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Abstract In this paper, the author first defines a regular controlled Lagrangian (R-
CL for short) system on a symplectic fiber bundle, establishing a good expression of the
dynamical vector field of an RCL system. This dynamical vector field synthesizes the
Euler-Lagrange vector field and its changes under the actions of the external force and the
control. Moreover, the author describes the RCL-equivalence, the RpCL-equivalence, and
the RoCL-equivalence, proving regular point and regular orbit reduction theorems for the
RCL system and the regular Lagrangian system with symmetry and a momentum map.
Finally, as an application the author considers the regular point reducible RCL systems
on a generalization of Lie group.
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1 Introduction

Following the developments of science and technology, researchers paid close attention to

the study of Hamiltonian systems with controls. In [12], Marsden et al. set up a kind of

regular reduction theory for a regular controlled Hamiltonian (RCH for short) system defined

on a symplectic fiber bundle with symmetry and a momentum map, from the viewpoint of

the completeness of the Marsden-Weinstein reduction, and by using the careful analysis of the

geometrical and the topological structures of phase space and the reduced phase spaces of the

system. The reduction is an extension of symmetric reduction theory for a Hamiltonian system

with a momentum map under the regular controlled Hamiltonian equivalence conditions. These

researches reveal internal relationships of geometrical structures of phase spaces, the dynamical

vector fields and the controls of the RCH system and its reduced systems.

In this paper, we first define an RCL system on a symplectic fiber bundle, by using Legendre

transformation and Euler-Lagrange vector field, and following the ideas in [12]. The RCL system

is a regular Lagrangian system with the external force and the control. In general, the RCL
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system under the action of the external force and the control is not a regular Lagrangian system,

however, it is a dynamical system closely related to a regular Lagrangian system, and it can

be explored and studied by extending the methods for the external force and the control in the

study of the regular Lagrangian systems. In consequence, we can set up the regular reduction

theory for an RCL system with symmetry and a momentum map, by analyzing carefully the

geometrical and the topological structures of the phase space and the reduced phase spaces of

the corresponding regular Lagrangian system.

A brief outline of this paper is as follows. In Section 2, we review some relevant definitions

and basic facts about the regular Lagrangian system and its regular point and regular orbit

reductions; we also analyse the geometrical structures of phase space and the reduced phase

spaces of a regular Lagrangian system, which will be used in subsequent sections. An RCL

system is defined by using a (Lagrangian) symplectic form on a symplectic fiber bundle and

on the tangent bundle of a configuration manifold, respectively, and a good expression of the

dynamical vector field for the RCL system is given, and the RCL-equivalence is introduced in

Section 3. From Section 4 we begin to discuss the RCL systems with symmetries and the mo-

mentum maps by combining with regular reduction theory of a regular Lagrangian system. The

regular point and regular orbit reducible RCL systems are considered, respectively, in Section 4

and Section 5, and we prove the regular point and regular orbit reduction theorems for the RCL

systems, which explain the relationships between the RpCL-equivalence, the RoCL-equivalence

for the reducible RCL systems with symmetries and the RCL-equivalence for the associated

reduced RCL systems. We also study the equivalence relationships of the regular reducible La-

grangian systems, the Rp-reduced Lagrangian systems and the Ro-reduced Lagrangian systems.

As the applications of the theoretical results, in Section 6, we give a regular point reducible

RCL system on the generalization G × V of a Lie group G, where V is a vector space. The

Rp-reduced system is an RCL system on the generalization Oµ × V × V of a co-adjoint orbit

Oµ of G. These research works develop the theory of symmetric reduction for the RCL systems

with symmetries and the momentum maps, and make us have a much deeper understanding

and recognition for the structures of the regular controlled mechanical systems.

2 Legendre Transformation, Regular Lagrangian System and Its

Reduction

In the following, we first give some relevant definitions and basic facts about Legendre

transformation and the regular Lagrangian system including its regular reductions. We also

analyse the geometrical structures of the phase space and the reduced phase spaces for a regular

Lagrangian system with symmetry, which will be used in subsequent sections. We shall follow

the notations and conventions introduced in [1–2, 7–8, 11, 16–17]. For convenience, we assume

that all manifolds in this paper are real, smooth and finite dimensional. In particular, in the

following we always assume that Q is a smooth manifold with coordinates qi, and TQ its tangent

bundle with coordinates (qi, q̇i), and T ∗Q its cotangent bundle with coordinates (qi, pi), which

is the canonical cotangent bundle coordinates of T ∗Q and θ = pidq
i and ω = −dθ = dqi ∧ dpi

are the canonical one-form and the canonical symplectic form on T ∗Q, respectively, where the

summation on repeated indices is understood.

Definition 2.1 Assume that Q is an n-dimensional smooth manifold and the function L :
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TQ→ R. Then the map FL : TQ→ T ∗Q defined by

FL(v)w :=
d

dt

∣∣∣
t=0

Lq(v + tw), ∀v, w ∈ TqQ, (2.1)

is a fiber-preserving smooth map, which is called the fiber derivative of L, where Lq denotes the

restriction of L to the fiber over q ∈ Q. If FL : TQ → T ∗Q is a local diffeomorphism, then

L : TQ→ R is called a regular Lagrangian; and if FL : TQ→ T ∗Q is a diffeomorphism, then

L is called hyperregular.

In the finite dimensional case, the local expression of the map FL : TQ→ T ∗Q is given by

FL(qi, q̇i) =
(
qi,

∂L

∂q̇i

)
= (qi, pi). (2.2)

The change of data from (qi, q̇i) on TQ to (qi, pi) on T ∗Q, which is given by the map FL :

TQ→ T ∗Q, is called a Legendre transformation. From Marsden and Ratiu [11], we know that

the Lagrangian L is regular, if the matrix ( ∂2L
∂q̇i∂q̇j ) is invertible. In the following by using the

Legendre transformation, we can give a definition of a regular Lagrangian system as follows.

Definition 2.2 (Regular Lagrangian system) Assume that Q is a smooth manifold, and θ

and ω are the canonical one-form and the canonical symplectic form on the cotangent bundle

T ∗Q, and the function L : TQ→ R is hyperregular. Denote θL := (FL)∗θ and ωL := (FL)∗ω,

where the bundle map (FL)∗ : T ∗T ∗Q → T ∗TQ. Then θL and ωL are called the Lagrangian

one-form and the Lagrangian symplectic form on the tangent bundle TQ, respectively. Define

an action A : TQ → R given by A(v) := FL(v)v, ∀v ∈ TqQ and an energy EL : TQ → R

given by EL := A − L. If there exists a vector field ξL on TQ, such that the Euler-Lagrange

equation iξLω
L = dEL holds, then ξL is called an Euler-Lagrange vector field of L, and the

triple (TQ, ωL, L) is called a regular Lagrangian system.

In the finite dimensional case, the local expression of θL and ωL are given by

θL =
∂L

∂q̇i
dqi, ωL =

∂2L

∂q̇i∂qj
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dqi ∧ dq̇j ,

where the summation on repeated indices is understood. Moreover, we know that the energy

EL is conserved along the flow of the Euler-Lagrange vector field ξL, if ξL satisfies a second

order equation, that is, TτQ ◦ ξL = idTQ, where the map TτQ : TTQ → TQ, is the tangent

map of the projection τQ : TQ→ Q. Moreover, in a local coordinates of TQ, an integral curve

(q(t), q̇(t)) of ξL satisfies the following Euler-Lagrange equations:

dqi

dt
= q̇i,

d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, 2, · · · , n.

If L is regular, then ξL always satisfies the second order equation.

Furthermore, by using the Legendre transformation, the following proposition gives a de-

scription of the equivalence between the regular Lagrangian system (TQ, ωL, L) and the Hamil-

tonian system (T ∗Q,ω0, H) under the hyperregular case of L (see [11]).

Proposition 2.1 Assume that L : TQ→ R is a hyperregular Lagrangian on TQ. Define a

function H := EL · (FL)−1 : T ∗Q → R. Then H is a hyperregular Hamiltonian on T ∗Q, and
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the Hamiltonian vector field XH ∈ TT ∗Q and the Euler-Lagrange vector field ξL ∈ TTQ are

FL-related, i.e., T (FL) · ξL = XH · FL, where T (FL) : TTQ→ TT ∗Q is the tangent map of

FL : TQ→ T ∗Q, and the integral curves of ξL are mapped by FL onto integral curves of XH .

It is well-known that Hamiltonian reduction theory is one of the most active subjects in

the study of modern analytical mechanics and applied mathematics, in which a lot of deep and

beautiful results have been obtained; for these results, we refer to the studies given in [1–3, 5,

7–11, 13–16], among which the Marsden-Weinstein reduction for the Hamiltonian systems with

symmetry and momentum maps is the most important and foundational. Now, for a regular

Lagrangian system with symmetry and momentum map, we can also give its regular point

reduction as follows.

Let Q be a smooth manifold and TQ its tangent bundle with the induced Lagrangian

symplectic form ωL. Assume that Φ : G × Q → Q is a smooth left action of a Lie group G

on Q, which is free and proper, then the tangent lifted left action ΦT : G × TQ → TQ is also

free and proper. Moreover, assume that the action is symplectic with respect to ωL and admits

an Ad∗-equivariant momentum map JL : TQ → g
∗, where g is the Lie algebra of G and g

∗ is

the dual of g. For a regular value of JL, µ ∈ g
∗, denote by Gµ = {g ∈ G | Ad∗g µ = µ} the

isotropy subgroup of the co-adjoint G-action at the point µ ∈ g
∗. Since Gµ(⊂ G) acts freely

and properly on Q and on TQ, Qµ = Q/Gµ is a smooth manifold, and the canonical projection

ρµ : Q → Qµ is a surjective submersion. It follows that Gµ also acts freely and properly on

J−1
L (µ), so that the space (TQ)µ = J−1

L (µ)/Gµ is a symplectic manifold with the symplectic

form ωL
µ uniquely characterized by the relation

τ∗µ · ω
L
µ = j∗µ · ω

L. (2.3)

The map jµ : J−1
L (µ) → TQ is the inclusion and τµ : J−1

L (µ) → (TQ)µ is the projection. The

pair ((TQ)µ, ω
L
µ ) is called the regular point reduced space of (TQ, ωL) at µ.

Let L : TQ → R be a G-invariant hyperregular Lagrangian, the flow Ft of the Euler-

Lagrange vector field ξL leaves the connected components of J−1
L (µ) invariant and commutes

with the G-action, so it induces a flow fµ
t on (TQ)µ, defined by fµ

t · τµ = τµ · Ft · jµ, and the

vector field ξlµ generated by the flow fµ
t on ((TQ)µ, ω

L
µ ) is the reduced Euler-Lagrange vector

field with the associated regular point reduced Lagrangian function lµ : (TQ)µ → R defined by

lµ ·τµ = L·jµ, and the reduced Euler-Lagrange equation iξlµω
L
µ = dElµ holds, where the reduced

energy Elµ : (TQ)µ → R is given by Elµ := Aµ− lµ, and the reduced action Aµ : (TQ)µ → R is

given by Aµ · τµ = A · jµ, and the Euler-Lagrange vector fields ξL and ξlµ are τµ-related. Thus,

we can introduce a kind of regular point reducible Lagrangian systems as follows.

Definition 2.3 (Regular point reducible Lagrangian system) A 4-tuple (TQ,G, ωL, L),

where the hyperregular Lagrangian L : TQ→ R is G-invariant, is called a regular point reducible

Lagrangian system, if there exists a point µ ∈ g
∗, which is a regular value of the momentum

map JL, such that the regular point reduced system, that is, the 3-tuple ((TQ)µ, ω
L
µ , lµ), where

(TQ)µ = J−1
L (µ)/Gµ, τ

∗
µ · ω

L
µ = j∗µ · ω

L, lµ · τµ = L · jµ, is a regular Lagrangian system, which

is simply written as an Rp-reduced Lagrangian system. Where ((TQ)µ, ω
L
µ ) is the Rp-reduced

space, the function lµ : (TQ)µ → R is called the Rp-reduced Lagrangian.

We know that the orbit reduction of a Hamiltonian system is an alternative approach to
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symplectic reduction given by Kazhdan, Kostant and Sternberg [4] and Marle [6], which is

different from the Marsden-Weinstein reduction. Now, for a regular Lagrangian system with

symmetry and momentum map, we can also give its regular orbit reduction as follows, which

is different from the above regular point reduction.

Assume that Φ : G × Q → Q is a smooth left action of a Lie group G on Q, if this action

is free and proper, then the tangent lifted left action ΦT : G × TQ → TQ is also free and

proper. Moreover, assume that the action is symplectic with respect to ωL and admits an

Ad∗-equivariant momentum map JL : TQ → g
∗. For a regular value of the momentum map

JL, µ ∈ g
∗, Oµ = G · µ ⊂ g

∗ is the G-orbit of the co-adjoint G-action through the point µ.

Since G acts freely, properly and symplectically on TQ with respect to ωL, the quotient space

(TQ)Oµ = J−1
L (Oµ)/G is a regular quotient symplectic manifold with the reduced symplectic

form ωL
Oµ

uniquely characterized by the relation

j∗Oµ
· ωL = τ∗Oµ

· ωL
Oµ

+ (JL)
∗

Oµ
· ωL+

Oµ
, (2.4)

where (JL)Oµ is the restriction of the momentum map JL to J−1
L (Oµ), that is, (JL)Oµ = JL·jOµ .

Here ωL+
Oµ

and ω+
Oµ

are the +-symplectic structures on the orbit Oµ given by

ωL+
Oµ

(ν)(ξ, η) = ω+
Oµ

(ν)(ξg∗(ν), ηg∗(ν)) = 〈ν, [ξ, η]〉, ∀ν ∈ Oµ, ξ, η ∈ g, ξg∗ , ηg∗ ∈ g
∗. (2.5)

The maps jOµ : J−1
L (Oµ) → TQ and τOµ : J−1

L (Oµ) → (TQ)Oµ are natural injection and

projection, respectively. The pair ((TQ)Oµ , ω
L
Oµ

) is called the regular orbit reduced space of

(TQ, ωL) at the point µ.

Let L : TQ→ R be aG-invariant hyperregular Lagrangian; the flow Ft of the Euler-Lagrange

vector field ξL leaves the connected components of J−1
L (Oµ) invariant and commutes with the

G-action. It thus induces a flow f
Oµ

t on (TQ)Oµ , defined by f
Oµ

t ·τOµ = τOµ ·Ft ·jOµ . The vector

field ξlOµ
generated by the flow f

Oµ

t on ((TQ)Oµ , ω
L
Oµ

) is the reduced Euler-Lagrange vector

field, associated with the regular orbit reduced Lagrangian function lOµ : (TQ)Oµ → R defined

by lOµ · τOµ = L · jOµ . The reduced Euler-Lagrange equation iξlOµ
ωL
Oµ

= dElOµ
holds, where

the reduced energy ElOµ
: (TQ)Oµ → R is given by ElOµ

:= AOµ − lOµ , and the reduced action

AOµ : (TQ)Oµ → R is given by AOµ · τOµ = A · jOµ . The Euler-Lagrange vector fields ξL and

ξlOµ
are τOµ-related. Thus, we can introduce a kind of the regular orbit reducible Lagrangian

systems as follows.

Definition 2.4 (Regular orbit reducible Lagrangian system) A 4-tuple (TQ,G, ωL, L),

where the hyperregular Lagrangian L : TQ→ R is G-invariant, is called a regular orbit reducible

Lagrangian system, if there exists an orbit Oµ, µ ∈ g
∗, where µ is a regular value of the momen-

tum map JL, such that the regular orbit reduced system, that is, the 3-tuple ((TQ)Oµ, ω
L
Oµ

, lOµ),

where (TQ)Oµ = J−1
L (Oµ)/G, τ∗

Oµ
· ωL

Oµ
= j∗

Oµ
· ωL − (JL)

∗
Oµ
· ωL+

Oµ
, lOµ · τOµ = L · jOµ , is a

regular Lagrangian system, which is simply written as an Ro-reduced Lagrangian system. Where

((TQ)Oµ, ω
L
Oµ

) is the Ro-reduced space, the function lOµ : (TQ)Oµ → R is called the Ro-reduced

Lagrangian.

In the following we shall give a precise analysis for the geometrical structures of the regular

point reduced space ((TQ)µ, ω
L
µ ) and the regular orbit reduced space ((TQ)Oµ , ω

L
Oµ

). Assume

that the Lagrangian L : TQ → R is hyperregular; then the Legendre transformation FL :
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TQ → T ∗Q is a diffeomorphism. If the cotangent lift G-action ΦT∗ : G × T ∗Q → T ∗Q is

free, proper and symplectic with respect to the canonical symplectic form ω on T ∗Q, and has

an Ad∗-equivariant momentum map J : T ∗Q → g
∗ given by 〈J(αq), ξ〉 = αq(ξQ(q)), where

αq ∈ T ∗
q Q and ξ ∈ g, ξQ(q) is the value of the infinitesimal generator ξQ of the G-action at

q ∈ Q; 〈, 〉 : g∗ × g → R is the duality pairing on dual g∗ and g. Then we have the following

theorem.

Theorem 2.1 Assume that the Lagrangian L : TQ → R is hyperregular, and that the

Legendre transformation FL : TQ → T ∗Q is (ΦT ,ΦT∗)-equivariant; then the following two

assertions hold :

(i) The momentum map JL : TQ→ g
∗ given by JL = J · FL, is Ad∗-equivariant ;

(ii) If µ ∈ g
∗ is a regular value of the momentum map J, then µ is also a regular value of

the momentum map JL.

Proof We first prove that the momentum map JL : TQ → g
∗ is Ad∗-equivariant. Since

the Lagrangian L : TQ → R is hyperregular, the Legendre transformation FL : TQ → T ∗Q

is a diffeomorphism. Because the momentum map J : T ∗Q → g
∗ is Ad∗-equivariant, Ad∗ ·J =

J · ΦT∗. Note that the Legendre transformation FL : TQ→ T ∗Q is (ΦT , ΦT∗)-equivariant, so

we have that ΦT∗ · FL = FL · ΦT . From the following commutative Diagram-1,

TQ
ΦT

−−−−→ TQ
JL−−−−→ g

∗

FL

y FL

y Ad∗

y

T ∗Q
ΦT∗

−−−−→ T ∗Q
J

−−−−→ g
∗

Diagram-1

we can obtain that

Ad∗ ·JL = Ad∗ ·J · FL = J · ΦT∗ · FL = J · FL · ΦT = JL · Φ
T .

Thus, the momentum map JL : TQ→ g
∗ is Ad∗-equivariant.

Next, we prove (ii). If µ ∈ g
∗ is a regular value of the momentum map J, then there exists

an α ∈ T ∗Q such that J(α) = µ. Since the Legendre transformation FL : TQ → T ∗Q is a

diffeomorphism, we have that v = FL−1(α) ∈ TQ satisfies

JL(v) = J · FL(FL−1(α)) = J(α) = µ.

Thus, µ ∈ g
∗ is also a regular value of the momentum map JL.

For a given µ ∈ g
∗, a regular value of the momentum map J : T ∗Q → g

∗, denote by Gµ

the isotropy subgroup of the co-adjoint G-action at the point µ; then the Marsden-Weinstein

reduced space (T ∗Q)µ = J−1(µ)/Gµ is a symplectic manifold with the symplectic form ωµ

uniquely characterized by the relation

π∗

µ · ωµ = i∗µ · ω. (2.6)

The map iµ : J−1(µ) → T ∗Q is the inclusion and πµ : J−1(µ) → (T ∗Q)µ is the projection.

From [8], we know that the classification of symplectic reduced spaces of a cotangent bundle is
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given as follows. (1) If µ = 0, the symplectic reduced space of cotangent bundle T ∗Q at µ = 0 is

given by ((T ∗Q)µ, ωµ) = (T ∗(Q/G), ω̂), where ω̂ is the canonical symplectic form of cotangent

bundle T ∗(Q/G). Thus, the symplectic reduced space ((T ∗Q)µ, ωµ) at µ = 0 is a symplectic

vector bundle. (2) If µ 6= 0, and G is Abelian, then Gµ = G; in this case, the regular point

symplectic reduced space ((T ∗Q)µ, ωµ) is symplectically diffeomorphic to symplectic vector

bundle (T ∗(Q/G), ω̂ − Bµ), where Bµ is a magnetic term. (3) If µ 6= 0, G is not Abelian and

Gµ 6= G; in this case, the regular point symplectic reduced space ((T ∗Q)µ, ωµ) is symplectically

diffeomorphic to a symplectic fiber bundle over T ∗(Q/Gµ) with fiber being the co-adjoint orbit

Oµ, see the cotangent bundle reduction theorem—bundle version, and also see [10]. Comparing

the regular point reduced spaces ((TQ)µ, ω
L
µ ) and ((T ∗Q)µ, ωµ) at the point µ, we have the

following theorem.

Theorem 2.2 Assume that the Lagrangian L : TQ → R is hyperregular, and that the

Legendre transformation FL : TQ → T ∗Q is (ΦT ,ΦT∗)-equivariant; then the regular point

reduced space ((TQ)µ, ω
L
µ ) of (TQ, ωL) at µ is symplectically diffeomorphic to the regular point

reduced space ((T ∗Q)µ, ωµ) of (T
∗Q,ω0) at µ, and hence is also symplectically diffeomorphic to

a symplectic fiber bundle.

Proof Since the Lagrangian L : TQ → R is hyperregular, the Legendre transformation

FL : TQ→ T ∗Q is a diffeomorphism. Because FL is (ΦT ,ΦT∗)-equivariant, that is, ΦT∗ ·FL =

FL · ΦT , we can define a map (FL)µ : (TQ)µ → (T ∗Q)µ given by (FL)µ · τµ = πµ · FL, and

iµ · FL = FL · jµ; see the following commutative Diagram-2, which is well-defined and a

diffeomorphism.

J−1
L (µ) ⊂ TQ

FL
−−−−→ J−1(µ) ⊂ T ∗Q

τµ

y
yπµ

(TQ)µ
(FL)µ
−−−−→ (T ∗Q)µ

Diagram-2

We shall prove that (FL)µ is symplectic, that is, (FL)∗µ · ωµ = ωL
µ . In fact, from (2.6) and

(2.3), we have that

τ∗µ · (FL)
∗

µ · ωµ = ((FL)µ · τµ)
∗ · ωµ = (πµ · FL)

∗ · ωµ = (FL)∗ · π∗

µ · ωµ

= (FL)∗ · i∗µ · ω = (iµ · FL)
∗ · ω = (FL · jµ)

∗ · ω

= j∗µ · (FL)
∗ · ω = j∗µ · ω

L = τ∗µ · ω
L
µ .

Notice that τµ is surjective, and hence (FL)∗µ ·ωµ = ωL
µ . Thus, the regular point reduced space

((TQ)µ, ω
L
µ ) of (TQ, ωL) at µ is symplectically diffeomorphic to the regular point reduced space

((T ∗Q)µ, ωµ) of (T ∗Q,ω) at µ. From [8], we know that the space ((T ∗Q)µ, ωµ) is symplecti-

cally diffeomorphic to a symplectic fiber bundle, and hence ((TQ)µ, ω
L
µ ) is also symplectically

diffeomorphic to a symplectic fiber bundle.

For a given µ ∈ g
∗, a regular value of the momentum map J : T ∗Q → g

∗, the regular

orbit reduced space (T ∗Q)Oµ = J−1(Oµ)/G is a regular quotient symplectic manifold with the

symplectic form ωOµ uniquely characterized by the relation

i∗Oµ
· ω = π∗

Oµ
· ωOµ + J∗

Oµ
· ω+

Oµ
, (2.7)
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where JOµ is the restriction of the momentum map J to J−1(Oµ), that is, JOµ = J · iOµ , and

ω+
Oµ

is the +-symplectic structure on the orbit Oµ given by

ω+
Oµ

(ν)(ξg∗ (ν), ηg∗(ν)) = 〈ν, [ξ, η]〉, ∀ν ∈ Oµ, ξ, η ∈ g, ξg∗ , ηg∗ ∈ g
∗. (2.8)

The maps iOµ : J−1(Oµ) → T ∗Q and πOµ : J−1(Oµ) → (T ∗Q)Oµ are natural injections and

projection, respectively. In the general case, we may think that the structure of the symplectic

orbit reduced space ((T ∗Q)Oµ , ωOµ) is more complex than that of the symplectic point reduced

space ((T ∗Q)µ, ωµ), but from [16] and the regular reduction diagram, we know that the regular

orbit reduced space ((T ∗Q)Oµ , ωOµ) is symplectically diffeomorphic to the regular point reduced

space ((T ∗Q)µ, ωµ), and hence is also symplectically diffeomorphic to a symplectic fiber bundle.

Comparing the regular orbit reduced spaces ((TQ)Oµ , ω
L
Oµ

) and ((T ∗Q)Oµ , ωOµ) at the orbit

Oµ, we have the following theorem.

Theorem 2.3 Assume that the Lagrangian L : TQ → R is hyperregular, and that the

Legendre transformation FL : TQ → T ∗Q is (ΦT ,ΦT∗)-equivariant; then the regular orbit

reduced space ((TQ)Oµ , ω
L
Oµ

) of (TQ, ωL) at the orbit Oµ is symplectically diffeomorphic to

the regular orbit reduced space ((T ∗Q)Oµ , ωOµ) of (T ∗Q,ω) at the orbit Oµ, and hence is also

symplectically diffeomorphic to a symplectic fiber bundle.

Proof Since the Lagrangian L : TQ → R is hyperregular, the Legendre transformation

FL : TQ→ T ∗Q is a diffeomorphism. Because FL is (ΦT ,ΦT∗)-equivariant, that is, ΦT∗ ·FL =

FL ·ΦT , we can define a map (FL)Oµ : (TQ)Oµ → (T ∗Q)Oµ given by (FL)Oµ ·τOµ = πOµ ·FL,

and iOµ · FL = FL · jOµ ; see the following commutative Diagram-3. This map is well-defined

and a diffeomorphism.

J−1
L (Oµ) ⊂ TQ

FL
−−−−→ J−1(Oµ) ⊂ T ∗Q

τOµ

y
yπOµ

(TQ)Oµ

(FL)Oµ
−−−−−→ (T ∗Q)Oµ

Diagram-3

We shall prove that (FL)Oµ is symplectic, that is, (FL)∗
Oµ
· ωOµ = ωL

Oµ
. In fact, from (2.7)

and (2.4)–(2.5), we have that

τ∗Oµ
· (FL)∗Oµ

· ωOµ = ((FL)Oµ · τOµ)
∗ · ωOµ = (πOµ · FL)

∗ · ωOµ

= (FL)∗ · π∗

Oµ
· ωOµ = (FL)∗ · (i∗Oµ

· ω − J∗

Oµ
· ω+

Oµ
)

= (FL)∗ · i∗Oµ
· ω − (FL)∗ · (J∗

Oµ
· ω+

Oµ
)

= (iOµ · FL)
∗ · ω − (JOµ · FL)

∗ · ωL+
Oµ

= (FL · jOµ)
∗ · ω − (J · iOµ · FL)

∗ · ωL+
Oµ

= j∗Oµ
· (FL)∗ · ω − (J · FL · jOµ)

∗ · ωL+
Oµ

= j∗Oµ
· ωL − (JL · jOµ)

∗ · ωL+
Oµ

= j∗Oµ
· ωL − (JL)

∗

Oµ
· ωL+

Oµ
= τ∗Oµ

· ωL
Oµ

.

Notice that τOµ is surjective, and hence (FL)∗
Oµ
· ωOµ = ωL

Oµ
. Thus, the regular orbit reduced

space ((TQ)Oµ , ω
L
Oµ

) of (TQ, ωL) at the orbit Oµ is symplectically diffeomorphic to the regular
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orbit reduced space ((T ∗Q)Oµ , ωOµ) of (T ∗Q,ω) at the orbit Oµ. From [16] and the regular

reduction diagram, we know that the regular orbit reduced space ((T ∗Q)Oµ , ωOµ) at the orbit

Oµ is symplectically diffeomorphic to the regular point reduced space ((T ∗Q)µ, ωµ) of (T
∗Q,ω)

at µ, and hence ((TQ)Oµ, ω
L
Oµ

) is symplectically diffeomorphic to the regular point reduced

space ((T ∗Q)µ, ωµ) at µ, and is also symplectically diffeomorphic to a symplectic fiber bundle.

Thus, from the above discussion, we know that the regular point or regular orbit reduced

space for a regular Lagrangian system defined on a tangent bundle may not be a tangent bundle.

Considering the completeness of the symmetric reduction, if we may define an RCL system on

a symplectic fiber bundle, then it is possible to describe uniformly the RCL systems on TQ and

their regular reduced RCL systems on the associated reduced spaces.

3 Regular Controlled Lagrangian System and Its Dynamics

In order to give a proper definition of CL system, by following the ideas in [12], we first

define a CL system on TQ by using the Lagrangian symplectic form, and such a system is called

a regular controlled Lagrangian (RCL for short) system; then we regard a regular Lagrangian

system on TQ as a special case of an RCL system without external force and control. Thus,

the set of the regular Lagrangian systems on TQ is a subset of the set of RCL systems on

TQ. On the other hand, since the regular reduced system of a regular Lagrangian system

with symmetry defined on the tangent bundle TQ may not be a regular Lagrangian system

on a tangent bundle, we cannot define an RCL system on the tangent bundle TQ directly.

However, from Theorems 2.2–2.3, we know that the regular point reduced space ((TQ)µ, ω
L
µ )

of (TQ, ωL) at µ is symplectically diffeomorphic to a symplectic fiber bundle over T (Q/Gµ)

with fiber being the co-adjoint orbit Oµ, and the regular orbit reduced space ((TQ)Oµ , ω
L
Oµ

) of

(TQ, ωL) at the orbit Oµ is also symplectically diffeomorphic to a symplectic fiber bundle. In

consequence, if we can define an RCL system on a symplectic fiber bundle, then it is possible

to describe uniformly the RCL systems on TQ and their regular reduced RCL systems on

the associated reduced spaces; we can also study regular reduction of the RCL systems with

symmetries and momentum maps, as an extension of the regular reduction theory of the regular

Lagrangian systems under regular controlled Lagrangian equivalence conditions, and set up the

regular reduction theory of the RCL systems on a tangent bundle by using momentum map,

the associated reduced Lagrangian symplectic form, and the viewpoint of the completeness of

regular reduction.

In this section, we first define an RCL system on a symplectic fiber bundle. Then, by using

the Legendre transformation and the Lagrangian symplectic form on the tangent bundle of a

configuration manifold, we obtain the RCL system on a tangent bundle as a special case and

give a good expression for the dynamical vector field of the RCL system—one that allows us

to discuss RCL-equivalence. Consequencely, we can study RCL systems with symmetries by

combining them with the symmetric reduction of the regular Lagrangian systems with symme-

tries. For convenience, we assume that all controls appearing in this paper are the admissible

controls.

Let (E,M, π) be a fiber bundle. For each point x ∈M , assume that the fiber Ex = π−1(x)

is a smooth submanifold of E equipped with a symplectic form ωE(x); that is, (E, ωE) is a

symplectic fiber bundle. Suppose a function L : E→ R is a hyperregular Lagrangian, and there
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is an action function A : E→ R and an Euler-Lagrange vector field ξL that satisfy the equation

iξLωE = dEL, where EL : E→ R is an energy function given by EL := A− L. Then (E, ωE, L)

is a regular Lagrangian system. Moreover, if considering the external force and control, we can

define a kind of RCL system on the symplectic fiber bundle E as follows.

Definition 3.1 (RCL system) An RCL system on E is a 5-tuple (E, ωE, L, F
L, CL), where

(E, ωE, L) is a regular Lagrangian system, the function L : E → R is called the (hyperregular)

Lagrangian, a fiber-preserving map FL : E → E is called the (external) force map, and a fiber

submanifold CL of E is called the control subset.

Sometimes, CL is also denoted as the set of fiber-preserving maps from E to CL. When

a feedback control law uL : E → CL is chosen, the 5-tuple (E, ωE, L, F
L, uL) is a closed-loop

dynamical system. In particular, if Q is a smooth manifold, with TQ its tangent bundle and

T ∗Q its cotangent bundle with a canonical symplectic form ω, assume that L : TQ → R is

a hyperregular Lagrangian on TQ and the Legendre transformation FL : TQ → T ∗Q is a

diffeomorphism, then (TQ, ωL) is a symplectic vector bundle, where ωL = FL∗(ω). If we take

E = TQ, from the above definition we can obtain an RCL system on the tangent bundle TQ,

that is, the 5-tuple (TQ, ωL, L, FL, CL).

In order to describe the dynamics of the RCL system (E, ωE, L, F
L, CL) with a control law

uL : E → CL, we need to give a good expression for the dynamical vector field of the RCL

system. We shall use the notation of vertical lift maps of a vector along a fiber introduced in

[12]. In fact, for a smooth manifold M , its tangent bundle TM is a vector bundle, and for

the fiber bundle π : E → M , we consider the tangent mapping Tπ : TE → TM and its kernel

ker(Tπ) = {ρ ∈ TE | Tπ(ρ) = 0}, which is a vector subbundle of TE. We denote V E :=

ker(Tπ), which is called the vertical bundle of E. Assume that there is a metric on E, we take

a Levi-Civita connection A on TE, and denote by HE := ker(A), which is called the horizontal

bundle of E, such that TE = HE ⊕ V E. For any x ∈ M, ax, bx ∈ Ex, any tangent vector

ρ(bx) ∈ TbxE can be split into horizontal and vertical parts, that is, ρ(bx) = ρh(bx) ⊕ ρv(bx),

where ρh(bx) ∈ HbxE and ρv(bx) ∈ VbxE. Let γ be a geodesic in Ex connecting ax and bx. We

denote by ρvγ(ax) a tangent vector at ax, which is the parallel displacement of the vertical vector

ρv(bx) along the geodesic γ from bx to ax. Since the angle between two vectors is invariant under

a parallel displacement along a geodesic, we have Tπ(ρvγ(ax)) = 0, and hence ρvγ(ax) ∈ VaxE.

Now, for ax, bx ∈ Ex and tangent vector ρ(bx) ∈ TbxE, we can define the vertical lift map of a

vector along a fiber as follows

vlift : TEx × Ex → TEx; vlift(ρ(bx), ax) = ρvγ(ax).

It is easy to check from the basic fact in differential geometry that this map does not depend on

the choice of γ. If FL : E→ E is a fiber-preserving map, for any x ∈M , we have FL
x : Ex → Ex

and TFL
x : TEx → TEx; thus, for any ax ∈ Ex and ρ ∈ TEx, the vertical lift of ρ under the

action of FL along a fiber is defined by

(vlift(FL
x )ρ)(ax) = vlift((TFL

x ρ)(FL
x (ax)), ax) = (TFL

x ρ)vγ(ax),

where γ is a geodesic in Ex connecting FL
x (ax) and ax.

In particular, when π : E→M is a vector bundle, for any x ∈M , the fiber Ex = π−1(x) is

a vector space. In this case, we can choose the geodesic γ to be a straight line, and the vertical
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vector is invariant under parallel displacement along straight line, that is, ρvγ(ax) = ρv(bx).

Moreover, when E = TQ, by using the local trivialization of TTQ, we have that TTQ ∼=

TQ × TQ (locally). Since τQ : TQ → Q, and TτQ : TTQ → TQ, in this case, for any

vx, wx ∈ TxQ, x ∈ Q, we know that (0, wx) ∈ VwxTxQ, and hence we can get that

vlift((0, wx)(wx), vx) = (0, wx)(vx) =
d

ds

∣∣∣
s=0

(vx + swx),

which coincides with the definition of the vertical lift map along a fiber in [11].

For a given RCL system (TQ, ωL, L, FL, CL), the dynamical vector field of the associated

regular Lagrangian system (TQ, ωL, L) is the Euler-Lagrange vector field ξL, such that iξLω
L =

dEL. When we consider the external force FL : TQ → TQ, by using the above notation of

vertical lift map of a vector along a fiber, the change of ξL under the action of FL is that

vlift(FL)ξL(vx) = vlift((TFLξL)(F
L(vx)), vx) = (TFLξL)

v
γ(vx),

where vx ∈ TxQ, x ∈ Q and the geodesic γ is a straight line in TxQ connecting FL
x (vx) and

vx. Similary, when a feedback control law uL : TQ→ CL is chosen, the change of ξL under the

action of uL is that

vlift(uL)ξL(vx) = vlift((TuLξL)(u
L(vx)), vx) = (TuLξL)

v
γ(vx).

Consequently, we can give an expression for the dynamical vector field of the RCL system as

follows.

Theorem 3.1 The dynamical vector field of an RCL system (TQ, ωL, L, FL, CL) with a

control law uL is the synthesis of the Euler-Lagrange vector field ξL and its changes under the

actions of the external force FL and control uL, that is,

ξ(TQ,ωL,L,FL,uL)(vx) = ξL(vx) + vlift(FL)ξL(vx) + vlift(uL)ξL(vx)

for any vx ∈ TxQ, x ∈ Q. For convenience, it is simply written as

ξ(TQ,ωL,L,FL,uL) = ξL + vlift(FL) + vlift(uL). (3.1)

Where vlift(FL) = vlift(FL)ξL, and vlift(uL) = vlift(uL)ξL are the changes of ξL under

the actions of FL and uL. We also denote that vlift(CL) = ∪{vlift(uL)ξL| uL ∈ CL}. It is

worth noting that, in order to facilitate deduction and calculation, we always use the simple

expression of the dynamical vector field ξ(TQ,ωL,L,FL,uL). Moreover, we also use the simple

expressions for the Rp-reduced vector field ξ((TQ)µ,ωL
µ ,lµ,fL

µ ,uL
µ ) and the Ro-reduced vector field

ξ((TQ)Oµ ,ωL
Oµ

,lOµ ,fL
Oµ

,uL
Oµ

) in Sections 4–5.

From the expression (3.1) of the dynamical vector field of the RCL system, we know that

under the actions of the external force FL and control uL, in general, the dynamical vector

field may not be an Euler-Lagrange vector field, and hence the RCL system may not yet be a

regular Lagrangian system. However, it is a dynamical system closed with respect to a regular

Lagrangian system, and it can be explored and studied by extending the methods for handling

external force and control in the study of the regular Lagrangian system. In particular, it

is worth noting that the energy EL is conserved along the flow of the Euler-Lagrange vector
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field ξL, if ξL satisfies the second order equation TτQ ◦ ξL = idTQ. Since TτQ · vlift(F
L) =

TτQ · vlift(uL) = 0, from the expression (3.1) we have that TτQ ◦ ξ(TQ,ωL,L,FL,uL) = idTQ, that

is, the dynamical vector field of the RCL system always satisfies the second-order equation.

On the other hand, for two given regular Lagrangian systems (TQi, ω
L
i , Li), i = 1, 2, we

say they are equivalent, if there exists a diffeomorphism ϕ : Q1 → Q2 such that their Euler-

Lagrange vector fields ξLi , i = 1, 2 satisfy the condition ξL2
· Tϕ = T (Tϕ) · ξL1

. Here the map

Tϕ : TQ1 → TQ2 is the tangent map of ϕ, and the map T (Tϕ) : TTQ1 → TTQ2 is the tangent

map of Tϕ. It is easy to see that the condition ξL2
· Tϕ = T (Tϕ) · ξL1

is equivalent to the

fact that the map Tϕ : TQ1 → TQ2 is symplectic with respect to their Lagrangian symplectic

forms ωL
i on TQi, i = 1, 2.

For two given RCL systems (TQi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, we also want to define their

equivalence, that is, to find a diffeomorphism ϕ : Q1 → Q2 such that ξ(TQ2,ωL
2
,L2,FL

2
,CL

2
) · Tϕ =

T (Tϕ) · ξ(TQ1,ωL
1
,L1,FL

1
,CL

1
). However, it is worth noting that, when an RCL system is given, the

force map FL : TQ → TQ is determined, but the feedback control law uL : TQ → CL can be

chosen. In order to explicitly emphasize the impact of external force and control in study of

the RCL systems, by using the above expression (3.1) for the dynamical vector field of the RCL

system, we can describe how the feedback control law modifies the structure of the RCL system,

and thus induce the regular controlled Lagrangian matching conditions and RCL-equivalence

are induced as follows.

Definition 3.2 (RCL-equivalence) Suppose that we have two RCL systems (TQi, ω
L
i , Li,

FL
i , CLi ), i = 1, 2, we say they are RCL-equivalent, or simply, (TQ1, ω

L
1 , L1, F

L
1 , CL1 )

RCL
∼

(TQ2, ω
L
2 , L2, F

L
2 , CL2 ), if there exists a diffeomorphism ϕ : Q1 → Q2 such that the following

regular controlled Lagrangian matching conditions hold :

RCL-1 The control subsets CLi , i = 1, 2 satisfy the condition CL2 = Tϕ(CL1 ), where the map

Tϕ : TQ1 → TQ2 is the tangent map of ϕ.

RCL-2 For each control law uL
1 : TQ1 → CL1 , there exists a control law uL

2 : TQ2 → CL2 ,

such that the two closed-loop dynamical systems have the same dynamical vector fields, that is,

ξ(TQ2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,ωL

1
,L1,FL

1
,uL

1
), where the map T (Tϕ) : TTQ1 → TTQ2

is the tangent map of Tϕ.

From the expression (3.1) of the dynamical vector field of the RCL system and the condition

ξ(TQ2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,ωL

1
,L1,FL

1
,uL

1
), we have that

(ξL2
+ vlift(FL

2 )ξL2
+ vlift(uL

2 )ξL2
) · Tϕ = T (Tϕ) · [ξL1

+ vlift(FL
1 )ξL1

+ vlift(uL
1 )ξL1

].

By using the notation of the vertical lift map of a vector along a fiber, for vx ∈ TxQ1, x ∈ Q1,

we have that

T (Tϕ) · vlift(FL
1 )ξL1

(vx)

= T (Tϕ) · vlift((TFL
1 · ξL1

)(FL
1 (vx)), vx)

= vlift((T (Tϕ) · TFL
1 · T (Tϕ

−1) · ξL1
)(Tϕ · FL

1 · Tϕ
−1 · (Tϕ · vx)), Tϕ · vx)

= vlift((T ((Tϕ) · FL
1 · Tϕ

−1) · ξL1
)(Tϕ · FL

1 · Tϕ
−1(Tϕ · vx)), Tϕ · vx)

= vlift(Tϕ · FL
1 · Tϕ

−1) · ξL1
(Tϕ · vx),
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where the map Tϕ−1 : TQ2 → TQ1 is the inverse of the tangent map Tϕ. Similarly, we have

that T (Tϕ) · vlift(uL
1 )ξL1

= vlift(Tϕ · uL
1 · Tϕ

−1) · ξL1
· Tϕ. Thus, the explicit relation between

the two control laws uL
i : TQi → CLi , i = 1, 2 in RCL-2 is given by

(vlift(uL
2 )− vlift(Tϕ · uL

1 · Tϕ
−1)) · Tϕ

= −ξL2
· Tϕ+ T (Tϕ)(ξL1

) + (−vlift(FL
2 ) + vlift(Tϕ · FL

1 · Tϕ
−1)) · Tϕ. (3.2)

From the above relation we know that, when two RCL systems (TQi, ω
L
i , Li, F

L
i , CLi ), i =

1, 2, are RCL-equivalent with respect to Tϕ, the corresponding regular Lagrangian systems

(TQi, ω
L
i , Li), i = 1, 2, may not be equivalent with respect to Tϕ. If the two corresponding

regular Lagrangian systems are also equivalent with respect to Tϕ, then the control laws uL
i :

TQi → CLi , i = 1, 2 and the external forces FL
i : TQi → TQi, i = 1, 2 in RCL-2 must satisfy

the following condition

vlift(uL
2 )− vlift(Tϕ · uL

1 · Tϕ
−1) = −vlift(FL

2 ) + vlift(Tϕ · FL
1 · Tϕ

−1). (3.3)

In the following we shall introduce regular point and regular orbit reducible RCL systems

with symmetries, and show various relationships of their regular reducible RCL-equivalences.

4 Regular Point Reduction of the RCL System

We know that, when the external force and control of an RCL system (TQ, ωL, L, FL, CL)

are both zero, that is, FL = 0, and CL = ∅, then the RCL system is just a regular Lagrangian

system (TQ, ωL, L). Thus, we can regard a regular Lagrangian system on TQ as a special case of

the RCL system without external force and control. Consequently, the set of regular Lagrangian

systems with symmetries on TQ is a subset of the set of RCL systems with symmetries on TQ. If

we first consider the regular point reduction of a regular Lagrangian system with symmetry, then

we may study the regular point reduction of an RCL system with symmetry, as an extension

of the regular point reduction of a regular Lagrangian system under the regular controlled

Lagrangian equivalence conditions. In order to do this, in this section we consider the RCL

system with symmetry and momentum map, and first give the regular point reducible RCL

system and the RpCL-equivalence, and then prove the regular point reduction theorems for the

RCL system and regular Lagrangian system.

We know that, if an RCL system with symmetry and momentum map is regular point

reducible, then the associated regular Lagrangian system must be regular point reducible. Thus,

from Definition 2.3 and Theorem 2.2, if the Legendre transformation FL : TQ → T ∗Q is

(ΦT , ΦT∗)-equivariant, then we can introduce a type of regular point reducible RCL systems

as follows.

Definition 4.1 (Regular point reducible RCL system) A 6-tuple (TQ,G, ωL, L, FL, CL),

where the hyperregular Lagrangian L : TQ → R, the fiber-preserving map FL : TQ → TQ

and the fiber submanifold CL of TQ are all G-invariant, is called a regular point reducible RCL

system, if the Legendre transformation FL : TQ → T ∗Q is (ΦT , ΦT∗)-equivariant, and there

exists a point µ ∈ g
∗, which is a regular value of the momentum map JL, such that the regular

point reduced system, that is, the 5-tuple ((TQ)µ, ω
L
µ , lµ, f

L
µ , C

L
µ ), where (TQ)µ = J−1

L (µ)/Gµ,

τ∗µω
L
µ = j∗µω

L, lµ · τµ = L · jµ, FL(J−1
L (µ)) ⊂ J−1

L (µ), fL
µ · τµ = τµ · FL · jµ, CL ∩ J−1

L (µ) 6= ∅,
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CLµ = τµ(C
L ∩ J−1

L (µ)), is an RCL system, which is simply written as the Rp-reduced RCL

system. Here, ((TQ)µ, ω
L
µ ) is the Rp-reduced space, the function lµ : (TQ)µ → R is called the

Rp-reduced Lagrangian, the fiber-preserving map fL
µ : (TQ)µ → (TQ)µ is called the Rp-reduced

(external) force map, and CLµ is a fiber submanifold of (TQ)µ that is called the Rp-reduced

control subset.

It is worth noting that for the regular point reducible RCL system (TQ,G, ωL, L, FL, CL),

the G-invariant external force map FL : TQ→ TQ has to satisfy the conditions FL(J−1
L (µ)) ⊂

J−1
L (µ), and fL

µ · τµ = τµ · FL · jµ, so that we can define the Rp-reduced external force map

fL
µ : (TQ)µ → (TQ)µ. The condition CL ∩ J−1

L (µ) 6= ∅ in the above definition ensures that the

G-invariant control subset CL ∩ J−1
L (µ) can be reduced and that the Rp-reduced control subset

is CLµ = τµ(CL ∩ J−1
L (µ)).

Assume that the dynamical vector field ξ(TQ,G,ωL,L,FL,uL) of a given regular point reducible

RCL system (TQ,G, ωL, L, FL, CL) with a control law uL ∈ CL can be expressed by

ξ(TQ,G,ωL,L,FL,uL) = ξL + vlift(FL) + vlift(uL). (4.1)

Then, for the regular point reducible RCL system we can also introduce the regular point

reducible controlled Lagrangian equivalence (RpCL-equivalence) as follows.

Definition 4.2 (RpCL-equivalence) Suppose that we have two regular point reducible

RCL systems (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, we say they are RpCL-equivalent, or sim-

ply, (TQ1, G1, ω
L
1 , L1, F

L
1 , CL1 )

RpCL
∼ (TQ2, G2, ω

L
2 , L2, F

L
2 , CL2 ), if there exists a diffeomorphism

ϕ : Q1 → Q2 such that the following regular point reducible controlled Lagrangian matching

conditions hold :

RpCL-1 For µi ∈ g
∗
i , the regular reducible points of the RCL systems (TQi, Gi, ω

L
i , Li, F

L
i ,

CLi ), i = 1, 2, the map (Tϕ)µ = j−1
µ2
· Tϕ · jµ1

: (JL)
−1
1 (µ1) → (JL)

−1
2 (µ2) is (G1µ1

, G2µ2
)-

equivariant and CL2 ∩ (JL)
−1
2 (µ2) = (Tϕ)µ(CL1 ∩ (JL)

−1
1 (µ1)), where µ = (µ1, µ2), and we denote

by j−1
µ2

(S) the pre-image of a subset S ⊂ TQ2 under the map jµ2
: (JL)

−1
2 (µ2)→ TQ2.

RpCL-2 For each control law uL
1 : TQ1 → CL1 , there exists a control law uL

2 : TQ2 → CL2 ,

such that the two closed-loop dynamical systems have the same dynamical vector fields, that is,

ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

It is worth noting that for the regular point reducible RCL system, the induced equivalent

map (Tϕ)µ also preserves the equivariance of the G-action at the regular point. If a feedback

control law uL : TQ → CL is chosen, and uL ∈ CL ∩ J−1
L (µ), and CL ∩ J−1

L (µ) 6= ∅, then the

Rp-reduced control law is uL
µ : (TQ)µ → CLµ = τµ(CL ∩ J−1

L (µ)), and uL
µ · τµ = τµ · uL · jµ. The

Rp-reduced RCL system ((TQ)µ, ω
L
µ , lµ, f

L
µ , u

L
µ) is a closed-loop regular dynamical system with

the Rp-reduced control law uL
µ . Assume that its dynamical vector field ξ((TQ)µ,ωL

µ ,lµ,fL
µ ,uL

µ ) can

be expressed by

ξ((TQ)µ,ωL
µ ,lµ,fL

µ ,uL
µ) = ξlµ + vlift(fL

µ ) + vlift(uL
µ ), (4.2)

where ξlµ is the Rp-reduced Euler-Lagrange vector field, and vlift(fL
µ ) = vlift(fL

µ )ξlµ , vlift(u
L
µ ) =

vlift(uL
µ )ξlµ are the changes of ξlµ under the actions of the Rp-reduced external force fL

µ and

the Rp-reduced control law uL
µ , and the dynamical vector fields of the RCL system and the
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Rp-reduced RCL system satisfy the condition

ξ((TQ)µ,ωL
µ ,lµ,fL

µ ,uL
µ ) · τµ = Tτµ · ξ(TQ,G,ωL,L,FL,uL) · jµ (4.3)

(see [12, 20]). Then we can obtain the following regular point reduction theorem for the RCL

system, which explains the relationship between the RpCL-equivalence of the regular point

reducible RCL system with symmetry and the RCL-equivalence of the associated Rp-reduced

RCL system.

Theorem 4.1 Two regular point reducible RCL systems (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2,

are RpCL-equivalent if and only if the associated Rp-reduced RCL systems ((TQi)µi , ω
L
iµi

,

liµi , f
L
iµi

, CLiµi
), i = 1, 2, are RCL-equivalent.

Proof If (TQ1, G1, ω
L
1 , L1, F

L
1 , CL1 )

RpCL
∼ (TQ2, G2, ω

L
2 , L2, F

L
2 , CL2 ), then there exists a dif-

feomorphism ϕ : Q1 → Q2 such that for µi ∈ g
∗
i , i = 1, 2, (Tϕ)µ = j−1

µ2
·Tϕ · jµ1

: (JL)
−1
1 (µ1)→

(JL)
−1
2 (µ2) is (G1µ1

, G2µ2
)-equivariant, and CL2 ∩ (JL)

−1
2 (µ2) = (Tϕ)µ(CL1 ∩ (JL)

−1
1 (µ1)) and

RpCL-2 holds. From the following commutative Diagram-4:

TQ1
jµ1←−−−− (JL)

−1
1 (µ1)

τµ1−−−−→ (TQ1)µ1

Tϕ

y (Tϕ)µ

y (Tϕ)µ/G

y

TQ2
jµ2←−−−− (JL)

−1
2 (µ2)

τµ2−−−−→ (TQ2)µ2

Diagram-4

we can define a map (Tϕ)µ/G : (TQ1)µ1
→ (TQ2)µ2

such that (Tϕ)µ/G · τµ1
= τµ2

· (Tϕ)µ.

Since (Tϕ)µ : (JL)
−1
1 (µ1) → (JL)

−1
2 (µ2) is (G1µ1

, G2µ2
)-equivariant, (Tϕ)µ/G is well-defined.

We shall show that CL2µ2
= (Tϕ)µ/G(C

L
1µ1

). In fact, since (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, are

regular point reducible RCL systems, we have that CLi ∩ (JL)
−1
i (µi) 6= ∅ and CLiµi

= τµi(C
L
i ∩

(JL)
−1
i (µi)), i = 1, 2. From CL2 ∩ (JL)

−1
2 (µ2) = (Tϕ)µ(CL1 ∩ (JL)

−1
1 (µ1)), we have that

CL2µ2
= τµ2

(CL2 ∩ (JL)
−1
2 (µ2)) = τµ2

· (Tϕ)µ(C
L
1 ∩ (JL)

−1
1 (µ1))

= (Tϕ)µ/G · τµ1
(CL1 ∩ (JL)

−1
1 (µ1)) = (Tϕ)µ/G(C

L
1µ1

).

Thus, the condition RCL-1 holds. On the other hand, for the Rp-reduced control law uL
1µ1

:

(TQ1)µ1
→ CL1µ1

, we have the control law uL
1 : TQ1 → CL1 such that uL

1µ1
· τµ1

= τµ1
· uL

1 · jµ1
.

From the condition RpCL-2 we know that there exists the control law uL
2 : TQ2 → CL2 , such

that ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
). However, for the control law

uL
2 : TQ2 → CL2 , we have the Rp-reduced control law uL

2µ2
: (TQ2)µ2

→ CL2µ2
such that uL

2µ2
·

τµ2
= τµ2

· uL
2 · jµ2

. Note that for i = 1, 2, from (4.3), we have that

ξ((TQi)µi
,ωL

iµi
,liµi

,fL
iµi

,uL
iµi

) · τµi = Tτµi · ξ(TQi,Gi,ωL
i ,Li,FL

i ,uL
i ) · jµi , (4.4)

and from the commutative Diagram-4, (Tϕ)µ/G · τµ1
= τµ2

· (Tϕ)µ and jµ2
· (Tϕ)µ = (Tϕ) · jµ1

we have that

ξ((TQ2)µ2
,ωL

2µ2
,l2µ2

,fL
2µ2

,uL
2µ2

) · (Tϕ)µ/G · τµ1
= ξ((TQ2)µ2

,ωL
2µ2

,l2µ2
,fL

2µ2
,uL

2µ2
) · τµ2

· (Tϕ)µ

= Tτµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · jµ2

· (Tϕ)µ = Tτµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · (Tϕ) · jµ1
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= Tτµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

= T (τµ2
· (Tϕ)µ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

= T ((Tϕ)µ/G · τµ1
) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) ·jµ1

=T ((Tϕ)µ/G)·Tτµ1
· ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

= T ((Tϕ)µ/G) · ξ((TQ1)µ1
,ωL

1µ1
,l1µ1

,fL
1µ1

,uL
1µ1

) · τµ1
.

Since τµ1
: (JL)

−1
1 (µ1)→ (TQ1)µ1

is surjective, we have that

ξ((TQ2)µ2
,ωL

2µ2
,l2µ2

,fL
2µ2

,uL
2µ2

) · (Tϕ)µ/G = T ((Tϕ)µ/G) · ξ((TQ1)µ1
,ωL

1µ1
,l1µ1

,fL
1µ1

,uL
1µ1

), (4.5)

that is, the condition RCL-2 holds. So, the Rp-reduced RCL systems ((TQi)µi , ω
L
iµi

, liµi , f
L
iµi

,

CLiµi
), i = 1, 2, are RCL-equivalent.

Conversely, assume that the Rp-reduced RCL systems ((TQi)µi , ω
L
iµi

, liµi , f
L
iµi

, CLiµi
), i =

1, 2, are RCL-equivalent; then there exists a diffeomorphism (Tϕ)µ/G : (TQ1)µ1
→ (TQ2)µ2

,

such that CL2µ2
= (Tϕ)µ/G(C

L
1µ1

), µi ∈ g
∗
i , i = 1, 2 and for the Rp-reduced control law uL

1µ1
:

(TQ1)µ1
→ CL1µ1

, there exists an Rp-reduced control law uL
2µ2

: (TQ2)µ2
→ CL2µ2

, such that (4.5)

holds. Then from the commutative Diagram-4, we can define a map (Tϕ)µ : (JL)
−1
1 (µ1) →

(JL)
−1
2 (µ2) such that τµ2

· (Tϕ)µ = (Tϕ)µ/G · τµ1
, and the map Tϕ : TQ1 → TQ2 such

that Tϕ · jµ1
= jµ2

· (Tϕ)µ, as well as a diffeomorphism ϕ : Q1 → Q2 whose tangent lift is

just Tϕ : TQ1 → TQ2. Moreover, for the above definition of (Tϕ)µ, we know that (Tϕ)µ

is (G1µ1
, G2µ2

)-equivariant. In fact, for any zi ∈ (JL)
−1
i (µi), gi ∈ Giµi , i = 1, 2 such that

z2 = (Tϕ)µ(z1) and [z2] = (Tϕ)µ/G[z1], we have that

(Tϕ)µ(Φ1g1(z1)) = τ−1
µ2
· τµ2

· (Tϕ)µ(Φ1g1(z1)) = τ−1
µ2
· τµ2

· (Tϕ)µ(g1z1)

= τ−1
µ2
· (Tϕ)µ/G · τµ1

(g1z1) = τ−1
µ2
· (Tϕ)µ/G[z1] = τ−1

µ2
· [z2]

= τ−1
µ2
· τµ2

(g2z2) = Φ2g2(z2) = Φ2g2 · (Tϕ)µ(z1).

Here we denote by τ−1
µ1

(S) the pre-image of a subset S ⊂ (TQ1)µ1
under the map τµ1

:

(JL)
−1
1 (µ1) → (TQ1)µ1

, and for any z1 ∈ (JL)
−1
1 (µ1), τ−1

µ1
· τµ1

(z1) = z1. So, we obtain

that (Tϕ)µ · Φ1g1 = Φ2g2 · (Tϕ)µ. Moreover, we have that

CL2 ∩ (JL)
−1
2 (µ2) = τ−1

µ2
· τµ2

(CL2 ∩ (JL)
−1
2 (µ2)) = τ−1

µ2
· CL2µ2

= τ−1
µ2
· (Tϕ)µ/G(C

L
1µ1

)

= τ−1
µ2
· (Tϕ)µ/G · τµ1

(CL1 ∩ (JL)
−1
1 (µ1)) = τ−1

µ2
· τµ2

· (Tϕ)µ(C
L
1 ∩ (JL)

−1
1 (µ1))

= (Tϕ)µ(C
L
1 ∩ (JL)

−1
1 (µ1)).

Thus, the condition RpCL-1 holds. In the following we shall prove that the condition RpCL-2

holds. For the above Rp-reduced control laws uL
iµi

: (TQi)µi → C
L
iµi

, i = 1, 2, there exist control

laws uL
i : TQi → CLi , such that uL

iµi
· τµi = τµi · u

L
i · jµi , i = 1, 2. We shall prove that

ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

In fact, from (4.4) we have that

T ((Tϕ)µ/G) · ξ((TQ1)µ1
,ωL

1µ1
,l1µ1

,fL
1µ1

,uL
1µ1

) · τµ1

= T ((Tϕ)µ/G) · Tτµ1
· ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

= T ((Tϕ)µ/G · τµ1
) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

= T (τµ2
· (Tϕ)µ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1
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= Tτµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

.

On the other hand,

ξ((TQ2)µ2
,ωL

2µ2
,l2µ2

,fL
2µ2

,uL
2µ2

) · (Tϕ)µ/G · τµ1
= ξ((TQ2)µ2

,ωL
2µ2

,l2µ2
,fL

2µ2
,uL

2µ2
) · τµ2

· (Tϕ)µ

= Tτµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · jµ2

· (Tϕ)µ = Tτµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · Tϕ · jµ1

.

From (4.5) we have that

Tτµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · Tϕ · jµ1

= Tτµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jµ1

.

Note that the map jµ1
: (JL)

−1
1 (µ1)→ TQ1 is injective, and Tτµ2

: T (JL)
−1
2 (µ2)→ T (TQ2)µ2

is surjective, hence we have that

ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

It follows that the theorem holds.

It is worth noting that, when the external force and control of a regular point reducible RCL

system (TQ,G, ωL, L, FL, CL) are both zero, that is, FL = 0 and CL = ∅, then the RCL system

is just a regular point reducible Lagrangian system (TQ,G, ωL, L). Then the following theorem

explains the relationship between the equivalence of the regular point reducible Lagrangian

systems with symmetries and the equivalence of the associated Rp-reduced Lagrangian systems.

Theorem 4.2 Two regular point reducible Lagrangian systems (TQi, Gi, ω
L
i , Li), i = 1, 2,

are equivalent if and only if the associated Rp-reduced Lagrangian systems ((TQi)µi , ω
L
iµi

, liµi),

i = 1, 2, are equivalent.

Proof If two regular point reducible Lagrangian systems (TQi, Gi, ω
L
i , Li), i = 1, 2,

are equivalent, then there exists a diffeomorphism ϕ : Q1 → Q2 such that Tϕ : TQ1 →

TQ2 is symplectic with respect to their Lagrangian symplectic forms ωL
i , i = 1, 2, that

is, ωL
1 = (Tϕ)∗ · ωL

2 , and for µi ∈ g
∗
i , i = 1, 2, (Tϕ)µ = j−1

µ2
· Tϕ · jµ1

: (JL)
−1
1 (µ1) →

(JL)
−1
2 (µ2) is (G1µ1

, G2µ2
)-equivariant. From the above commutative Diagram-4, we can de-

fine a map (Tϕ)µ/G : (TQ1)µ1
→ (TQ2)µ2

such that (Tϕ)µ/G · τµ1
= τµ2

· (Tϕ)µ. Since

(Tϕ)µ : (JL)
−1
1 (µ1) → (JL)

−1
2 (µ2) is (G1µ1

, G2µ2
)-equivariant, (Tϕ)µ/G is well-defined. In or-

der to prove that the associated Rp-reduced Lagrangian systems ((TQi)µi , ω
L
iµi

, liµi), i = 1, 2,

are equivalent, in the following we shall show that (Tϕ)µ/G is symplectic with respect to their

Rp-reduced Lagrangian symplectic forms ωL
iµi

, i = 1, 2, that is, (Tϕ)∗µ/Gω
L
2µ2

= ωL
1µ1

. In fac-

t, since Tϕ : TQ1 → TQ2 is symplectic with respect to their Lagrangian symplectic forms,

the map (Tϕ)∗ : Ω2(TQ2) → Ω2(TQ1) satisfies (Tϕ)∗ωL
2 = ωL

1 . From (2.3) we know that,

j∗µi
ωL
i = τ∗µi

ωL
iµi

, i = 1, 2, from the following commutative Diagram-5,

Ω2(TQ2)
j∗µ2−−−−→ Ω2((JL)

−1
2 (µ2))

τ∗

µ2←−−−− Ω2((TQ2)µ2
)

(Tϕ)∗
y (Tϕ)∗µ

y (Tϕ)∗µ/G

y

Ω2(TQ1)
j∗µ1−−−−→ Ω2((JL)

−1
1 (µ1))

τ∗

µ1←−−−− Ω2((TQ1)µ1
)

Diagram-5
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we have that

τ∗µ1
· (Tϕ)∗µ/Gω

L
2µ2

= ((Tϕ)µ/G · τµ1
)∗ωL

2µ2
= (τµ2

· (Tϕ)µ)
∗ωL

2µ2

= (j−1
µ2
· Tϕ · jµ1

)∗ · τ∗µ2
ωL
2µ2

= j∗µ1
· (Tϕ)∗ · (j−1

µ2
)∗ · j∗µ2

ωL
2

= j∗µ1
· (Tϕ)∗ωL

2 = j∗µ1
ωL
1 = τ∗µ1

ωL
1µ1

.

Note that τµ1
is surjective, thus (Tϕ)∗µ/Gω

L
2µ2

= ωL
1µ1

.

Conversely, assume that the Rp-reduced Lagrangian systems ((TQi)µi , ω
L
iµi

, liµi), i = 1, 2,

are equivalent, then there exists a diffeomorphism (Tϕ)µ/G : (TQ1)µ1
→ (TQ2)µ2

which is

symplectic with respect to their Rp-reduced Lagrangian symplectic forms ωL
iµi

, i = 1, 2. From

the above commutative Diagram-4, we can define a map (Tϕ)µ : (JL)
−1
1 (µ1)→ (JL)

−1
2 (µ2) such

that τµ2
·(Tϕ)µ = (Tϕ)µ/G ·τµ1

and the map Tϕ : TQ1 → TQ2 such that Tϕ ·jµ1
= jµ2

·(Tϕ)µ,

as well as a diffeomorphism ϕ : Q1 → Q2 whose tangent map is just Tϕ : TQ1 → TQ2. From the

definition of (Tϕ)µ, we know that (Tϕ)µ is (G1µ1
, G2µ2

)-equivariant. In the following we shall

show that Tϕ is symplectic with respect to the Lagrangian symplectic forms ωL
i , i = 1, 2, that

is, ωL
1 = (Tϕ)∗ · ωL

2 . Since (Tϕ)µ/G : (TQ1)µ1
→ (TQ2)µ2

is symplectic with respect to their

Rp-reduced Lagrangian symplectic forms, the map ((Tϕ)µ/G)
∗ : Ω2((TQ2)µ2

) → Ω2((TQ1)µ1
)

satisfies ((Tϕ)µ/G)
∗ · ωL

2µ2
= ωL

1µ1
. From (2.3) we know that j∗µi

· ωL
i = τ∗µi

· ωL
iµi

, i = 1, 2, from

the commutative Diagram-5, we have that

j∗µ1
· ωL

1 = τ∗µ1
· ωL

1µ1
= τ∗µ1

· (Tϕ)∗µ/G · ω
L
2µ2

= ((Tϕ)µ/G · τµ1
)∗ · ωL

2µ2

= (τµ2
· (Tϕ)µ)

∗ · ωL
2µ2

= (j−1
µ2
· Tϕ · jµ1

)∗ · τ∗µ2
· ωL

2µ2

= j∗µ1
· (Tϕ)∗ · (j−1

µ2
)∗ · j∗µ2

· ωL
2 = j∗µ1

· (Tϕ)∗ωL
2 .

Note that jµ1
is injective, and hence ωL

1 = (Tϕ)∗ωL
2 . Thus, the regular point reducible La-

grangian systems (TQi, Gi, ω
L
i , Li), i = 1, 2, are equivalent.

Thus, the regular point reduction Theorem 4.1 for the RCL systems can be regarded as an

extension of the regular point reduction Theorem 4.2 for the regular Lagrangian systems under

the regular controlled Lagrangian equivalence conditions.

5 Regular Orbit Reduction of the RCL System

Since the set of regular Lagrangian systems with symmetries on TQ is a subset of the set

of RCL systems with symmetries on TQ. If we first consider the regular orbit reduction of

a regular Lagrangian system with symmetry, then we may study the regular orbit reduction

of an RCL system with symmetry, as an extension of the regular orbit reduction of a regular

Lagrangian system under the regular controlled Lagrangian equivalence conditions. In order to

do this, in this section we consider the RCL system with symmetry and momentum map, and

first give the regular orbit reducible RCL system and the RoCL-equivalence, and then prove

the regular orbit reduction theorems for the RCL system and regular Lagrangian system.

Note that, if an RCL system with symmetry and momentum map is regular orbit reducible,

then the associated regular Lagrangian system must be regular orbit reducible. Thus, from

Definition 2.4 and Theorem 2.3, if the Legendre transformation FL : TQ→ T ∗Q is (ΦT , ΦT∗)-

equivariant, then we can introduce a type of regular orbit reducible RCL systems as follows.
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Definition 5.1 (Regular orbit reducible RCL system) A 6-tuple (TQ,G, ωL, L, FL, CL),

where the hyperregular Lagrangian L : TQ→ R, and the fiber-preserving map FL : TQ→ TQ

and the fiber submanifold CL of TQ are all G-invariant, is called a regular orbit reducible

RCL system if the Legendre transformation FL : TQ → T ∗Q is (ΦT , ΦT∗)-equivariant, and

there exists an orbit Oµ, µ ∈ g
∗, where µ is a regular value of the momentum map JL, such

that the regular orbit reduced system, that is, the 5-tuple ((TQ)Oµ , ω
L
Oµ

, lOµ , f
L
Oµ

, CL
Oµ

), where

(TQ)Oµ = J−1
L (Oµ)/G, τ∗

Oµ
ωL
Oµ

= j∗
Oµ

ωL − (JL)
∗
Oµ

ωL+
Oµ

, lOµ · τOµ = L · jOµ , F
L(J−1

L (Oµ)) ⊂

J−1
L (Oµ), f

L
Oµ
· τOµ = τOµ · F

L · jOµ , and C
L ∩ J−1

L (Oµ) 6= ∅, CLOµ
= τOµ(C

L ∩ J−1
L (Oµ)), is

an RCL system, which is simply written as Ro-reduced RCL system. Here, ((TQ)Oµ , ω
L
Oµ

) is

the Ro-reduced space, the function lOµ : (TQ)Oµ → R is called the Ro-reduced Lagrangian, the

fiber-preserving map fL
Oµ

: (TQ)Oµ → (TQ)Oµ is called the Ro-reduced (external) force map,

and CL
Oµ

is a fiber submanifold of (TQ)Oµ that is called the Ro-reduced control subset.

It is worth noting that for the regular orbit reducible RCL system (TQ,G, ωL, L, FL, CL),

the G-invariant external force map FL : TQ→ TQ has to satisfy the conditions FL(J−1
L (Oµ)) ⊂

J−1
L (Oµ), and fL

Oµ
·τOµ = τOµ ·F

L ·jOµ so that we can define the Ro-reduced external force map

fL
Oµ

: (TQ)Oµ → (TQ)Oµ . The condition C
L∩J−1

L (Oµ) 6= ∅ in the above definition ensures that

the G-invariant control subset CL ∩ J−1
L (Oµ) can be reduced and that the Ro-reduced control

subset is CL
Oµ

= τOµ(C
L ∩ J−1

L (Oµ)).

Assume that the dynamical vector field ξ(TQ,G,ωL,L,FL,uL) of a given regular orbit reducible

RCL system (TQ,G, ωL, L, FL, CL) with a control law uL ∈ CL can be expressed by

ξ(TQ,G,ωL,L,FL,uL) = ξL + vlift(FL) + vlift(uL). (5.1)

Then, for the regular orbit reducible RCL system we can also introduce the regular orbit

reducible controlled Lagrangian equivalence (RoCL-equivalence) as follows.

Definition 5.2 (RoCL-equivalence) Suppose that we have two regular orbit reducible RCL

systems (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, we say they are RoCL-equivalent, or simply, (TQ1,

G1, ω
L
1 , L1, F

L
1 , CL1 )

RoCL
∼ (TQ2, G2, ω

L
2 , L2, F

L
2 , CL2 ), if there exists a diffeomorphism ϕ : Q1 →

Q2 such that the following regular orbit reducible controlled Lagrangian matching conditions

hold :

RoCL-1 For Oµi , µi ∈ g
∗
i , the regular reducible orbits of RCL systems (TQi, Gi, ω

L
i , Li,

FL
i , CLi ), i = 1, 2, the map (Tϕ)Oµ = j−1

Oµ2

·Tϕ ·jOµ1
: (JL)

−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

) is (G1, G2)-

equivariant, and CL2 ∩ (JL)
−1
2 (Oµ2

) = (Tϕ)Oµ(C
L
1 ∩ (JL)

−1
1 (Oµ1

)), where µ = (µ1, µ2), and

denote by j−1
Oµ2

(S) the pre-image of a subset S ⊂ TQ2 under the map jOµ2
: (JL)

−1
2 (Oµ2

) →

TQ2.

RoCL-2 For each control law uL
1 : TQ1 → CL1 , there exists the control law uL

2 : TQ2 → CL2 ,

such that the two closed-loop dynamical systems produce the same dynamical vector fields, that

is, ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

It is worth noting that for the regular orbit reducible RCL system, the induced equivalent

map (Tϕ)Oµ also preserves the equivariance of the G-action on their regular orbits. If a feedback

control law is uL : TQ → CL is chosen, and uL ∈ CL ∩ J−1
L (Oµ), and CL ∩ J−1

L (Oµ) 6= ∅,

then the Ro-reduced control law uL
Oµ

: (TQ)Oµ → C
L
Oµ

= τOµ(C
L ∩ J−1

L (Oµ)), and uL
Oµ
· τOµ =

τOµ ·u
L ·jOµ . The Ro-reduced RCL system ((TQ)Oµ , ω

L
Oµ

, lOµ, f
L
Oµ

, uL
Oµ

) is a closed-loop regular
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dynamical system with the Ro-reduced control law uL
Oµ

. Assume that its dynamical vector field

ξ((TQ)Oµ ,ωL
Oµ

,lOµ ,fL
Oµ

,uL
Oµ

) can be expressed by

ξ((TQ)Oµ ,ωL
Oµ

,lOµ ,fL
Oµ

,uL
Oµ

) = ξlOµ
+ vlift(fL

Oµ
) + vlift(uL

Oµ
), (5.2)

where ξlOµ
is the Ro-reduced Euler-Lagrange vector field, and vlift(fL

Oµ
) = vlift(fL

Oµ
)ξlOµ

,

vlift(uL
Oµ

) = vlift(uL
Oµ

)ξlOµ
are the changes of ξlOµ

under the actions of the Ro-reduced external

force fL
Oµ

and the Ro-reduced control law uL
Oµ

, and the dynamical vector fields of the RCL

system and the Ro-reduced RCL system satisfy the condition

ξ((TQ)Oµ ,ωL
Oµ

,lOµ ,fL
Oµ

,uL
Oµ

) · τOµ = TτOµ · ξ(TQ,G,ωL,L,FL,uL) · jOµ (5.3)

(see [12, 20]). Then we can obtain the following regular orbit reduction theorem for the RCL

system, which explains the relationship between the RoCL-equivalence of the regular orbit

reducible RCL system with symmetry and the RCL-equivalence of the associated Ro-reduced

RCL system.

Theorem 5.1 If two regular orbit reducible RCL systems (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2,

are RoCL-equivalent if and only if the associated Ro-reduced RCL systems ((TQi)Oµi
, ωL

iOµi
,

liOµi
, fL

iOµi
, CLiOµi

), i = 1, 2, are RCL-equivalent.

Proof If (TQ1, G1, ω
L
1 , L1, F

L
1 , CL1 )

RoCL
∼ (TQ2, G2, ω

L
2 , L2, F

L
2 , CL2 ), then there exists a

diffeomorphism ϕ : Q1 → Q2, such that for Oµi , µi ∈ g
∗
i , the regular reducible orbits, the

map (Tϕ)Oµ = j−1
Oµ2

·Tϕ · jOµ1
: (JL)

−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

) is (G1, G2)-equivariant, and CL2 ∩

(JL)
−1
2 (Oµ2

) = (Tϕ)Oµ(C
L
1 ∩(JL)

−1
1 (Oµ1

)), and RoCL-2 holds. From the following commutative

Diagram-6:

TQ1

jOµ1←−−−− (JL)
−1
1 (Oµ1

)
τOµ1−−−−→ (TQ1)Oµ1

Tϕ

y (Tϕ)Oµ

y (Tϕ)Oµ/G

y

TQ2

jOµ2←−−−− (JL)
−1
2 (Oµ2

)
τOµ2−−−−→ (TQ2)Oµ2

Diagram-6

we can define a map (Tϕ)Oµ/G : (TQ1)Oµ1
→ (TQ2)Oµ2

such that (Tϕ)Oµ/G · τOµ1
= τOµ2

·

(Tϕ)Oµ . Because (Tϕ)Oµ : (JL)
−1
1 (Oµ1

) → (JL)
−1
2 (Oµ2

) is (G1, G2)-equivariant, (Tϕ)Oµ/G is

well-defined. We shall show that CL2Oµ2

= (Tϕ)Oµ/G(C
L
1Oµ1

). In fact, since (TQi, Gi, ω
L
i , Li,

FL
i , CLi ), i = 1, 2, are regular orbit reducible RCL systems, we have that CLi ∩ (JL)

−1
i (Oµi) 6= ∅

and CLiOµi
= τOµi

(CLi ∩ (JL)
−1
i (Oµi)), i = 1, 2. From CL2 ∩ (JL)

−1
2 (Oµ2

) = (Tϕ)Oµ(C
L
1 ∩

(JL)
−1
1 (Oµ1

)), we have that

CL2Oµ2

= τOµ2
(CL2 ∩ (JL)

−1
2 (Oµ2

)) = τOµ2
· (Tϕ)Oµ(C

L
1 ∩ (JL)

−1
1 (Oµ1

))

= (Tϕ)Oµ/G · τOµ1
(CL1 ∩ (JL)

−1
1 (Oµ1

)) = (Tϕ)Oµ/G(C
L
1Oµ1

).

Thus, the condition RCL-1 holds. On the other hand, for the Ro-reduced control law uL
1Oµ1

:

(TQ1)Oµ1
→ CL1Oµ1

, we have the control law uL
1 : TQ1 → CL1 such that uL

1Oµ1

· τOµ1
= τOµ1

·uL
1 ·

jOµ1
. From the condition RoCL-2 we know that there exists the control law uL

2 : TQ2 → CL2 ,

such that ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
). However, for the control
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law uL
2 : TQ2 → C

L
2 , we have the Ro-reduced control law uL

2Oµ2

: (TQ2)Oµ2
→ CL2Oµ2

such that

uL
2Oµ2

· τOµ2
= τOµ2

· uL
2 · jOµ2

. Note that for i = 1, 2, from (5.3), we have that

ξ((TQi)Oµi
,ωL

iOµi
,liOµi

,fL
iOµi

,uL
iOµi

) · τOµi
= TτOµi

· ξ(TQi,Gi,ωL
i ,Li,FL

i ,uL
i ) · jOµi

, (5.4)

and from the commutative Diagram-6, (Tϕ)Oµ/G · τOµ1
= τOµ2

· (Tϕ)Oµ and jOµ2
· (Tϕ)Oµ =

(Tϕ) · jOµ1
, we have that

ξ((TQ2)Oµ2
,ωL

2Oµ2

,l2Oµ2
,fL

2Oµ2

,uL
2Oµ2

) · (Tϕ)Oµ/G · τOµ1

= ξ((TQ2)Oµ2
,ωL

2Oµ2

,l2Oµ2
,fL

2Oµ2

,uL
2Oµ2

) · τOµ2
· (Tϕ)Oµ

= TτOµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · jOµ2

· (Tϕ)Oµ

= TτOµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · (Tϕ) · jOµ1

= TτOµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T (τOµ2
· (Tϕ)Oµ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T ((Tϕ)Oµ/G · τOµ1
) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T ((Tϕ)Oµ/G) · TτOµ1
· ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T ((Tϕ)Oµ/G) · ξ((TQ1)Oµ1
,ωL

1Oµ1

,l1Oµ1
,fL

1Oµ1

,uL
1Oµ1

) · τOµ1
.

Since τOµ1
: (JL)

−1
1 (Oµ1

)→ (TQ1)Oµ1
is surjective, we have that

ξ((TQ2)Oµ2
,ωL

2Oµ2

,l2Oµ2
,fL

2Oµ2

,uL
2Oµ2

) · (Tϕ)Oµ/G

= T ((Tϕ)Oµ/G) · ξ((TQ1)Oµ1
,ωL

1Oµ1

,l1Oµ1
,fL

1Oµ1

,uL
1Oµ1

), (5.5)

that is, the condition RCL-2 holds. So, the Ro-reduced RCL systems ((TQi)Oµi
, ωL

iOµi
, liOµi

,

fL
iOµi

, CLiOµi
), i = 1, 2, are RCL-equivalent.

Conversely, assume that the Ro-reduced RCL systems ((TQi)Oµi
, ωL

iOµi
, liOµi

, fL
iOµi

, CLiOµi
),

i = 1, 2, are RCL-equivalent; then there exists a diffeomorphism (Tϕ)Oµ/G : (TQ1)Oµ1
→

(TQ2)Oµ2
, such that CL2Oµ2

= (Tϕ)Oµ/G(C
L
1Oµ1

), ∀Oµi , µi ∈ g
∗
i , i = 1, 2 and for the Ro-

reduced control law uL
1Oµ1

: (TQ1)Oµ1
→ CL1Oµ1

, there exists the Ro-reduced control law uL
2Oµ2

:

(TQ2)Oµ2
→ CL2Oµ2

, such that (5.5) holds. Then from commutative Diagram-6, we can define

a map (Tϕ)Oµ : (JL)
−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

) such that τOµ2
· (Tϕ)Oµ = (Tϕ)Oµ/G · τOµ1

, and

the map Tϕ : TQ1 → TQ2 such that Tϕ · jOµ1
= jOµ2

· (Tϕ)Oµ , as well as a diffeomorphism

ϕ : Q1 → Q2, whose tangent lift is just Tϕ : TQ1 → TQ2. Moreover, for the above definition

of (Tϕ)Oµ , we know that (Tϕ)Oµ is (G1, G2)-equivariant. In fact, for any zi ∈ (JL)
−1
i (Oµi),

gi ∈ Gi, i = 1, 2 such that z2 = (Tϕ)Oµ(z1), [z2] = (Tϕ)Oµ/G[z1], we have that

(Tϕ)Oµ(Φ1g1(z1)) = τ−1
Oµ2

· τOµ2
· (Tϕ)Oµ(Φ1g1(z1)) = τ−1

Oµ2

· τOµ2
· (Tϕ)Oµ(g1z1)

= τ−1
Oµ2

· (Tϕ)Oµ/G · τOµ1
(g1z1) = τ−1

Oµ2

· (Tϕ)Oµ/G[z1] = τ−1
Oµ2

· [z2]

= τ−1
Oµ2

· τOµ2
(g2z2) = Φ2g2(z2) = Φ2g2 · (Tϕ)Oµ(z1).

Here we denote by τ−1
Oµ1

(S) the pre-image of a subset S ⊂ (TQ1)Oµ1
under the map τOµ1

:

(JL)
−1
1 (Oµ1

)→ (TQ1)Oµ1
, and for any z1 ∈ (JL)

−1
1 (Oµ1

), τ−1
Oµ1

· τOµ1
(z1) = z1. So, we obtain

that (Tϕ)Oµ · Φ1g1 = Φ2g2 · (Tϕ)Oµ . Moreover, we have that

CL2 ∩ (JL)
−1
2 (Oµ2

) = τ−1
Oµ2

· τOµ2
(CL2 ∩ (JL)

−1
2 (Oµ2

))
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= τ−1
Oµ2

· CL2Oµ2

= τ−1
Oµ2

· (Tϕ)Oµ/G(C
L
1Oµ1

)

= τ−1
Oµ2

· (Tϕ)Oµ/G · τOµ1
(CL1 ∩ (JL)

−1
1 (Oµ1

))

= τ−1
Oµ2

· τOµ2
· (Tϕ)Oµ(C

L
1 ∩ (JL)

−1
1 (Oµ1

))

= (Tϕ)Oµ(C
L
1 ∩ (JL)

−1
1 (Oµ1

)).

Thus, the condition RoCL-1 holds. In the following we shall prove that the condition RoCL-2

holds. For the above Ro-reduced control laws uL
iOµi

: (TQi)Oµi
→ CLiOµi

, i = 1, 2, there exist

control laws uL
i : TQi → C

L
i , such that uL

iOµi
· τOµi

= τOµi
· uL

i · jOµi
, i = 1, 2. we shall prove

that

ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

In fact, from (5.4) we have that

T ((Tϕ)Oµ/G) · ξ((TQ1)Oµ1
,ωL

1Oµ1

,l1Oµ1
,fL

1Oµ1

,uL
1Oµ1

) · τOµ1

= T ((Tϕ)Oµ/G) · TτOµ1
· ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T ((Tϕ)Oµ/G · τOµ1
) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= T (τOµ2
· (Tϕ)Oµ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

= TτOµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

.

On the other hand,

ξ((TQ2)Oµ2
,ωL

2Oµ2

,l2Oµ2
,fL

2Oµ2

,uL
2Oµ2

) · (Tϕ)Oµ/G · τOµ1

= ξ((TQ2)Oµ2
,ωL

2Oµ2

,l2Oµ2
,fL

2Oµ2

,uL
2Oµ2

) · τOµ2
· (Tϕ)Oµ

= TτOµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · jOµ2

· (Tϕ)Oµ

= TτOµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · Tϕ · jOµ1

.

From (5.5) we have that

TτOµ2
· ξ(TQ2,G2,ωL

2
,L2,FL

2
,uL

2
) · Tϕ · jOµ1

= TτOµ2
· T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
) · jOµ1

.

Note that the map jOµ1
: (JL)

−1
1 (Oµ1

) → TQ1 is injective, and TτOµ2
: T (JL)

−1
2 (Oµ2

) →

T (TQ2)Oµ2
is surjective, hence we have that

ξ(TQ2,G2,ωL
2
,L2,FL

2
,uL

2
) · Tϕ = T (Tϕ) · ξ(TQ1,G1,ωL

1
,L1,FL

1
,uL

1
).

It follows that the theorem holds.

It is worth noting that, when the external force and control of a regular orbit reducible RCL

system (TQ,G, ωL, L, FL, CL) are both zero, that is, FL = 0 and CL = ∅, then the RCL system

is just a regular orbit reducible Lagrangian system (TQ,G, ωL, L). Then the following theorem

explains the relationship between the equivalence of the regular orbit reducible Lagrangian

systems with symmetries and the equivalence of the associated Ro-reduced Lagrangian systems.

It is worthy of noting that for the regular orbit reducible Lagrangian system, the induced

equivalent map (Tϕ)Oµ not only keeps the equivariance of G-action on their regular orbits, but

also keeps the restriction of the (+)-symplectic structure on the regular orbit to J−1
L (Oµ).
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Theorem 5.2 If two regular orbit reducible Lagrangian systems (TQi, Gi, ω
L
i , Li), i = 1, 2,

are equivalent, then their associated Ro-reduced Lagrangian systems ((TQ)Oµi
, ωL

iOµi
, liOµi

), i =

1, 2, must be equivalent. Conversely, if the Ro-reduced Lagrangian systems ((TQ)Oµi
, ωL

iOµi
,

liOµi
), i = 1, 2, are equivalent, and the induced map (Tϕ)Oµ : (JL)

−1
1 (Oµ1

) → (JL)
−1
2 (Oµ2

),

such that (JL)
∗
1Oµ1

·ωL+
1Oµ1

= (Tϕ)∗
Oµ
·(JL)

∗
2Oµ2

·ωL+
2Oµ2

, then the regular orbit reducible Lagrangian

systems (TQi, Gi, ω
L
i , Li), i = 1, 2, are equivalent.

Proof If two regular orbit reducible Lagrangian systems (TQi, Gi, ω
L
i , Li), i = 1, 2, are

equivalent, then there exists a diffeomorphism ϕ : Q1 → Q2 such that Tϕ : TQ1 → TQ2 is sym-

plectic with respect to their Lagrangian symplectic forms ωL
i , i = 1, 2, and for Oµi , µi ∈ g

∗
i , i =

1, 2, (Tϕ)Oµ = j−1
Oµ2

·Tϕ ·jOµ1
: (JL)

−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

) is (G1, G2)-equivariant. From the

above commutative Diagram-6, we can define a map (Tϕ)Oµ/G : (TQ1)Oµ1
→ (TQ2)Oµ2

such

that (Tϕ)Oµ/G ·τOµ1
= τOµ2

·(Tϕ)Oµ . Since (Tϕ)Oµ : (JL)
−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

) is (G1, G2)-

equivariant, (Tϕ)Oµ/G is well-defined. In order to prove that the associated Ro-reduced La-

grangian systems ((TQ)Oµi
, ωL

iOµi
, liOµi

), i = 1, 2, are equivalent, in the following we shall prove

that (Tϕ)Oµ/G is symplectic with respect to their Ro-reduced Lagrangian symplectic forms

ωL
iOi

, i = 1, 2, that is, (Tϕ)∗
Oµ/G

· ωL
2Oµ2

= ωL
1Oµ1

. In fact, since Tϕ : TQ1 → TQ2 is symplec-

tic with respect to their Lagrangian symplectic forms, the map (Tϕ)∗ : Ω2(TQ2) → Ω2(TQ1)

satisfies (Tϕ)∗ · ωL
2 = ωL

1 . From (2.4), we have that j∗
Oµi
· ωL

i = τ∗
Oµi
· ωL

iOµi
+ (JL)

∗
iOµi
· ωL+

iOµi
,

i = 1, 2, and (JL)
∗
1Oµ1

·ωL+
1Oµ1

= ((Tϕ)Oµ)
∗ · (JL)

∗
2Oµ2

·ωL+
2Oµ2

. From the following commutative

Diagram-7:

Ω2(TQ2)
j∗
Oµ2−−−−→ Ω2((JL)

−1
2 (Oµ2

))
τ∗

Oµ2←−−−− Ω2((TQ2)Oµ2
)

(Tϕ)∗
y (Tϕ)∗

Oµ

y (Tϕ)∗
Oµ/G

y

Ω2(TQ1)
j∗
Oµ1−−−−→ Ω2((JL)

−1
1 (Oµ1

))
τ∗

Oµ1←−−−− Ω2((TQ1)Oµ1
)

Diagram-7

we have that

τ∗Oµ1

· (Tϕ)∗
Oµ/G

ωL
2Oµ2

= ((Tϕ)Oµ/G · τOµ1
)∗ · ωL

2Oµ2

= (τOµ2
· (Tϕ)Oµ)

∗ · ωL
2Oµ2

= ((Tϕ)Oµ)
∗ · τ∗Oµ2

· ωL
2Oµ2

= (j−1
Oµ2

· Tϕ · jOµ1
)∗ · j∗Oµ2

· ωL
2 − (Tϕ)∗Oµ

· (JL)
∗

2Oµ2

· ωL+
2Oµ2

= j∗Oµ1

· (Tϕ)∗ · ωL
2 − (JL)

∗
1Oµ1

· ωL+
1Oµ1

= j∗Oµ1

· ωL
1 − (JL)

∗

1Oµ1

· ωL+
1Oµ1

= τ∗Oµ1

· ωL
1Oµ1

.

Since τOµ1
is surjective, we have that ((Tϕ)Oµ/G)

∗ · ωL
2Oµ2

= ωL
1Oµ1

.

Conversely, assume that the Ro-reduced Lagrangian systems ((TQi)Oµi
, ωL

iOµi
, liOµi

), i =

1, 2, are equivalent; then there exists a diffeomorphism (Tϕ)Oµ/G : (TQ1)Oµ1
→ (TQ2)Oµ2

,

which is symplectic with respect to the Ro-reduced Lagrangian symplectic forms ωL
iOi

, i = 1, 2,

that is, (Tϕ)∗
Oµ/G

·ωL
2Oµ2

= ωL
1Oµ1

. Thus, from the above commutative Diagram-6, we can define

a map (Tϕ)Oµ : (JL)
−1
1 (Oµ1

)→ (JL)
−1
2 (Oµ2

), such that τOµ2
· (Tϕ)Oµ = (Tϕ)Oµ/G · τOµ1

, and
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map Tϕ : TQ1 → TQ2, such that jOµ2
· (Tϕ)Oµ = Tϕ · jOµ1

, as well as a diffeomorphism

ϕ : Q1 → Q2, whose tangent map is just Tϕ : TQ1 → TQ2. From definition of (Tϕ)Oµ , we

know that (Tϕ)Oµ is (G1, G2)-equivariant.

Now we shall show that Tϕ is symplectic with respect to the Lagrangian symplectic forms

ωL
i , i = 1, 2, that is, ωL

1 = (Tϕ)∗ ·ωL
2 . In fact, since (Tϕ)Oµ/G : (TQ1)Oµ1

→ (TQ2)Oµ2
is sym-

plectic with respect to their Ro-reduced Lagrangian symplectic forms, the map ((Tϕ)Oµ/G)
∗ :

Ω2((TQ2)Oµ2
) → Ω2((TQ1)Oµ1

) satisfies ((Tϕ)Oµ/G)
∗ · ωL

2Oµ2

= ωL
1Oµ1

. From (2.4) we have

that j∗
Oµi
· ωL

i = τ∗
Oµi
· ωL

iOµi
+ (JL)

∗
iOµi
· ωL+

iOµi
, i = 1, 2. From the commutative Diagram-7, we

have that

j∗Oµ1

· ωL
1 = τ∗Oµ1

· ωL
1Oµ1

+ (JL)
∗

1Oµ1

· ωL+
1Oµ1

= τ∗1Oµ1

· ((Tϕ)Oµ/G)
∗ · ωL

2Oµ2

+ (JL)
∗

1Oµ1

· ωL+
1Oµ1

= ((Tϕ)Oµ/G · τOµ1
)∗ · ωL

2Oµ2

+ (JL)
∗

1Oµ1

· ωL+
1Oµ1

= (τOµ2
· (Tϕ)Oµ)

∗ · ωL
2Oµ2

+ (JL)
∗

1Oµ1

ωL+
1Oµ1

= (j−1
Oµ2

· Tϕ · jOµ1
)∗ · τ∗Oµ2

· ωL
2Oµ2

+ (JL)
∗
1Oµ1

· ωL+
1Oµ1

= j∗Oµ1

· (Tϕ)∗ · (j−1
Oµ2

)∗ · [j∗Oµ2

· ωL
2 − (JL)

∗

2Oµ2

· ωL+
2Oµ2

] + (JL)
∗

1Oµ1

· ωL+
1Oµ1

= j∗Oµ1

· (Tϕ)∗ · ωL
2 − ((Tϕ)Oµ)

∗ · (JL)
∗

2Oµ2

· ωL+
2Oµ2

+ (JL)
∗

1Oµ1

· ωL+
1Oµ1

.

Note that jOµ1
is injective, and by our hypothesis,

(JL)
∗

1Oµ1

· ωL+
1Oµ1

= ((Tϕ)Oµ)
∗ · (JL)

∗

2Oµ2

· ωL+
2Oµ2

,

we have that ωL
1 = (Tϕ)∗ωL

2 . Thus, the regular orbit reducible Lagrangian systems (TQi, Gi,

ωL
i , Li), i = 1, 2, are equivalent.

Thus, the regular orbit reduction Theorem 5.1 for the RCL systems can be regarded as an

extension of the regular orbit reduction Theorem 5.2 for the regular Lagrangian systems under

regular controlled Lagrangian equivalence conditions.

6 RCL System on a Generalization of Lie Group

As an application of regular point reduction of the RCL system with symmetry and a

momentum map, in this section, we study the regular point reducible RCL system on the

generalization of a Lie group, and give its Rp-reduced RCL system, which is an RCL system

on the generalization of a coadjoint orbit of the Lie group.

Let G be a Lie group with Lie algebra g and TG its tangent bundle and T ∗G its cotangent

bundle with the canonical symplectic form ω. Assume that L : TG → R is a hyperregular

Lagrangian, and that the Legendre transformation FL : TG → T ∗G is a diffeomorphism.

By using the Legendre transformation we can induce a Lagrangian symplectic form ωL on

the tangent bundle TG, that is, ωL := (FL)∗ω. Define an action A : TG → R given by

A(v) := FL(v)v, ∀v ∈ TgG, g ∈ G and an energy EL : TG → R given by EL := A − L. If

there exists an Euler-Lagrange vector field ξL on TG, such that the Euler-Lagrange equation

iξLω
L = dEL holds, then the triple (TG, ωL, L) is a regular Lagrangian system. An RCL system

on G is a 5-tuple (TG, ωL, L, FL, CL), where (TG, ωL, L) is a regular Lagrangian system, and
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the fiber-preserving map FL : TG→ TG is an (external) force map, and the fiber submanifold

CL of TG is a control subset. In the following we shall give an Rp-reduced RCL system on a

coadjoint orbit of the Lie group G.

We know that the left and right translations on the Lie group G induce the left and right

actions of G on itself. If Ig : G → G; Ig(h) = ghg−1 = Lg · Rg−1(h), for g, h ∈ G, is the inner

automorphism on G, then the adjoint representation of a Lie group G is defined by Adg =

TeIg = Tg−1Lg · TeRg−1 : g→ g, and the coadjoint representation is given by Ad∗

g−1 : g∗ → g
∗;

〈Ad∗g−1(µ), ξ〉 = 〈µ,Adg−1(ξ)〉, where g∗ is the dual of g, and µ ∈ g
∗, and ξ ∈ g and 〈, 〉 denotes

the pairing on g
∗ and g. We now identify locally TG and G × g, as well as T ∗G and G × g

∗,

by using the left translation. In fact, the map λ : TG → G × g, λ(vg) := (g, (TeLg) · vg), for

any vg ∈ TgG, which defines a vector bundle isomorphism usually referred to as the local left

trivialization of TG. If the left G-action Lg : G → G is free and proper, then the tangent lift

of the action to its tangent bundle TG, given by ΦT : G× TG→ TG, g · (h,w) := (gh, w), for

any g, h ∈ G, w ∈ g, and the cotangent lift of the action to its cotangent bundle T ∗G, given

by ΦT∗ : G × T ∗G → T ∗G, g · (h, ν) := (gh, ν), for any g, h ∈ G, ν ∈ g
∗, are also the free

and proper actions, and the orbit spaces (TG)/G and (T ∗G)/G are both smooth manifolds and

τ/G : TG→ (TG)/G and π/G : T ∗G→ (T ∗G)/G are both smooth submersions. We note that

(TG)/G is diffeomorphic to (G × g)/G and (T ∗G)/G is diffeomorphic to (G × g
∗)/G, since G

acts trivially on g and g
∗, it follows that (G × g)/G ∼= g and (G × g

∗)/G ∼= g
∗. And hence

(TG)/G is diffeomorphic to g and (T ∗G)/G is diffeomorphic to g
∗.

Assume that the tangent lifted left action ΦT : G×TG→ TG is symplectic with respect to

Lagrangian symplectic form ωL, and that the action admits an Ad∗-equivariant momentum map

JL : TQ→ g∗. For a regular value of JL, µ ∈ g
∗, denote Gµ = {g ∈ G | Ad∗g µ = µ} the isotropy

subgroup of the coadjoint G-action at the point µ ∈ g
∗, the coadjoint orbit Oµ = J−1

L (µ)/Gµ

is a symplectic manifold with the symplectic form ωL
µ uniquely characterized by the relation

τ∗µ · ω
L
µ = j∗µ · ω

L. (6.1)

The map jµ : J−1
L (µ)→ TG is the inclusion and τµ : J−1

L (µ)→ Oµ is the projection. The pair

((Oµ, ω
L
µ ) is called the regular point reduced space of (TG, ωL) at µ.

On the other hand, from [1], we know that g
∗ is a Poisson manifold with respect to the

(±)-Lie-Poisson bracket {·, ·}± defined by

{f, g}±(µ) := ±
〈
µ,

[δf
δµ

,
δg

δµ

]〉
, ∀f, g ∈ C∞(g∗), µ ∈ g

∗, (6.2)

where the element δf
δµ ∈ g is defined by the equality

〈
v, δf

δµ

〉
:= Df(µ) · v for any v ∈ g

∗. Thus,

for the coadjoint orbit Oµ, µ ∈ g
∗, the orbit symplectic structure can be defined by

ω±

Oµ
(ν)(ad∗

ξ(ν), ad
∗

η(ν)) = ±〈ν, [ξ, η]〉, ∀ ξ, η ∈ g, ν ∈ Oµ ⊂ g
∗, (6.3)

which coincide with the restriction of the Lie-Poisson brackets on g
∗ to the coadjoint orbit

Oµ. Consequently, the coadjoint orbit (Oµ, ω
−

Oµ
), µ ∈ g

∗, is symplectically diffeomorphic to an

Rp-reduced space (Oµ, ω
L
µ ) of (TG, ωL) at µ.

In the following we consider the Lagrangian L(g, ξ) : TG ∼= G × g → R, which is usual the

kinetic minus the potential energy of the system, where (g, ξ) ∈ G× g, and ξ ∈ g, regarded as
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the velocity of system. We can introduce the conjugate momentum pi =
∂L
∂ξi , i = 1, · · · , n, n =

dimG, and define the Legendre transformation FL : TG ∼= G× g→ T ∗G ∼= G× g
∗, (gi, ξi)→

(gi, pi). If FL : TG → T ∗G is a diffeomorphism, then the Lagrangian L : TG → R is

hyperregular. Assume that the hyperregular Lagrangian L : TG→ R is G-invariant, and that

the Legendre transformation FL : TG → T ∗G is (ΦT , ΦT∗)-equivariant, and that the fiber-

preserving map FL : TG → TG and the fiber submanifold CL of TG are both left tangent

lifted G-action ΦT invariant. If the Euler-Lagrange vector field ξL satisfies the Euler-Lagrange

equation iξLω
L = dEL, where the energy EL : TG→ R given by EL := A− L, and the action

A : TG→ R given by A(v) := FL(v)v, ∀v ∈ TgG, g ∈ G, and the flow Ft of the Euler-Lagrange

vector field ξL leaves the connected components of J−1
L (µ) invariant and commutes with the

G-action, then it induces a flow fµ
t on Oµ, defined by fµ

t · τµ = τµ · Ft · jµ, and the vector field

ξlµ generated by the flow fµ
t on (Oµ, ω

L
µ ) is the Rp-reduced Euler-Lagrange vector field with

the associated Rp-reduced Lagrangian function lµ : Oµ → R defined by lµ · τµ = L · jµ, and

the Rp-reduced Euler-Lagrange equation iξlµωLµ = dElµ holds, where the Rp-reduced energy

Elµ : Oµ → R given by Elµ := Aµ − lµ, and the Rp-reduced action Aµ : Oµ → R given by

Aµ ·τµ = A ·jµ, and the Euler-Lagrange vector fields ξL and ξlµ are τµ-related. Thus, we obtain

the Rp-reduced Lagrangian system (Oµ, ω
L
µ , lµ) as follows.

Theorem 6.1 Assume that the Lagrangian L : TG→ R is hyperregular, and that the Legen-

dre transformation FL : TG→ T ∗G is (ΦT ,ΦT∗)-equivariant. Then the 6-tuple (TG,G, ωL, L,

FL, CL) is a regular point reducible RCL system on Lie group G, where the Lagrangian L :

TG→ R, the fiber-preserving map FL : TG→ TG and the fiber submanifold CL of TG are all

left tangent lifted G-action ΦT invariant. For a point µ ∈ g
∗, the regular value of the momen-

tum map JL : TG→ g
∗, the Rp-reduced system, that is, the 5-tuple (Oµ, ω

−

Oµ
, lµ, f

L
µ , C

L
µ ), is an

RCL system, where Oµ ⊂ g
∗ is the coadjoint orbit, ω−

Oµ
is orbit symplectic form, lµ · τµ = L · jµ,

FL(J−1
L (µ)) ⊂ J−1

L (µ), fL
µ ·τµ = τµ ·FL ·jµ, CL∩J

−1
L (µ) 6= ∅, CLµ = τµ(CL∩J

−1
L (µ)). Moreover,

two regular point reducible RCL systems (TGi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, are RpCL-equivalent

if and only if the associated Rp-reduced RCL systems (Oiµi , ω
−

Oiµi
, liµi , f

L
iµi

, CLiµi
), i = 1, 2, are

RCL-equivalent.

Moreover, we can study the regular point reduction of an RCL system with symmetry and

a momentum map on the generalization of a Lie group TQ, where the configuration space

Q = G × V , G is a Lie group and V is a k-dimensional vector space. Define the left G-action

Φ : G × Q → Q, Φ(g, (h, θ)) := (gh, θ), for any g, h ∈ G, θ ∈ V , that is, the G-action on

Q is the left translation on the first factor G, and G acts trivially on the second factor V .

Since TQ ∼= TG × TV , and TV ∼= V × V , by using the left trivialization of TG, that is,

TG ∼= G × g, we have that TQ = G × g × V × V . If the left G-action Φ : G × Q → Q

is free and proper, then the tangent lift of the action to its tangent bundle TQ, given by

ΦT : G× TQ→ TQ, ΦT (g, (h, η, θ, κ)) := (gh, η, θ, κ), for any g, h ∈ G, η ∈ g, θ, κ ∈ V , is also

a free and proper action, the orbit space (TQ)/G is a smooth manifold and τ : TQ→ (TQ)/G

is a smooth submersion. Since G acts trivially on g and on V × V , it follows that (TQ)/G is

diffeomorphic to g× V × V .

For µ ∈ g
∗, the coadjoint orbit Oµ ⊂ g

∗ has the orbit symplectic forms ω±

Oµ
. Let ωV be the

canonical symplectic form on T ∗V ∼= V × V ∗ given by

ωV ((θ1, λ1), (θ2, λ2)) = 〈λ2, θ1〉 − 〈λ1, θ2〉,
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where (θi, λi) ∈ V × V ∗, i = 1, 2, 〈·, ·〉 is the natural pairing on V ∗ and V . Since V and V ∗ is

isomorphic, there is a map σ : V → V ∗ such that λi = σ(δi), for δi ∈ V, i = 1, 2, we can induce

that a symplectic form ωL
V on TV ∼= V × V is given by

ωL
V ((θ1, δ1), (θ2, δ2)) = ωV ((θ1, λ1), (θ2, λ2)) = 〈λ2, θ1〉 − 〈λ1, θ2〉.

Thus, we can induce a symplectic form ω̃±L
Oµ×V×V = τ∗

Oµ
ω±

Oµ
+ τ∗V ω

L
V on the smooth manifold

Oµ × V × V , where the maps τOµ : Oµ × V × V → Oµ and τV : Oµ × V × V → V × V are

canonical projections.

On the other hand, the cotangent bundle T ∗Q has a canonical symplectic form ωQ, and the

tangent bundle TQ has a Lagrangian symplectic form ωL
Q = (FL)∗ωQ, from TQ ∼= TG×TV we

have that ωL
Q = τ∗1ω

L
0 +τ∗2ω

L
V on TQ, where ωL

0 is the Lagrangian symplectic form on TG and the

maps τ1 : Q = G×V → G and τ2 : Q = G×V → V are canonical projections. Assume that the

tangent lift of the left G-action ΦT : G×TQ→ TQ is symplectic with respect to ωL
Q, and admits

an associated Ad∗-equivariant momentum map JL
Q : TQ→ g

∗ such that JL
Q·τ

∗
1 = JL

G, where J
L
G :

TG→ g
∗ is a momentum map of left G-action on TG and we assume that it exists, if µ ∈ g

∗ is a

regular value of JL
G, then µ ∈ g

∗ is also a regular value of JL
Q and (JL

Q)
−1(µ) ∼= (JL

G)
−1(µ)×V ×V .

Denote Gµ = {g ∈ G | Ad∗

g µ = µ} the isotropy subgroup of coadjoint G-action at the point

µ ∈ g
∗. It follows that Gµ acts also freely and properly on (JL

Q)
−1(µ), the regular point

reduced space (TQ)µ = (JL
Q)

−1(µ)/Gµ
∼= (TG)µ × V × V of (TQ, ωL

Q) at µ, is a symplectic

manifold with the reduced Lagrangian symplectic form ωL
µ uniquely characterized by the relation

τ∗µω
L
µ = j∗µω

L
Q = j∗µτ

∗
1ω

L
0 + j∗µτ

∗
2ω

L
V , where the map jµ : (JL

Q)
−1(µ) → TQ is the inclusion and

τµ : (JL
Q)

−1(µ)→ (TQ)µ is the projection. Since ((TG)µ, ω
L
µ ) is symplectically diffeomorphic to

(Oµ, ω
−

Oµ
), we have that ((TQ)µ, ω

L
µ ) is symplectically diffeomorphic to (Oµ×V ×V, ω̃

−L
Oµ×V×V ).

Now we identify TG and G× g, by using the left translation, and TV ∼= V ×V , then TQ ∼=

G×g×V ×V . Consequently, we consider the Lagrangian L(g, ξ, θ, θ̇) : TQ ∼= G×g×V ×V → R,

which is usually the total kinetic minus potential energy of the system, where (g, ξ) ∈ G × g,

and θ ∈ V , ξi and θ̇j = dθj

dt (i = 1, · · · , n, j = 1, · · · , k, n = dimG, k = dimV ), regarded as

the velocities of the system. We can introduce the conjugate momentum pi =
∂L
∂ξi , lj = ∂L

∂θ̇j
,

i = 1, · · · , n, j = 1, · · · , k, and define the Legendre transformation FL : TQ ∼= G×g×V ×V →

T ∗Q ∼= G×g
∗×V ×V ∗, (gi, ξi, θj , θ̇j)→ (gi, pi, θ

j , lj). If FL : TQ→ T ∗Q is a diffeomorphism,

then the Lagrangian L : TQ → R is hyperregular. We can define the Lagrangian symplectic

form on TQ given by ωL
Q := (FL)∗ωQ, and the momentum map JL

Q : TQ → g
∗ given by

JL
Q = JQ · FL. If the Legendre transformation FL : TQ → T ∗Q is (ΦT , ΦT∗)-equivariant,

from Theorem 2.1 we know that JL
Q is Ad∗-equivariant, and if µ ∈ g

∗ is a regular value of the

momentum map JQ, then µ is also a regular value of the momentum map JL
Q. Moreover, we

consider the regular point reduced space ((TQ)µ = (JL
Q)

−1(µ)/Gµ, ω
L
µ ) of (TQ, ωL) at µ, from

Theorems 2.2 and 6.1, we know that ((TQ)µ, ω
L
µ ) is symplectically diffeomorphic to the regular

point reduced space ((T ∗Q)µ, ωµ) of (T ∗Q,ωQ) at µ, and hence symplectically diffeomorphic

to the orbit space (Oµ × V × V, ω̃−L
Oµ×V ×V ), µ ∈ g

∗.

Assume that the hyperregular Lagrangian L : TQ→ R is G-invariant, and that the Euler-

Lagrange vector field ξL satisfies the Euler-Lagrange equation iξLω
L = dEL, where the energy

EL : TQ → R is given by EL := A − L, and the action A : TQ → R is given by A(v) :=

FL(v)v, ∀v ∈ TqQ, q ∈ Q. If the flow Ft of the Euler-Lagrange vector field ξL leaves the

connected components of (JL
Q)

−1(µ) invariant and commutes with the G-action, then it induces
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a flow fµ
t on (TQ)µ, defined by fµ

t · τµ = τµ · Ft · jµ, and the vector field ξlµ generated by

the flow fµ
t on ((TQ)µ, ω

L
µ ) is the Rp-reduced Euler-Lagrange vector field with the associated

Rp-reduced Lagrangian function lµ : (TQ)µ → R defined by lµ · τµ = L · jµ, and the Rp-reduced

Euler-Lagrange equation iξlµωLµ = dElµ holds, where the Rp-reduced energy Elµ : (TQ)µ → R

given by Elµ := Aµ− lµ, and the Rp-reduced action Aµ : (TQ)µ → R, given by Aµ · τµ = A · jµ,

and the Euler-Lagrange vector fields ξL and ξlµ are τµ-related. Thus, we obtain the Rp-reduced

Lagrangian system ((TQ)µ, ω
L
µ , lµ). Moreover, if the hyperregular Lagrangian L : TQ→ R, the

fiber-preserving map FL : TQ → TQ and the fiber submanifold CL of TQ are all left tangent

lifted G-action ΦT invariant, then we have the following theorem.

Theorem 6.2 Assume that the Lagrangian L : TQ→ R is hyperregular, and that the Legen-

dre transformation FL : TQ→ T ∗Q is (ΦT ,ΦT∗)-equivariant. Then the 6-tuple (TQ,G, ωL, L,

FL, CL) is a regular point reducible RCL system, where Q = G× V , and G is a Lie group and

V is a k-dimensional vector space, and the Lagrangian L : TQ → R, the fiber-preserving

map FL : TQ → TQ and the fiber submanifold CL of TQ are all left tangent lifted G-

action ΦT invariant. For a point µ ∈ g
∗, the regular value of the momentum map JL

Q :

TQ → g
∗, the Rp-reduced system, that is, the 5-tuple (Oµ × V × V, ω̃−L

Oµ×V×V , lµ, f
L
µ , C

L
µ ),

is an RCL system, where Oµ ⊂ g
∗ is the coadjoint orbit, ω̃−L

Oµ×V×V is orbit symplectic for-

m on Oµ × V × V , lµ · τµ = L · jµ, FL((JL
Q)

−1(µ)) ⊂ (JL
Q)

−1(µ), fL
µ · τµ = τµ · FL · jµ,

CL∩ (JL
Q)

−1(µ) 6= ∅, CLµ = τµ(C
L∩ (JL

Q)
−1(µ)). Moreover, two regular point reducible RCL sys-

tems (TQi, Gi, ω
L
i , Li, F

L
i , CLi ), i = 1, 2, are RpCL-equivalent if and only if the associated Rp-

reduced RCL systems (Oiµi × Vi × Vi, ω̃
−L
Oiµi

×Vi×Vi
, liµi , f

L
iµi

, CLiµi
), i = 1, 2, are RCL-equivalent.

7 Conclusions

The theory of controlled mechanical system is a very important subject, and its research

gathers together some separate areas of research; such as mechanics, differential geometry and

nonlinear control theory, etc., and the emphasis of this research on geometry is motivated by

the aim of understanding the structure of equations of motion of the system to aid both analysis

and design. Following the theoretical development of geometric mechanics, a lot of important

problems about this subject were being explored and studied (see [12, 18–27]). In particular, it

is worth noting that the research idea and work in [12] are very important, the authors set up

the regular reduction theory for the standing regular controlled Hamiltonian systems defined on

a symplectic fiber bundle, from the viewpoint of completeness of Marsden-Weinstein reduction.

In this paper, following the ideas in [12], we define an RCL system which is a standing

regular Lagrangian system in a symplectic fiber bundle, by using the vertical lift map of the

external force and the control, and describing the dynamical vector fields of the RCL system as

the synthesis of Euler-Lagrange vector field and its changes under the actions of the external

force and the control. Moreover, we can describe the RCL-equivalence, the RpCL-equivalence,

and the RoCL-equivalence, and prove the regular point and regular orbit reduction theorems

for the RCL system and the regular Lagrangian system with symmetry and a momentum map.

Thus, we set up the regular reduction theory for the RCL system defined on a symplectic fiber

bundle, by carefully analyzing the geometrical and topological structures of the phase space and

the reduced phase space of the corresponding regular Lagrangian system. The reduction ex-

tends the symmetric reduction theory for a regular Lagrangian system under regular controlled
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Lagrangian equivalence conditions.

We know that the different geometric structures determine the different controlled mechan-

ical systems. It is a natural idea to develop a variety of reduction theory and applications for

RCH systems and RCL systems, in particular, in celestial mechanics, hydrodynamics and plas-

ma physics. In addition, it is also an important topic for us to explore and reveal the deeply

internal relationships between the geometrical structures of phase spaces and the dynamical

vector fields of the controlled mechanical systems. However, it is an important task for us to

correct and develop well the research work of Professor Jerrold E. Marsden, such that we never

feel sorry for his great cause.
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