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1 Introduction

The celebrated work of Choquet-Bruhat shows that one can always find a spacetime solution

of the Einstein equations containing an embedded hypersurface whose metric and extrinsic

curvature agree with the given set of smooth initial data (see [4]). These data cannot be freely

specified. In fact, they must satisfy certain geometric constraints. Seeking to construct solutions

of the Einstein constraint equations is notoriously difficult. Our focus here is on the up-to-date

most useful approach: The conformal method. This method was developed by Lichnerowicz [15]

and Choquet-Bruhat and York [7]. The idea is to turn the constraint equations to a determined

elliptic partial differential equation system via a conformal transformation.

There are at least two different ways to do the construction. The sets of free data are the

same. Precisely, we have a three-dimensional Riemannian manifold (M3, g), a symmetric trace-

and divergence-free (TT) tensor of type (0, 2) σij , a smooth function τ , and certain initial values

of matter fields on the manifold M .

We would like to seek a positive function φ and a one-form W satisfying a coupled set

of elliptic partial differential equations. The physical metric g̃ is given by g̃ij = φ4gij while

the extrinsic curvature (or the second fundamental form) K is different between these two

procedures.

In one of the procedures, which is called the “semi-decoupling split” (historically “Method
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A”) (see [5]), the equations for (φ,W ) take the form

∆φ−
1

8
Rgφ+

1

8
|σ + LgW |2gφ

−7 −
1

12
τ2φ5 = 0, (1.1a)

∇i(LgW )ij −
2

3
φ6∇jτ = 0, (1.1b)

where the Laplacian ∆ and the scalar curvature Rg are of the g-compatible covariant derivative

∇i respectively, and Lg is the conformal Killing operator,

(LgW )ij = ∇iWj +∇jWi −
2

3
(divgW )gij .

Then
(
g̃ = φ4g,K = τ

3 g̃+φ−2(σ+LgW )
)
satisfies the vacuum constraint equation and therefore

it becomes an initial data set of the vacuum Einstein field equations.

There is another way, which we call “conformally covariant split” (historically “Method B”)

(see [19]), and the equations for (φ,W ) are

∆φ−
1

8
Rgφ+

1

8
|σ|2gφ

−7 +
1

4
〈σ, LgW 〉gφ

−1 −
( 1

12
τ2 −

1

8
|LgW |2g

)
φ5 = 0, (1.2a)

∇i(LgW )ij −
2

3
∇jτ + 6(LgW )ij∇i logφ = 0. (1.2b)

Then (M, g̃ = φ4g,K = τ
3 g̃ + φ−2σ + φ4LgW ) becomes an initial data set for the vacuum

spacetime.

Much attention has been received in the mathematical community for the semi-decoupling

split system (standard conformal method) (see [2–3]). If τ is a constant, the system (1.1)

splits in a natural way so that we are only left with the well-studied Lichnerowicz equation

(see [12]). Although some results are obtained for the case of non-constant τ (see [1, 9, 13–14,

17]), it remains open in general. Unfortunately, there is no such nice decoupling property for

the conformally covariant split system (1.2). However, (1.2) and some of its invariants (see

[10]) possess the conformal covariance property (see [16, Eqn (1.8)]). Many fewer mathematical

results are known for this conformally covariant split system, albeit numerical relativists recently

started to apply it for certain studies (see [8]).

In this paper, we prove the existence of solutions of the conformally covariant split system

on compact three-dimensional Riemannian manifolds. They give rise to certain initial data

for the Einstein-scalar system and the Einstein-Maxwell system. The seed solutions are from

the vacuum initial data (see [16]) and by using the implicit function theorem, we obtain the

constructed initial data sets for the coupled matter fields via perturbations.

We will use geometric units with c = G = 1 and the spacetime signature convention is

assumed to be (−,+,+,+). The standard notation W k,p denotes the Sobolev space of functions

or tensor fields defined on the Riemannian manifold M . And W
k,p
+ denotes the subset consisting

of all positive W k,p functions.

This paper is organized as follows. We give a brief introduction to the constraint equations in

Section 2. Initial data sets for the Einstein-scalar equations and the Einstein-Maxwell equations

are constructed in Section 3 and Section 4, respectively.
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2 The Constraint Equations

Let us start by foliating the spacetime (M3,1,h) as a set of spacelike three-dimensional

hypersurfaces

h = −(dt)2 + g̃ijdx
idxj .

These slices are labelled by a parameter t and denoted by Mt = {t = const.}. And (x1, x2, x3)

are the spatial coordinates. Denote by g̃ij = g̃ij(0) and Kij =
1
2∂t|t=0g̃ij(t) the induced metric

and the extrinsic curvature of M = M0, respectively.

Further assume that the following Einstein field equations and the matter field equation are

satisfied

Rich −
Scalh

2
h = 8πT, (2.1a)

C(F ,h) = 0. (2.1b)

Here Rich and Scalh are the Ricci tensor and the scalar curvature of the spacetime metric

h, F denotes certain physical quantities of the matter field, and T is the associated energy-

momentum tensor. The Einstein field equations (2.1a) are derived by varying the action of the

field theory with respect to the metric h while the matter field equation (2.1b) follows from

variation with respect to the matter field data F .

Due to the Gauss equation and the Codazzi equation, these data are not freely specified.

They must satisfy the Einstein constraint equations:

Rg̃ − |K|2g̃ + (trg̃K)2 = 8πT00, (2.2a)

∇̃iKij − ∇̃j(trg̃K) = 8πT0j , (2.2b)

where Tµν = T(∂µ, ∂ν)|(0,x). Here ∇̃ and Rg̃ denote the covariant derivative and the scalar

curvature of the metric g̃, respectively.

An Einstein-scalar field theory is introduced by the choice of an action taking the form

S =

∫

M

( 1

16π
Scalh −

1

2
|dΨ|2

h
− V (Ψ)

)
dh.

The potential V (·) is a given smooth function of a real variable. Varying this action with respect

to the scalar field Ψ, it yields the wave equation

�hΨ = V ′(Ψ).

However, coupling to a scalar field does not lead to any new constraints. The constraint

equations (2.2) of the Einstein-scalar system are

Rg̃ − |K|2g̃ + (trg̃K)2 = π̃2 + |dΨ|2g̃ + 2V (Ψ), (2.3a)

∇̃iKij − ∇̃j(trg̃K) = −π̃∇̃jΨ, (2.3b)
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where Ψ = Ψ(0, x) and π̃ = ∂0Ψ(0, x) denote the initial value and the initial speed of the scalar

field Ψ on M .

When the gravitational field is coupled with a source-free electromagnetic field F, the action

takes the form

S =

∫

M

( 1

16π
Scalh −

1

16π
FµνFµν

)
dh.

Varying this action with respect to the electromagnetic field leads to the homogeneous Maxwell

equations

dF = 0, (2.4a)

d∗F = 0, (2.4b)

where ∗ is the Hodge-star operator of the spacetime metric h. Note that the energy-momentum

tensor of the electromagnetic field F is

Tµν =
1

4π

(
FµλF

µλ
ν −

1

4
hµνF

λρFλρ

)
.

Set

Dµλ = (∗F)µλ =
1

2
(4)εµλαβh

αθhβδFθδ,

where (4)ε is the volume element of the spacetime metric h. Then the energy-momentum tensor

can be rewritten as

Tµν =
1

8π
(FµλF

µλ
ν +DµλD

µλ
ν ).

Denote by

f̃ij = Fij(0, x), d̃ij = Dij(0, x).

The geometric constraint equations now become

Rg̃ − |K|2g̃ + (trg̃K)2 = |f̃ |2g̃ + |d̃|2g̃, (2.5a)

∇̃iKij − ∇̃j(trg̃K) = (
√
g̃)−1ǫkild̃ilf̃jk, (2.5b)

where ǫkil is the standard Levi-Civita symbol.

The Maxwell equations (2.4) lead to the following additional physical constraints:

f̃[12,3] = 0, (2.6a)

d̃[12,3] = 0. (2.6b)

The advantage of formulating the electronic field in terms of the Faraday form Fµν instead of

using the 3-vectors ~E (electric field) and ~B (magnetic field) is that, in this case, there appear

only ordinary derivatives in the Maxwell constraints (2.6) which allows us to avoid studying

the conformal invariance of these equations.
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3 Initial Data of the Einstein-Scalar System

We consider a scalar field Ψ coupled with gravity. For the massive Klein-Gordon field

theory, the potential function V (Ψ) = 1
2m

2Ψ2. There are different forms of the coefficient in

the potential for the massive Klein-Gordon field. For instance, V (Ψ) = 1
2MΨ2 in [18] and

V (Ψ) = 1
2m

2Ψ2 in [6]. In this paper, we follow the convention in [6] where the parameter m

indeed denotes the mass.

In this section, by using the implicit theorem, we prove the existence of solutions of the

extended conformally split system. These solutions give rise to the physical initial data set for

the massive Klein-Gordon field.

Suppose that we give a symmetric TT tensor σ, three smooth functions τ , Ψ, and π on

a three-dimensional Riemannian manifold (M, g). We try to find a positive function φ and a

one-form W :

∆φ−
1

8
(Rg − |dΨ|2g)φ+

1

8
(|σ|2g + π2)φ−7 +

1

4
〈σ, LgW 〉gφ

−1

−
( 1

12
τ2 −

1

4
V (Ψ)−

1

8
|LgW |2g

)
φ5 = 0, (3.1a)

∇i(LgW )ij −
2

3
∇jτ + 6(LgW )ij∇i logφ+ φ−6π∇jΨ = 0. (3.1b)

Here ∆ = ∇i∇
i and Rg are the Laplacian and the scalar curvature computed of the metric g,

respectively, and Lg is the conformal Killing operator.

Let g̃ = φ4g, K = τ
3φ

4g + φ−2σ + φ4LgW and π̃ = φ−6π.

Proposition 3.1 For (φ,W ) solving system (3.1), then (M3, g̃, K,Ψ, π̃) becomes an initial

data set satisfying the constraint equations (2.3).

Proof Straightforward calculations lead to

Rg̃ − |K|2g̃ + (trg̃K)2

= φ−5(Rgφ− 8∆φ)−
(1
3
τ2 + φ−12|σ|2g + |LgW |2g + 2φ−6〈σ, LgW 〉g

)
+ τ2

= π2φ−12 + |dΨ|2g + 2V (Ψ).

Then the Hamiltonian constraint holds. For the momentum constraint, one checks

∇̃iKij − ∇̃jtrg̃K

= ∇i(LgW )ij + 6φ−1(∇iφ)(LgW )ij −
2∇jτ

3

= −πφ−6∇jΨ

= −π̃∇jΨ.

Our first theorem in this section shows that the initial data set for the Einstein-scalar system

can be produced from a maximal slice in vacuum. Precisely, we have the following theorem.

Theorem 3.1 Suppose that we already have vacuum initial data (M, g,K) with trgK = 0.

Suppose K 6= 0 for some region. Assume further that (M, g) has no conformal Killing vector
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fields and the potential is of the Klein-Gordon form V (Ψ) = 1
2m

2Ψ2. Given any (τ,Ψ, π) ∈

W 1,p×W 1,p×Lp, there is a positive constant η > 0 such that for any µ ∈ (0, η), there exists at

least one solution (φ̂, Ŵ ) ∈ W
2,p
+ ×W 2,p of system (3.1) for the data (σ̂ = µ12K, τ̂ = µ−1τ, Ψ̂ =

µ13Ψ, π̂ = µ13π).

Proof The proof is based on the implicit function theorem and the ideas are borrowed

from [5, 11, 16].

Since (M, g,K) constitutes vacuum maximal initial data, system (3.1) admits a particular

solution (φ ≡ 1,W ≡ 0) for τ = 0, σ = K, Ψ = 0 and π = 0.

Let us consider the following µ-deformed system corresponding to (3.1):

G : R×W
2,p
+ ×W 2,p → Lp × Lp,




µ

φ

W


 7→




∆φ−
1

8
Rφ+

1

8
|K|2φ−7 +

1

4
µ4〈K,LgW 〉φ−1 −

(
µ10 1

12
τ2 − µ8 1

8
|LgW |2

)
φ5

+µ26 1

8
|dΨ|2φ+ µ2 π2

8 φ−7 + µ38 1

8
m2Ψ2φ5

∇i(LgW )ij −
2

3
µ∇jτ + 6(LgW )ij∇i logφ+ µ10φ−6π∇jΨ




.

It is easy to see that G is a C1-mapping. The condition that (M, g,K) constitute vacuum initial

data with trgK = 0 implies that G(0, 1, 0) = (0, 0). We now prove that the partial derivative of

G with respect to the variables (φ,W ) is an isomorphism at (0, φ ≡ 1,W ≡ 0). The differential

at the point (0, φ ≡ 1,W ≡ 0) is given by

DG|(0,1,0)

(
δφ

δW

)
=



∆−

1

8
R−

7

8
|K|2, 0

0, ∆L




(
δφ

δW

)
,

where ∆LW = divg(LgW ). Since (0, φ ≡ 1,W ≡ 0) solves system (3.1), one has

∆−
1

8
R−

7

8
|K|2 = ∆− |K|2.

The invertibility of the derivative DG|(0,1,0) follows from the fact that the diagonal terms are

invertible.

By the implicit function theorem, for a sufficiently small parameter µ, there exists (φµ,Wµ)

such that G(µ, φµ,Wµ) = 0.

Define φ̂µ = µ3φµ and Ŵµ = µ−2Wµ. Direct calculations show that (φ̂µ, Ŵµ) solves system

(3.1) for the rescaled data (σ̂ = µ12K, τ̂ = µ−1τ, Ψ̂ = µ13Ψ, π̂ = µ13π).

Remark 3.1 The existence interval of the parameter µ depends on the given data (τ,Ψ, π).

If µ can be chosen as 1, it means that we can construct a solution of the conformal constraint

equation (3.1) with arbitrarily given (Ψ, π). However, this is not always true. For small µ,

the above mechanism leads to the construction of solutions to the rescaled small initial data

(µ13Ψ, µ13π).

Assume that we already have a constant mean curvature (CMC for short) initial data set

(M3, g,K,Ψ, π ≡ 0) with τ = trgK = const. This seed data can be obtained by taking
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constant τ and π ≡ 0 in Theorem 3.1 for instance. Notice that in this case the traceless part

of K, σij = Kij −
trgK
3 gij is divergence free and this σij could be used as given data in the

conformal constraint equations (3.1). System (3.1) admits a special solution (φ ≡ 1,W ≡ 0)

in this particular situation. This obvious solution can be understood as transforming the seed

data (M3, g,K,Ψ, π) into itself. In subsequent part of this section, we use the implicit function

theorem to deduce existence of new solutions of (3.1) in the neighbourhood of (τ ,Ψ, π ≡ 0).

Our second theorem is stated as follows.

Theorem 3.2 Suppose that we already have a CMC initial data set (M3, g,K,Ψ, π ≡ 0)

with τ = trgK = const. Assume that −|K|2g + V (Ψ) ≤ 0 on M and −|K|2g + V (Ψ) < 0 in

some region of M . Assume further that (M, g) has no conformal Killing vector fields. Then

there is a small neighborhood of (τ ,Ψ, 0) in W 1,p × W 1,p × Lp such that for any (τ,Ψ, π) in

this neighborhood there exists (φ,W ) ∈ W
2,p
+ × W 2,p solving the system (3.1) for the data

(σij = Kij −
τ
3 gij , τ,Ψ, π).

Proof First, let us define the operator

F : W 1,p ×W 1,p × Lp ×W
2,p
+ ×W 2,p → Lp × Lp,




τ

Ψ
π

φ

W




7→




∆φ−
1

8
(R− |dΨ|2)φ+

1

8
(|σ|2 + π2)φ−7 +

1

4
〈σ, LW 〉φ−1

−
( 1

12
τ2 −

1

4
V (Ψ)−

1

8
|LW |2

)
φ5

∇i(LW )ij −
2

3
∇jτ + 6(LW )ij∇i logφ+ φ−6π∂jΨ




.

It is easy to see that F is a C1-mapping and F(τ ,Ψ, 0, φ ≡ 1,W ≡ 0) = (0, 0). We prove

that the partial derivative of F with respect to the variables (φ,W ) is an isomorphism at

(τ ,Ψ, 0, φ ≡ 1,W ≡ 0). The differential at the point (τ ,Ψ, 0, φ ≡ 1,W ≡ 0) is given by

DF|(τ,Ψ,0,1,0)

(
δφ

δW

)

=



∆−

1

8
(R− |dΨ|2)−

7

8
|σ|2 −

5

12
τ2 +

5

4
V (Ψ),

1

4
〈σ, L(·)〉

0, ∆L




(
δφ

δW

)
,

and it is triangular, meaning that the second row of the above 2 × 2 block matrix does not

depend on δφ. Thus, the invertibility of DF|(τ,Ψ,0,1,0) follows from the fact that the diagonal

terms are invertible. More specifically, we have the following claims.

Claim 1

H : W 2,p → Lp,

δφ 7→
(
∆−

1

8
(R− |dΨ|2)−

7

8
|σ|2 −

5

12
τ2 +

5

4
V (Ψ)

)
δφ

is invertible.
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Claim 2

∆L : W
2,p → Lp,

δW 7→ ∆LδW

is also invertible.

The proof of Claim 2 is a consequence of the assumption that (M, g) is closed and has no

conformal Killing vector fields. The proof of Claim 1 is as follows. Note that H is a Fredholm

operator of index 0. It suffices to show that H is injective. Since (φ ≡ 1,W ≡ 0) solves the

system (3.1), one has

−
1

8
R+

1

8
|σ|2 +

1

8
|dΨ|2 −

1

12
τ2 +

1

4
V (Ψ) = 0.

Hence,

∆−
1

8

(
R − |dΨ|2

)
−

7

8
|σ|2 −

5

12
τ2 +

5

4
V (Ψ)

= ∆− |σ|2 −
1

3
τ2 + V (Ψ)

= ∆− |K|2 + V (Ψ).

Clearly, it is a negatively definite operator. This completes the proof.

The initial data sets constructed by using the above two theorems have small π. This

drawback can be compensated by the following scaling symmetry of the conformal constraint

system (3.1).

Proposition 3.2 Suppose that system (3.1) has a solution (φ,W ) for the data (g, σ, τ,Ψ, π)

with the Klein-Gordon potential V (Ψ) = 1
2m

2Ψ2. Set φ̂ = λ−
1

4φ, Ŵ = λ
1

2W for some positive

number λ ∈ R
+. Then (φ̂, Ŵ ) satisfies system (3.1) for the data (ĝ = g, σ̂ij = λ−1σij , τ̂ =

λ
1

2 τ, Ψ̂ = Ψ, π̂ = λ−1π) and m̂ = λ
1

2m.

Suppose that we have already constructed a physical hypersurface
(
M3, φ4g, φ−2σ+φ4LgW

+ τ
3φ

4g
)
with mass m Klein-Gordon field initial data (Ψ, φ−6π). Then by Proposition 3.2, the

physical hypersurface
(
M3, φ̂4g, φ̂−2σ̂+φ4LgŴ + τ̂

3 φ̂
4g
)
with mass m̂ Klein-Gordon field initial

data (Ψ̂, φ̂−6π̂) satisfies the constraint equations (2.3). We can have large π̂ if we choose λ

sufficiently small.

4 Initial Data of the Einstein-Maxwell System

In this section, we are going to construct certain initial data set for the source-free elec-

tromagnetic field coupled with gravity. Different from the Einstein-scalar system, the Maxwell

equations (2.4) give additional physical constraints (2.6). These data can be obtained from

those of the flat space. Thus, we should merely concentrate on the geometric constraints (2.5).

Recall that we are given a symmetric TT tensor σ, a smooth functions τ , and two skew-

symmetric tensor fields of type (0, 2) fij and dij on a Riemannian manifold (M, g).
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Proposition 4.1 Let fij and dij be two W 1,p skew-symmetric tensor fields of type (0, 2)

on (M, g) satisfying f[12,3] = d[12,3] = 0. If there is (φ,W ) ∈ W
2,p
+ ×W 2,p solving the following

conformally covariant split system

∆φ−
1

8
Rgφ+

1

8
|σ|2gφ

−7 +
1

4
〈σ, LgW 〉gφ

−1 −
( 1

12
τ2 −

1

8
|LgW |2g

)
φ5

+
1

8
(|f |2g + |d|2g)φ

−3 = 0, (4.1a)

∇i(LgW )ij −
2

3
∇jτ + 6(LgW )ij∇i logφ− φ−6g−

1

2 ǫkilfildjk = 0, (4.1b)

then
(
M, g̃ = φ4g,K = τ

3φ
4g + φ−2σ + φ4LgW, f̃ = f, d̃ = d

)
satisfies the constraint equations

(2.5).

Proof Let us firstly check the Hamiltonian constraint as follows:

Rg̃ − |K|2g̃ + (trg̃K)2

= φ−5(Rgφ− 8∆φ)−
(1
3
τ2 + φ−12|σ|2g + |LgW |2g + 2φ−6〈σ, LgW 〉g

)
+ τ2

= −8φ−5
(
∆φ−

1

8
Rgφ+

1

8
|σ|2gφ

−7 +
1

4
〈σ, LgW 〉gφ

−1 −
( 1

12
τ2 −

1

8
|LgW |2g

)
φ5

)

= φ−8(|f |2g + |d|2g)

= φ−8gikgjl(dkldij + fklfij)

= g̃ikg̃jl(d̃kld̃ij + f̃klf̃ij)

= |f̃ |2g̃ + |d̃|2g̃.

For the momentum constraint equations, one has

∇̃iKij − ∇̃jtrg̃K

= ∇̃i
(τ
3
φ4gij + φ−2σij + φ4(LgW )ij

)
− ∇̃jτgij + φ−2σij

τ

3
φ4gij + φ−2σij

= ∇̃i(φ−2(σij + φ6(LgW )ij))− ∇̃jτ

= φ−6∇i(φ6(LgW )ij)−
2∇jτ

3

= ∇i(LgW )ij + 6φ−1(∇iφ)(LgW )ij −
2∇jτ

3

= φ−6g−
1

2 ǫkilfildjk

= (g̃)−
1

2 ǫkilf̃ild̃jk.

Note that there appear only ordinary derivatives of f and d in the electromagnetic constraints,

the form of the equations are invariant under conformal transformation. Hence,

f̃[12,3] = f[12,3] = 0,

d̃[12,3] = d[12,3] = 0.

Therefore, (M, g̃,K, f̃ , d̃) solves (2.5).
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Theorem 4.1 Suppose that we already have vacuum initial data (M, g,K) with trgK = 0.

Suppose K 6= 0 for some region. Assume further that (M, g) has no conformal Killing vector

fields. For any given (τ, f, d) ∈ W 1,p × W 1,p × W 1,p such that f[12,3] = d[12,3] = 0, there

is a positive constant η > 0 such that for any µ ∈ (0, η), there exists at least one solution

(φ̂, Ŵ ) ∈ W
2,p
+ ×W 2,p of system (4.1) for the data (σ̂ = µ12K, τ̂ = µ−1τ, f̂ = µ9f, d̂ = µ9d).

Proof The proof is similar to that of Theorem 3.1.

Since (M, g,K) constitutes vacuum maximal initial data, system (3.1) admits a particular

solution (φ ≡ 1,W ≡ 0) for τ = 0, σ = K, f = 0 and d = 0.

Let us consider the following µ-deformed system corresponding to (4.1):

G : R×W
2,p
+ ×W 2,p → Lp × Lp,




µ

φ

W


 7→




∆φ−
1

8
Rφ+

1

8
|K|2φ−7 +

1

4
µ4〈K,LgW 〉φ−1 −

(
µ10 1

12
τ2 − µ8 1

8
|LgW |2

)
φ5

+
1

8
µ6(|f |2g + |d|2g)φ

−3

∇i(LgW )ij −
2

3
µ∇jτ + 6(LgW )ij∇i logφ− µ2φ−6g−

1

2 ǫkildilfjk




.

It is easy to see that G is a C1-mapping. The condition that (M, g,K) constitute vacuum initial

data with trgK = 0 implies that G(0, 1, 0) = (0, 0). We now prove that the partial derivative of

G with respect to the variables (φ,W ) is an isomorphism at (0, φ ≡ 1,W ≡ 0). The differential

at the point (0, φ ≡ 1,W ≡ 0) is given by

DG|(0,1,0)

(
δφ

δW

)
=



∆−

1

8
R−

7

8
|K|2, 0

0, ∆L




(
δφ

δW

)
,

where ∆LW = divg(LW ). Since (0, φ ≡ 1,W ≡ 0) solves system (4.1), one has

∆−
1

8
R−

7

8
|K|2 = ∆− |K|2.

The invertibility of the derivative DG|(0,1,0) follows from the fact that the diagonal terms are

invertible.

By the implicit function theorem, for a sufficiently small parameter µ, there exists (φµ,Wµ)

such that G(µ, φµ,Wµ) = 0.

Define φ̂µ = µ3φµ and Ŵµ = µ−2Wµ. Direct calculations show that (φ̂µ, Ŵµ) solves system

(4.1) for the rescaled data (σ̂ = µ12K, τ̂ = µ−1τ, f̂ = µ9f, d̂ = µ9d). Since µ is a constant, it is

clear that f̂ and d̂ also satisfy the Maxwell constraints (2.6).

Remark 4.1 The existence interval of the parameter µ depends on the given data (τ, f, d).

If µ can be chosen as 1, it means that we can construct a solution of the conformal constraint

equation (4.1) with arbitrarily given (f, d). However, this is not always true. For small µ,

the above mechanism leads to the construction of solutions to the rescaled small initial data

(f̂ = µ9f, d̂ = µ9d) for the electromagnetic field.
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Assume that we already have a CMC initial data set (M3, g,K, f , d ≡ 0) with τ = trgK =

const. This seed data can be obtained by taking constant τ and π ≡ 0 in Theorem 4.1. Notice

that in this case the traceless part of K, σij = Kij −
trgK
3 gij is divergence free and d = 0,

this σij could be used as given data in the conformal constraint equations (4.1). System (4.1)

admits a special solution (φ ≡ 1,W ≡ 0) in this particular situation. This obvious solution

can be understood as transforming the seed data (M3, g,K, f , d ≡ 0) into itself. In subsequent

part of this section, we use the implicit function theorem to deduce existence of new solutions

of (4.1) in the neighbourhood of (τ , f, d ≡ 0). Here is our second theorem in this section.

Theorem 4.2 Suppose that we already have a CMC initial data set (M3, g,K, f , d ≡ 0)

with τ = trgK = const. Assume that −|K|2g − 1
2 |f |

2
g ≤ 0 on M and −|K|2g − 1

2 |f |
2
g < 0 in

some region of M . Assume further that (M, g) has no conformal Killing vector fields. Then

there is a small neighbourhood of (τ , f, d ≡ 0) in W 1,p ×W 1,p × Lp such that for any (τ, f, d)

in this neighbourhood there exists (φ,W ) ∈ W
2,p
+ ×W 2,p solving the system (4.1) for the data

(σij = Kij −
τ
3 gij , τ, f, d).

The proof is similar to that of Theorem 3.2. One defines

F : W 1,p ×W 1,p ×W 1,p ×W
2,p
+ ×W 2,p → Lp × Lp,




τ

f

d

φ

W




7→




∆φ−
1

8
Rgφ+

1

8
|σ|2gφ

−7 +
1

4
〈σ, LgW 〉gφ

−1 −
( 1

12
τ2 −

1

8
|LgW |2g

)
φ5

+
1

8
φ−3(|f |2g + |d|2g)

∇i(LgW )ij −
2

3
∇jτ + 6(LgW )ij∇i logφ− φ−6g−

1

2 ǫkildilfjk




.

It remains to prove that the differential at (τ , f , d ≡ 0, φ ≡ 1,W ≡ 0) is an isomorphism. The

initial data sets constructed from the above two theorems have small d. Again, this drawback

can be compensated by the following scaling symmetry of the conformal constraint system (4.1).

Proposition 4.2 Suppose that system (4.1) has a solution (φ,W ) for the data (g, σ, τ, f, d)

with the Einstein–Maxwell system. Set φ̂ = λ−
1

4φ, Ŵ = λ
1

2W for some positive number λ ∈ R
+.

Then (φ̂, Ŵ ) satisfies system (4.1) for the data (ĝ = g, σ̂ij = λ−1σij , τ̂ = λ
1

2 τ, f̂ = λ
1

2 f, d̂ =

λ
1

2 d).
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