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Zn-Graded Toda Lattices™

Ruguang ZHOU! Huiyue ZHOU! Na LI2 Min ZHAO!

Abstract The Zn-graded Toda lattices are introduced and investigated under both in-
finite and periodic boundary conditions. Initially, a hierarchy of integrable Zn-graded
Toda lattices is constructed using the technique of discrete zero curvature equations under
infinite boundary conditions. The integrability of these lattices is demonstrated through
their bi-Hamiltonian structures. Subsequently, particular emphasis is placed on the study
of the Zn-graded Toda lattice, the first nontrivial lattice in the hierarchy. It is discovered
that this lattice can be represented in a Newtonian form with an exponential potential
in the Flaschka-Manakov variables. Furthermore, the periodic Zn-graded Toda lattice is
identified as either a periodic Toda lattice or a set of independent periodic Toda lattices
sharing the same periodicity. Finally, the complete integrability of the periodic Zy-graded
Toda lattice as a Hamiltonian system in the Liouville sense is established.

Keywords Zn-Graded Toda lattice, Zero curvature representation, Bi-Hamiltonian
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1 Introduction

The Toda lattice is a well-known integrable system that describes the dynamics of a one-
dimensional chain of particles with exponential interaction between nearest neighbors. It has
been extensively studied in various fields of mathematics and physics (see [1-4]). The Newtonian
equation of motion of the Toda lattice is

ij(nv t) = eXp{q(Tl + 17t) - Q(nv t)} - eXp{Q(nvt) - Q(n - lvt)}v (11)

where g(n,t) represents the position of the particle at site n and time ¢, and ¢(n,t) denotes its
time derivative. The lattice may be subjected to an infinite boundary condition with —oco <
n < 0o or a 7-periodic boundary condition with 1 < n <7 and ¢(n + 7,t) = ¢g(n,t) for n € Z,
leading to both infinite and finite lattices.

The introduction of Flaschka-Manakov variables (see [5—6]), represented by v(n, t) = exp(q(n,
t)—q(n—1,t)) and p(n,t) = —¢(n,t), allows for an evolutionary form of the equation of motion
for the Toda lattice:

{p(n,t) =o(n,t) —v(n+1,1),

(1.2)
o(n,t) = v(n,t)p(n — 1,t) — p(n,t)v(n,t), n e Z.

Manuscript received April 6, 2024. Revised November 14, 2024.

1School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
E-mail: zhouruguang@jsnu.edu.cn  839394741@Qqq.com  591715952@Qqq.com

2Faculty of Science, Bengbu University, Bengbu 233030, Anhui, China.
E-mail: linana9933@163.com

*This work was supported by the National Natural Science Foundation of China (No. 12171209).



24 R. G. Zhou H. Y. Zhou N. Li and M. Zhao

This formulation has indeed led to the discovery of profound mathematical structures inherent
in the Toda lattice. As a result, the study of the Toda lattice has established connections
with various branches of mathematics, including Lie groups, Lie algebras, random matrices,
numerical computation, differential geometry, and algebraic geometry (see [7-10]).

Over the past sixty years, the Toda lattice has been generalized and extended in various
directions. For example, the two-dimensional and three-dimensional Toda lattices introduce
multiple continuous or discrete spatial variables (see [11-14]). The Bogoyavlensky-Toda lattices
extend the Toda lattice associated with the root system of type A,, to other simple Lie algebras
(see [15]). The full Kostant-Toda lattice extends the Toda lattice to generic symmetric matrices
(see [16-18]). In particular, Hu introduced two-dimensional signed Toda equations and showed
how the Darboux transformation method can be used to explicitly construct periodic Laplace
sequences of surfaces (see [19]).

In this paper, we propose and study Zy-graded Toda lattices. Under the infinite boundary
condition, we introduce a spectral problem involving a 2N x 2N matrix with Zy-graded matrix
blocks and utilize the technique of discrete zero curvature equations to construct a hierarchy of
Zy-graded Toda lattices. By employing the trace identity approach developed by Tu [20], we es-
tablish the bi-Hamiltonian formula for the Zy-graded Toda lattices. Focusing on the Zy-graded
Toda lattice (ZxTL for short), we demonstrate that the ZyTL can be expressed in a Newtonian
form with an exponential potential in the Flaschka-Manakov variables. Additionally, we show
that the periodic ZxTL is either a periodic Toda lattice or a set of independent periodic-Toda
lattices sharing the same periodicity. This analysis confirms the complete integrability of the
periodic ZyTL as a Hamiltonian system in the Liouville sense.

2 The Zn-Graded Toda Lattices and Their Bi-Hamiltonian Structures

Let © be the N x N permutation matrix given by
()i =0j—i1 + 0i—jN-1.

By direct computation, we have the following lemma.

Lemma 2.1 For a fived integer v (1 <r < N — 1), the following results hold:
(1)
()i = 6yr +6rmsmrrs O = I,

where I is the N x N identity matrix.

(2) Q7" = QN and specifically, Q=1 = QN1 = QT where T denotes the transpose of the
matriz.

(3) If A =diag(a1,--- ,an) is a diagonal matriz, then

AkoA £ QkAQ_k = dia'g(ak+17 T, AN, A1yt ,(lk)

is still a diagonal matriz. We refer to Adq as the adjoint action operator.

Following [21], a matrix A of size N x N given by

A:dia’g(alv"'vaN)Qra OSTSN_l
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is said to have level r, denoted as lev(A) = r. In the ring R of the N x N matrices and the set
Ry of all N x N matrices of level k, we have a direct sum decomposition given by
R = @ Ri, RipR; C Riy.
kEZN
Consequently, the ring R forms a Zy-graded ring, where the levels k € Zx define the grading.
j € Zn specifies that j-indices are interpreted as being modulo N. For convenience, we usually
use 1 < j < Ninstead of 0 < j < N — 1.
Consider the 2N x 2N matrix discrete spectral problem

0 Q="
S = U(P,V,\)®, U(P,V,\) = . (2.1)
-Vt AT - PQTT
Where ) is a spectral parameter, ® = (¢ (n,t), -+, pan(n,t))T is a column vector, and S

is the space shift operator defined as: Sf(n,t) = f(n+ 1,t), S™1f(n,t) = f(n — 1,t) for
any (matrix) function f(n,t). Moreover, matrices P = diag(p1(n,t),--- ,pn(n,t)) and V =
diag(vy(n,t), -+ ,un(n,t)) are diagonal matrices and consequently matrices Q", VQ" and PQ"
are all of level r.

From the stationary discrete zero-curvature equation

STy =ur, = A 2.2
(U = U, —(C _A>, (22)

we arrive at
C=-Q"S(BVQT,
AS(B) = (SB)P —Q TAQ" — S(A),
AYTTC =S(AVQ T+ VQTTA+ PQTTC,
MUY SAQT—A)=QVQA " B+Q" S(C)Q "+ Q"S(A)PQ " —Q"PQ T A,

(2.3)

where A = A(n,t), B = B(n,t), C = C(n,t) are undetermined diagonal matrices of lattice
functions.
Upon setting

A= Z Aj/\_j = Z diag(Aj,l(, n, t), e ,Aj)N(TL, t))/\_j,
=0 j=0

B=Y B\ =) diag(Bji(n,t), -+, Bjn(n,t)A7,
=0 =0

C= Z Cj)\_j = Zdiag(CjJ(n,t), o ,Cj)N(TL,t))/\_j
=0 =0

in (2.3), we obtain the following relations
C; =-Q"S(B;)VQT,
S(Byi1) = S(B))P — 0 4,077 — S(A;),
Cip1 = SAHVQ T+ QVQ A +Q PQ"C}, (2.4)
QS(Aj)" — Ay = Q75(C)Q™"
+Q"S(A))PQTT+QVQT'B; —Q"PQTTA;, j> 1.
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Upon taking initial data:
Ay = %IN, A1 =Bo=0, B;=-In,
we can uniquely determine the lattice functions Aj;, B;, C; (j > 0) by requiring
Colp=v=0 = Ci|lp=v=0 =0, Aj|lp=v=0 = Bj|lp=v=0 = Cj|p=v=0=0, j>2.
In particular, we have
Ay =Q"'VQ™", By =-S"Y4P), (2.5)
Co=0, Ci=QVQT", Co=Q"PVQT". (2.6)

Define

Bpir 0
M(m>:(/\mf)++< OH o)’ m> 1,

where (A"T'); means to take polynomial part of (A™I") with respect to A\. Then the discrete
zero-curvature equation

Uy, =SM"™)\U-UM™ m>1 (2.7)

gives rise to the Zy-graded Toda lattice hierarchy

Ptm = Q_TAm+1QT — S(Am+1), (2 8)
Vi, = S(Bpy))V —VQ "B 7, m > 1. '
In particular, the m-th lattice equation in the hierarchy takes the form
Djtm, (TL, t) = Am-l—Lj-?“(nﬂ t) - Am+17j(n +1, t)v (2 9)
’Uj»tm(nvt) = ’Uj(nvt)(Bm-H,j(n_" 17t) _Bm+11j—T(nvt))v J € Zn, .

where j € Zy indicates that 1 < j < N and all component j-indices are understood to be
modulo N:

pj+n(n) =p;j(n), vipn(n) =v;(n), 1<j<N. (2.10)

It is worth noting that we adopt py(n,t) and vy (n,t) instead of po(n,t) and vg(n,t), respec-
tively.
To sum up, we have the following theorem.

Theorem 2.1  The m-th lattice equation (2.9) of the ZnTL hierarchy has zero-curvature
representation (2.7).

In order to establish the bi-Hamiltonian structure for each lattice equation in the ZyNTL
hierarchy, we take into account the trace identity (see [20]),

0 (Y5

0 0

b Ztr(Aa—U) R PR A=Tu, (2.11)
5 oA oA oU

= ne tI’(—A)

OV vy,
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where v is an undetermined integer.

- (QTV‘l()\IN—P) —QTV—1>

It is easy to see that

Qr 0

Thus
AQV-Y(NIy — P) + BQ" —AQV L
A=TU""'=
CQ VY My — P)— AQ" —CQV!

Moreover we have

oUy L

tr(Aa)——tr(CV ) = trS(B), (2.12)
ouU

tr(——A) =S —Crir(n, )7, 2.13

(apk ) ; bk ( )
U \ 1 .

tr(—avk ) = Ao (DA (2.14)

Inserting these expressions to (2.11) and making use of (2.4), we arrive at

i —Bl,k(n—l—l,t)
Pk

Y wSBi)=(-0| |
i nez —Al,k_r(n, t)
Oy, Uk

To fix the constant v, we set [ = 1 in the above equation to get

(~1,0)" = (v = 1)(1,0)".

Hence v = 0 and thus

0Hm, —Bm7k(n+ 1,t)
Opr _
o 1
0H, —Am b T(n t)
5Uk Uk
with .
Hm = —E Z tI'Bm+1 (TL, t)
nez
Here we have used the identity: > trB,,11(n+ 1,t) = > trByy1(n,t).
nez nez
We notice that (2.9) can be written as
P, —S(By+1
t _ J ( + ) : (215)
Vi, O TA, Qv
where

0 V — Adg-SV
J= :
~V +VAdg--S~! 0
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To express (2.9) in a Hamiltonian form, we introduce an N-dimensional column vector
Iy =(1,---,1)T and a 2N-dimensional vector ,, denoted as

_S(Bm)
Gm = 1y.
QA VT

- T P
U’E(pla"'apNavla"'avN) = ]]-N

It is easy to see that

and
Q "Iy =Q"1y = 1y.

With these notation, (2.9) or (2.15) can be written as a Hamiltonian form

5Hm+1
T

p 0 VsV
S\ vV 4vsTloor 0

Furthermore, by using recursion relation (2.4), we solve equation

Gy = JGmsr = J

where

is a Hamiltonian operator.

KG = JGrmi1 (2.16)

to give rise to another Hamiltonian operator

VSTl - QrSv VP - PQSV
. (2.17)

~VP+VQrS~'P —VSQV4+VQ SV
We have the following theorem.

Theorem 2.2 The m-th lattice equation (2.9) of the ZnTL hierarchy can be written as a

bi- Hamiltonian form
8H 41 dHp,
=K .
s o

—

ut,, = J

3 The Zxn-Graded Toda Lattice and Its Periodic Reductions

3.1 The Zyn-graded Toda lattice and the periodic Toda lattice

In the following we focus on the Zy-graded Toda lattice given by

pit(n,t) = vj(n,t) —vjpr(n+1,1), 51)
vje(n,t) = vi(n, t)(pj—r(n — 1,t) —p;j(n,t)), Jj€Zn, n€, '

where ¢ = t1. This is the first non-trivial lattice equation in the ZyTL hierarchy.
Similar to the Flaschka-Manakov variables, we define

dq;(n,t
pi(n,t) = - qjc(i? L, uj(n,t) = emm-wr 010, 1 <,
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Then the ZyTL (3.1) can be written as a Newtonian form:
d?q;(n,t)

de?
(3.2) shows that the ZyTL is an infinite chain that describes the motion of particles with
exponential interaction. Specifically, the dynamics of a particle located at the (n,j) position

= litr(ntL) =g (nt) _ oai(nt)=as—r(n=L8) = 5 c 7 ne . (3.2)

are influenced solely by particles at the (n — 1,5 — r) position and (n + 1,7 + r) position.
When N = 1 (which corresponds to r = 1 and Q = 1), the Toda lattice (1.2) is recovered.
Under the 7-periodic boundary condition given by

Ar4s = Qg, b‘r+s:bsa ISSST,

where 7 is a positive integer and as = p(s,t), bs = v(s,t), we obtain the 7-periodic Toda lattice
as = b - b +1,
. s s s (33)
bs =bs(as—1 —as), s=1,2,--- T,

where ag = a,, br41 = b1.
This system can be expressed in a Hamiltonian form as follows:

éLSZ{aS,H}, 6S={bS,H},

where the Hamiltonian is given by

/1
n-¥ (b0
SZ:; 2aS +
and Poisson bracket is defined as
{ai;a;} ={bi,b;} =0, {a;,bj} =bid;j — bip10i41,;, 1<i,j<T

Here 0;; is Kronecker delta which is 1 if ¢ = j, and 0 otherwise. It is well-known that 7-periodic
Toda lattice (3.3) is a completely integrable Hamiltonian system in the Liouville sense (see
[22]).

3.2 The periodic Zyn-graded Toda lattice
The 7-periodic boundary condition of the ZxTL (3.1) is defined as
pi(s+1,t) =pji(s,t), vi(s+7,t)=v(st), 1<j<N (3.4)

for any integer s (1 < s < 7).
As a result, the 7-periodic ZyTL (3.5) can be expressed as follows:

pj(svt) = vj(s7t) - Uj+T(S + 17t)7
i}j(S?t) = ’Uj(S,t)(pj_r(S - 17t) _pj(svt))a j S ZNa ENS ZT-

It is evident that the m-periodic ZyTL (3.1) is a system of 2N 7 first-order differential equations.

(3.5)

This system can be viewed as the Toda lattice defined on the torus Zy X Zr.

In the following, we perform a detailed analysis of the 7-periodic ZxyTL (3.5) in three
different cases. In this context, the notation (a,b) stands for the greatest common divisor of
the integers a and b.

CaseI (N,7)=1and (N,r) =1.

We first establish the following lemma.
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Lemma 3.1 Let N and r (1 <r < N) be coprime numbers, satisfying (N,r) = 1. Then,
i the modulo N sense, the sequence

kr+1,7r+kr+1,--,(j—Drr+kr+1,--- ,(N=Drmr+kr+1
is a permutation of the sequence: 1,2,--- N, where k (1 <k <7 —1) is a given number.

Proof It suffices to show that ((i—1)7r+kr+1) (mod N) is not equal to ((j—1)rr+kr+1)
(mod N) for1<i<j<N.LetN;=((i—1)rr+kr+1) (mod N). Then, N; —N; = (j—i)rr
(mod N). Therefore, N; — N; = 0 implies that N | (j — ¢)7r. Since (N,r) =1 and (N,7) =1,
N; —N; =0 is equivalent to N | (j — ). However, 1 < ¢ < j < N implies that (j —¢) < N, and
thus Nt (j — ). Consequently, N; # N; if i < j. The lemma follows.

We state the theorem.

Theorem 3.1  Assuming that T, r and N are coprime, satisfying (N,7) =1 and (N,r) =
1, the T-periodic ZNTL (3.5) is equivalent to an (NT)-periodic Toda lattice and thus a completely
integrable Hamiltonian system in the Liouville sense.

Proof To prove the theorem, we rearrange the variables {p;(s),v;(s) |1 <j < N,1<s<
7} into {a; = pGi_1)r+1(J; 1), 05 = v(j—1)r+1(j,t) | 1 < j < N7} such that a;’s and b;’s form an
(NT)-periodic Toda lattice.

Using the 7-periodic condition, we can establish the following identity:

pi(1) Pr+1(2) o Plr—1yr41(T)
Prrr1(T+1) Pir41)r4+1(7 +2) o Per—1r41(27)
PN-Drr+1 (N =17+ 1) py—1)rrg2((N =1)74+2) - pnr—1)r41(NT)
p1(1) Pr+1(2) o Par=1yr41(T)
o pTT+1(1) p(7+1)r+1(2) T p(27—1)r+1(7—)
p(N—l)Tr+1(1) p(N—l)Tr+r+1(2) e p(NT—l)r+1(T)

The Lemma 3.1 implies that the entries in the k-th column of the matrix are a permutation
of the variables: p1(k),pa2(k), - ,pn (k). Therefore, we obtain the following equation:

{pj(8),1<j<N,1<s<7}={py-1r410j),1 <j< 7N} (3.6)
Similarly, we have
{vj(5),1<j <N, 1<s <7} ={vg_1)r410),1 <j < TN} (3.7)
Define the variables as follows:
a; =pij-1)r+10, 1), b =vG-1)r+1(j,t), 1<j<7N. (3.8)
By directly checking we find that for 1 < j < (N7), the dynamics of a; and b; are

{dj =bj — bj1,
i)j = bj(aj_l — aj), j € LN
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These equations show that the 7-periodic ZyTL is indeed equivalent to an (NT)-periodic Toda
lattice. This completes the proof of the theorem.

Case Il (N,7) =d and (N,r) = 1.

Let d be the greatest common divisor of N and 7, satisfying 1 <d < N and 1 <d < 7. We
can further define positive integers a and 3 as follows:

N=oad, 7=24d
It follows that (o, 8) = (a,7) = (d,r) =1 from (N,7) = d and (N,r) = 1.
Lemma 3.2 Let (N,7) =d and (N,r) = 1. In the modulo N sense, the sequence
kr+s,mr+kr+s,--,G—1rmr+kr+s,- , (N—Drr+kr+s

consists of a distinct numbers, where s (1 < s < N) and k (1 < k < 7 —1) are two given
numbers.

Proof Let m; = ((j — 1)7r + kr +s) (mod N). Then, mj; —m; = (j — i¢)rr (mod N).
Therefore, if m; —m; = 0, it implies that N | (j —¢)7r. Due to (N,r) =1 and (N, 7) =d, we
have a | (j — ). However, this contradicts the condition 1 < i < j < a. Thus, the lemma is
proven.

Theorem 3.2  Assuming that (N,7) = d and (o, r) = 1, the T-periodic Zn TL (3.5) is a
set of d independent BN -periodic Toda lattices.

Proof By using the periodic boundary conditions we can observe that the variable group
PG-1)r+10); vG—1)r+1(J) | 1 < j < N7}

only consists of 28N variables: pi(1),---,pgn—1)r+1)(BN), instead of 27N variables. Since
TN = dBN, we take d groups variables,

{p(j—l)T+S(j)7U(j—l)’r-i-s(j) | 1 S] < ﬁN}v § = 17 27 T 7d' (39)

The s-th (1 < s < d) variable group can be expressed as

{ps(l)apr+s(2)a e 7p(BN—1)T+S(ﬁN)7 'Us(l)a Ur—i—s(z)a t aU(BN—l)r-i-s(ﬂN)}- (310)

Again, using the 7-periodic condition, we can establish the following identity:

pS(l) pT+S(2) cee p(T—l)r+s(T)
pT’r‘"rS(T + 1) p('r-i—l)r-i—s(T + 2) t p(27’—1)r+s(27-)
p(a—l)‘rr+s((a - 1)7— + 1) p(a—l)‘rr+r+s((a - 1)T + 2) s p(Toz—l)r+s(aT)
ps(l) pr+s(2) cee p(‘r—l)r—i—s(T)
pTT+S(1) p(7+1)r+s(2) T p(27—1)r+s(7—)

= . (3.11)

p(a—l)TT—i-s(l) p(a—1)7r+r+s(2) v p(Ta—l)r+s(T)
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Based on Lemma 3.2, we can conclude that the above matrix, and consequently, the s-th
variables group, contains (SN) distinct variables p;(s). Moreover, from the first column of
(3.11), it is clear that the d groups contain all the elements p;(k),1 < k < 7, as s ranges from
1 to d. This pattern holds for all p;(k),1 <j < N,1 <k <.

Furthermore, by setting

a§s) = p(j—l)r-i—s(j)a bES) = U(j—l)r-i—s(j)a 1<5< ﬁN,

we obtain the following equations:

s) = bj(a(-s_)l — a(-s)), ] S Z,@N.

These equations show that the motions of each group of variables form a closed system, precisely
the SN-periodic Toda lattice. Consequently, the whole 7-periodic ZxyTL (3.5) consists of d
groups of SN-periodic Toda lattices. In other words, the T-periodic ZyTL (3.5) is essentially a
collection of d independent SN-periodic Toda lattices. This completes the proof of the theorem.
Case IIT (N,7) =d and (a,7) = 0.
In this general case, we set

N=ad, 7=0pd, a=£&0, r=p0, d>1,0>1,
where «, 8,d, &, p and 6 are positive integers. We have the following relationships:

(,8) =1, (§&p) =1
Additionally, we set g = BTN. It is evident that g = ﬂTN =¢T.

The following lemma holds.

Lemma 3.3 Let (N,7) =d and (a,r) = 1. Then, in the modulo N sense, the sequence
kr+s,mr+kr+s,--,G-—1)rmr+kr+s,-- (E=—1)mr+kr+s

consists of & distinct numbers, where s (1 < s < N) and k (1 < k < 7 —1) are two given
numbers.

Proof Let s; = ((j—1)7r+kr+s) (mod N). Then, s;—s; = (j—¢)7r (mod N). Therefore,
if s; —s; = 0, it implies that N | (j — )77, namely, ad | (j — )8dr. Since (o, §) = 1, we have
a | (j —4)r, namely, £ | (j —i)p. Finally, since (&, p) = 1, we conclude that £ | (j — ). However,

the condition 1 < i < j < ¢ conflicts with £ | (j — ). Hence, we have completed the proof of
the lemma.

We have the following theorem.

Theorem 3.3  Assuming that (N,7) = d, (a,7) = 6 and d > 1,0 > 1, the T-periodic
ZNTL (3.5) is a set of Od independent g-periodic Toda lattices.

Proof In this case, for a given s the s-th variable group (3.10) contains only 2¢g variables,
instead of 23N variables. Therefore, we need to consider 6d groups of variables with the pattern

Pi—1)r+s(J) and v(;_1)r45(j) as follows

{ps(l)vpr+s(2)v e ap(g—l)r-i-s(g)a Us(l)vvr+s(2)v T 7U(g—1)’r+s(g)}7 1<s<6d. (312)
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Once again, utilizing the 7-periodic condition, we can establish the following identity:

ps(l) pr+s(2) cee p(r—l)r+s(T)
p‘rr+s(7- + 1) p(T+1)T+S(T =+ 2) T p(27’—1)r+s(27-)
p(f—l)ﬂ“—!—s((g - 1)T + 1) p(§—1)7r+r+s((§ - 1)7— + 2) s p(ff—l)r+s(§7—)
ps(l) pr+s(2) ce p(‘r—l)r-l—s(T)
p'rrsl D(r rs2 o PEr—1)r+s\T
_ +s(1) (r+1)r+s(2) @r—1)r+s(T) . (3.13)
p(§—1)7r+s(1) p(§—1)7r+r+s(2) oo p(Tf—l)r—Q—s(T)

Analogous to the analysis conducted for Case 11, we can infer that the dynamics of each group
of variables in Case III is equivalent to that of a g-periodic Toda lattice. Therefore, the 7-
periodic ZxTL (3.5) can be decoupled to 6d independent g-periodic Toda lattices. Thus, we
have completed the proof of Theorem 3.3.

Furthermore, based on the fact that the union of the independent integrable Hamiltonian
systems remains integrable, we conclude that all the 7-periodic Zy TL systems in the above
three cases are integrable systems. In summary, we have the following theorem.

Theorem 3.4  The periodic ZnTL system (3.5) is either a periodic Toda lattice or a set of
independent periodic-Toda lattices with the same periodicity. Hence, the periodic ZnTL system
(3.5) is a completely integrable Hamiltonian system in the Liouville sense.

Remark 3.1 We have constructed the Z Toda lattices and established their bi-Hamiltonian
structure. When considering the infinite boundary condition, the Zy-graded lattice equations
can be viewed as (1 + 2)-dimensional integrable lattices. These lattices involve one continuous
variable, denoted as t € R, one infinite discrete variable, denoted as n € Z, and one N-periodic
variable, denoted as j. Under periodic boundary conditions, it may seem that these lattice
equations are bi-periodic. However, we have demonstrated that the ZyTL is either a periodic-
Toda lattice or a set of independent periodic-Toda lattices with the same periodicity. This work
is a continuation of our prior research as presented in [23-24].
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