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The Asymptotic Stability of Dirac Solitons in the Massive
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Abstract In this paper, the authors employ the 0-steepest descent method and Béacklund
transformation to investigate the asymptotic stability of Dirac solitons in the context of
the massive Thirring model (MTM for short) system. They formulate the solution to
the Cauchy problem for the MTM system in terms of the solution to a Riemann-Hilbert
(RH for short) problem. This RH problem is decomposed into two components: A pure
radiation solution and a soliton solution. As a direct outcome of this decomposition, they
establish the asymptotic stability of Dirac solitons within the MTM system.
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1 Introduction

This paper is devoted to the asymptotic stability of Dirac solitons in the massive Thirring
model (MTM for short) system

(1.1)

i(up + ug) + v+ ufv|? =0,
i(vy — ve) +u+vful? =0.

Given initial data (u(0,z),v(0,2)) = (ug,vo) € H*(R) N HY1(R). Here, H*(R) is the standard

Sobolev space defined as

H*(R) ={f e L*(R): f', f" € L*(R)}.
Additionally, H**(R) is defined as

H"'(R)={f € L*'(R) : f' € L*(R)}

with ||f(x)|\ip,s(R) = [o(1 +2%)%|f(2)[Pdz. The MTM system, developed by Thirring [1],

describes a nonlinear Dirac equation that is invariant under relativistic transformations in

one-dimensional space. The Gross-Neveu model (see [2]), also known as the massive Soler
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model when formulated in three-dimensional space (see [3]), provides another example of a
relativistically invariant one-dimensional Dirac equation.

Recent research has focused on studying various mathematical properties of the MTM sys-
tem. The Lax pair and new exact solutions for the MTM system were constructed (see [4]).
It is known that the Cauchy problem for the MTM system is locally well-posed in the func-
tion space H*(R) for s > 0 (see [5]). Furthermore, it has been established that the Cauchy
problem is globally well-posed for s > 1 (see [6]). Recent works have also demonstrated the
global well-posedness of the MTM system in the function space L?(R) (see [7-8]). The soliton
solutions of the MTM system were obtained using the inverse scattering method (IST for short)
(see [9]). Moreover, research has also addressed the d-problem related to the class of rapidly
decaying potentials of the MTM system (see [10]). Recently, the d-steepest descent method has
been used to study the long time behavior of the MTM system for the weighted Sobolev initial
data H?(R) N HY1(R) (see [11]) and H*?(R) (see [12]), respectively. The L2-orbital stability
of solitons for the MTM system was established using the Bécklund transformation (see [13]).

In this study, we establish the asymptotic stability of Dirac solitons in the MTM system (1.1)
by employing the d-steepest descent method and the Bicklund transformation. The explicit

one-soliton solutions are presented as [13],
ux(t,z) = iy~ *sin asech(f(x —ot) — i%)e_iﬂ(“r“), (1.2)
ua(t, z) = —iysin asech(f(x —ut) + i%)e_iﬁ(tJr”), (1.3)

the discrete spectral A = ve% is associated with

7?42

2

7—2 o ,YQ
72 +9?

2 -2
f= sin av, ﬁz%cesa, v =

We now state our main result as follows.

Theorem 1.1 Consider the Dirac solitons (uy,,vy,) for the MTM system given by (1.2)—
(1.3). Then, there exist positive constants €p(Xo), C(Ao), T (Xo) such that if the initial data
(up,vo) € H2(R) N HYL(R) satisfy

e = (lluo — uxy (0, 2) | + flvo = 0o (0, 2) ) 2 @)1 1. () < €0(No), (1.4)
there exists A such that
A= Xo| < C(No)e, (1.5)
and for all t > T'(X\o) and ‘%| <1,
lu(t, z) — ux(t, )| Lo m) + [|v(t, 2) — vA(t, )| oo (m) < C(Ao)at_%. (1.6)

The paper is structured as follows. In Section 2, we discuss the IST for the spectral problem
(2.1), and also provide an equivalent formulation of the RH problem associated with it. In
Section 3, we analyze the asymptotic for the pure radiation solution using the d-steepest descent
method. In Section 4, we prove the asymptotic stability of solitons, as formulated in Theorem
1.1, utilizing the Backlund transformation.
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2 Inverse Scattering Transform

In this section, we consider the IST for the MTM system based on its Lax pair.

2.1 Analyticity and symmetry of Jost functions

The MTM system can be integrated associated with Lax pair:

e o Yo
ve = 7 (X = 53 ) 0w = Ly, (2.1)
e L
ve = 1 (V4 53 ) o = 4¢, (2:2)

where

_1 2 2 _2 0 v 1 0 wu

=3P =P =5 (3 0) + 35 (0 o)

I T oy A0 T\ 1 (0 @

A= =3P+ b =5 (0 0) =55 (0 )+

and o1, 09,03 are the Pauli matrices

/01 (0 i (1 0
91=11 0)> 27\i o) 7 \o -1)°

It can be shown that (2.1) admits

izog(A2-2"2)

PEN) ~e 7 . x — too.

Further making the transformation

izog(A2-2"2)

PN =T Ne T, (2.3)

then T (\) solves the spectral problem

PO — (N = 55 o, e (V] = Lo (N (24)

with asymptotic condition

It follows from (2.4), we acquire

x

go_(/\):I—i—/ e

— 00

i(w—y)azg(AZ-2—2)
4

Lo~ (N)dy, (2.5)
T @ yesr2-a2)
G =T [T L v, (2.6)

where ™ L 1= e?*Le™ for a 2x2 matrix L. Denote ¢*(X) = [7 (A), 95 (V)] , where o7 ())
represents the jth column of p®(\).
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Proposition 2.1 Let (ug,vo) € H*(R) N HY'(R). Then, the Volterra integral equations
(2.5)(2.6) admit unique solutions pt(\) and ¢~ (\), respectively. Moreover, the functions
©T(\) and 5 (\) can be analytically continued into the domain O+ = {\ € C : Im)\> > 0},
while o7 (\) and ¢F (N) can be analytically continued into the domain Q= = {\ € C : ImA\? < 0}.
Here, Im z denotes the imaginary part of the complexr number z, while Re z represents its real

component (see [14]).

By symmetry of (2.1), we have

et(\) = o3 (—N)os,  ©E () = 029 (X) 0. (2.7)

Moreover there exists a continuous matrix function S(X) such that

izgz3(A2-2"2)

e (N =¢t(Ne™ 7 S(\), AeX, (2.8)
with ¥ = {A € C\ {0} : Im A\* = 0} and
S(A) = W ﬂ) : (2.9)
B ad)

where a(\) and 8(\) can be expressed by Wronskian determinant

a(X) = Wr(pr (V) 3 (), (2.10)
iz(A2-2—2)

BA) =e" T Wr(er (A), 91 (W), (2.11)

we have the following symmetry relations:

Additionally, it is established from (2.10) that the function a()) is analytic in C~. Let
M,k =1,--+ N be the zeros of a()), it follows that there exists a constant Cy such that

o1 (k) = Crpg ().

Subsequently, we define norming constant Cj, = a’%k)'

Assumption 2.1 There exists an open dense set G C H?(R) N HY1(R) such that, for
(up,vp) € G, the function «(\) has no zeros on R UiR. We denote by G,, the open subset of
G satisfying N-solitons are contained in G,, and it turns out also neighborhoods of N-solitons
belong to G,. In particular, the number of zeros does not vary in time and the set G are
invariant under the MTM system (see [15-16]).

2.2 Jost functions for A — 0

Define the transformation matrix by [11],

T(N) = T(u; NY(N), A#0, (2.12)
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where
1 0
T(u;\) = . 2.1
(1) (u ; A_1> (2.13)
Setting 2 = A%, then W(z) satisfies
1
U,.(z) — i(z - —)03\11(2') = LU(z) (2.14)
4
with
(2.15)

where
i i_
(PP gw
Ql(uav) = .
1 2 1 1 2 2
up = gulel® = 5o Z(lul?+ of?)
and
i uv -7
Q2(u,v) = 2 <u +u*D —uﬁ) '

Consider the Jost function ¥(z) satisfying
izog(z—z"1)
= T — £o00.

)

TE(z) ~e

Letting
1

izog(z—z"1)

M*(2) =05 (e 0,

then we have

: + _ 1 . £ _
SRME) = I T Mot () = e,
lim M;(z) = lirf AT (u; N () = e,
T—r 100

z—+o0

where Mji(z) represents the j-th column of M*(z) and e; denotes the j-th column of the

identity matrix, and they satisfy the Volterra integral equations

ME(2) = e + /: diag(O,e_%(z_zfl)(w_y))EMli(z)dy, (2.16)
MFE(z) = ey + : diag(e%(‘z—fl)(z_y), 0) LM (z)dy. (2.17)
There exists S1(z) such that
(2.18)

M~™(z) = M (2)S1(2), =z€R\{0},
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where
&@ﬁqﬁ”12”<“” fﬁv
zb(z)  a(Z)
and

a(z) = WT(Mf(Z)vM;(Z))v

R iz(z—z"1)

b(z)=e™" = Wr(Mj(2), My ().

2.3 Jost functions for |[A| — oo

Define the transformation by [11],

where z = A2 and

Then U(z) satisfies

4 z
where
£=Qu(u,0) + - Qa(u,v)
with
. Z(uf? + o) -7

Q1(u,v) =

1 i 1
Uy + §|u|2v + =u —Z(|u|2 + |vl?)

2

~ i uv —u
Q2(u,v) = —= -
2 \v+4+aw —uv

Consider the Jost solution of (2.23) with asymptotics

iza3(zfzfl)

UE(2) ~e 1 , T — =£oo,

making the transformation

then we have

lim Nif(z) = lim T(u; N)ef(N) = e,

z—+o0 z—+o0

R. H. Ma and E. G. Fan

)

(2.19)
(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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lim Ni(z)= lim A'T(u; A)ps (A) = e,

r—+o0 r—+o00

where N Ji (2) represents the j-th column of N*(z), and they satisfy the Volterra integral equa-

tions
Ni(z)=er —l—/ diag(O,e_%(z_zfl)(w_y))ENli(z)dy, (2.25)
+o0
NE(z)=es+ | diag(e2 = D) 0)LNFE(2)dy. (2.26)
+oo

Proposition 2.2 The functions Mli(z) and M3 (z) are analytic within the upper/lower
half-planes C* for z, and they are also continuous on CT UR. Similarly, the functions Nli(z)
and N (2) are analytic in C* for z, and they are continuous on C* UR (see [11]).

Again, there exists S2(z) such that
N~ (2) = NT(2)52(2), z€R, (2.27)
where

izog z—z—"1 a _b z
So(z) = D a(z)  —b(z)

It follows from (2.27) that

(=) = Wr(Ny (2), N5 (2)), (2.28)

_ iz(zfzfl)

b(z)=e = — Wr(N;j(z), Ny (2)). (2.29)

a(N) =a(z) =a(z), M\ =0b(z2) = )\25(2'). (2.30)

r(z) = —2, 7(z) = —2. (2.31)
Drawing from (2.30), we can also deduce that a(z) is analytically continuous in C~. Let
Z={z|zr=X,k=1,--- N}
be the set of zeros of a(z) in C~. Then there exist constants ¢ and wy, such that
My (zk) = &My (2r), Ny (zr) = @; Ny (21),

. & @ .
where the norming constants are c; = e and wy, = TC respectively.
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2.4 The RH problem for the potential (u,v)

R. H. Ma and E. G. Fan

In this section, we will present two RH problems. The first problem aims to reconstruct the

component v using M*(z) as z — 0, while the second problem deals with N¥(z) and aims to

reconstruct the component v as |z| — oo. It is important to note that both components satisfy

the MTM system (1.1).

Define
M (z
- (U o). e
e
Po)=(ufe) 228 e
a(z)
and
o~ N_
Pi(z) = (N (2) f(_(z) e,
a(z
= N (z
P_(z)= al(,z()) Ny (z)), zeC.
With asymptotic limits as [14],
ei [ (ul?+v[*)dy 0
P zZ) — — Poo z),
i( ) 0 e_%f;m(\uﬁﬂvlz)dy ( )
~ e 1 L (ul?+]vl*)dy 0 ~
P zZ) — — Poo ),
“ 0 ot S (ul+1v?)dy (=)
Define
Mau(z) = P®(z) ' Py(z), zeC*,
Ni(z) = P®(2)'Py(z), zeC™

Then we obtain the following two RH problems.

z— 0,

|z] = oc.

(2.32)

(2.33)

RH Problem 2.1 Find an analytic function M(z) : C\ R — SLy(C) with the following

properties.
(1) M(2) =1+ O(z) as z — 0.

(2) For each z € R, the boundary values M (z) satisfy the jump relation

My (z) = M_(2)Vi(z),

where

Vi =
1(2) 2r(z)e” 19

< 1+ z|r(2)]? @ei@(z)t)>
1

(2.34)
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and

0(z) = = (2 — z_l)% + %(z +27h). (2.35)

N | =

(3) M(z) has simple poles at each z; € Z and Z € Z at which

0 0
R = 1 9
z:?ziM(Z) Zi)HZIkM(Z) <Ckzke—i@(zk)t 0)

Res M(z) = lim M(z) .
Z2=Z Z2—=Zg O 0

RH Problem 2.2 Find an analytic function N'(k) : C\ R — SLy(C) with the following
properties.

(D) N(E)=T+0(z71) as |z| = <.

(2) For each z € R, the boundary values N4 (z) satisfy the jump relation

Ni(z) = N-(2)Va(2), (2.36)

where

V( ) 1 _%eiG(z)t
2(%2) = . .
—27(2)e” OBt 1 4 2|7 (2)]?

(3) N(2) has simple poles at each z, € Z and Z;, € Z at which

ResN(z) = lim N (2) (0 _wkeie(%)t) :

z=2zy z— 2y 0 0
ResN(z) = lim N (2) 0 0
2=Z) 2—Zk wkfke_lg(zk)t 0/

The solutions (u(t,z),v(t,z)) to the MTM system (1.1) are connected to the solutions of
the RH problems 2.1 and 2.2 through the reconstruction formulas:

u(t,x)e_% S (ulP+lv?)dy li_r%z_l[./\/l(z)]lg,

v(t’x)e% fx+°°(|u‘2+|v‘2)dy — l ]ilm Z[N(Z)]lQ
Z|—00

Proposition 2.3 Suppose (u(t,r),v(t,z)) € H?(R) N HYL(R), there ewists a bi-Lipschitz

map
(u(t,x),v(t,z)) — (r(2),7(2)) € HYY(R) N L*»2(R),

where 12-2(R) = £2~2(R) N L2(R) and [|1(@)|3, ) = Jo l21721f (@) Pl

Proof The proof can be founded in [11, 14].
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3 Dispersion for Pure Radiation Solutions

In this section, we will focus on the MTM system (1.1) in the soliton region with [£| < 1,

which is of interest from a physical perspective.

Theorem 3.1 Let (ug,vo) € GoNH2(R)NHY(R). Then there exist constant C(ug,vg) > 0
and T(ug,vo) > 0 such that for all t > T (ug,vo) and ‘%‘ < 1, the solution of MTM system
(1.1) satisfies

lu(t, @)l ey + [10(t, )| 2wy < Cluo, o)t ™% (3.1)
In the rest of Section 3 we prove Theorem 3.1.
3.1 New coordinates
For |%‘ < 1, the phase function in (2.35) can be simplified as following:
O(2)t = 1(k), (3.2)

where

t_
reVER k= n S (33)

and 0(k) = 1 (k + 4) with stationary points at £ = £1.
We consider the RH problem 3.1, which is related to the RH problems 2.1-2.2 as discussed

in Lemma 3.1.

RH Problem 3.1 Find an analytic function M (k) : C\ R — SLy(C) with the following
properties.

(1) M(k) =TI+ (k=') as k — oo.

(1) For each k € R, the boundary values My (k) satisfy the jump relation

My (k) = M_(k)V (k),

where

= e—i'r@(k)
M_mem>m> >. o

a p(k)eim0t) 1

Lemma 3.1 RH problem 2.1 with Gy and RH problem 3.1 are equivalent for the following
choice if p(k) and p(k) in (3.4):

p(k) = TRm)A™®) k) = kpar(lp)e™5m0®). (3.5)

RH problem 2.2 with Gy and RH problem 3.1 are equivalent for the following choice if p(k)
and p(k) in (3.4):

B Ky - ?(k,u)e_QiTe(k)
d_(2)d:(z)

pk) = —F(kp)d_(2)ds (2)e®), p(k) = (3.6)
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where

1 [ log(1 2
d(z):exp{_z / og(1 + s|r(s)| )ds}, 2 EC\R,
™) S—Zz (37)
d+(z) = limd(z + ie), z eR.
e—0

Consider the following scalar RH problem.

RH Problem 3.2 Find a scalar function 6(k) analytic for k£ € C\ (-1, 1) with the following
properties.
e (k) =1+0(k™1) as |k| — oco.
e For each k € R, the boundary values d4 (k) satisfy the jump relation
5. (k) = {5_(k), V kEeR\ (-1,1),
o (k)1 +p(k)p(k)), ke (=11).

It can be shown that the RH problem 3.2 has a unique solution

5(k) = exp {1/_11 SV(_SLds}, (3.9)

where

1 y
(k) = — 5= log(1 + p(k)p(k)
T
and the logarithm is principally branched along (—1,1).

Proposition 3.1 The function 6(k) has the following properties.
(1) The function §(k) satisfies the estimate

I[v (R 1l 1,00 v (F) Il 1 o0

e” = <|5(k)| <e =z . (3.9)
(2) Along any ray of L = +1+ e ?R* with 0 < ¢ < 7, C(p,p) > 0, we have
[8(k) — o (k) (k £ 1)V < Clp, p)[k £ 12 (3.10)

Here 6o(k) = ePELED gpd

1
Bk, £1) = —v(£1)log (k ¥ %) + /_1 v(s) _SX_(SIzV(il)ds, (3.11)

where x (k) is the characteristic function of the interval

:{k|ke(—1,——) orke( )} (3.12)

Proof For part (1), we use the fact that |[v (k)| g1.1(
For part (2), we write the function §(k) as follows:

3(k) = exp (i/IL‘SLds—i—i/l v(s) _X(Slz”(il)ds)

S — _1 S —

5=|lpp|| 21 to establish the bound.
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= (k+1)"&EY exp(if(k, £1)).
Using the fact that
(k£ 1)7ED] < o™ ED = T p(R)(R),
we deduce that
|B(k, 1) — B(£1,£1)| < Clp, )|k £ 17
Define
MO (k) = M(k)6(k)~72, (3.13)

then M) (k) satisfies the following RH problem.

RH Problem 3.3 Find an analytic function M) (k) : C\R — SLy(C) with the following
properties.

(1) MO(k) =T+ O(k™") as k — oc.

(2) For each k € R, the boundary values Mj(tl)(k) satisfy the jump relation

MO (k) = MO (B)V D (k), (3.14)
where
1 p(k)6?(k)e=im00k) 1 0
. ; k| > 1,
0 1 p(k)o(k)~2eim0k)
VO (k) = 1 0

p( ) -QF( ) e—17'9 k)
1+ p(k)p (k) k<1,

p(k)5—2 (k) ek
Tt p(Ryh) ) ) o

3.2 9-extensions of jump factorization

In this section, our objective is to obtain factorizations of the jump matrix that allow for

continuous extension beyond the real axis R according to the decay and growth associated with

9
(k) (see Figure 1). To achieve this, we define a new contour £?) = J ¥; (see Figure 2).
j=1

~____—-"" Reif>0

Figure 1 Signature table for Reif.
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Figure 2 The contours ¥ and regions Q, k =1,2,--- ,10.

Following this contour definition, we construct the necessary extension functions.

Lemma 3.2 [t is possible to define functions R;(k) : Q; — C (k =1,2,---,8) with boundary

values satisfying

_ﬁ(k)5_2(k)a ke Ij,
(K ieq 4 =
iz { —p(€)672(&)e= 2O (k — &)~ 2w, ke€X;,
p(k)
T ) e
Rj(k)|j:2,3 = (f)
B Z(s) OOk, ke,
p(k)3? () bel
Ri(k)ier o« =
i (K)]j=5.8 { p(f)eQX(f)(SQ(f)(k — &), ke Xy,
p(k) -
T e
Rj(k)|j=6,7 = 5(6)
1+ Z(&)ﬁ(&) 0Z2(€e™ X O (k— &)™, ke,
where
(-1 5=1,2,56, 215
&= 1, j=3,4,7,8, 19

and we define I; as the projection of ¥; onto R. Then, for a fized constant ¢ > 0 such that
[OR; (k)] < clk+ 1|72 + ¢(|p (Re k)| + |5/ (Re k))).

Proof Let us consider the case when j = 4. Writing k — 1 = se'?, we define the function

R4(k) as follows:
falk) = p(1)e XD 5% k), (3.16)

and let
Ry(k) = [fa(k) + (p(Rek) — fa(k)K(¢)]62(k),
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where K(¢) is a smooth function on (0, ) with

L oselg)
K(9) = -
0. se |5 g)

The function R4(k) takes the same values on both ¥4 and (1,00). Since

) ke )

we calculate

iel®
|k —1]

IR4(k) = 57/ (Re k)K(¢)d > (k) — (p(Re k) — fa(k))o~> K'(¢),

N | =

where the first term is bounded by (3.9). For the second term, we write
[p(Re k) — fa(k)| < |p(Rek) — p(1)| +[p(1) — fa(K)],
and apply the Cauchy-Schwarz inequality to bound each term as follows:
Rek L
pReb) =01 < | [ 5(6)as| < Nl = 1
and

DI+ [p(1)H)I0%(1) — 6 (1) (k — 1)*7|

15(1) = falk)| <
< CP) Al @l — 1.

The last estimate employs Proposition 3.1, and the result is immediately obtained.

By using R;(k), j=1,---,8, we define the function

1 0
<Rj(k)ei7—0(k) 1) ;o keQ e

RA(k) =14 (0 R;(k)e 170 (3.17)
<0 0 ) s k€ Q) assas
I, k€ Q9 U Q.
We now introduce another matrix-valued function
M (k) = MDY (YR (k), (3.18)

which converts the RH problem 3.3 into a mixed 9-RH problem 3.4.

RH Problem 3.4 Find a meromorphic function M (k) : C\ ) — SLy(C) with the
following properties.
(1) M@ (k) = T+ O(k™") as k — oc.
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(1) For each k € X(?)| the boundary values Mf)(k) satisfy the jump relation

MP (k) = MP (k)VP (k), (3.19)

1 0 1 ARgQ(k)e_iTe(k) .
) , keX , , ke(0,1),
) <Rj(k)e”9(k) 1) =007 (o 1 (©,%)
V =

1 Rj(k)e im0k 1 0 ,
, keX;._ , . , ke(—1,0).
(0 1 Jlj=2,3,5,8 AR67(k)e170(k) 1 ( ¢ )

where AR?,Q(k) = R3(k) — Rg(k) and AR67(k) = Rﬁ(k) — R7(/€)
(3) For z € C\ ¥ we have IM ) (k) = M@ (k)OR?), where

0 0
(5Rj(k)e”9(k> O) ke,

IR — 0 OR;(k)e=ir0t (3.20)
, k€Qj—2358,
0 0
0, ke Qg U Q.
3.3 Analysis of pure RH problem
In this section, we can factorize M) (k) as follows:
M@ (k) = M®) (k)M (k). (3.21)

Here, M""?(k) corresponds to the solution of the RH problem 3.4 for M?) (k) by dropping the
0 component, while M (3)(k) represents the solution of the pure O-RH problem 3.6.

The matrix M7 (k) is meromorphic away from the contour »2) on which its boundary
values satisfy the jump relation (3.19). However, at any distance from the phase points &, the
jump is uniformly near identity. Using (3.19) and the definition 0(k), there exists a constant
¢ > 0 satisfying

IV — I o ) = Ofe™), (3.22)

which is exponentially small in $(?). Based on this estimation, we will construct the solution
M) = (1 4+ O(e=))M'e(k), where M'(k) is constructed below.

RH Problem 3.5 Find a meromorphic function M (k) : C\ £ — SLy(C) with the
following properties.
(1) M'(k)=I+0(™1), [k — occ.
8
(2) For each k € |J ¥;, the boundary values MY (k) satisfy the jump relation
j=1

M(k) = M“(k)V® (k).

By using the standard method (see [17]), it can shown that
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Proposition 3.2 The solution to the RH problem 3.5 admits the following expansion

Mlc(k) _ I+ 1 < 0 _1612>

V2r(k—1) \ifar 0
1 0 —i%) i
" V2r(k+1) (iﬁ21 0o ) TOE: (3.23)
where
meiﬂ'/élc*’”’/z v
Bi2 = Wa B21 = %, (3.24)

and o = p(1)et62(1)e2vM e V2 4nd T(k) is a Gamma function.
3.4 Analysis of remaining d-problem

RH Problem 3.6 Find a function M) (k) : C — SLo(C) with the following properties.
(1) MO (k) =T+ O(k™") as |k| — .
(2) For z € C, we have

M) (k) = M (kYW (k), (3.25)
where
W (k) = M™"(k)aRP (k)M™ (k)1 (3.26)

and OR?) (k) is defined by (3.20).

A matrix-valued function M®) (k) that is both bounded and continuous is equivalent to
solving a Fredholm-type integral equation (see [18]):

MO () = T4+ + / / M)ZV(S)M(S), (3.27)
T C S —

where dA denotes the Lebesgue measure on C, and s refers to a complex variable.
(3.27) can be written as

(I-8)M® (k) =1, (3.28)

where S is the solid Cauchy operator

S(F)(k) = % / /C %dfl(s). (3.29)

Proposition 3.3 demonstrates that as ¢ — +oc0, the operator S has a small norm.

Proposition 3.3 There exists a constant C(p, p) such that for all T > 0, the operator (3.29)

satisfies the inequality

ISl oes e < Clp, p)r™ 1. (3.30)
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Proof We consider the case in the region k € (23, with the case for other regions following
similarly. Let s — 1 =2z +iy and k — 1 = u + iv, and let f € L°°(Q3). Then, from (3.20) and
(3.25), it follows that

SYMTP($)OR(s)M™P(s)71
|<//Qs — dA(s)

T . |3R4 ||el7-9 s)|
< 1o M7 oo gy M7 oo s>// W

< C(Il + Iz), (3.31)

dA(s)

where I, Is are defined by

;G iTl(s)
1o [[ WO R
Q3 s — k|

s — 1|——|el7'0(s)|
I —dA(s).
=[], e

We use the parametrization k = a+ (1 —a)i € X3 with 0 < a < 1. A simple computation shows
that

. —a(a—1)? 5
Im(f(a+ (1 —a)i)) = ey < —ala—1)*<0
Define
1 1
_50“27 0 S a S 57
I(a) = (3.32)
1 , 1
——(a— —<a<
2((1 1)=, 5Sas 1,
we have Im(f(a + (1 — a)i)) < I(a) <0, and then
1
/ le~ im0 |dE < / el@dg < C77 3. (3.33)
Qs 0

Let us now begin with the estimate of I;, we acquire

— (N (s+ )|+ (s + 1)|)|ei70(1+m+1y)|
Il_A /y \/(x_u)2+(y_v)2

. <, _1
<c(||p'||Lz<R>+Hp’||L2<R>>/ eIy [ ~ddy < 7.
0

dxdy

For I, we have

I S/ e—TI(y)H;I
0 (22 +y?)1

A direct computation shows that [|(z2 + y2)~3 22 ((y, %)) does not depend on y > 0. Thus, we

1
Li(y,OO)H V(@ —u)?

‘ dy.
+ (y — v)2 L2 ((y,00))

can replicate the arguments above to obtain I3 < 7~ 4, which proves (3.31). This suffices to

~

prove Proposition 3.3.

In order to determine the potential (u(t,z),v(t,z)), we must first identify the asymptotic
properties of the coefficient corresponding to the £~! term in the Laurent series expansion of
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M®) (k) as |k| — oo. This coefficient is characterized by an integral expression that emerges

from the expansion

(3)
M® (k) = M ! // M(B)S_Z %) dA(s), (3.34)

M® = / / M® ()W (s)dA(s).

Proposition 3.4 For all 7 > 0, there exists a constant C(p, p) such that

where

M| < Clp. p)rt. (8:35)

Proof Let us first consider the case of Q3 U 4 (see Figure 3).

o=

Rez

Figure 3 Decomposition of 23 and 4.

M|

IN

1 3) () M (TR ()M (5)-LId A(s
//Q4|M (5) M7 ()R () M™P(5) " |d A(s)

IN

1 T rhp ! ) iT6(s
IO w77 e I iy [ OBl AG)
4
<C(Iy + 15), (3.36)

where

1= [ 00/ @es)+ 17 (Res)leaas),

15=// s — 114670 |d A(s).
Q4

We write s — 1 = x + iy € (14, then we can obtain

' T, s ey,
le™iT00)| < (3.37)
eV, se Qo

Next, we present the computation for I, as

I < // P+ 1)+ o (x+1)))e” "dxdy
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/ / o' (x+ 1) + |p'(x + 1)])e” "Vdady

1 1
< el ey + 10l e) (5 + 7). (3.38)

Recalling the bounds of I; from Proposition 3.3, we can similarly bound I5. Then we acquire

’/Q MO ()W (s)dA(s )‘ -1,

Bl

Let us now estimate foa M®(s)W(s)dA(s). We have that for any y € (0,%) and any
x € (—1,—y), it is the case that |e~I7()| < e~ 2" for s € Q3. It follows that

/ lp (Res)||e_”9(s)|dA // p(x+1)|le” 2y|dacdy
Q31
_ _3
<0l [ e lizgoordy < Clo.pyrt.

To bound the integral over 3 5, we write s —i = 2 +iy. For s € Q3, we have [e/T()| < =7,
it follows that

-y
/ 17 (Res)|[e~ | dA(s) / / 17 (@)]e~ % |dzdy
Q3.2
<10l / e~ % dy < Clp, pyr. (3.39)

Since other regions €); can be considered in a similar way, we can conclude the proof.

4 Asymptotic Stability of Solitons

In this section, without loss of generality, we assume p = 1 to establish the asymptotic

stability of the one-soliton solution.

4.1 The Backlund transformation

In this subsection, we construct a map such that

G xC_> {(UQ,Uo),Zl} — (170,50) € Gy (41)
via the transformation
~ z — 21
= . 4.2
Fe) = r(e) 22 (1.2

By definition (4.2), if r(z) € HMY(R)NL*72(R), then 7(z) € HY(R)NL?~2(R). Consequently,

there exists a constant C' > 0 such that

17 ()| @ynzz—2@®) < Cllr(2) s ®ynze—2m)-

We construct Backlund transformation for MTM system as follows.
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Proposition 4.1 The solutions (u,v) and (u,v) to the MTM system in (1.1) are connected

by the Backlund transformation

u(t,z) = u(t,x) + By, 4.3
,’E(tax) = ’U(t,l’) + B’U7 (4 4)
where
B, = 2i DA 4 [l o)y (4.5)
2] + z[m[?
B, = _0i WATI2 4 (jul+ol)dy (4.6)
72| + 2| |?
and
(771,7]2)T = 2icyIm zleie(zl)t./\/l(zl)ez, (4.7)
(”yl,”yg)T = —2iw;Im zle_ig(zl)t/\/(zl)el, (4.8)

where phase function ©(z) is defined in (2.35).

Proof We will explore the Backlund transformation for B, and a similar approach for B,,.
Assuming that H = (hy, h2) is a determined invertible matrix solution of the spectral problem
(2.14). Our objective is to eliminate a simple pole in the first column at z; € C~, as well as in

the second column at zZ; € CT within the RH problem 2.1. Further define a transformation

M(z) = HG(z)H *M(2)G(2), (4.9)

6w = (5" L1

This requires satisfying the conditions

where

Zfiez?/\?(z) =0, zfiegsiﬂ(z) =0. (4.10)
Considering
(H_l./\/l)ll (H_l./\/l)lzi:il
H'M = . " (4.11)
(H_lM)Ql _1 (H_lM)QQ
zZ—2zZ1

the residues of the second row element of the (4.11) are

Res (H_lj\/l)21 £ fl = <H€2, Res £ fl Mel> =0,

z=z1 zZ— zZ1 zZ=z12 — 21

Res(H ' M)z = (Hea, Res Mes) = 0.

zZ2=z1 zZ=2z1

To calculate the residues in the first row, we proceed as follows

Res(H ™ 'M)11 = (Hey, Res Mey)

zZ=2z1
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= Hey = d; Res/\/lel,
zZ=z1

z—7Z1

Res (H_lj\/l)lgz — A <H61, Res

2=z Zz— z1 Z=212 — 21

= <H61, (2’1 — El)z].:iGZSM(Z)€2> =0

M€2>

= Heg = dQ(Zl — El)ReSM(Z)BQ.

For any functions dy, d2, we can use them for the purpose of equivalence as

dl =2zZ1 — 317 d2 = Cle%(Zl_zfl)z_%(zl+z;1)t7 (412)
so we have
hQ = H62 = Res/\/lel - (Zl - El)ResM(z)eQ. (413)
z=z1 zZ=z1

Similarly, for the case z = Z;1, we have

hl = H€1 = RG_SMEQ - (Zl - El)Re_s./\/l(z)el, (414)

Z2=Zz1 zZ=ZzZ1

rewrite (4.13)—(4.14) in matrix form

H = (Hey,Hes) = Res M (2) (EZ 121 1 ) . (4.15)

2=z 21— 21

Finally, we compute the corresponding potential @, we obtain

M(2) = H(I — Giz)H NI + Myz + O(z%))(I — G1z) ™t
=1+ (M, —HGH ' +G)z+ 0O(z%),

where G = (Eol 0 ), and hence

21
E(t,x) = e_% j:roo(‘mz“v'z)dy(/\/ll — HGlH_l + G1)12~ (4.16)

By symmetry of (2.7) and (2.12), thus H can expressed as

7 m
H = (h1,he) = < i ) , (4.17)
—Zh1 12
taking (4.17) into (4.16), we get
~ . Imzlﬁlng L (24| w)2)d
u(t,x) = u(t,x) + 2il——————e2Jo UM TV, 4.18

Considering the potential v, we are seeking to eliminate a simple pole at Z; in the first
column and another simple pole at z; in the second column in the RH problem 2.2. To fulfill
this objective, assuming that H = (ﬁl,/ﬁg) is an unknown invertible matrix solution of the
spectral problem (2.23). Similarly, by applying a similar method to calculate the potential .
Define a transformation

N(z)= HG(2)H ()N (2)G(2), (4.19)
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where

this requires satisfying the conditions

ResN(z) =0, ResN(z)=0. (4.20)

z=2z1 z=z1

Using the similar method as (4.21)—(4.22), we acquire

712 = ﬁQQ = Res]\/el - (Zl - El)ResJ\/(z)eQ, (421)

z=z1 zZ=z1

similarly, for the case z = Z1, we have

/i\ll = ﬁel = RQSNEQ — (Zl — El)RgsJ\/(z)el, (422)

zZ=Zz1 zZ=ZzZ1

thus H can expressed as

H = (hy,hy) = <_72271 7;) . (4.23)

We calculate

I G ~ Gy —1
N = H(I - —1)H—1 (I+ —1) (I - —1) +O(z2)
z z z
Vi - HGLH ' + G
R )
where @1 = (Zol 201 ) and hence
B(t,z) = e~ da TP, — FGLH ! + Gylys. (4.24)
Taking (4.23) into (4.24), we acquire
= cImzyiye 4 e upzpe?)a
v(t,x) =v(t,x) — 2i—————e2Jo M TIVIIAY, 4.25
) =) 2

4.2 The solution procedure

Lemma 4.1 Fiz pyg > 0 such that ||7(2)|| g1 @)n2—2(®) < po, then there exists a C(r) > 0
and a T > 0. Fort >T, we have

|Mi1(21) — 6(21)] + [Mas(z1) — 64 (21)] < C(r)pot ™3, (4.26)
6 Hz1) (B2 312
‘MlQ(Z1)+ \/Z—t (2’1—1+2’1+1)‘

5(21)( Bo1 n Bay

M _
+’ 21(21) \/% z1— 1 z1+1

)‘ < C(T‘)pot_%. (4.27)
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Proof We have the following representation:
M(z1) = M® (2) M (21)R® (1) 716 (21)7%. (4.28)

We bound §(z) using (3.9). According to Proposition 3.3, this leads us to establish that
M®)(z) = I+ Ot~ 1), and M"™P(z,) is as defined by (3.23). Following this, (3.24) allows
us to deduce that |S12(21)] + |B21(21)| < po, which in turn confirms Lemma 4.1.

Given Proposition 4.1, we prove Theorem 1.1 as follows:
u(t, z) —ux(t, @)l L~ + vt ) — oa(t, )| < J1+ o,
where
Ji = ||u(t, @)l e + ([0t 2)| Lo,
J2 = |IBy e + [[oa(t, @)l oo + [[BullLoe + [[ux(t, )] Lo
We have applied Theorem 3.1 to bound .J; < Ct~3. Moving on to Ja, we find that

B 4ImZleiG(zl)te—i®(z1)tm21/\/122

u I

. )
e { -~ 5 [ (uP+ o))

_ 4Im 2167 10(EEIOEIAT Ay

v T I

. )
oo { =5 [l + o}

where

bi — Z1|ei®(z1)tM21|2 + |ei®(z1)t./\/l22|27
b12; — Z1|e—i®(z1)tNll| + |e_i®(zl)t/\/12|.

Let p = ||7(2)||zr) and € be given in (1.4), then Lemma 4.1 implies for ¢ > T', we have

M3 | <201+ 2)_1|521|t_% +Cet™T <t K|M

3

NVl < 2014 %) 7 Buaft™F + Cet ™1 < BRI, 22|
for a fixed and sufficiently large constant K. We conclude that

'M <t 2eK(14 O(et™2)) < Cet ™z,

IB.| < t e
M3,

IB,| < t—%aK:NQf: <t 3eK(1+ 0t 2)) < Cet™>
11

for which M(N);; = 6~ 1" (21) + O(et=%) and |62 (21)| < (p). At last, as t — oo, we observe
that

(ux(t,z),va(t,x)) ~ O(sech(f(x —vt) + i%)) ~ O(e_(lf(””_”t)‘2+|%|2)%),
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then owing to

e (Fa—vtP+I3)F < =%

The result is confirmed.
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