p1}1 p’ul Pu1 +pv2 p’u2
%(_ Puz) "8, 4 %( - Dyt
DPu2 +p1}1 Pu1 DPu2 +p1}2 Dy2
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where

€u = (pu1 — pu2) (@ — [4(pu1 + Pu2)® — 4puipuz + 6]5t)

+ 3i(pZy + plo)By + &0

with the “~ 7 representing complex conjugation. In addition, 9 are arbitrary complex constants

and the complex free parameters py1,puz satisfy the following constraints
pU1'pUQ:17 ’U/:].,Q,"',N. (23)

The derivation of this theorem will appear in Section 3. Note that since there are forms
m (u,v = 1,2,--- N, m,n = 1,2) in Theorem 2.1, the p,m and p,; should satisfy
that the values of p,m + D, are nonzero. From the parameter relations (2.3), these Nth-
order breather and soliton solutions (2.1) contain 2N free complex parameters p,1, & (u =
1,2,---,N). With the help of these free parameters, we can establish various superposition
patterns of the breather and soliton solutions. We note that the solutions (2.1) are soliton types
when p,; are real while the solutions (2.1) are breather solutions when p,; are non-real. It is
well known that breather solutions could become rational solutions in the limit case, which can

contain rogue waves or lump solutions. For the (2 + 1)-dimensional Hirota equation (1.1), our

general rational solutions are represented by Theorem 2.2 as follows.

Theorem 2.2 The (2 + 1)-dimensional Hirota equation (1.1) has the Nth-order rational

solutions
o=21 T=—2(In7)y. (2.4)
70
here,
o= det (" )
n 1<u,0<N 2u—1,2v-1/»

whose matrix elements are defined as

ny _ PO +&+n)" (g0 +n1" —n)" (p+1)(g+1)

m
we u! v! 2(p+q)

b)
p=q=1

where

¢ = px+ 6iBp°y — 68(p + 2p°)t + »_ Gap 1 > (p),
r=0

0 = qx —6i8¢°y — 68(q +2¢°)t + »_ o410 (q)
=0

and agr41 (r=20,1,2,--- . N) are free complex parameters.
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The proof of Theorem 2.2 will also be presented in Section 3. In contrast to the previous
works [35], our results have different matrix elements, which will give rise to new types of
solutions. Specifically, the rational solutions in [35] are nonlocalized in the planes (z,y) and
(y,t), that is, these rational solutions are normal algebraic solitons. However, our rational
solutions will exhibit lump solutions in the plane (x,y) and rogue wave solutions in the plane
(y,t). Interestingly, these results are different from other bilinear integrable systems, such as
the Davey-Stewartson equation (see [22-23]), the Mel'nikov equation (see [24]), the (2 + 1)-

dimensional dispersive long wave system (see [36]), etc.

3 Derivation of the Breather, Soliton and Rational Solutions to the
(241)-Dimensional Hirota Equation

In this section, we focus on constructing the breather, soliton and rational solutions of (1.1)
by using Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduction technique.
Firstly, using the independent variable transformation (see [35])

9
f )

where f is a real function and g is a complex function with respect to variables x,y and ¢, (1.1)

=2 w=—20nf)., (3.1)

is transformed into the bilinear forms

(D3 +2)f - f =247, (3.2)

(iBD3 + DD, + 6i3D, +iD;)g - f = 0, (3.3)
where D is the Hirota’s bilinear differential operator defined by

P(DIaDvat)[g(xvyat) ! f(xvyat)]
= P(0, — 3,0y — 0y 01— )9 (s, )F (&5 )t

The solutions of bilinear equations (3.2)—(3.3) can be obtained based on the following lemma.

Lemma 3.1 (see [34]) If functions ffLSﬁz, @(Ln) and 1%”) of variables (x_y1,x1, T2, x3) satisfy
the following differential and difference relations
Do) = GO,
R e O AR TR0
8m3mu’}3 = 05, GO — 00, G 0, OV + BN 07 G,

O, ) n @un—l){z]"l()n+l)7 m’g}jl) _ ’Fflgn) (n)w n+1)

w,v

(3.4)

S
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and
0,3 = D g, G — _Jn-1)

81‘2&’8”) =0 1‘:01(?); mzw (n) = 82 {/)v n)

(3.5)
8903‘)0 83 ‘pun)v Isw (m) = 83 wf)n )
R A A
then the function
Fo= det (™) (3.6)

1<u,p<N - twdv

satisfies the higher-dimensional bilinear equations in the Kadomtsev-Petviashvili hierarchy

(D$1D$71 - Q)Fn . A7:n + 2Fn+1 . A7:n—1 = 07 (37)
(Dgl + 3D11Dr2 - 4Drg)7-n+1 Tn = 0 (38)
Here, (i1,i2, - ,in) and (j1,72, - ,jn) are arbitrary sequences of indices.

Next, we restrict 7,, to satisfy the dimensional reduction and conjugate conditions

(8$71 + 811)%’1 = C"Ti’ru (39)

Tn =Tn (3.10)
where C' is an arbitrary constant. Substituting (3.9) into (3.7), we obtain
(D2, +2)Tn - T — 27041 - Tne1 = 0. (3.11)
From (3.10), we can define
f=7, g=7, g=T7-1.
Then, substituting the above formulas into (3.11) and (3.8), we obtain

(D2 +2)f- f =247, (3.12)

(D3, +3Dy, Dy, — 4Dy, )g - f = 0. (3.13)
Subsequently, through the coordinate transformation
T =x —66t, w9 =3iBy, x3= —4pt, (3.14)

the bilinear equations (3.12)—(3.13) become the bilinear equations (3.2)—(3.3), respectively. Fi-

nally, using variable transformation (3.1), we derive the solutions of (1.1).
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Proof of Theorem 2.1 In order to construct the breather and soliton solutions of the

(2+ 1)-dimensional Hirota equation (1.1) in Theorem 2.1, we introduce "), %" and i as

follows (see [37])

2
~ 1 ~\ "N
() / S 30 dp — _ L Pem " s
My = Pu djv dzy = ( ) € )
fﬁ,;_l Pui T Qur Gun (315)

qu(ln) = p:heg“l + pllyete, 1;7571) = (—qu1) et 4 (—qu2) ™2,

where

Eum = —r_1 + Pum 1 +p12”71:1?2 +p13”715173 + 53171’
um
I R S
T = q —T-1 + Qa1 = GurT2 + QurTs T+ Ny
vn

Here, puim, qor, {3771 and 7785 are arbitrary complex parameters. We select sequences (i1, 42, - - ,

in) and (j1,j2,--- ,jn) as natural sequence (1,2,3,---, N), and rewrite 7 function (3.6) as
N
T = m )y — Suz+nuz _ (n)
Tn 1Sg7%tSN(mu,v) Hl e O, On 1§g§t§N(mu,U), (316)
u=
where

m n) _ eEu1—§u2+77u1—77u2Fn(pu1’ LIvl) 4 eful—ﬁuan(pul, QvQ)

u,v

4 g1~ N2 Fn (pu27 Q'ul) + Fn(pu27 qu)

with
1 AN
F, b, q :—(__> )
( ) p+q q
§ur — &uz = (Pu1 — pu2)T1 — (pil —piz)@ + (pfil - pzz)%
1 1
+ (— - _)117—1 + & — &
Pu1 Pu2
_ 2 2 3 3
Nul — N2 = (qul - QUQ)xl - (qul - qu2)$2 + (qul - qu2)x3
1 1
+ (— - —)55—1 + 001 — -
qul qu2
Note that
(8w1 + 3171)7717(]2 = [[G(pulupuZ) + G(qvlquZ)]Fn(pula qvl)efu—i_nv
+ G(pulapu2)Fn (pula qu)eﬁu + G(qvla qu)Fﬂ (qu, qvl)enu]v
where

fu - ful - fuZa Nu = Nul — N2,
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1 1 1

Glpg)=(p—q)+-—=-=(p—q (1——).

(P, 9) =P —q) PR ) "

Thus, by taking
Pul * Pu2 = 17 Qul * qu2 = 1,

we can obtain
N N
§ n § n
811011 = Au,vawlmuﬂ); = - Au,vam,lmq(l)v = _am,lo'na
w,v=1 w,v=1

where A, , denotes the (u,v)-cofactor of the matrix (mg")) Therefore, the dimensional reduc-

tion condition (3.9) is satisfied. From the above form together with the gauge freedom of 7, in

(3.6), it yields

(Dil + 2)0n cOp = 20n+1 *On—1,

(‘D:?E’l + 3D11Dw2 - 4Dw3)0—n+1 cOp — O.
Next, setting
_ 0 -0 ~
Quin = Puis Mo = Curms W =1,2,--- N, m=1,2,

we have &, = 7,7 under the coordinate transformations (3.14), which implies

m(—n) — 71 (_ ﬁﬂ)neﬁul—fuz"rgm—gw + 1 (_ pﬂ)n
u,v — —
’ Pul + Dy1 Pul Pu2 + Dyo Pu2
% ( _ ﬁﬂ)negul_fvﬂ + % ( _ ﬁﬂ)negul—fw
Pul + Py2 Pul Pu2 + Doy1 Pu2
= 71 (_ ﬁﬂ)neﬁul—fuz"rgm—gw + 1 (_ pﬂ)n
ﬁvl + Pu1 Pu1 ﬁvQ + Pu2 DPu2
! (- @)”esul—fvz U (- @)"QZM—Q
DPya + Pul Dul Dy1 1+ Pu2 Du2
=my),
ie.,
Op =0_np.

Finally, defining
oo=f, o1=g, 0-1=7,

together with coordinate transformations (3.14), we arrive at the bilinear equations (3.2)—(3.3)
of (1.1). Since the bilinear equations (3.2)—(3.3) do not contain derivation of the variable x_1,

we set x_1; = 0 for convenience. Thus, this completes the proof of Theorem 2.1.
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Proof of Theorem 2.2 In order to derive the rational solutions of the (24 1)-dimensional

Hirota equation (1.1) in Theorem 2.2, we select my"y, ¥ and 3" as follows

() :/Jm)@(n) dzy = P%)" (294)° (p+1)(q+1)(_£)”es+n,

et worv u! v! 2(p+q) q (3.17)
~(n POy p™(p+1 (n q0,)" o
g = o) u’;) Plp 1) 5 Jet, g = (22 UC!’) (—q)""(q + 1)e",

where

1 —a
§= ];35—1 +pry + pPas + plas + Z f In"(p),

r=1

1 ) 5 by
=-—z_1+qr1 — + +) —In'(g).
e R R . n"(q)

r=1

Here, p,q,a, and a are arbitrary complex constants. Particularly, setting the sequences
(i1,42,-+- ,in) and (J1,j2, -+ ,jn) as odd sequence (1,3,5,--- ;2N — 1) and taking p=¢ =1,
the determinant (see [21])

Tn = 1§S7%%N(méz)—172v—1|p:q:1)
satisfies the dimension reduction condition
(Op_, + Op, )T = 4ANT,.
Furthermore, let free parameters
a. =b,, r=1,2,--- N.
Then, under the coordinate transformation
r1 =x—60t, xo =3Py, x3=—40t,
one can readily find that
§|p:q:1 = ﬁ|p:q:17 mg,l1);|p:q:1 = Ef;un”p:q:lv
ie.,
Tn =T—n-

Thus, we can define

TO:fa =49, T—lzg'
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Substituting the above results into bilinear equations (3.7)—(3.8) together with coordinate trans-

formations (3.14), we also arrive at the bilinear equations (3.2)—(3.3) of (1.1).

proof of Theorem 2.1, we set x_1; = 0. Finally, using the operator relations

pOpp"et = p"et[pd, + & +n),

q0y(—q)~"e" = (—=q)""e"[qdy + ' — n],

where

¢ =p(z — 65t) + 61p*By — 12p°Bt + > _ g1 In (p),

r=0

1 =gl — 6Bt) — 6i¢° By — 12¢°Bt + > _Gpy1 0" (g),

r=0
we have the rational solutions of (1.1),
o=2 U= —20nm),,
70
Here
7= det (" )
n 1<u,u<N 2u—1,2v—1/»

whose matrix elements are defined as

ml(ﬁ)} _ ( _ 2)”eg+n (pOp +& +n)" (g9 +1' —n)* (p+1)(¢+1)

P u! v!

where

¢ = plx — 68t) + 618p°y — 12p°Bt + > G 1 " (p),

r=0

' = q(z — 6pt) — 61B¢°y — 12¢°Bt + Y _Gr 110" (g).

r=0

Similar to the

(3.18)

(3.19)

(3.20)

Due to the gauge freedom of 7, function, we remove the formula ( — %)neg‘*". In the end,

similar to NLSE (see [21]), we may also take a2 = a4 = - -+ = Gay—2 = 0. Thus, this completes

the proof of Theorem 2.2.

Discussions of Regularity Next, we discuss the regularity of the obtained breather,

soliton and rational solutions of (1.1). From (3.15), we find that 7o can be given by the

determinant of a Hermite matrix

k) u7

My = )Y W = [ (65 S e
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For any zero vector s = (51,52, ,sn5) T and ay; > 0 (u=1,2,---, N, a,1 is real part of p,1),

we have

N z, N _ .
stMys = E gumg%sv - / E Fuse(eS + ef2)(efur + e52) day
—o0

’LL,'U:l u)v:l

T N
:/ Zsu(eful _|_e§u2)
T u=1

where the symbol “1” indicates the conjugate transpose. It is shown that the Hermite matrix

2
dzy > 0,

M is positive definite, hence 75 > 0. From (3.16), we have o9 > 0. Similarly, when a,; < 0 for

u=1,2,---, N, it leads to og < 0. Thus, we have the following theorem.

Theorem 3.1 Assuming the free complex parameters py1 = aqy + by, foru=1,2,--- /N,
when real parameters a,, > 0 or a,, <0 for all u > 1, the breather and soliton solutions (2.1) of

(1.1) in Theorem 2.1 are nonsingular.

Furthermore, from (3.17), we find that 79 can also be given by the determinant of a Hermite

matrix

(0
M = (mgu)—l,Qv—l)]u\{vzlv

i = /w (P9p)" (a94)° P+ V(g +1) ere das.
o oo Ul v! ) R
Thus, it leads to
N 2u—1 20—1 o
T Mos = _ o 09)™ (0" (p+ (e +1) / “E‘ ;
s' Mas Z SuSv (2u — 1)! (20 —1)! 2 . e et T

u,v=1

N
™ (pdp)?" 1 V2(p+ 1) 5‘ ‘2
_/_Oo > s Gu_1 2 Ol 101>0

It implies that the Hermite matrix Ms is positive, i.e., 79 > 0. Therefore, the rational solutions
in Theorem 2.2 are nonsingular.

Finally, we analyze the parity-time-symmetric condition of rational solutions (2.4) for (1.1)
in Theorem 2.2. Our derivation is based on the rational solutions expressed in terms of the

Schur polynomial defined by

iS’T(x)nT = exp (ixrmr), (3.21)
r=0 r=1

where x = (21,22, -+ ). Applying the simplification technique (see [21]), we have the following

Nth-order rational solutions of (1.1) from Theorem 2.2.
Lemma 3.2 (1.1) has Nth-order rational solutions

o=2L W= —2(InG0)ay.
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Here
~ ~ (n)
On = 1SS)%tSN(m2u—l,2v—l)a (3.22)
whose elements are
min(u,v) 1
A= 3 e ) 39S ) +.9)
j=

+

where vectors x*(n) = (27 (n),zy (n), ) are defined as

=2 — 6i8(y — 3it) —n + ay,

{xf(n) =z + 6if(y + 3it) + n + ay,
zy (n)

and for all r > 1,

x;(n) = x;r(n) =0,
23,4(n) = m(x + 61822y +1i(1 4 2 - 32)t]) + Gopy1,

1

Ty,qq1(n) = m(x —6iB[2%"y —i(1 +2-3*)t]) + Qzrr1.

In addition, the components s, of vector s = (s1,S2,---) are defined as

ZSTKJ —1n{ tanh( )} (3.23)

and agr41 (r=20,1,2,---) are free complex parameters.
By taking as,4+1 = 0 for all » > 0 in Lemma 3.2, we have
—+
T, (—x,—t) = —xf(x,t), r>1

Because s1 = s3 = -+ = $oa4 = 0 from (3.23), we obtain

~

SU(Xi(n) —|—jS) = SU(_ZET?jSQv _ZE:):’Fa.jsﬁla T )7

where §u(x, t) = Syu(—x,—t). According to the definition of Schur polynomial (3.21), one can

readily obtain

Su(x*(n) + js) = Zsu 2r (X7 (n) + js).

Finally, substituting the above formula into (3.22) and using simple row manipulations, we find

@(—x,—y,—t) = q)(x7y7t)7 \Ij(_xa_ya_t) = \Ij(xayat)
Thus, we have the following theorem.

Theorem 3.2 When free complex parameters as,.+1 =0 (r=0,1,2,---) in Theorem 2.2,

the rational solutions (2.4) of (1.1) are parity-time-symmetric.
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4 Dynamic Analysis

In this section, we delineate the dynamic behaviors of the general breather, soliton and

rational solutions of (1.1).
4.1 First-order breather and soliton solutions

By setting N =1 and p11; = a1 +ib; in Theorem 2.1, we derive the first-order breather and

soliton solutions of (1.1),

(1)1:_1_2’ \111:—2(1nf1)mya

fi
b o
g = BEDLE (8 4 1) (g — it (e + 1), (4.1)
ay + bj
_ 1 2811 2 2 1 E11
fi= 9, (e™ +ay +b7) + a%—i—b%—i—lcos(fu)e )
where §; = &1 +1&12 and
€11 = aqw — azy — ast + R(EY),
512 = (X + a4y — Oéﬁt + %(flo),
1 1
alzal(l—m), 03:6a1b15(1+m)
1
— 2 —_——
o<2—b1(1+ 1+b2) s = 3B(a? —13)(1 @ +b)2)
1
a2
a5 = 4a1 B(a2 — 3b2) (1 +b2 )+6a16(1 e ).
2
ag = 4b1 B(3a2 — b?) (1+ +b2 7) + 6081+ 1+b2)

Here, R(£Y) and S(£)) represent the real part and imaginary ones of &9, respectively. It is
shown that when s, ay, g # 0, the solutions ®1, ¥y exhibit periodicity in both x,y and t,
with periods i—’;, i—z and i—g, respectively. The family of the first-order breather and soliton
solutions (4.1) for (1.1) contains three parameters aj, by and £9. Hence, there are various
shapes of breather and soliton solutions. Firstly, we consider the first-order breather solutions
in the plane (x,y). Taking ¢t = 0 for convenience, we obtain such breather solutions as depicted
in Figure 1. As illustrated in Figure 1, the first-order breather solutions in the plane (z,y)
propagate along the straight line ayx — asy = 0 and admit bidirectional travel. Furthermore,
by fixing y = 0, the “normal” waves are observed when «y is small and «; is comparatively large
(see Figure 2(a)). Conversely, spindle-like waves emerge when oy is small and « is significantly

larger than «; (see Figure 2(b)). From Figure 1, it is noted that the structures of ® and ¥ are

similar; therefore, we omit the discussions of the real function ¥ in subsequent analysis.
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-8
-0.5

Figure 1 The first-order breather solutions (4.1) of (1.1) with parameters § =
1, € = 0and t = 0. (a) The breather solutions |®| (top) and ¥ (bottom) are
periodic along the y-axis with p11 = v/2. (b) The breather solutions |®| (top) and

U (bottom) are periodic along the z-axis with p11 = % + @i.
b
5 @ ' (b)
1| _A
1
0 ,
-5 0 5
x x
20
200
w10 . ]
100 [
0 0
_5 . 50 , ,
-5 0 5 -6 0 6 12

x x
Figure 2 Shape of breather solutions given by (4.1) at y =t = 0. (a) A normal
shape of |®| (top) and W (bottom) with parameters 8 = 1, p11 = 2+ 31, £ = 0.
(b) The spindle shape of |®| (top) and ¥ (bottom) with parameters the same as
(a) except p1 =1+ 10i.

Next, we explore the first-order breather solutions in the space-time plane (z,t). Setting

1 2
y=0, =L a=p =2

- O:
= = @0, (42)

we obtain the first-order breather solutions of (1.1) in plane (z,t) depicted in Figure 3(c). As

shown in Figure 3(c), this solution is periodic in both = and ¢ with oscillations moving along
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the line x = t. Interestingly, by selecting the parameters
y=0, B=1 ar=b=-—, =0, (4.3)

we obtain a first-order line breather solution. Unlike the normal breather solutions discussed
previously, the line breather solutions maintain a stable peak height, resembling soliton solutions

on the periodic background (see Figure 3(b)).

@

Figure 3 The first-order breather and soliton solutions ® of (1.1) with parameters

Y =0and y = 0. (a) A soliton solution with 8 = 1, p1; = v2. (b) A line
breather solution with 8 = 1, p11 = % + gi. (c) A breather solution with
B=—3, pu="3+2i

Furthermore, if s = ag = 0, i.e., by = 0 in (4.1), we can obtain the first-order soliton
solutions of (1.1) in the space-time plane (x,t). The soliton solution is illustrated in Figure
3(a) with parameters 8 = 1,p;; = V2, &9, =0 and y = 0. As shown in Figure 3(a), the soliton
solutions of (1.1) possess

) (@3 = 12cos(®)  \2 (af — 1)2sin())
s = (4 a7 0 7 et ete) * (et s 07 o) )

where 6 = 38(af — %)y + S(£)), and top trajectory
1

LRE) ~Infar]).

2
ai —1

1 a
() = (a? gt 10)ﬁt+
1
4.2 Higher-order breather and soliton solutions

In order to obtain the second-order breather and soliton solutions, we set N = 2 in Theorem

2.1. In this case, we have

(1)2 = 9_27 \Ij2 = _2(1n f2)1‘y7
f2
1 1 0 0
TR )
2 = 1 1 ) 2 = 0 0 )
m) mi) my) mi)
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where the functions mﬂ,, mSPL (u

u,v = 1,2) are given in (2.2). Because the explicit expressions
of fa, g2 are very cumbersome, we omit them. It is well known that the second-order breathers
describe the interactions between two first-order breathers. To illustrate characteristics of
superpositions of breathers in (1.1), we plot Figure 4(a), were the parameters 5 = 1, p;; =
2, pn =% 4+ 1, &) =) =0and t=0.

(€Y

10

-10 0
-1 0 1
t

Figure 4 The superpositions of breathers and solitons with the parameters g = 1

and &9 = €9 = 0. (a) A superposition of two breathers with pi11 = 2, pa1 = @ + %i

and t = 0. (b) A superposition of two solitons with pi11 = V2, pa1 = 2v2
and y = 0. (c) A superpos1t10n of one soliton and one breather with p11 =
V2, pn = g + %5 Y2 and y = 0. (d) A superposition of two breathers with
p21—£+£ pi1 = \f—|——1andy—0

Furthermore, we can also construct the second-order breather and soliton solutions in the
space-time plane (z,t) by selecting appropriate values of free parameters. We plot three kinds
of superpositions of the breather and soliton solutions in Figure 4. Figure 4(b) describes the
interaction between two first-order solitons. We can see clearly that the shapes and velocities of
solitons are maintained after collision except for some phase shifts, indicating that this collision
is elastic. Similarly, we may obtain the superposition of one breather and one soliton (see
Figure 4(c)) and of the two breathers (see Figure 4(d)). By setting N > 3 in Theorem 3.1,
one can readily derive Nth-order breather and soliton solutions for (1.1). Generally, the Nth-
order breather and soliton solutions describe the superpositions between u (v = 1,2,---, N)
first-order solitons and N-u first-order breathers. Due to their complexity, explicit expressions
are not provided here. This discussion focuses on the case of N = 3. Results for different
choices of free parameters, such as third-order breather and soliton solutions, are illustrated
in Figures 5-6. As shown in Figure 5(a), three first-order breathers can interact in pairs or

collide simultaneously. Figure 5(b) demonstrates how the free parameters Y can be adjusted to
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manipulate the collision points between first-order breathers, which can be useful to construct

various dynamic patterns. In addition, we display the four superposition patterns of breather

and soliton solutions in Figure 6.

3

2

1

0
0 2 -1 0 1 2
Yy Yy

Figure 5 The third-order breather solutions ® of (1.1) for the parameters 8 =
Lt=0 piu=2+Li py =3+ 1i p3r =2+2i & =€ =0 with (a)
¢ =0and (b )53—50.

t t
Figure 6 The superpositions of breathers and solitons with the parameters g =

1,& =¢85 =€ =0and y = 0. (a) A superposition of three solitons with
P11 = V2, pa1 = 2, pa1 = 2v2. (b) A superposition of two solitons and one
breather with p11 = V2, p21 = 2V2, ps1 = ‘/5 + \/5' (c) A superposition of one
soliton and two breathers with p11 = /2, pa1 = ‘/_ + ‘/_1 P31 = 2 + i (d) A

superposition of three breathers with p11 = ‘/_+—1, P21 = {4—51, P31 = %4_@1
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4.3 The rational solutions of (2 + 1)-dimensional Hirota equation

Taking N =1 in Theorem 2.2, we obtain the first-order rational solutions

G H
q)rzl__a \IIT:_7
! F T2

G =12ify+a; — a1 +1,
_ _ (4.5)
H= 8(6iﬁy +a; — 61)(93 — 18t +a, +61),
~ . . = 1
F = (x + 6if(y + 3it) + a1)(x — 6if(y — 3it) + a1) + T
From this formula, we see that regardless of the arbitrary value chosen for the time variable
t, the first-order rational solutions (4.5) exhibit structures similar to the Peregrine soliton of
NLSE (see [11]). These are identified as lump solutions of (1.1). In order to understand the

dynamic behaviors of these lumps, we plot the first-order lump solution in Figure 7.

(@ (b)
5 3 2
20
2
80 80 0
1
-20
-5 -2
-0.5 0 0.5 -0.5 0 0.5

Yy Yy
Figure 7 The first-order rational solutions ® and ¥ of (1.1) with parameters
B=1,a; =0and t=0.
Next, fixing ¢t = 0, we find that the intensities ®,. and 11, tend to the constant backgrounds
1 and 0 as z,y — 0o. |®1,|> has one local maximum 3 at (z1,y1) and two local minima 0 at
points (zF,y5). Meanwhile, ¥, also has two local maximum 24|3| at (zZ,ys) and two local
minima —24|/5| at points (xf, yf) . Here, the four critical points are defined by
1 1++3
(xl’yl): (570)7 (xétvyét): ( ) ’0)’

(ot i):<2i\/§ i_\/i)’ (2t i):<2:|:\/§ i_\/i)

T30 Y3 FRRESYY TarYa FRRSYY

Therefore, for the first-order lump solutions ®;, and ¥y, it gives rise to

\/2(108 +72v/2)32 + 2

Wi =+v3, W;=
1= V3, W 123 ’
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where W, and Ws are wave widths of |®1,| and ¥y, respectively. Therefore, the parameter 3
does not effect the amplitude of lumps ®1,., but influences the duration of Peregrine solitons ®,.
and ¥y,.. Furthermore, we plot other patterns of the first-order rational solution at the different
planes, which are displayed in Figures 8-9. Similarly, by setting N =2, f=1and a; =a3 =0
in Theorem 2.2, we plot the second-order rational solution in Figure 10. Figure 10(a) displays
a lump whose maximum amplitude is 5 and whose structure is similar to second-order rogue
waves of NLSE. As shown in Figure 10(b), the second-order rational solutions belong to the
type of rogue waves of modified Korteweg-de Vries equation in the plane (z,t) (see [36]). (1.1)

also possesses rogue waves, as shown in Figure 10(c).

@ (b)
5 5 0.4
1.02
&0 80 0
1.01
1
5 5 -04
- 0 1 -1 0 1
t t
Figure 8 The first-order rational solutions ® and ¥ of (1.1) with parameters
B=1,a1=0and y=1.
(@ ()
0.5 3 0.3
w 20
2
>0 > 0 0
1
-20
-0.5 -0.3
-0.25 0 0.25 -0.1 0 0.1
t t

Figure 9 The first-order rational solutions ® and W of (1.1) with parameters
B=1,a; =0and z=0.



20 G. Mu, Z. Y. Qin and Z. Q. Yang

©
50.4 5
< 3
>0
1 1
0.4
0.2
¢ t

Figure 10 Three patterns of second-order rational solutions ® of (1.1) for the parameters
B=1,a1=0andas=0. (a) t=0, (b) y=1, (c) z = 0.

5 Conclusions

In this paper, utilizing Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy re-
duction technique, we have constructed the general breather, soliton and rational solutions
of (1.1). These solutions are explicitly presented in terms of Gram determinant. We discuss
their regularity and symmetry. The superpositions of the breathers and solitons of (1.1) are
established by different choices of free parameters. Furthermore, we analyze dynamic behaviors
of fundamental rational solutions and obtain three kinds of dynamic patterns in (1.1). These
results demonstrate that Hirota’s bilinear method and Kadomtsev-Petviashvili hierarchy reduc-
tion technique effectively investigate the breather, soliton and rational solutions of nonlinear
integrable equations. Utilizing this method to study higher-order integrable systems may be an

interesting topic in the future.
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