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Abstract The ZN -graded Toda lattices are introduced and investigated under both in-

finite and periodic boundary conditions. Initially, a hierarchy of integrable ZN -graded

Toda lattices is constructed using the technique of discrete zero curvature equations under

infinite boundary conditions. The integrability of these lattices is demonstrated through

their bi-Hamiltonian structures. Subsequently, particular emphasis is placed on the study

of the ZN -graded Toda lattice, the first nontrivial lattice in the hierarchy. It is discovered

that this lattice can be represented in a Newtonian form with an exponential potential

in the Flaschka-Manakov variables. Furthermore, the periodic ZN -graded Toda lattice is

identified as either a periodic Toda lattice or a set of independent periodic Toda lattices

sharing the same periodicity. Finally, the complete integrability of the periodic ZN -graded

Toda lattice as a Hamiltonian system in the Liouville sense is established.

Keywords ZN -Graded Toda lattice, Zero curvature representation, Bi-Hamiltonian

structure, Integrable Hamiltonian system
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1 Introduction

The Toda lattice is a well-known integrable system that describes the dynamics of a one-

dimensional chain of particles with exponential interaction between nearest neighbors. It has

been extensively studied in various fields of mathematics and physics (see [1–4]). The Newtonian

equation of motion of the Toda lattice is

q̈(n, t) = exp{q(n+ 1, t)− q(n, t)} − exp{q(n, t)− q(n− 1, t)}, (1.1)

where q(n, t) represents the position of the particle at site n and time t, and q̇(n, t) denotes its

time derivative. The lattice may be subjected to an infinite boundary condition with −∞ <

n < ∞ or a τ -periodic boundary condition with 1 ≤ n ≤ τ and q(n+ τ, t) = q(n, t) for n ∈ Z,

leading to both infinite and finite lattices.

The introduction of Flaschka-Manakov variables (see [5–6]), represented by v(n, t) = exp(q(n,

t)−q(n−1, t)) and p(n, t) = −q̇(n, t), allows for an evolutionary form of the equation of motion

for the Toda lattice:
{

ṗ(n, t) = v(n, t)− v(n+ 1, t),

v̇(n, t) = v(n, t)p(n− 1, t)− p(n, t)v(n, t), n ∈ Z.
(1.2)
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This formulation has indeed led to the discovery of profound mathematical structures inherent

in the Toda lattice. As a result, the study of the Toda lattice has established connections

with various branches of mathematics, including Lie groups, Lie algebras, random matrices,

numerical computation, differential geometry, and algebraic geometry (see [7–10]).

Over the past sixty years, the Toda lattice has been generalized and extended in various

directions. For example, the two-dimensional and three-dimensional Toda lattices introduce

multiple continuous or discrete spatial variables (see [11–14]). The Bogoyavlensky-Toda lattices

extend the Toda lattice associated with the root system of type An to other simple Lie algebras

(see [15]). The full Kostant-Toda lattice extends the Toda lattice to generic symmetric matrices

(see [16–18]). In particular, Hu introduced two-dimensional signed Toda equations and showed

how the Darboux transformation method can be used to explicitly construct periodic Laplace

sequences of surfaces (see [19]).

In this paper, we propose and study ZN -graded Toda lattices. Under the infinite boundary

condition, we introduce a spectral problem involving a 2N×2N matrix with ZN -graded matrix

blocks and utilize the technique of discrete zero curvature equations to construct a hierarchy of

ZN -graded Toda lattices. By employing the trace identity approach developed by Tu [20], we es-

tablish the bi-Hamiltonian formula for the ZN -graded Toda lattices. Focusing on the ZN -graded

Toda lattice (ZNTL for short), we demonstrate that the ZNTL can be expressed in a Newtonian

form with an exponential potential in the Flaschka-Manakov variables. Additionally, we show

that the periodic ZNTL is either a periodic Toda lattice or a set of independent periodic-Toda

lattices sharing the same periodicity. This analysis confirms the complete integrability of the

periodic ZNTL as a Hamiltonian system in the Liouville sense.

2 The ZN -Graded Toda Lattices and Their Bi-Hamiltonian Structures

Let Ω be the N ×N permutation matrix given by

(Ω)i,j = δj−i,1 + δi−j,N−1.

By direct computation, we have the following lemma.

Lemma 2.1 For a fixed integer r (1 ≤ r ≤ N − 1), the following results hold :

(1)

(Ωr)i,j = δj−i,r + δi−j,N−r, ΩN = IN ,

where IN is the N ×N identity matrix.

(2) Ω−r = ΩN−r, and specifically, Ω−1 = ΩN−1 = ΩT, where T denotes the transpose of the

matrix.

(3) If A = diag(a1, · · · , aN ) is a diagonal matrix, then

AdΩkA , ΩkAΩ−k = diag(ak+1, · · · , aN , a1, · · · , ak)

is still a diagonal matrix. We refer to AdΩ as the adjoint action operator.

Following [21], a matrix A of size N ×N given by

A = diag(a1, · · · , aN)Ωr , 0 ≤ r ≤ N − 1
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is said to have level r, denoted as lev(A) = r. In the ring R of the N ×N matrices and the set

Rk of all N ×N matrices of level k, we have a direct sum decomposition given by

R =
⊕

k∈ZN

Rk, RkRl ⊆ Rk+l.

Consequently, the ring R forms a ZN -graded ring, where the levels k ∈ ZN define the grading.

j ∈ ZN specifies that j-indices are interpreted as being modulo N . For convenience, we usually

use 1 ≤ j ≤ N instead of 0 ≤ j ≤ N − 1.

Consider the 2N × 2N matrix discrete spectral problem

SΦ = U(P, V, λ)Φ, U(P, V, λ) =

(

0 Ω−r

−VΩ−r λΩ−r − PΩ−r

)

. (2.1)

Where λ is a spectral parameter, Φ = (φ1(n, t), · · · , φ2N (n, t))T is a column vector, and S

is the space shift operator defined as: Sf(n, t) = f(n + 1, t), S−1f(n, t) = f(n − 1, t) for

any (matrix) function f(n, t). Moreover, matrices P = diag(p1(n, t), · · · , pN (n, t)) and V =

diag(v1(n, t), · · · , vN (n, t)) are diagonal matrices and consequently matrices Ωr, V Ωr and PΩr

are all of level r.

From the stationary discrete zero-curvature equation

S(Γ)U = UΓ, Γ =

(

A B

C −A

)

, (2.2)

we arrive at


























C = −ΩrS(B)V Ω−r,

λS(B) = (SB)P − Ω−rAΩr − S(A),

λΩ−rC = S(A)V Ω−r + V Ω−rA+ PΩ−rC,

λ(ΩrS(A)Ω−r −A) = ΩrV Ω−rB +ΩrS(C)Ω−r +ΩrS(A)PΩ−r − ΩrPΩ−rA,

(2.3)

where A = A(n, t), B = B(n, t), C = C(n, t) are undetermined diagonal matrices of lattice

functions.

Upon setting

A =

∞
∑

j=0

Ajλ
−j ≡

∞
∑

j=0

diag(Aj,1(, n, t), · · · , Aj,N (n, t))λ−j ,

B =

∞
∑

j=0

Bjλ
−j ≡

∞
∑

j=0

diag(Bj,1(n, t), · · · , Bj,N (n, t))λ−j ,

C =

∞
∑

j=0

Cjλ
−j ≡

∞
∑

j=0

diag(Cj,1(n, t), · · · , Cj,N (n, t))λ−j

in (2.3), we obtain the following relations


































Cj = −ΩrS(Bj)V Ω−r,

S(Bj+1) = S(Bj)P − ΩrAjΩ
−r − S(Aj),

Cj+1 = ΩrS(Aj)V Ω−r +ΩrV Ω−rAj + ΩrPΩ−rCj ,

ΩrS(Aj+1)Ω
−r −Aj+1 = ΩrS(Cj)Ω

−r

+ΩrS(Aj)PΩ−r +ΩrV Ω−rBj − ΩrPΩ−rAj , j ≥ 1.

(2.4)



26 R. G. Zhou H. Y. Zhou N. Li and M. Zhao

Upon taking initial data:

A0 =
1

2
IN , A1 = B0 = 0, B1 = −IN ,

we can uniquely determine the lattice functions Aj , Bj , Cj (j ≥ 0) by requiring

C0|P=V =0 = C1|P=V =0 = 0, Aj |P=V =0 = Bj |P=V =0 = Cj |P=V =0 = 0, j ≥ 2.

In particular, we have

A2 = ΩrV Ω−r, B2 = −S−1(P ), (2.5)

C0 = 0, C1 = ΩrVΩ−r, C2 = ΩrPV Ω−r. (2.6)

Define

M (m) = (λmΓ)+ +

(

Bm+1 0

0 0

)

, m ≥ 1,

where (λmΓ)+ means to take polynomial part of (λmΓ) with respect to λ. Then the discrete

zero-curvature equation

Utm = S(M (m))U − UM (m), m ≥ 1 (2.7)

gives rise to the ZN -graded Toda lattice hierarchy

{

Ptm = Ω−rAm+1Ω
r − S(Am+1),

Vtm = S(Bm+1)V − V Ω−rBm+1Ω
r, m ≥ 1.

(2.8)

In particular, the m-th lattice equation in the hierarchy takes the form

{

pj,tm(n, t) = Am+1,j−r(n, t)− Am+1,j(n+ 1, t),

vj,tm(n, t) = vj(n, t)(Bm+1,j(n+ 1, t)−Bm+1,j−r(n, t)), j ∈ ZN ,
(2.9)

where j ∈ ZN indicates that 1 ≤ j ≤ N and all component j-indices are understood to be

modulo N :

pj+N (n) = pj(n), vj+N (n) = vj(n), 1 ≤ j ≤ N. (2.10)

It is worth noting that we adopt pN (n, t) and vN (n, t) instead of p0(n, t) and v0(n, t), respec-

tively.

To sum up, we have the following theorem.

Theorem 2.1 The m-th lattice equation (2.9) of the ZNTL hierarchy has zero-curvature

representation (2.7).

In order to establish the bi-Hamiltonian structure for each lattice equation in the ZNTL

hierarchy, we take into account the trace identity (see [20]),











δ

δpk

δ

δvk











∑

n∈Z

tr
(

Λ
∂U

∂λ

)

= λ−γ ∂

∂λ
λγ











tr
( ∂U

∂pk
Λ
)

tr
( ∂U

∂vk
Λ
)











, Λ = ΓU−1, (2.11)
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where γ is an undetermined integer.

It is easy to see that

U−1 =

(

ΩrV −1(λIN − P ) −ΩrV −1

Ωr 0

)

.

Thus

Λ = ΓU−1 =

(

AΩrV −1(λIN − P ) +BΩr −AΩrV −1

CΩrV −1(λIN − P )−AΩr −CΩrV −1

)

.

Moreover we have

tr
(

Λ
∂U

∂λ

)

= −tr(CV −1) = trS(B), (2.12)

tr
( ∂U

∂pk
Λ
)

=

∞
∑

l=0

1

vk
Cl,k−r(n, t)λ

−l, (2.13)

tr
( ∂U

∂vk
Λ
)

=

∞
∑

l=0

1

vk
Al,k−r(n, t)λ

−l. (2.14)

Inserting these expressions to (2.11) and making use of (2.4), we arrive at











δ

δpk

δ

δvk











∑

n∈Z

trS(Bl+1) = (γ − l)









−Bl,k(n+ 1, t)

1

vk
Al,k−r(n, t)









.

To fix the constant γ, we set l = 1 in the above equation to get

(−1, 0)T = (γ − 1)(1, 0)T.

Hence γ = 0 and thus










δHm

δpk

δHm

δvk











=







−Bm,k(n+ 1, t)

1

vk
Am,k−r(n, t)







with

Hm = −
1

m

∑

n∈Z

trBm+1(n, t).

Here we have used the identity:
∑

n∈Z

trBm+1(n+ 1, t) =
∑

n∈Z

trBm+1(n, t).

We notice that (2.9) can be written as

(

Ptm

Vtm

)

= J

(

−S(Bm+1)

Ω−rAm+1Ω
rV −1

)

, (2.15)

where

J =

(

0 V −AdΩrSV

−V + V AdΩ−rS−1 0

)

.
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To express (2.9) in a Hamiltonian form, we introduce an N -dimensional column vector1N = (1, · · · , 1)T and a 2N -dimensional vector Gm denoted as

Gm =

(

−S(Bm)

Ω−rAmΩrV −1

)1N .

It is easy to see that

~u ≡ (p1, · · · , pN , v1, · · · , vN )T =

(

P

V

)1N

and

Ω−r1N = Ωr1N = 1N .

With these notation, (2.9) or (2.15) can be written as a Hamiltonian form

~utm = JGm+1 = J
δHm+1

δ~u
,

where

J =

(

0 V − ΩrSV

−V + V S−1Ω−r 0

)

is a Hamiltonian operator.

Furthermore, by using recursion relation (2.4), we solve equation

KGm = JGm+1 (2.16)

to give rise to another Hamiltonian operator

K =

(

V S−1Ω−r − ΩrSV V P − PΩrSV

−V P + V ΩrS−1P −V SΩrV + V ΩrS−1V

)

. (2.17)

We have the following theorem.

Theorem 2.2 The m-th lattice equation (2.9) of the ZNTL hierarchy can be written as a

bi-Hamiltonian form

~utm = J
δHm+1

δ~u
= K

δHm

δ~u
.

3 The ZN -Graded Toda Lattice and Its Periodic Reductions

3.1 The ZN -graded Toda lattice and the periodic Toda lattice

In the following we focus on the ZN -graded Toda lattice given by

{

pj,t(n, t) = vj(n, t)− vj+r(n+ 1, t),

vj,t(n, t) = vj(n, t)(pj−r(n− 1, t)− pj(n, t)), j ∈ ZN , n ∈ Z,
(3.1)

where t = t1. This is the first non-trivial lattice equation in the ZNTL hierarchy.

Similar to the Flaschka-Manakov variables, we define

pj(n, t) = −
dqj(n, t)

dt
, vj(n, t) = eqj(n,t)−qj−r(n−1,t), 1 ≤ j ≤ N.
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Then the ZNTL (3.1) can be written as a Newtonian form:

d2qj(n, t)

dt2
= eqj+r(n+1,t)−qj(n,t) − eqj(n,t)−qj−r(n−1,t), j ∈ ZN , n ∈ Z. (3.2)

(3.2) shows that the ZNTL is an infinite chain that describes the motion of particles with

exponential interaction. Specifically, the dynamics of a particle located at the (n, j) position

are influenced solely by particles at the (n− 1, j − r) position and (n+ 1, j + r) position.

When N = 1 (which corresponds to r = 1 and Ω = 1), the Toda lattice (1.2) is recovered.

Under the τ -periodic boundary condition given by

aτ+s = as, bτ+s = bs, 1 ≤ s ≤ τ,

where τ is a positive integer and as = p(s, t), bs = v(s, t), we obtain the τ -periodic Toda lattice
{

ȧs = bs − bs+1,

ḃs = bs(as−1 − as), s = 1, 2, · · · , τ,
(3.3)

where a0 = aτ , bτ+1 = b1.

This system can be expressed in a Hamiltonian form as follows:

ȧs = {as, H}, ḃs = {bs, H},

where the Hamiltonian is given by

H =

τ
∑

s=1

(1

2
a2s + bs

)

and Poisson bracket is defined as

{ai, aj} = {bi, bj} = 0, {ai, bj} = biδij − bi+1δi+1,j , 1 ≤ i, j ≤ τ.

Here δij is Kronecker delta which is 1 if i = j, and 0 otherwise. It is well-known that τ -periodic

Toda lattice (3.3) is a completely integrable Hamiltonian system in the Liouville sense (see

[22]).

3.2 The periodic ZN -graded Toda lattice

The τ -periodic boundary condition of the ZNTL (3.1) is defined as

pj(s+ τ, t) = pj(s, t), vj(s+ τ, t) = vj(s, t), 1 ≤ j ≤ N (3.4)

for any integer s (1 ≤ s ≤ τ).

As a result, the τ -periodic ZNTL (3.5) can be expressed as follows:
{

ṗj(s, t) = vj(s, t)− vj+r(s+ 1, t),

v̇j(s, t) = vj(s, t)(pj−r(s− 1, t)− pj(s, t)), j ∈ ZN , s ∈ Zτ .
(3.5)

It is evident that the τ -periodic ZNTL (3.1) is a system of 2Nτ first-order differential equations.

This system can be viewed as the Toda lattice defined on the torus ZN × Zτ .

In the following, we perform a detailed analysis of the τ -periodic ZNTL (3.5) in three

different cases. In this context, the notation (a, b) stands for the greatest common divisor of

the integers a and b.

Case I (N, τ) = 1 and (N, r) = 1.

We first establish the following lemma.
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Lemma 3.1 Let N and r (1 ≤ r < N) be coprime numbers, satisfying (N, r) = 1. Then,

in the modulo N sense, the sequence

kr + 1, τr + kr + 1, · · · , (j − 1)τr + kr + 1, · · · , (N − 1)τr + kr + 1

is a permutation of the sequence : 1, 2, · · · , N , where k (1 ≤ k ≤ τ − 1) is a given number.

Proof It suffices to show that ((i−1)τr+kr+1) (mod N) is not equal to ((j−1)τr+kr+1)

(mod N) for 1 ≤ i < j ≤ N . Let Ni = ((i−1)τr+kr+1) (mod N). Then, Nj −Ni = (j− i)τr

(mod N). Therefore, Nj −Ni = 0 implies that N | (j − i)τr. Since (N, r) = 1 and (N, τ) = 1,

Nj −Ni = 0 is equivalent to N | (j − i). However, 1 ≤ i < j ≤ N implies that (j − i) < N , and

thus N ∤ (j − i). Consequently, Ni 6= Nj if i < j. The lemma follows.

We state the theorem.

Theorem 3.1 Assuming that τ , r and N are coprime, satisfying (N, τ) = 1 and (N, r) =

1, the τ-periodic ZNTL (3.5) is equivalent to an (Nτ)-periodic Toda lattice and thus a completely

integrable Hamiltonian system in the Liouville sense.

Proof To prove the theorem, we rearrange the variables {pj(s), vj(s) | 1 ≤ j ≤ N, 1 ≤ s ≤

τ} into {aj = p(j−1)r+1(j, t), bj = v(j−1)r+1(j, t) | 1 ≤ j ≤ Nτ} such that aj ’s and bj ’s form an

(Nτ)-periodic Toda lattice.

Using the τ -periodic condition, we can establish the following identity:














p1(1) pr+1(2) · · · p(τ−1)r+1(τ)

pτr+1(τ + 1) p(τ+1)r+1(τ + 2) · · · p(2τ−1)r+1(2τ)

· · · · · · · · · · · ·

p(N−1)τr+1((N − 1)τ + 1) p(N−1)τr+2((N − 1)τ + 2) · · · p(Nτ−1)r+1(Nτ)















=















p1(1) pr+1(2) · · · p(τ−1)r+1(τ)

pτr+1(1) p(τ+1)r+1(2) · · · p(2τ−1)r+1(τ)

· · · · · · · · · · · ·

p(N−1)τr+1(1) p(N−1)τr+r+1(2) · · · p(Nτ−1)r+1(τ)















.

The Lemma 3.1 implies that the entries in the k-th column of the matrix are a permutation

of the variables: p1(k), p2(k), · · · , pN (k). Therefore, we obtain the following equation:

{pj(s), 1 ≤ j ≤ N, 1 ≤ s ≤ τ} = {p(j−1)r+1(j), 1 ≤ j ≤ τN}. (3.6)

Similarly, we have

{vj(s), 1 ≤ j ≤ N, 1 ≤ s ≤ τ} = {v(j−1)r+1(j), 1 ≤ j ≤ τN}. (3.7)

Define the variables as follows:

aj = p(j−1)r+1(j, t), bj = v(j−1)r+1(j, t), 1 ≤ j ≤ τN. (3.8)

By directly checking we find that for 1 ≤ j ≤ (Nτ), the dynamics of aj and bj are
{

ȧj = bj − bj+1,

ḃj = bj(aj−1 − aj), j ∈ ZNτ .
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These equations show that the τ -periodic ZNTL is indeed equivalent to an (Nτ)-periodic Toda

lattice. This completes the proof of the theorem.

Case II (N, τ) = d and (N, r) = 1.

Let d be the greatest common divisor of N and τ , satisfying 1 < d ≤ N and 1 < d ≤ τ . We

can further define positive integers α and β as follows:

N = αd, τ = βd.

It follows that (α, β) = (α, r) = (d, r) = 1 from (N, τ) = d and (N, r) = 1.

Lemma 3.2 Let (N, τ) = d and (N, r) = 1. In the modulo N sense, the sequence

kr + s, τr + kr + s, · · · , (j − 1)τr + kr + s, · · · , (N − 1)τr + kr + s

consists of α distinct numbers, where s (1 ≤ s ≤ N) and k (1 ≤ k ≤ τ − 1) are two given

numbers.

Proof Let mj = ((j − 1)τr + kr + s) (mod N). Then, mj − mi = (j − i)τr (mod N).

Therefore, if mj −mi = 0, it implies that N | (j − i)τr. Due to (N, r) = 1 and (N, τ) = d, we

have α | (j − i). However, this contradicts the condition 1 ≤ i < j ≤ α. Thus, the lemma is

proven.

Theorem 3.2 Assuming that (N, τ) = d and (α, r) = 1, the τ-periodic ZNTL (3.5) is a

set of d independent βN -periodic Toda lattices.

Proof By using the periodic boundary conditions we can observe that the variable group

{p(j−1)r+1(j), v(j−1)r+1(j) | 1 ≤ j ≤ Nτ}

only consists of 2βN variables: p1(1), · · · , p(βN−1)r+1)(βN), instead of 2τN variables. Since

τN = dβN , we take d groups variables,

{p(j−1)r+s(j), v(j−1)r+s(j) | 1 ≤ j ≤ βN}, s = 1, 2, · · · , d. (3.9)

The s-th (1 ≤ s ≤ d) variable group can be expressed as

{ps(1), pr+s(2), · · · , p(βN−1)r+s(βN), vs(1), vr+s(2), · · · , v(βN−1)r+s(βN)}. (3.10)

Again, using the τ -periodic condition, we can establish the following identity:















ps(1) pr+s(2) . . . p(τ−1)r+s(τ)

pτr+s(τ + 1) p(τ+1)r+s(τ + 2) · · · p(2τ−1)r+s(2τ)

· · · · · · · · · · · ·

p(α−1)τr+s((α− 1)τ + 1) p(α−1)τr+r+s((α− 1)τ + 2) . . . p(τα−1)r+s(ατ)















=















ps(1) pr+s(2) . . . p(τ−1)r+s(τ)

pτr+s(1) p(τ+1)r+s(2) · · · p(2τ−1)r+s(τ)

· · · · · · · · · · · ·

p(α−1)τr+s(1) p(α−1)τr+r+s(2) . . . p(τα−1)r+s(τ)















. (3.11)
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Based on Lemma 3.2, we can conclude that the above matrix, and consequently, the s-th

variables group, contains (βN) distinct variables pj(s). Moreover, from the first column of

(3.11), it is clear that the d groups contain all the elements p1(k), 1 ≤ k ≤ τ , as s ranges from

1 to d. This pattern holds for all pj(k), 1 ≤ j ≤ N, 1 ≤ k ≤ τ .

Furthermore, by setting

a
(s)
j = p(j−1)r+s(j), b

(s)
j = v(j−1)r+s(j), 1 ≤ j ≤ βN,

we obtain the following equations:






ȧ
(s)
j = b

(s)
j − b

(s)
j+1,

ḃ
(s)
j = bj(a

(s)
j−1 − a

(s)
j ), j ∈ ZβN .

These equations show that the motions of each group of variables form a closed system, precisely

the βN -periodic Toda lattice. Consequently, the whole τ -periodic ZNTL (3.5) consists of d

groups of βN -periodic Toda lattices. In other words, the τ -periodic ZNTL (3.5) is essentially a

collection of d independent βN -periodic Toda lattices. This completes the proof of the theorem.

Case III (N, τ) = d and (α, r) = θ.

In this general case, we set

N = αd, τ = βd, α = ξθ, r = ρθ, d > 1, θ > 1,

where α, β, d, ξ, ρ and θ are positive integers. We have the following relationships:

(α, β) = 1, (ξ, ρ) = 1.

Additionally, we set g = βN
θ
. It is evident that g = βN

θ
= ξτ .

The following lemma holds.

Lemma 3.3 Let (N, τ) = d and (α, r) = 1. Then, in the modulo N sense, the sequence

kr + s, τr + kr + s, · · · , (j − 1)τr + kr + s, · · · , (ξ − 1)τr + kr + s

consists of ξ distinct numbers, where s (1 ≤ s ≤ N) and k (1 ≤ k ≤ τ − 1) are two given

numbers.

Proof Let sj = ((j−1)τr+kr+s) (mod N). Then, sj−si = (j−i)τr (mod N). Therefore,

if sj − si = 0, it implies that N | (j − i)τr, namely, αd | (j − i)βdr. Since (α, β) = 1, we have

α | (j − i)r, namely, ξ | (j − i)ρ. Finally, since (ξ, ρ) = 1, we conclude that ξ | (j − i). However,

the condition 1 ≤ i < j ≤ ξ conflicts with ξ | (j − i). Hence, we have completed the proof of

the lemma.

We have the following theorem.

Theorem 3.3 Assuming that (N, τ) = d, (α, r) = θ and d > 1, θ > 1, the τ-periodic

ZNTL (3.5) is a set of θd independent g-periodic Toda lattices.

Proof In this case, for a given s the s-th variable group (3.10) contains only 2g variables,

instead of 2βN variables. Therefore, we need to consider θd groups of variables with the pattern

p(j−1)r+s(j) and v(j−1)r+s(j) as follows

{ps(1), pr+s(2), · · · , p(g−1)r+s(g), vs(1), vr+s(2), · · · , v(g−1)r+s(g)}, 1 ≤ s ≤ θd. (3.12)
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Once again, utilizing the τ -periodic condition, we can establish the following identity:















ps(1) pr+s(2) . . . p(τ−1)r+s(τ)

pτr+s(τ + 1) p(τ+1)r+s(τ + 2) · · · p(2τ−1)r+s(2τ)

· · · · · · · · · · · ·

p(ξ−1)τr+s((ξ − 1)τ + 1) p(ξ−1)τr+r+s((ξ − 1)τ + 2) . . . p(ξτ−1)r+s(ξτ)















=















ps(1) pr+s(2) . . . p(τ−1)r+s(τ)

pτr+s(1) p(τ+1)r+s(2) · · · p(2τ−1)r+s(τ)

· · · · · · · · · · · ·

p(ξ−1)τr+s(1) p(ξ−1)τr+r+s(2) . . . p(τξ−1)r+s(τ)















. (3.13)

Analogous to the analysis conducted for Case II, we can infer that the dynamics of each group

of variables in Case III is equivalent to that of a g-periodic Toda lattice. Therefore, the τ -

periodic ZNTL (3.5) can be decoupled to θd independent g-periodic Toda lattices. Thus, we

have completed the proof of Theorem 3.3.

Furthermore, based on the fact that the union of the independent integrable Hamiltonian

systems remains integrable, we conclude that all the τ -periodic ZN TL systems in the above

three cases are integrable systems. In summary, we have the following theorem.

Theorem 3.4 The periodic ZNTL system (3.5) is either a periodic Toda lattice or a set of

independent periodic-Toda lattices with the same periodicity. Hence, the periodic ZNTL system

(3.5) is a completely integrable Hamiltonian system in the Liouville sense.

Remark 3.1 We have constructed the ZN Toda lattices and established their bi-Hamiltonian

structure. When considering the infinite boundary condition, the ZN -graded lattice equations

can be viewed as (1 + 2)-dimensional integrable lattices. These lattices involve one continuous

variable, denoted as t ∈ R, one infinite discrete variable, denoted as n ∈ Z, and one N -periodic

variable, denoted as j. Under periodic boundary conditions, it may seem that these lattice

equations are bi-periodic. However, we have demonstrated that the ZNTL is either a periodic-

Toda lattice or a set of independent periodic-Toda lattices with the same periodicity. This work

is a continuation of our prior research as presented in [23–24].
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Boston, MA, 1991, 181–225.

[18] Damianou, P. and Magri, F., A gentle (without chopping) approach to the full Kostant-Toda lattice,
Symmetry Integrability Geom. Methods Appl., 1, 2005, Paper No. 010, 12pp.

[19] Hu, H. S., Laplace sequences of surfaces in projective space and two dimensional Toda equations, Lett.

Math. Phys., 57(1), 2001, 19–32.

[20] Tu, G. Z., A trace identity and its applications to the theory of discrete integrable systems, J. Phys A:

Math. Gen., 23(17), 1990, 3903–3922.

[21] Fordy, A. and Xenitidis, P., ZN graded discrete Lax pair and integrable difference equations, J. Phys. A:

Math. Theor., 50(16), 2017, 165205.

[22] Zakharov, V., Manakov, S., Novikov, S. and Pitaevskii, L., Soliton Theory: Inverse Scattering Method,
Nauka, Moscow, 1980.

[23] Zhou, R. G., Li, N. and Zhu, J. Y., A general method for constructing vector integrable lattice systems,
Phys. Lett. A, 383(8), 2019, 697–702.

[24] Zhu, J. Y. and Zhou, R. G., A vector CTL-RTL hierarchy with bi-Hamiltonian structure, Appl. Math.

Lett., 87, 2019, 154–159.


