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Abstract By using the implicit function, the authors prove the existence of solutions of the
conformally covariant split system on compact three-dimensional Riemannian manifolds.
They give rise to certain initial data for the Einstein-scalar system and the Einstein-
Maxwell system.

Keywords Constraint equations, Conformally covariant split, Initial data, Einstein-
scalar, Einstein-Maxwell
2020 MR Subject Classification 83C05

1 Introduction

The celebrated work of Choquet-Bruhat shows that one can always find a spacetime solution
of the Einstein equations containing an embedded hypersurface whose metric and extrinsic
curvature agree with the given set of smooth initial data (see [4]). These data cannot be freely
specified. In fact, they must satisfy certain geometric constraints. Seeking to construct solutions
of the Einstein constraint equations is notoriously difficult. Our focus here is on the up-to-date
most useful approach: The conformal method. This method was developed by Lichnerowicz [15]
and Choquet-Bruhat and York [7]. The idea is to turn the constraint equations to a determined
elliptic partial differential equation system via a conformal transformation.

There are at least two different ways to do the construction. The sets of free data are the
same. Precisely, we have a three-dimensional Riemannian manifold (M3, g), a symmetric trace-
and divergence-free (TT) tensor of type (0, 2) 05, a smooth function 7, and certain initial values
of matter fields on the manifold M.

We would like to seek a positive function ¢ and a one-form W satisfying a coupled set
of elliptic partial differential equations. The physical metric g is given by g;; = ¢?g;; while
the extrinsic curvature (or the second fundamental form) K is different between these two
procedures.

In one of the procedures, which is called the “semi-decoupling split” (historically “Method

Manuscript received February 12, 2025.
1School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail: 20210180068@fudan.edu.cn nqgxie@fudan.edu.cn
*This work was supported by the Natural Science Foundation of Shanghai (No.24ZR1406000).



60 X. H. Tian and N. Q. Xie

A”) (see [5]), the equations for (¢, W) take the form
Ab—2Ryb+ o+ LW |26~ — —12¢° = 0 (L1a)
897 8 e 12 ’ '
.2
Vi(LgW)j — §¢6va =0, (1.1b)

where the Laplacian A and the scalar curvature R, are of the g-compatible covariant derivative
V; respectively, and L, is the conformal Killing operator,

2 .
(LgW)ij = Vin + VjWi — g(legW)gij.

Then (g = ¢*g, K = Zg+¢~2(c+L,W)) satisfies the vacuum constraint equation and therefore
it becomes an initial data set of the vacuum Einstein field equations.

There is another way, which we call “conformally covariant split” (historically “Method B”)
(see [19]), and the equations for (¢, W) are

1

127
9 .

VilLyW); = SV,7 + 6(LyW);Vilog 6 = 0. (1.2b)

1 1 2, =7 1 —1 2 1 2 5
A¢— SRy + glolso ™ + (o, LgW)go - ( - g|LgW|g)¢ =0, (1.2a)

Then (M,§ = ¢*g, K = 59 + ¢ 20 + ¢*L,W) becomes an initial data set for the vacuum
spacetime.

Much attention has been received in the mathematical community for the semi-decoupling
split system (standard conformal method) (see [2-3]). If 7 is a constant, the system (1.1)
splits in a natural way so that we are only left with the well-studied Lichnerowicz equation
(see [12]). Although some results are obtained for the case of non-constant 7 (see [1, 9, 13-14,
17]), it remains open in general. Unfortunately, there is no such nice decoupling property for
the conformally covariant split system (1.2). However, (1.2) and some of its invariants (see
[10]) possess the conformal covariance property (see [16, Eqn (1.8)]). Many fewer mathematical
results are known for this conformally covariant split system, albeit numerical relativists recently
started to apply it for certain studies (see [8]).

In this paper, we prove the existence of solutions of the conformally covariant split system
on compact three-dimensional Riemannian manifolds. They give rise to certain initial data
for the Einstein-scalar system and the Einstein-Maxwell system. The seed solutions are from
the vacuum initial data (see [16]) and by using the implicit function theorem, we obtain the
constructed initial data sets for the coupled matter fields via perturbations.

We will use geometric units with ¢ = G = 1 and the spacetime signature convention is
assumed to be (—, +, +, +). The standard notation W** denotes the Sobolev space of functions
or tensor fields defined on the Riemannian manifold M. And Wf’p denotes the subset consisting
of all positive W*P functions.

This paper is organized as follows. We give a brief introduction to the constraint equations in
Section 2. Initial data sets for the Einstein-scalar equations and the Einstein-Maxwell equations
are constructed in Section 3 and Section 4, respectively.
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2 The Constraint Equations

Let us start by foliating the spacetime (M?>! h) as a set of spacelike three-dimensional

hypersurfaces
h = —(dt)? + gijda‘da?.

These slices are labelled by a parameter t and denoted by M; = {t = const.}. And (2!, 2%, 23)
are the spatial coordinates. Denote by g;; = ¢;;(0) and K;; = %8t|t:0§ij (t) the induced metric
and the extrinsic curvature of M = M, respectively.

Further assume that the following Einstein field equations and the matter field equation are

satisfied

Scaly,

Ricy, — h = 87T, (2.1a)

C(F,h) =0. (2.1b)

Here Ricy and Scaly, are the Ricci tensor and the scalar curvature of the spacetime metric
h, F denotes certain physical quantities of the matter field, and T is the associated energy-
momentum tensor. The Einstein field equations (2.1a) are derived by varying the action of the
field theory with respect to the metric h while the matter field equation (2.1b) follows from
variation with respect to the matter field data F.

Due to the Gauss equation and the Codazzi equation, these data are not freely specified.

They must satisfy the Einstein constraint equations:
Ry — |K|2 + (trgK)? = 87Tyo, (2.2a)
ViK,;; — V,(trzK) = 87Ty, (2.2b)

where T}, = T(0,,0,)|(0,2). Here V and Rz denote the covariant derivative and the scalar
curvature of the metric g, respectively.

An Einstein-scalar field theory is introduced by the choice of an action taking the form
5= / ( L geal, — Ljawp V(®))dh
VRN L '

The potential V() is a given smooth function of a real variable. Varying this action with respect

to the scalar field W, it yields the wave equation
O0,¥ = V(D).

However, coupling to a scalar field does not lead to any new constraints. The constraint

equations (2.2) of the Einstein-scalar system are

Ry — |K2 + (trgK)? = 72 + [dU|2 4 2V (), (2.3a)
ViK;j — V;(trgK) = -7V, 0, (2.3b)
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where U = ¥(0,z) and T = 9y ¥ (0, x) denote the initial value and the initial speed of the scalar
field ¥ on M.

When the gravitational field is coupled with a source-free electromagnetic field F', the action

takes the form

1 1
S = —_Scaly, — —F*F,, )dh.
/M(167r “ah T Tor “)

Varying this action with respect to the electromagnetic field leads to the homogeneous Maxwell

equations
dF =0, (2.4a)
d«F = 0, (2.4b)
where * is the Hodge-star operator of the spacetime metric h. Note that the energy-momentum

tensor of the electromagnetic field F is

1

TMV:E

1
(P, — ZhWFAPF,\p).
Set
1
D,y = (+F),\ = §<4>gwﬁha9hﬂ5F95,

where M¢ is the volume element of the spacetime metric h. Then the energy-momentum tensor

can be rewritten as
1 A A
T, = o (FuF,*+D,,D,%).

Denote by

fij = Fiy(0,2),  dy = Dy;(0,2),
The geometric constraint equations now become
Ry — K[} + (trgK)* = | f[3 + |d]3, (2.5a)
ViKij — V;(trgK) = (V) " dyt fin, (2.5b)
where € is the standard Levi-Civita symbol.

The Maxwell equations (2.4) lead to the following additional physical constraints:

J?[12,3] =0, (2.6a)
8[12)3] =0. (26b)

The advantage of formulating the electronic field in terms of the Faraday form F,, instead of
using the 3-vectors E (electric field) and B (magnetic field) is that, in this case, there appear
only ordinary derivatives in the Maxwell constraints (2.6) which allows us to avoid studying

the conformal invariance of these equations.
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3 Initial Data of the Einstein-Scalar System

We consider a scalar field ¥ coupled with gravity. For the massive Klein-Gordon field
theory, the potential function V(®) = £m?®2. There are different forms of the coefficient in
the potential for the massive Klein-Gordon field. For instance, V(¥) = 1M ®? in [18] and
V(¥) = £m?®? in [6]. In this paper, we follow the convention in [6] where the parameter m
indeed denotes the mass.

In this section, by using the implicit theorem, we prove the existence of solutions of the
extended conformally split system. These solutions give rise to the physical initial data set for
the massive Klein-Gordon field.

Suppose that we give a symmetric TT tensor o, three smooth functions 7, ¥, and 7 on
a three-dimensional Riemannian manifold (M, g). We try to find a positive function ¢ and a

one-form W':

1 1 o1 _
A¢— 2Ry — AW [7)p + g(lalﬁ + ) " + 109 LgW)e0 '
1, 1 1 2\ 5
— (7 - V0 — SILW ) =0, (3.1a)
92 )
Vi(LaW)' — SViT+ 6(LyW);Viloge + ¢ 0V, ¥ = 0. (3.1b)

Here A = V;V' and R, are the Laplacian and the scalar curvature computed of the metric g,
respectively, and L, is the conformal Killing operator.
Let § = ¢*g, K = %(b‘lg + ¢ 20+ ¢4LgW and 7 = ¢ Or.

Proposition 3.1 For (¢, W) solving system (3.1), then (M3,g, K, U, 7) becomes an initial

data set satisfying the constraint equations (2.3).
Proof Straightforward calculations lead to
Ry — |K|2 + (trgK)?
= ¢_5(Rg¢ —8A¢) — (%7'2 =+ ¢_12|0|§ + |L9W|§ + 2¢_6<‘77 L9W>g) +7°
=m2¢p~ "2+ [dU]2 4+ 2V (D).
Then the Hamiltonian constraint holds. For the momentum constraint, one checks

%iKij - %jtrgK

) _ i 2V
= VI(LgW)ij + 66~ (V') (LgW)ij — ==
=1 OV, ¥
= -7V, 0.

Our first theorem in this section shows that the initial data set for the Einstein-scalar system

can be produced from a maximal slice in vacuum. Precisely, we have the following theorem.

Theorem 3.1 Suppose that we already have vacuum initial data (M, g, K) with try K = 0.
Suppose K # 0 for some region. Assume further that (M,g) has no conformal Killing vector
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fields and the potential is of the Klein-Gordon form V(¥) = %m2\112, Given any (1,¥,m) €
WP x WP x LP | there is a positive constant ) > 0 such that for any p € (0,7), there exists at
least one solution (QAS, ﬁ/\) € Wi"p x W2P of system (3.1) for the data (6 = p2K,7 = p~'7, U =
W37 = ).

Proof The proof is based on the implicit function theorem and the ideas are borrowed
from [5, 11, 16].

Since (M, g, K) constitutes vacuum maximal initial data, system (3.1) admits a particular
solution (¢ =1,W =0) for7=0,5 =K, ¥ =0 and 7 = 0.

Let us consider the following p-deformed system corresponding to (3.1):
G:RXx WP x WP — [P x LP,

1 1 1 1 1
DG~ SRO+ K™ 4 (K LyW)o™ = (0 1572 — gL, W2 )¢

4 12
" 26 1 2 272 -7 33l 90905
¢ | = |+ |dYPe + pt T + Pt omPPg
W 8 8

) 2 .
Vi(LgW); = GuVT + 6(LgW)Vilog + p!~omV,; ¥

It is easy to see that G is a Cl-mapping. The condition that (M, g, K) constitute vacuum initial
data with try X = 0 implies that G(0,1,0) = (0,0). We now prove that the partial derivative of
G with respect to the variables (¢, W) is an isomorphism at (0,6 = 1, W = 0). The differential
at the point (0,¢ = 1, W = 0) is given by

1. 7

o0
Dg|(0,1,0) (6w) = W
0, Arp

where AW = divy(L,W). Since (0,¢ = 1, W = 0) solves system (3.1), one has
1
A—-R-— Z|K|2 =A—|K]%
8 8

The invertibility of the derivative DG|(g 1,0y follows from the fact that the diagonal terms are
invertible.

By the implicit function theorem, for a sufficiently small parameter p, there exists (¢, W,,)
such that G(u, ¢, W) = 0.

Define ¢, = p3¢, and ﬁ/\# — u~2W,,. Direct calculations show that (¢, ﬁ/\#) solves system
(3.1) for the rescaled data (¢ = u'?K,7 = p~'7, V=80, 7 = pt3 ).

Remark 3.1 The existence interval of the parameter p depends on the given data (7, ¥, 7).
If i can be chosen as 1, it means that we can construct a solution of the conformal constraint
equation (3.1) with arbitrarily given (¥, 7). However, this is not always true. For small p,
the above mechanism leads to the construction of solutions to the rescaled small initial data
(W30, 1 137).

Assume that we already have a constant mean curvature (CMC for short) initial data set
(M3,3,K,V,7 = 0) with 7 = tryK = const. This seed data can be obtained by taking
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constant 7 and m = 0 in Theorem 3.1 for instance. Notice that in this case the traceless part
of K, Tij = Fij — @gij is divergence free and this @;; could be used as given data in the
conformal constraint equations (3.1). System (3.1) admits a special solution (¢ = 1, W = 0)
in this particular situation. This obvious solution can be understood as transforming the seed
data (M3, g, K. U, T) into itself. In subsequent part of this section, we use the implicit function
theorem to deduce existence of new solutions of (3.1) in the neighbourhood of (7, ¥, 7 = 0).

Our second theorem is stated as follows.

Theorem 3.2 Suppose that we already have a CMC initial data set (M?>,g, K, ¥, 7 = 0)
with 7 = trgK = const. Assume that —|f|§ +V(¥) <0 on M and —|K|% +V(¥) <0 in
some region of M. Assume further that (M,q) has no conformal Killing vector fields. Then
there is a small neighborhood of (7,W,0) in WP x WP x LP such that for any (r,%¥,7) in

this meighborhood there exists (¢, W) € Wi’p x W2P solving the system (3.1) for the data
(@ij = Kij — 29i5,7, ¥, 7).

Proof First, let us define the operator
FrWhP x WP x [P x WP x WP — [P x L,

A¢ — é(R — [d®[*)¢ + é(IFF +72)o7T + i@ Lw)¢~!

1 9 1 1 9\ 5
s _(12T - V() - ZILW| )¢

=3 &N

) 2 )
Vi(LW)i — VT + 6(LW)iV;log ¢ + ¢~ Omd; U

It is easy to see that F is a C'-mapping and F(7,¥,0,¢ = 1,W = 0) = (0,0). We prove
that the partial derivative of F with respect to the variables (¢, W) is an isomorphism at
(7,¥,0,¢ = 1,W = 0). The differential at the point (7, ¥,0,6 = 1, W = 0) is given by

0¢
D]:|(?,§70,170) ((5W)

B SER T C N R B R TR
) {4 VL {0 ()
ow )’

0, Ap

and it is triangular, meaning that the second row of the above 2 x 2 block matrix does not
depend on d¢. Thus, the invertibility of DF |(?§)071)0) follows from the fact that the diagonal
terms are invertible. More specifically, we have the following claims.

Claim 1

H: WP — [P,
Y rowwpy - e 2y Sy@
66 = (A= S(R—|dT[?) — fol? — 72 + V(@)oo

is invertible.
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Claim 2

Ap: WP — [P,
SW = ALsW

is also invertible.

The proof of Claim 2 is a consequence of the assumption that (M,g) is closed and has no
conformal Killing vector fields. The proof of Claim 1 is as follows. Note that H is a Fredholm
operator of index 0. It suffices to show that  is injective. Since (¢ = 1,W = 0) solves the

system (3.1), one has

1 Lo 1=o 1 _5 1. —
8R—|—8|0| +8|d\IJ| Tl +4V(\IJ)—O.
Hence,
1 — 7 5 5
A—Z(R—|dUP) - =7)]> - =72+ V(T
S(R—|dTP) = L - 57+ 2V(@)

1 —
=A—|5]? - 572 + V()
=A— KPP+ V(9).

Clearly, it is a negatively definite operator. This completes the proof.

The initial data sets constructed by using the above two theorems have small 7. This
drawback can be compensated by the following scaling symmetry of the conformal constraint

system (3.1).

Proposition 3.2 Suppose that system (3.1) has a solution (¢, W) for the data (g, 0,7, ¥, )
with the Klein-Gordon potential V (V) = %m2\112. Set QASZ /\_%¢, W =\W for some positive
number A € RT. Then (QAS, /V[7) satisfies system (3.1) for the data (§ = g,0;; = A\ "loy;, 7 =

A7, U =0, 7= A1) and i = AEm.

Suppose that we have already constructed a physical hypersurface (M?, ¢*g, ¢ =20+ ¢* LW
+%¢4g) with mass m Klein-Gordon field initial data (¥,¢~%7). Then by Proposition 3.2, the
physical hypersurface (MB, qA54g, 5_234— ¢4Lgﬁ/\+ quS‘lg) with mass m Klein-Gordon field initial
data (0, 5‘6%) satisfies the constraint equations (2.3). We can have large 7 if we choose A
sufficiently small.

4 Initial Data of the Einstein-Maxwell System

In this section, we are going to construct certain initial data set for the source-free elec-
tromagnetic field coupled with gravity. Different from the Einstein-scalar system, the Maxwell
equations (2.4) give additional physical constraints (2.6). These data can be obtained from
those of the flat space. Thus, we should merely concentrate on the geometric constraints (2.5).

Recall that we are given a symmetric TT tensor o, a smooth functions 7, and two skew-

symmetric tensor fields of type (0,2) f;; and d;; on a Riemannian manifold (M, g).
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Proposition 4.1 Let fi; and d;; be two WP skew-symmetric tensor fields of type (0,2)
on (M, g) satisfying fri2,3) = dji2,3) = 0. If there is (¢, W) € ijp x W?2P solving the following
conformally covariant split system

_1 1 2.7 l -1 _ i 2 _l 2\ /5
D¢ — SRyo+ Zlol26™T + (0 LgW),0~ = (7° — 5ILaWI2)
1 _
+3(f15 +ldigle™* =0, (4.1a)
2 . 6 1
VilLgW)j = SV;7 + 6(LgW);Vilogd — ¢ 693" fdsp = 0, (4.1b)

then (M,§ = ¢tg, K = §¢4g + ¢ %0+ ¢'L,W, f: f d= d) satisfies the constraint equations
(2.5).

Proof Let us firstly check the Hamiltonian constraint as follows:
Ry — | K[ + (trgK)?
1
= ¢_5(R9¢ —8A¢) — (57'2 + ¢_12|‘7|52; + |LgW|52; + 2¢_6<Ua LgW>g) +7°
1 1 1 1 1
_ -5 2,7 -1 2 2\ 5
= =867 (80 — SRy + Llol267T + 100 LgW),07 = (7% — S ILWI2) o)
= ¢ >(If15 +1dl3)
= ¢~ %" g (ddij + frifij)
= 3% (dudij + fafij)
172 72
= |fl5 + |dI5-
For the momentum constraint equations, one has
61.Kij — %jtrgK
=V (§¢4gij + ¢ 201'3‘ + ¢4(LgW)ij) - V7
) _

= V(0205 + 6°(LgW)iy)) = VT
= OV L)) — T
= VL W)y + 667 (V) Ly W)y — 2

= ¢_69_% U fadjy
= ()" F M fudj.

Note that there appear only ordinary derivatives of f and d in the electromagnetic constraints,

the form of the equations are invariant under conformal transformation. Hence,

ﬁlQ,B] = fl2,3 =0,
dii2,3) = dp2z3 = 0.

Therefore, (M, g, K, f,d) solves (2.5).
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Theorem 4.1 Suppose that we already have vacuum initial data (M, g, K) with tryg K = 0.
Suppose K # 0 for some region. Assume further that (M, g) has no conformal Killing vector
fields. For any given (7, f,d) € WHP x WP x WLP such that fnz.s = dpzs = 0, there
is a positive constant n > 0 such that for any p € (0,7), there exists at least one solution
(a, /V[7) € Wip x W2P of system (4.1) for the data (¢ = p'?K,7 = pu~'r, f= uof, d= pd).

Proof The proof is similar to that of Theorem 3.1.
Since (M, g, K) constitutes vacuum maximal initial data, system (3.1) admits a particular
solution (¢ =1,W =0)for7=0,5=K, f =0 and d = 0.

Let us consider the following p-deformed system corresponding to (4.1):

G:Rx WP x W2P — LP x LP,

_l l 24—=7 l 4 -1 _ 10i 2 _ 81 2 5
A¢— <Ro+ 2K 2677 + Zul (I LW)o — (10578 = n| LW o
o

1
I?/ = +§M6(|f|§ +|d[2)p~?
.2 ) )
Vi(LgW)5 — g/ﬁvﬂ +6(LgW)iVilog ¢ — p2¢ =09~ 2 Fildy fn

It is easy to see that G is a C'-mapping. The condition that (M, g, K) constitute vacuum initial
data with try K’ = 0 implies that G(0,1,0) = (0,0). We now prove that the partial derivative of
G with respect to the variables (¢, W) is an isomorphism at (0,6 = 1, W = 0). The differential
at the point (0,¢ = 1,W = 0) is given by

1 7
A-Lr-LKp
Dg| A T -t N
©0.1.0) | spp7 SW )
07 AL

where AW = divy(LW). Since (0,¢ = 1,W = 0) solves system (4.1), one has
1 7
A—-R-—|K’=A-|KJ*
gt = glKl K|

The invertibility of the derivative DG|(, 1,0y follows from the fact that the diagonal terms are
invertible.

By the implicit function theorem, for a sufficiently small parameter y, there exists (¢, W,,)
such that G(u, ¢, W,) = 0.

Define au = M3¢u and /VVN = M_QWM. Direct calculations show that (QASN, Wu) solves system
(4.1) for the rescaled data (6 = p'2K,7 = p~'7, f = pf,d = 1u°d). Since p is a constant, it is
clear that f and d also satisfy the Maxwell constraints (2.6).

Remark 4.1 The existence interval of the parameter p depends on the given data (7, f, d).
If 1 can be chosen as 1, it means that we can construct a solution of the conformal constraint
equation (4.1) with arbitrarily given (f,d). However, this is not always true. For small pu,
the above mechanism leads to the construction of solutions to the rescaled small initial data
(f: uf, d= u2d) for the electromagnetic field.
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Assume that we already have a CMC initial data set (M3,7, K, f,d = 0) with 7 = trgf =
const. This seed data can be obtained by taking constant 7 and 7 = 0 in Theorem 4.1. Notice
that in this case the traceless part of K, 7;; = K;j — #@j is divergence free and d = 0,
this @;; could be used as given data in the conformal constraint equations (4.1). System (4.1)
admits a special solution (¢ = 1,W = 0) in this particular situation. This obvious solution
can be understood as transforming the seed data (M3,7, K, f,d = 0) into itself. In subsequent
part of this section, we use the implicit function theorem to deduce existence of new solutions

of (4.1) in the neighbourhood of (7, f,d = 0). Here is our second theorem in this section.

Theorem 4.2 Suppose that we already have a CMC initial data set (M>,g, K, f,d = 0)
with T = trgK = const. Assume that —|K|[% — %|7|§ <0 on M and —|K[% - %F% < 0 in
some region of M. Assume further that (M,q) has no conformal Killing vector fields. Then
there is a small neighbourhood of (7, f,d = 0) in WP x WLP x LP such that for any (1, f,d)
in this neighbourhood there exists (¢, W) € Wi’p x WP solving the system (4.1) for the data
(@ij = Kij — 95,7 [, d).

The proof is similar to that of Theorem 3.2. One defines

Fi WP x WP s Whe 5 W2P x WP — [P x LP,

L AP YRS SN P A C R 8 B YRR AT AR

A¢— =Rgé+ (512677 + 1(5. LW )go (127 8|LgW|§)¢
1

o [ +gotar + a)

Te a—n

) 2 ) )
Vi(LgW); — gva +6(LgW);V;log ¢ — ¢8G2 kildy £y,

It remains to prove that the differential at (7, f,d = 0,¢ = 1, W = 0) is an isomorphism. The
initial data sets constructed from the above two theorems have small d. Again, this drawback

can be compensated by the following scaling symmetry of the conformal constraint system (4.1).

Proposition 4.2 Suppose that system (4.1) has a solution (¢, W) for the data (g,0,7, f,d)
with the Finstein—Maxwell system. Set a = /\_iqb, W=X\W for some positive number A\ € RT.
Then (5, ﬁ/\) satisfies system (4.1) for the data (§ = ¢,5;; = A\ '0yj,7 = /\%T,fz /\%f,c/l\z
Azd).
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