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Abstract In this paper, the authors employ the ∂-steepest descent method and Bäcklund
transformation to investigate the asymptotic stability of Dirac solitons in the context of
the massive Thirring model (MTM for short) system. They formulate the solution to
the Cauchy problem for the MTM system in terms of the solution to a Riemann-Hilbert
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1 Introduction

This paper is devoted to the asymptotic stability of Dirac solitons in the massive Thirring

model (MTM for short) system

{
i(ut + ux) + v + u|v|2 = 0,

i(vt − vx) + u+ v|u|2 = 0.
(1.1)

Given initial data (u(0, x), v(0, x)) = (u0, v0) ∈ H2(R) ∩H1,1(R). Here, H2(R) is the standard

Sobolev space defined as

H2(R) = {f ∈ L2(R) : f ′, f ′′ ∈ L2(R)}.

Additionally, H1,1(R) is defined as

H1,1(R) = {f ∈ L2,1(R) : f ′ ∈ L2,1(R)}

with ‖f(x)‖pLp,s(R) =
∫
R
(1 + x2)

ps
2 |f(x)|pdx. The MTM system, developed by Thirring [1],

describes a nonlinear Dirac equation that is invariant under relativistic transformations in

one-dimensional space. The Gross-Neveu model (see [2]), also known as the massive Soler
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model when formulated in three-dimensional space (see [3]), provides another example of a

relativistically invariant one-dimensional Dirac equation.

Recent research has focused on studying various mathematical properties of the MTM sys-

tem. The Lax pair and new exact solutions for the MTM system were constructed (see [4]).

It is known that the Cauchy problem for the MTM system is locally well-posed in the func-

tion space Hs(R) for s > 0 (see [5]). Furthermore, it has been established that the Cauchy

problem is globally well-posed for s > 1
2 (see [6]). Recent works have also demonstrated the

global well-posedness of the MTM system in the function space L2(R) (see [7–8]). The soliton

solutions of the MTM system were obtained using the inverse scattering method (IST for short)

(see [9]). Moreover, research has also addressed the ∂-problem related to the class of rapidly

decaying potentials of the MTM system (see [10]). Recently, the ∂-steepest descent method has

been used to study the long time behavior of the MTM system for the weighted Sobolev initial

data H2(R) ∩ H1,1(R) (see [11]) and H2,2(R) (see [12]), respectively. The L2-orbital stability

of solitons for the MTM system was established using the Bäcklund transformation (see [13]).

In this study, we establish the asymptotic stability of Dirac solitons in the MTM system (1.1)

by employing the ∂-steepest descent method and the Bäcklund transformation. The explicit

one-soliton solutions are presented as [13],

uλ(t, x) = iγ−1 sinαsech
(
f(x− vt)− i

α

2

)
e−iβ(t+vx), (1.2)

vλ(t, x) = −iγ sinαsech
(
f(x− vt) + i

α

2

)
e−iβ(t+vx), (1.3)

the discrete spectral λ = γe
iα
2 is associated with

f =
γ2 + γ−2

2
sinα, β =

γ2 + γ−2

2
cosα, v =

γ−2 − γ2

γ−2 + γ2
.

We now state our main result as follows.

Theorem 1.1 Consider the Dirac solitons (uλ0 , vλ0) for the MTM system given by (1.2)–

(1.3). Then, there exist positive constants ǫ0(λ0), C(λ0), T (λ0) such that if the initial data

(u0, v0) ∈ H2(R) ∩H1,1(R) satisfy

ε = (‖u0 − uλ0(0, x)‖ + ‖v0 − vλ0(0, x)‖)H2(R)∩H1,1(R) ≤ ε0(λ0), (1.4)

there exists λ such that

|λ− λ0| ≤ C(λ0)ε, (1.5)

and for all t ≥ T (λ0) and
∣∣x
t

∣∣ < 1,

‖u(t, x)− uλ(t, x)‖L∞(R) + ‖v(t, x)− vλ(t, x)‖L∞(R) < C(λ0)εt
− 1

2 . (1.6)

The paper is structured as follows. In Section 2, we discuss the IST for the spectral problem

(2.1), and also provide an equivalent formulation of the RH problem associated with it. In

Section 3, we analyze the asymptotic for the pure radiation solution using the ∂-steepest descent

method. In Section 4, we prove the asymptotic stability of solitons, as formulated in Theorem

1.1, utilizing the Bäcklund transformation.
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2 Inverse Scattering Transform

In this section, we consider the IST for the MTM system based on its Lax pair.

2.1 Analyticity and symmetry of Jost functions

The MTM system can be integrated associated with Lax pair:

ψx − i

4

(
λ2 − 1

λ2

)
σ3ψ = Lψ, (2.1)

ψt −
i

4

(
λ2 +

1

λ2

)
σ3ψ = Aψ, (2.2)

where

L =
i

4
(|u|2 − |v|2)σ3 −

iλ

2

(
0 v

v 0

)
+

i

2λ

(
0 u

u 0

)
,

A = − i

4
(|u|2 + |v|2)σ3 −

iλ

2

(
0 v

v 0

)
− i

2λ

(
0 u

u 0

)
,

and σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It can be shown that (2.1) admits

ψ±(λ) ∼ e
ixσ3(λ2−λ−2)

4 , x→ ±∞.

Further making the transformation

ϕ±(λ) = ψ±(λ)e−
ixσ3(λ2−λ−2)

4 , (2.3)

then ϕ±(λ) solves the spectral problem

ϕ±
x (λ)−

i

4

(
λ2 − 1

λ2

)
[σ3, ϕ

±(λ)] = Lϕ±(λ) (2.4)

with asymptotic condition

ϕ±(λ) ∼ I, x→ ±∞.

It follows from (2.4), we acquire

ϕ−(λ) = I +

∫ x

−∞
e

i(x−y)σ̂3(λ2−λ−2)
4 Lϕ−(λ)dy, (2.5)

ϕ+(λ) = I −
∫ +∞

x

e
i(x−y)σ̂3(λ2−λ−2)

4 Lϕ+(λ)dy, (2.6)

where eσ̂3L := eσ3Le−σ3 for a 2×2 matrix L. Denote ϕ±(λ) = [ϕ±
1 (λ), ϕ

±
2 (λ)] , where ϕ

±
j (λ)

represents the jth column of ϕ±(λ).
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Proposition 2.1 Let (u0, v0) ∈ H2(R) ∩ H1,1(R). Then, the Volterra integral equations

(2.5)–(2.6) admit unique solutions ϕ+(λ) and ϕ−(λ), respectively. Moreover, the functions

ϕ+
1 (λ) and ϕ−

2 (λ) can be analytically continued into the domain Ω+ = {λ ∈ C : Imλ2 > 0},
while ϕ−

1 (λ) and ϕ
+
2 (λ) can be analytically continued into the domain Ω− = {λ ∈ C : Imλ2 < 0}.

Here, Im z denotes the imaginary part of the complex number z, while Re z represents its real

component (see [14]).

By symmetry of (2.1), we have

ϕ±(λ) = σ3ϕ
±(−λ)σ3, ϕ±(λ) = σ2ϕ±(λ)σ2. (2.7)

Moreover there exists a continuous matrix function S(λ) such that

ϕ−(λ) = ϕ+(λ)e
ixσ̂3(λ2−λ−2)

4 S(λ), λ ∈ Σ, (2.8)

with Σ = {λ ∈ C \ {0} : Imλ2 = 0} and

S(λ) =


α(λ) −β(λ)

β(λ) α(λ)


 , (2.9)

where α(λ) and β(λ) can be expressed by Wronskian determinant

α(λ) =Wr(ϕ−
1 (λ), ϕ

+
2 (λ)), (2.10)

β(λ) = e
ix(λ2−λ−2)

2 Wr(ϕ+
1 (λ), ϕ

−
1 (λ)), (2.11)

we have the following symmetry relations:

α(−λ) = α(λ), β(−λ) = −β(λ).

Additionally, it is established from (2.10) that the function α(λ) is analytic in C−. Let

λk, k = 1, · · · , N be the zeros of α(λ), it follows that there exists a constant C̃k such that

ϕ−
1 (λk) = C̃kϕ

+
2 (λk).

Subsequently, we define norming constant Ck = C̃k

α′(λk)
.

Assumption 2.1 There exists an open dense set G ⊂ H2(R) ∩ H1,1(R) such that, for

(u0, v0) ∈ G, the function α(λ) has no zeros on R ∪ iR. We denote by Gn the open subset of

G satisfying N -solitons are contained in Gn and it turns out also neighborhoods of N -solitons

belong to Gn. In particular, the number of zeros does not vary in time and the set G are

invariant under the MTM system (see [15–16]).

2.2 Jost functions for λ → 0

Define the transformation matrix by [11],

Ψ(λ) = T (u;λ)ψ(λ), λ 6= 0, (2.12)
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where

T (u;λ) =

(
1 0

u(x) λ−1

)
. (2.13)

Setting z = λ2, then Ψ(z) satisfies

Ψx(z)−
i

4

(
z − 1

z

)
σ3Ψ(z) = LΨ(z) (2.14)

with

L = Q1(u, v) + zQ2(u, v), (2.15)

where

Q1(u, v) =




− i

4
(|u|2 + |v|2) i

2
u

ux − i

2
u|v|2 − i

2
v

i

4
(|u|2 + |v|2)




and

Q2(u, v) =
i

2

(
uv −v

u+ u2v −uv

)
.

Consider the Jost function Ψ(z) satisfying

Ψ±(z) ∼ e
ixσ3(z−z−1)

4 , x→ ±∞.

Letting

M±(z) = Ψ±(z)e−
ixσ3(z−z−1)

4 ,

then we have

lim
x→±∞

M±
1 (z) = lim

x→±∞
T (u;λ)ϕ±

1 (λ) = e1,

lim
x→±∞

M±
2 (z) = lim

x→±∞
λT (u;λ)ϕ±

2 (λ) = e2,

where M±
j (z) represents the j-th column of M±(z) and ej denotes the j-th column of the

identity matrix, and they satisfy the Volterra integral equations

M±
1 (z) = e1 +

∫ x

±∞
diag(0, e−

i
2 (z−z−1)(x−y))LM±

1 (z)dy, (2.16)

M±
2 (z) = e2 +

∫ x

±∞
diag(e

i
2 (z−z−1)(x−y), 0)LM±

2 (z)dy. (2.17)

There exists S1(z) such that

M−(z) =M+(z)S1(z), z ∈ R \ {0}, (2.18)
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where

S1(z) = e
ixσ̂3(z−z−1)

4

(
a(z) −b(z)
zb(z) a(z)

)

and

a(z) =Wr(M−
1 (z),M+

2 (z)), (2.19)

b(z) = e−
ix(z−z−1)

2 Wr(M+
2 (z),M−

2 (z)). (2.20)

2.3 Jost functions for |λ| → ∞

Define the transformation by [11],

Ψ̂(z) = T̂ (v;λ)ψ(λ), (2.21)

where z = λ2 and

T̂ (v;λ) =

(
1 0

v(x) λ

)
. (2.22)

Then Ψ̂(z) satisfies

Ψ̂x(z)−
i

4

(
z − 1

z

)
σ3Ψ̂(z) = L̂Ψ(z), (2.23)

where

L̂ = Q̂1(u, v) +
1

z
Q̂2(u, v) (2.24)

with

Q̂1(u, v) =




i

4
(|u|2 + |v|2) − i

2
v

vx +
i

2
|u|2v + i

2
u − i

4
(|u|2 + |v|2)


 ,

Q̂2(u, v) = − i

2

(
uv −u

v + uv2 −uv

)
.

Consider the Jost solution of (2.23) with asymptotics

Ψ̂±(z) ∼ e
ixσ3(z−z−1)

4 , x→ ±∞,

making the transformation

N±(z) = Ψ̂±(z)e−
ixσ3(z−z−1)

4 ,

then we have

lim
x→±∞

N±
1 (z) = lim

x→±∞
T̂ (u;λ)ϕ±

1 (λ) = e1,
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lim
x→±∞

N±
2 (z) = lim

x→±∞
λ−1T̂ (u;λ)ϕ±

2 (λ) = e2,

where N±
j (z) represents the j-th column of N±(z), and they satisfy the Volterra integral equa-

tions

N±
1 (z) = e1 +

∫ x

±∞
diag(0, e−

i
2 (z−z−1)(x−y))L̂N±

1 (z)dy, (2.25)

N±
2 (z) = e2 +

∫ x

±∞
diag(e

i
2 (z−z−1)(x−y), 0)L̂N±

2 (z)dy. (2.26)

Proposition 2.2 The functions M±
1 (z) and M∓

2 (z) are analytic within the upper/lower

half-planes C
± for z, and they are also continuous on C

± ∪ R. Similarly, the functions N±
1 (z)

and N∓
2 (z) are analytic in C± for z, and they are continuous on C± ∪R (see [11]).

Again, there exists S2(z) such that

N−(z) = N+(z)S2(z), z ∈ R, (2.27)

where

S2(z) = e
ixσ̂3(z−z−1)

4


 â(z) −b̂(z)
zb̂(z) â(z)


 .

It follows from (2.27) that

â(z) =Wr(N−
1 (z), N+

2 (z)), (2.28)

b̂(z) = e−
ix(z−z−1)

2 Wr(N+
2 (z), N−

2 (z)). (2.29)

We can observe the following relations

α(λ) = a(z) = â(z), λβ(λ) = b(z) = λ2b̂(z). (2.30)

For z ∈ R \ {0}, we define the reflection coefficient as

r(z) =
b(z)

a(z)
, r̂(z) =

b̂(z)

a(z)
. (2.31)

Drawing from (2.30), we can also deduce that a(z) is analytically continuous in C−. Let

Z = {zk | zk = λ2k, k = 1, · · · , N}

be the set of zeros of a(z) in C−. Then there exist constants c̃k and w̃k such that

M−
1 (zk) = c̃kM

+
2 (zk), N−

1 (zk) = w̃jN
+
2 (zk),

where the norming constants are ck = c̃k
a′(zk)

and wk =
w̃j

a′(zk)
, respectively.
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2.4 The RH problem for the potential (u, v)

In this section, we will present two RH problems. The first problem aims to reconstruct the

component u using M±(z) as z → 0, while the second problem deals with N±(z) and aims to

reconstruct the component v as |z| → ∞. It is important to note that both components satisfy

the MTM system (1.1).

Define





P+(z) =
(M−

1 (z)

a(z)
M+

2 (z)
)
, z ∈ C+,

P−(z) =
(
M+

1 (z)
M−

2 (z)

a(z̄)

)
, z ∈ C−

(2.32)

and





P̂+(z) =
(
N+

1 (z)
N−

2 (z)

â(z)

)
z ∈ C+,

P̂−(z) =
(N−

1 (z)

â(z)
N+

2 (z)
)
, z ∈ C−.

(2.33)

With asymptotic limits as [14],

P±(z) →


e

i
4

∫
+∞
x

(|u|2+|v|2)dy 0

0 e−
i
4

∫
+∞
x

(|u|2+|v|2)dy


 = P∞(x), z → 0,

P̂±(z) →


e−

i
4

∫ +∞
x

(|u|2+|v|2)dy 0

0 e
i
4

∫ +∞
x

(|u|2+|v|2)dy


 = P̂∞(x), |z| → ∞.

Define

M±(z) = P∞(x)−1P±(z), z ∈ C
±,

N±(z) = P̂∞(x)−1P̂±(z), z ∈ C
±.

Then we obtain the following two RH problems.

RH Problem 2.1 Find an analytic function M(z) : C \ R → SL2(C) with the following

properties.

(1) M(z) = I +O(z) as z → 0.

(2) For each z ∈ R, the boundary values M±(z) satisfy the jump relation

M+(z) = M−(z)V1(z), (2.34)

where

V1(z) =

(
1 + z|r(z)|2 r(z)eiΘ(z)t)

zr(z)e−iΘ(z)t 1

)
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and

Θ(z) =
1

2
(z − z−1)

x

t
+

1

2
(z + z−1). (2.35)

(3) M(z) has simple poles at each zk ∈ Z and zk ∈ Z at which

Res
z=zk

M(z) = lim
z→zk

M(z)

(
0 0

ckzke
−iΘ(zk)t 0

)
,

Res
z=zk

M(z) = lim
z→zk

M(z)

(
0 −ckeiΘ(zk)t

0 0

)
.

RH Problem 2.2 Find an analytic function N (k) : C \ R → SL2(C) with the following

properties.

(1) N (z) = I +O(z−1) as |z| → ∞.

(2) For each z ∈ R, the boundary values N±(z) satisfy the jump relation

N+(z) = N−(z)V2(z), (2.36)

where

V2(z) =

(
1 −r̂(z)eiΘ(z)t

−zr̂(z)e−iΘ(z)t 1 + z|r̂(z)|2

)
.

(3) N (z) has simple poles at each zk ∈ Z and zk ∈ Z at which

Res
z=zk

N (z) = lim
z→zk

N (z)

(
0 −wke

iΘ(zk)t

0 0

)
,

Res
z=zk

N (z) = lim
z→zk

N (z)

(
0 0

wkzke
−iΘ(zk)t 0

)
.

The solutions (u(t, x), v(t, x)) to the MTM system (1.1) are connected to the solutions of

the RH problems 2.1 and 2.2 through the reconstruction formulas:

u(t, x)e−
i
2

∫ +∞
x

(|u|2+|v|2)dy = lim
z→0

z−1[M(z)]12,

v(t, x)e
i
2

∫ +∞
x

(|u|2+|v|2)dy = lim
|z|→∞

z[N (z)]12.

Proposition 2.3 Suppose (u(t, x), v(t, x)) ∈ H2(R) ∩ H1,1(R), there exists a bi-Lipschitz

map

(u(t, x), v(t, x)) 7→ (r(z), r̂(z)) ∈ H1,1(R) ∩ L2,−2(R),

where L2,−2(R) = L̇2,−2(R) ∩ L2(R) and ‖f(x)‖2
L̇2,−2(R)

=
∫
R
|x|−2|f(x)|2dx.

Proof The proof can be founded in [11, 14].



44 R. H. Ma and E. G. Fan

3 Dispersion for Pure Radiation Solutions

In this section, we will focus on the MTM system (1.1) in the soliton region with
∣∣x
t

∣∣ < 1,

which is of interest from a physical perspective.

Theorem 3.1 Let (u0, v0) ∈ G0∩H2(R)∩H1,1(R). Then there exist constant C(u0, v0) > 0

and T (u0, v0) > 0 such that for all t ≥ T (u0, v0) and
∣∣x
t

∣∣ < 1, the solution of MTM system

(1.1) satisfies

‖u(t, x)‖L∞(R) + ‖v(t, x)‖L∞(R) ≤ C(u0, v0)t
− 1

2 . (3.1)

In the rest of Section 3 we prove Theorem 3.1.

3.1 New coordinates

For
∣∣x
t

∣∣ < 1, the phase function in (2.35) can be simplified as following:

Θ(z)t = τθ(k), (3.2)

where

τ =
√
t2 − x2, k =

z

µ
, µ =

t− x

τ
(3.3)

and θ(k) = 1
2

(
k + 1

k

)
with stationary points at ξ = ±1.

We consider the RH problem 3.1, which is related to the RH problems 2.1–2.2 as discussed

in Lemma 3.1.

RH Problem 3.1 Find an analytic function M(k) : C \ R → SL2(C) with the following

properties.

(1) M(k) = I + (k−1) as k → ∞.

(1) For each k ∈ R, the boundary values M±(k) satisfy the jump relation

M+(k) =M−(k)V (k),

where

V (k) =

(
1 + ρ(k)ρ̌(k) ρ(k)e−iτθ(k)

ρ̌(k)eiτθ(k) 1

)
. (3.4)

Lemma 3.1 RH problem 2.1 with G0 and RH problem 3.1 are equivalent for the following

choice if ρ(k) and ρ̌(k) in (3.4):

ρ(k) = r(kµ)e2iτθ(k), ρ̌(k) = kµr(kµ)e−2iτθ(k). (3.5)

RH problem 2.2 with G0 and RH problem 3.1 are equivalent for the following choice if ρ(k)

and ρ̌(k) in (3.4):

ρ(k) = −r̂(kµ)d−(z)d+(z)e2iτθ(k), ρ̌(k) = −kµ · r̂(kµ)e−2iτθ(k)

d−(z)d+(z)
, (3.6)
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where




d(z) = exp
{
− 1

2πi

∫ ∞

−∞

log(1 + s|r(s)|2)
s− z

ds
}
, z ∈ C \ R,

d±(z) = lim
ε→0

d(z ± iε), z ∈ R.

(3.7)

Consider the following scalar RH problem.

RH Problem 3.2 Find a scalar function δ(k) analytic for k ∈ C\(−1, 1) with the following

properties.

• δ(k) = 1 +O(k−1) as |k| → ∞.

• For each k ∈ R, the boundary values δ±(k) satisfy the jump relation

δ+(k) =

{
δ−(k), k ∈ R \ (−1, 1),

δ−(k)(1 + ρ(k)ρ̌(k)), k ∈ (−1, 1).

It can be shown that the RH problem 3.2 has a unique solution

δ(k) = exp
{
i

∫ 1

−1

ν(s)

s− k
ds
}
, (3.8)

where

ν(k) = − 1

2π
log(1 + ρ(k)ρ̌(k))

and the logarithm is principally branched along (−1, 1).

Proposition 3.1 The function δ(k) has the following properties.

(1) The function δ(k) satisfies the estimate

e−
‖ν(k)‖L∞

2 ≤ |δ(k)| ≤ e
‖ν(k)‖L∞

2 . (3.9)

(2) Along any ray of L = ±1 + eiφR+ with 0 < φ < π, C(ρ, ρ̌) > 0, we have

|δ(k)− δ0(k)(k ± 1)iν(±1)| ≤ C(ρ, ρ̌)|k ± 1| 12 . (3.10)

Here δ0(k) = eiβ(±1,±1) and

β(k,±1) = −ν(±1) log
(
k ∓ 5

6

)
+

∫ 1

−1

ν(s) − χ(s)ν(±1)

s− k
ds, (3.11)

where χ(k) is the characteristic function of the interval

I =
{
k | k ∈

(
− 1,−5

6

)
or k ∈

(5
6
, 1
)}
. (3.12)

Proof For part (1), we use the fact that ‖ν(k)‖H1,1(R) ≤ 1
2π‖ρρ̌‖L1 to establish the bound.

For part (2), we write the function δ(k) as follows:

δ(k) = exp
(
i

∫

I

ν(s)

s− k
ds+ i

∫ 1

−1

ν(s)− χ(s)ν(±1)

s− k
ds
)
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= (k ± 1)iν(±1) exp(iβ(k,±1)).

Using the fact that

|(k ± 1)iν(±1)| ≤ e−πν(±1) =
√
1 + ρ(k)ρ̌(k),

we deduce that

|β(k,±1)− β(±1,±1)| ≤ C(ρ, ρ̌)|k ± 1| 12 .

Define

M (1)(k) =M(k)δ(k)−σ3 , (3.13)

then M (1)(k) satisfies the following RH problem.

RH Problem 3.3 Find an analytic function M (1)(k) : C \R → SL2(C) with the following

properties.

(1) M (1)(k) = I +O(k−1) as k → ∞.

(2) For each k ∈ R, the boundary values M
(1)
± (k) satisfy the jump relation

M
(1)
+ (k) =M

(1)
− (k)V (1)(k), (3.14)

where

V (1)(k) =





(
1 ρ(k)δ2(k)e−iτθ(k)

0 1

)(
1 0

ρ̌(k)δ(k)−2eiτθ(k) 1

)
, |k| ≥ 1,




1 0

ρ̌(k)δ−2
− (k)

1 + ρ(k)ρ̌(k)
(k)eiτθ(k) 1






1

ρ(k)δ2+(k)

1 + ρ(k)ρ̌(k)
e−iτθ(k)

0 1


 , |k| < 1.

3.2 ∂-extensions of jump factorization

In this section, our objective is to obtain factorizations of the jump matrix that allow for

continuous extension beyond the real axis R according to the decay and growth associated with

θ(k) (see Figure 1). To achieve this, we define a new contour Σ(2) =
9⋃

j=1

Σj (see Figure 2).

θ

θ

θ

θ

Figure 1 Signature table for Re iθ.
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Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ΣΣ

Σ

ΣΣ

ΣΣ

ΣΣ

Figure 2 The contours Σk and regions Ωk, k = 1, 2, · · · , 10.

Following this contour definition, we construct the necessary extension functions.

Lemma 3.2 It is possible to define functions Rj(k) : Ωj → C (k = 1, 2, · · · , 8) with boundary

values satisfying

Rj(k)|j=1,4 =

{
−ρ̌(k)δ−2(k), k ∈ Ij ,

−ρ̌(ξ)δ−2(ξ)e−2χ(ξ)(k − ξ)−2iν , k ∈ Σj ,

Rj(k)|j=2,3 =





− ρ(k)

1 + ρ(k)ρ̌(k)
δ2+(k), k ∈ Ij ,

− ρ(ξ)

1 + ρ(ξ)ρ̌(ξ)
δ2+(ξ)e

2χ(ξ)(k − ξ)2iν , k ∈ Σj ,

Rj(k)|j=5,8 =

{
ρ(k)δ2(k), k ∈ Ij ,

ρ(ξ)e2χ(ξ)δ2(ξ)(k − ξ)2iν , k ∈ Σj ,

Rj(k)|j=6,7 =





ρ̌(k)

1 + ρ(k)ρ̌(k)
δ−2
− (k), k ∈ Ij ,

ρ̌(ξ)

1 + ρ(ξ)ρ̌(ξ)
δ−2
− (ξ)e−2χ(ξ)(k − ξ)−2iν , k ∈ Σj ,

where

ξ =

{
−1, j = 1, 2, 5, 6,

1, j = 3, 4, 7, 8,
(3.15)

and we define Ij as the projection of Σj onto R. Then, for a fixed constant c > 0 such that

|∂Rj(k)| ≤ c|k ± 1|− 1
2 + c(|ρ′(Re k)|+ |ρ̌′(Re k)|).

Proof Let us consider the case when j = 4. Writing k − 1 = seiφ, we define the function

R4(k) as follows:

f4(k) = ρ̌(1)e−2χ(1)δ2(k), (3.16)

and let

R4(k) = [f4(k) + (ρ̌(Rek)− f4(k)K(φ)]δ−2(k),
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where K(φ) is a smooth function on
(
0, π4

)
with

K(φ) =





1, φ ∈
[
0,
π

12

]
,

0, φ ∈
[π
6
,
π

4

]
.

The function R4(k) takes the same values on both Σ4 and (1,∞). Since

∂ =
1

2

( ∂
∂x

+ i
∂

∂y

)
=

1

2
eiφ
( ∂
∂s

+
i

s

∂

∂φ

)
,

we calculate

∂R4(k) =
1

2
ρ̌′(Re k)K(φ)δ−2(k)− (ρ̌(Re k)− f4(k))δ

−2 ieiφ

|k − 1|K
′(φ),

where the first term is bounded by (3.9). For the second term, we write

|ρ̌(Re k)− f4(k)| ≤ |ρ̌(Re k)− ρ̌(1)|+ |ρ̌(1)− f4(k)|,

and apply the Cauchy-Schwarz inequality to bound each term as follows:

|ρ̌(Re k)− ρ̌(1)| ≤
∣∣∣
∫ Re k

1

ρ̌′(s)ds
∣∣∣ ≤ ‖ρ̌‖H1(R)|k − 1| 12

and

|ρ̌(1)− f4(k)| ≤ |ρ̌(1)|(1 + |ρ̌(1)|2)|δ2(1)− δ20(1)(k − 1)2iν |
≤ C(ρ̌)‖ρ̌‖H1(R)|k − 1|− 1

2 .

The last estimate employs Proposition 3.1, and the result is immediately obtained.

By using Rj(k), j = 1, · · · , 8, we define the function

R(2)(k) =





(
1 0

Rj(k)e
iτθ(k) 1

)
, k ∈ Ωj|j=1,4,6,7

,

(
0 Rj(k)e

−iτθ(k)

0 0

)
, k ∈ Ωj|j=2,3,5,8

,

I, k ∈ Ω9 ∪ Ω10.

(3.17)

We now introduce another matrix-valued function

M (2)(k) =M (1)(k)R(2)(k), (3.18)

which converts the RH problem 3.3 into a mixed ∂-RH problem 3.4.

RH Problem 3.4 Find a meromorphic function M (2)(k) : C \ Σ(2) → SL2(C) with the

following properties.

(1) M (2)(k) = I +O(k−1) as k → ∞.
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(1) For each k ∈ Σ(2), the boundary values M
(2)
± (k) satisfy the jump relation

M
(2)
+ (k) =M

(2)
− (k)V (2)(k), (3.19)

where

V (2) =





(
1 0

Rj(k)e
iτθ(k) 1

)
, k ∈ Σj|j=1,4,6,7

,

(
1 ∆R32(k)e

−iτθ(k)

0 1

)
, k ∈ (0, i),

(
1 Rj(k)e

−iτθ(k)

0 1

)
, k ∈ Σj|j=2,3,5,8

,

(
1 0

∆R67(k)e
iτθ(k) 1

)
, k ∈ (−i, 0).

where ∆R32(k) = R3(k)−R2(k) and ∆R67(k) = R6(k)−R7(k).

(3) For z ∈ C \ Σ(2) we have ∂M (2)(k) =M (2)(k)∂R(2), where

∂R(2) =





(
0 0

∂Rj(k)e
iτθ(k) 0

)
, k ∈ Ωj=1,4,6,7,

(
0 ∂Rj(k)e

−iτθ(k)

0 0

)
, k ∈ Ωj=2,3,5,8,

0, k ∈ Ω9 ∪ Ω10.

(3.20)

3.3 Analysis of pure RH problem

In this section, we can factorize M (2)(k) as follows:

M (2)(k) =M (3)(k)M rhp(k). (3.21)

Here, M rhp(k) corresponds to the solution of the RH problem 3.4 for M (2)(k) by dropping the

∂ component, while M (3)(k) represents the solution of the pure ∂-RH problem 3.6.

The matrix M rhp(k) is meromorphic away from the contour Σ(2) on which its boundary

values satisfy the jump relation (3.19). However, at any distance from the phase points ξ, the

jump is uniformly near identity. Using (3.19) and the definition θ(k), there exists a constant

c > 0 satisfying

‖V (2) − I‖L∞(Σ(2)) = O(e−ct), (3.22)

which is exponentially small in Σ(2). Based on this estimation, we will construct the solution

M rhp(k) = (1 +O(e−ct))M lc(k), where M lc(k) is constructed below.

RH Problem 3.5 Find a meromorphic function M lc(k) : C \ Σ(2) → SL2(C) with the

following properties.

(1) M lc(k) = I +O(k−1), |k| → ∞.

(2) For each k ∈
8⋃

j=1

Σj , the boundary values M lc
± (k) satisfy the jump relation

M lc
+ (k) =M lc

− (k)V (2)(k).

By using the standard method (see [17]), it can shown that
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Proposition 3.2 The solution to the RH problem 3.5 admits the following expansion

M lc(k) = I +
1√

2τ(k − 1)

(
0 −iβ12

iβ21 0

)

+
1√

2τ (k + 1)

(
0 −iβ12

iβ21 0

)
+O(k−2), (3.23)

where

β12 =

√
2πeiπ/4e

−πν/2

̺Γ(−iν)
, β21 =

ν

β12
, (3.24)

and ̺ = ρ̌(1)eitδ−2(1)e2iν(1) log
√
2t and Γ(k) is a Gamma function.

3.4 Analysis of remaining ∂-problem

RH Problem 3.6 Find a function M (3)(k) : C → SL2(C) with the following properties.

(1) M (3)(k) = I +O(k−1) as |k| → ∞.

(2) For z ∈ C, we have

∂M (3)(k) =M (3)(k)W (k), (3.25)

where

W (k) =M rhp(k)∂R(2)(k)M rhp(k)−1, (3.26)

and ∂R(2)(k) is defined by (3.20).

A matrix-valued function M (3)(k) that is both bounded and continuous is equivalent to

solving a Fredholm-type integral equation (see [18]):

M (3)(k) = I +
1

π

∫∫

C

M (3)(s)W (s)

s− k
dA(s), (3.27)

where dA denotes the Lebesgue measure on C, and s refers to a complex variable.

(3.27) can be written as

(I − S)M (3)(k) = I, (3.28)

where S is the solid Cauchy operator

S(f)(k) = 1

π

∫∫

C

f(s)W (s)

s− k
dA(s). (3.29)

Proposition 3.3 demonstrates that as t→ +∞, the operator S has a small norm.

Proposition 3.3 There exists a constant C(ρ, ρ̌) such that for all τ > 0, the operator (3.29)

satisfies the inequality

‖S‖L∞→L∞ ≤ C(ρ, ρ̌)τ−
1
4 . (3.30)
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Proof We consider the case in the region k ∈ Ω3, with the case for other regions following

similarly. Let s − 1 = x + iy and k − 1 = u + iv, and let f ∈ L∞(Ω3). Then, from (3.20) and

(3.25), it follows that

|S(f)(k)| ≤
∫∫

Ω3

|f(s)M rhp(s)∂R(s)M rhp(s)−1|
|s− k| dA(s)

≤ ‖f‖L∞(Ω3)‖M rhp‖L∞(Ω3)‖M rhp−1‖L∞(Ω3)

∫∫

Ω3

|∂R4(s)||eiτθ(s)|
|s− k| dA(s)

≤ C(I1 + I2), (3.31)

where I1, I2 are defined by

I1 =

∫∫

Ω3

(|ρ′(Re s)|+ |ρ̌′(Re s)|)|eiτθ(s)|
|s− k| dA(s),

I2 =

∫∫

Ω3

|s− 1|− 1
2 |eiτθ(s)|

|s− k| dA(s).

We use the parametrization k = a+(1−a)i ∈ Σ3 with 0 ≤ a ≤ 1. A simple computation shows

that

Im(θ(a+ (1 − a)i)) =
−a(a− 1)2

a2 + (1− a)2
≤ −a(a− 1)2 ≤ 0.

Define

I(a) =





−1

2
a2, 0 ≤ a ≤ 1

2
,

−1

2
(a− 1)2,

1

2
≤ a ≤ 1,

(3.32)

we have Im(θ(a + (1− a)i)) ≤ I(a) ≤ 0, and then

∫

Ω3

|e−iτθ(k)|dk ≤
∫ 1

0

eτI(a)da ≤ Cτ−
1
2 . (3.33)

Let us now begin with the estimate of I1, we acquire

I1 =

∫ ∞

0

∫ ∞

y

(|ρ′(s+ 1)|+ |ρ̌′(s+ 1)|)|eiτθ(1+x+iy)|√
(x − u)2 + (y − v)2

dxdy

≤ c(‖ρ′‖L2(R) + ‖ρ̌′‖L2(R))

∫ ∞

0

e−τI(y)|y − v|− 1
2 dy . τ−

1
4 .

For I2, we have

I2 ≤
∫ ∞

0

e−τI(y)
∥∥∥ 1

(x2 + y2)
1
4

∥∥∥
L2

x(y,∞)

∥∥∥ 1√
(x− u)2 + (y − v)2

∥∥∥
L2

x((y,∞))
dy.

A direct computation shows that ‖(x2 + y2)−
1
4 ‖L2

x((y,∞)) does not depend on y > 0. Thus, we

can replicate the arguments above to obtain I3 . τ−
1
4 , which proves (3.31). This suffices to

prove Proposition 3.3.

In order to determine the potential (u(t, x), v(t, x)), we must first identify the asymptotic

properties of the coefficient corresponding to the k−1 term in the Laurent series expansion of
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M (3)(k) as |k| → ∞. This coefficient is characterized by an integral expression that emerges

from the expansion

M (3)(k) = I +
M

(3)
1

k
+

1

π

∫∫

C

sM (3)(s)W (s)

z(s− z)
dA(s), (3.34)

where

M
(3)
1 =

1

π

∫∫

C

M (3)(s)W (s)dA(s).

Proposition 3.4 For all τ > 0, there exists a constant C(ρ, ρ̌) such that

|M (3)
1 | ≤ C(ρ, ρ̌)τ−

3
4 . (3.35)

Proof Let us first consider the case of Ω3 ∪ Ω4 (see Figure 3).

Ω

Ω

Ω

Ω

Figure 3 Decomposition of Ω3 and Ω4.

|M (3)
1 | ≤ 1

π

∫∫

Ω4

|M (3)(s)M rhp(s)∂R(2)(s)M rhp(s)−1|dA(s)

≤ 1

π
‖M (3)‖L∞(Ω4)‖M rhp‖L∞(Ω4)‖M rhp−1‖L∞(Ω4)

∫∫

Ω4

|∂R4||eiτθ(s)|dA(s)

≤ C(I4 + I5), (3.36)

where

I4 =

∫∫

Ω4

(|ρ′(Res)|+ |ρ̌′(Res)|)|eiτθ(s)|dA(s),

I5 =

∫∫

Ω4

|s− 1|− 1
2 |eiτθ(s)|dA(s).

We write s− 1 = x+ iy ∈ Ω4, then we can obtain

|e−iτθ(s)| ≤
{
e−τxy, s ∈ Ω4,1,

e−τy, s ∈ Ω4,2.
(3.37)

Next, we present the computation for I4 as

I4 ≤
∫ ∞

0

∫ ∞

y

(|ρ̌′(x+ 1)|+ |ρ′(x+ 1)|)e−τxydxdy
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+

∫ ∞

0

∫ ∞

y

(|ρ̌′(x+ 1)|+ |ρ′(x+ 1)|)e−τydxdy

≤ c(‖ρ′‖H1(R) + ‖ρ̌′‖H1(R))
( 1

τ
3
4

+
1

τ

)
. (3.38)

Recalling the bounds of I4 from Proposition 3.3, we can similarly bound I5. Then we acquire

∣∣∣
∫∫

Ω4

M (3)(s)W (s)dA(s)
∣∣∣ ≤ cτ−

3
4 .

Let us now estimate
∫∫

Ω3
M (3)(s)W (s)dA(s). We have that for any y ∈

(
0, 12

)
and any

x ∈ (−1,−y), it is the case that |e−iτθ(s)| ≤ e−
τxy
2 for s ∈ Ω3,1. It follows that

∫

Ω3,1

|ρ′(Re s)||e−iτθ(s)|dA(s) ≤
∫ 1

0

∫ −y

−1

|ρ′(x+ 1)||e− τxy
2 |dxdy

≤ ‖ρ′‖L2(R)

∫ ∞

0

‖e− τxy
2 ‖L2

x(y,∞)dy ≤ C(ρ, ρ̌)τ−
3
4 .

To bound the integral over Ω3,2, we write s− i = x+ iy. For s ∈ Ω3,2, we have |eiτθ(s)| ≤ e−
τy
2 ,

it follows that

∫

Ω3,2

|ρ′(Re s)||e−iτθ(s)|dA(s) ≤
∫ 0

−1

∫ −y

0

|ρ′(x)||e− τy
2 |dxdy

≤ ‖ρ′‖L1(R)

∫ ∞

0

e−
τy
2 dy ≤ C(ρ, ρ̌)τ−1. (3.39)

Since other regions Ωj can be considered in a similar way, we can conclude the proof.

4 Asymptotic Stability of Solitons

In this section, without loss of generality, we assume µ = 1 to establish the asymptotic

stability of the one-soliton solution.

4.1 The Bäcklund transformation

In this subsection, we construct a map such that

G1 × C− ∋ {(u0, v0), z1} 7→ (ũ0, ṽ0) ∈ G0 (4.1)

via the transformation

r̃(z) = r(z)
z − z1

z − z1
. (4.2)

By definition (4.2), if r(z) ∈ H1,1(R)∩L2,−2(R), then r̃(z) ∈ H1,1(R)∩L2,−2(R). Consequently,

there exists a constant C > 0 such that

‖r̃(z)‖H1,1(R)∩L2,−2(R) ≤ C‖r(z)‖H1,1(R)∩L2,−2(R).

We construct Bäcklund transformation for MTM system as follows.
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Proposition 4.1 The solutions (u, v) and (ũ, ṽ) to the MTM system in (1.1) are connected

by the Bäcklund transformation

ũ(t, x) = u(t, x) +Bu, (4.3)

ṽ(t, x) = v(t, x) +Bv, (4.4)

where

Bu = 2i
Im z1η1η2

|η2|2 + z|η1|2
e

i
2

∫ +∞
x

(|u|2+|v|2)dy, (4.5)

Bv = −2i
Im z1γ1γ2

|γ2|2 + z|γ1|2
e

i
2

∫+∞
x

(|u|2+|v|2)dy (4.6)

and

(η1, η2)
T = 2ic1Im z1e

iΘ(z1)tM(z1)e2, (4.7)

(γ1, γ2)
T = −2iw1Im z1e

−iΘ(z1)tN (z1)e1, (4.8)

where phase function Θ(z) is defined in (2.35).

Proof We will explore the Bäcklund transformation for Bu and a similar approach for Bv.

Assuming that H = (h1, h2) is a determined invertible matrix solution of the spectral problem

(2.14). Our objective is to eliminate a simple pole in the first column at z1 ∈ C−, as well as in

the second column at z1 ∈ C+ within the RH problem 2.1. Further define a transformation

M̃(z) = HG(z)H−1M(z)G−1(z), (4.9)

where

G(z) =

(
z − z1 0

0 z − z1

)
.

This requires satisfying the conditions

Res
z=z1

M̃(z) = 0, Res
z=z1

M̃(z) = 0. (4.10)

Considering

H−1M̃ =




(H−1M)11 (H−1M)12
z − z1

z − z1

(H−1M)21
z − z1

z − z1
(H−1M)22


 , (4.11)

the residues of the second row element of the (4.11) are

Res
z=z1

(H−1M)21
z − z1

z − z1
=
〈
He2, Res

z=z1

z − z1

z − z1
Me1

〉
= 0,

Res
z=z1

(H−1M)22 = 〈He2, Res
z=z1

Me2〉 = 0.

To calculate the residues in the first row, we proceed as follows

Res
z=z1

(H−1M)11 = 〈He1, Res
z=z1

Me1〉
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⇒ He2 = d1Res
z=z1

Me1,

Res
z=z1

(H−1M)12
z − z̄1

z − z1
=
〈
He1, Res

z=z1

z − z1

z − z1
Me2

〉

= 〈He1, (z1 − z1)Res
z=z1

M(z)e2〉 = 0

⇒ He2 = d2(z1 − z1)ResM(z)e2.

For any functions d1, d2, we can use them for the purpose of equivalence as

d1 = z1 − z1, d2 = c1e
i
2 (z1−z−1

1 )x− i
2 (z1+z−1

1 )t, (4.12)

so we have

h2 = He2 = Res
z=z1

Me1 − (z1 − z1)Res
z=z1

M(z)e2. (4.13)

Similarly, for the case z = z1, we have

h1 = He1 = Res
z=z1

Me2 − (z1 − z1)Res
z=z1

M(z)e1, (4.14)

rewrite (4.13)–(4.14) in matrix form

H = (He1, He2) = Res
z=z1

M(z)

(
zz − z1 1

1 z1 − z1

)
. (4.15)

Finally, we compute the corresponding potential ũ, we obtain

M̃(z) = H(I −G1z)H
−1(I +M1z +O(z2))(I −G1z)

−1

= I + (M1 −HG1H
−1 +G1)z +O(z2),

where G1 =
(

z1 0

o z1

)
, and hence

ũ(t, x) = e−
i
2

∫
+∞
x

(|u|2+|v|2)dy(M1 −HG1H
−1 +G1)12. (4.16)

By symmetry of (2.7) and (2.12), thus H can expressed as

H = (h1, h2) =

(
η2 η1

−zη1 η2

)
, (4.17)

taking (4.17) into (4.16), we get

ũ(t, x) = u(t, x) + 2i
Im z1η1η2

|η2|2 + z|η1|2
e

i
2

∫ +∞
x

(|u|2+|v|2)dy. (4.18)

Considering the potential ṽ, we are seeking to eliminate a simple pole at z1 in the first

column and another simple pole at z1 in the second column in the RH problem 2.2. To fulfill

this objective, assuming that Ĥ = (ĥ1, ĥ2) is an unknown invertible matrix solution of the

spectral problem (2.23). Similarly, by applying a similar method to calculate the potential ũ.

Define a transformation

Ñ (z) ≡ ĤĜ(z)Ĥ−1(z)N (z)Ĝ−1(z), (4.19)
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where

Ĝ(z) =

(
z − z1 0

0 z − z1

)
,

this requires satisfying the conditions

Res
z=z1

Ñ (z) = 0, Res
z=z1

Ñ (z) = 0. (4.20)

Using the similar method as (4.21)–(4.22), we acquire

ĥ2 = Ĥe2 = Res
z=z1

N e1 − (z1 − z1)Res
z=z1

N (z)e2, (4.21)

similarly, for the case z = z1, we have

ĥ1 = Ĥe1 = Res
z=z1

N e2 − (z1 − z1)Res
z=z1

N (z)e1, (4.22)

thus Ĥ can expressed as

Ĥ = (ĥ1, ĥ2) =

(
γ2 γ1

−zγ1 γ2

)
. (4.23)

We calculate

Ñ = Ĥ
(
I − Ĝ1

z

)
Ĥ−1

(
I +

Ñ1

z

)(
I − Ĝ1

z

)−1

+O(z−2)

= I +
Ñ1 − ĤĜ1H

−1 + Ĝ1

z
+O(z−2),

where Ĝ1 =
(

z1 0

o z1

)
and hence

ṽ(t, x) = e−
i
2

∫ +∞
x

(|u|2+|v|2)dy[Ñ1 − ĤĜ1H
−1 + Ĝ1]12. (4.24)

Taking (4.23) into (4.24), we acquire

ṽ(t, x) = v(t, x)− 2i
Im z1γ1γ2

|γ2|2 + z|γ1|2
e

i
2

∫ +∞
x

(|u|2+|v|2)dy. (4.25)

4.2 The solution procedure

Lemma 4.1 Fix ρ0 > 0 such that ‖r(z)‖H1,1(R)∩L2,−2(R) < ρ0, then there exists a C(r) > 0

and a T > 0. For t ≥ T , we have

|M11(z1)− δ(z1)|+ |M22(z1)− δ−1(z1)| ≤ C(r)ρ0t
− 1

2 , (4.26)
∣∣∣M12(z1) +

δ−1(z1)√
2t

( β12

z1 − 1
+

β12

z1 + 1

)∣∣∣

+
∣∣∣M21(z1)−

δ(z1)√
2t

( β21

z1 − 1
+

β21

z1 + 1

)∣∣∣ ≤ C(r)ρ0t
− 3

4 . (4.27)
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Proof We have the following representation:

M(z1) =M (3)(z1)M
rhp(z1)R(2)(z1)

−1δ(z1)
σ3 . (4.28)

We bound δ(z) using (3.9). According to Proposition 3.3, this leads us to establish that

M (3)(z1) = I + O(t−
3
4 ), and M rhp(z1) is as defined by (3.23). Following this, (3.24) allows

us to deduce that |β12(z1)|+ |β21(z1)| ≤ ρ0, which in turn confirms Lemma 4.1.

Given Proposition 4.1, we prove Theorem 1.1 as follows:

‖u(t, x)− uλ(t, x)‖L∞ + ‖v(t, x)− vλ(t, x)‖L∞ ≤ J1 + J2,

where

J1 = ‖ũ(t, x)‖L∞ + ‖ṽ(t, x)‖L∞ ,

J2 = ‖Bv‖L∞ + ‖vλ(t, x)‖L∞ + ‖Bu‖L∞ + ‖uλ(t, x)‖L∞ .

We have applied Theorem 3.1 to bound J1 ≤ Ct−
1
2 . Moving on to J2, we find that

Bu =
4Im z1e

iΘ(z1)te−iΘ(z1)tM21M22

b2u exp
{
− i

2

∫ +∞

x

(|u|2 + |v|2)dy
} ,

Bv =
4Im z1e

−iΘ(z1)teiΘ(z1)tN 11N12

b2v exp
{
− i

2

∫ +∞

x

(|u|2 + |v|2)dy
} ,

where

b2u = z1|eiΘ(z1)tM21|2 + |eiΘ(z1)tM22|2,
b2v = z1|e−iΘ(z1)tN11|+ |e−iΘ(z1)tN12|.

Let ρ = ‖r̃(z)‖L∞(R) and ε be given in (1.4), then Lemma 4.1 implies for t > T , we have

|M+
21| ≤ 2(1 + ρ2)−1|β21|t−

1
2 + Cεt−

3
4 ≤ t−

1
2 εK|M+

11|,
|N+

12| ≤ 2(1 + ρ2)−1|β12|t−
1
2 + Cεt−

3
4 ≤ t−

1
2 εK|N+

22|

for a fixed and sufficiently large constant K. We conclude that

|Bu| ≤ t−
1
2 εK

|M+
11|

|M+
22|

≤ t−
1
2 εK(1 +O(εt−

1
2 )) ≤ Cεt−

1
2 ,

|Bv| ≤ t−
1
2 εK

|N+
22|

|N+
11|

≤ t−
1
2 εK(1 +O(εt−

1
2 )) ≤ Cεt−

1
2

for which M(N )ii = δ−(−1)i(z1) +O(εt−
1
2 ) and |δ±1(z1)| ≤ 〈ρ〉. At last, as t→ ∞, we observe

that

(uλ(t, x), vλ(t, x)) ∼ O
(
sech

(
f(x− vt)± i

α

2

))
∼ O(e−(|f(x−vt)|2+|α2 |2)

1
2 ),



58 R. H. Ma and E. G. Fan

then owing to

e−(|f(x−vt)|2+|α2 |2)
1
2 ≤ t−

1
2 .

The result is confirmed.
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