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Abstract In this paper, the author first defines a regular controlled Lagrangian (R-
CL for short) system on a symplectic fiber bundle, establishing a good expression of the
dynamical vector field of an RCL system. This dynamical vector field synthesizes the
Euler-Lagrange vector field and its changes under the actions of the external force and the
control. Moreover, the author describes the RCL-equivalence, the RpCL-equivalence, and
the RoCL-equivalence, proving regular point and regular orbit reduction theorems for the
RCL system and the regular Lagrangian system with symmetry and a momentum map.
Finally, as an application the author considers the regular point reducible RCL systems
on a generalization of Lie group.
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1 Introduction

Following the developments of science and technology, researchers paid close attention to
the study of Hamiltonian systems with controls. In [12], Marsden et al. set up a kind of
regular reduction theory for a regular controlled Hamiltonian (RCH for short) system defined
on a symplectic fiber bundle with symmetry and a momentum map, from the viewpoint of
the completeness of the Marsden-Weinstein reduction, and by using the careful analysis of the
geometrical and the topological structures of phase space and the reduced phase spaces of the
system. The reduction is an extension of symmetric reduction theory for a Hamiltonian system
with a momentum map under the regular controlled Hamiltonian equivalence conditions. These
researches reveal internal relationships of geometrical structures of phase spaces, the dynamical
vector fields and the controls of the RCH system and its reduced systems.

In this paper, we first define an RCL system on a symplectic fiber bundle, by using Legendre
transformation and Euler-Lagrange vector field, and following the ideas in [12]. The RCL system
is a regular Lagrangian system with the external force and the control. In general, the RCL
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system under the action of the external force and the control is not a regular Lagrangian system,
however, it is a dynamical system closely related to a regular Lagrangian system, and it can
be explored and studied by extending the methods for the external force and the control in the
study of the regular Lagrangian systems. In consequence, we can set up the regular reduction
theory for an RCL system with symmetry and a momentum map, by analyzing carefully the
geometrical and the topological structures of the phase space and the reduced phase spaces of
the corresponding regular Lagrangian system.

A brief outline of this paper is as follows. In Section 2, we review some relevant definitions
and basic facts about the regular Lagrangian system and its regular point and regular orbit
reductions; we also analyse the geometrical structures of phase space and the reduced phase
spaces of a regular Lagrangian system, which will be used in subsequent sections. An RCL
system is defined by using a (Lagrangian) symplectic form on a symplectic fiber bundle and
on the tangent bundle of a configuration manifold, respectively, and a good expression of the
dynamical vector field for the RCL system is given, and the RCL-equivalence is introduced in
Section 3. From Section 4 we begin to discuss the RCL systems with symmetries and the mo-
mentum maps by combining with regular reduction theory of a regular Lagrangian system. The
regular point and regular orbit reducible RCL systems are considered, respectively, in Section 4
and Section 5, and we prove the regular point and regular orbit reduction theorems for the RCL
systems, which explain the relationships between the RpCL-equivalence, the RoCL-equivalence
for the reducible RCL systems with symmetries and the RCL-equivalence for the associated
reduced RCL systems. We also study the equivalence relationships of the regular reducible La-
grangian systems, the I2,-reduced Lagrangian systems and the R,-reduced Lagrangian systems.
As the applications of the theoretical results, in Section 6, we give a regular point reducible
RCL system on the generalization G x V of a Lie group G, where V is a vector space. The
Ry,-reduced system is an RCL system on the generalization O, x V' x V of a co-adjoint orbit
O, of G. These research works develop the theory of symmetric reduction for the RCL systems
with symmetries and the momentum maps, and make us have a much deeper understanding
and recognition for the structures of the regular controlled mechanical systems.

2 Legendre Transformation, Regular Lagrangian System and Its
Reduction

In the following, we first give some relevant definitions and basic facts about Legendre
transformation and the regular Lagrangian system including its regular reductions. We also
analyse the geometrical structures of the phase space and the reduced phase spaces for a regular
Lagrangian system with symmetry, which will be used in subsequent sections. We shall follow
the notations and conventions introduced in [1-2, 7-8, 11, 16-17]. For convenience, we assume
that all manifolds in this paper are real, smooth and finite dimensional. In particular, in the
following we always assume that @ is a smooth manifold with coordinates ¢*, and T'Q its tangent
bundle with coordinates (¢°, %), and T*Q its cotangent bundle with coordinates (¢*, p;), which
is the canonical cotangent bundle coordinates of T*Q and 0 = p;d¢’ and w = —df = dq’ A dp;
are the canonical one-form and the canonical symplectic form on T*@Q), respectively, where the
summation on repeated indices is understood.

Definition 2.1 Assume that Q is an n-dimensional smooth manifold and the function L :
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TQ — R. Then the map FL:TQ — T*Q defined by

FL(v)w : d

= — L T 2.1
dt =0 q(U—Ft’UJ), V’U,’UJ € qu ( )

is a fiber-preserving smooth map, which is called the fiber derivative of L, where L, denotes the
restriction of L to the fiber over q € Q. If FL : TQ — T*Q s a local diffeomorphism, then
L:TQ — R is called a regular Lagrangian; and if FL : TQ — T*Q is a diffeomorphism, then
L is called hyperregular.

In the finite dimensional case, the local expression of the map FL : TQ — T*(Q is given by

FL(¢', ) = (q g—;) = (¢, py). (2.2)

The change of data from (¢, %) on TQ to (¢%,p;) on T*Q, which is given by the map FL :
TQ — T*Q, is called a Legendre transformation. From Marsden and Ratiu [11], we know that
the Lagrangian L is regular, if the matrix (%) is invertible. In the following by using the
Legendre transformation, we can give a definition of a regular Lagrangian system as follows.

Definition 2.2 (Regular Lagrangian system) Assume that Q is a smooth manifold, and 0
and w are the canonical one-form and the canonical symplectic form on the cotangent bundle
T*Q, and the function L : TQ — R is hyperreqular. Denote OF := (FL)*0 and w’ := (FL)*w,
where the bundle map (FL)* : T*T*Q — T*T'Q. Then 0 and w® are called the Lagrangian
one-form and the Lagrangian symplectic form on the tangent bundle T'Q, respectively. Define
an action A : TQ — R given by A(v) := FL(v)v, Yv € T,Q and an energy Er, : TQ — R
giwen by Er := A — L. If there exists a vector field &, on T'Q, such that the Euler-Lagrange
equation i¢,wl = dEy holds, then &1, is called an Euler-Lagrange vector field of L, and the
triple (T'Q,w", L) is called a regular Lagrangian system.

In the finite dimensional case, the local expression of 8% and w’ are given by

L
- 57

. 0%L . . 0%’L
i L _ i J
d¢', w dq' Ndq’ + 8307

L
' 5700

dg' Ad¢’,

where the summation on repeated indices is understood. Moreover, we know that the energy
Ep, is conserved along the flow of the Euler-Lagrange vector field &y, if £, satisfies a second
order equation, that is, T'rg o &, = idpq, where the map T'rg : TT(Q — T'Q, is the tangent
map of the projection 7g : T'Q) — Q). Moreover, in a local coordinates of 7'Q), an integral curve
(q(t),q(t)) of &1 satisfies the following Euler-Lagrange equations:

d¢ ., darL oL
a1 @oag o

If L is regular, then &;, always satisfies the second order equation.

Furthermore, by using the Legendre transformation, the following proposition gives a de-
scription of the equivalence between the regular Lagrangian system (TQ,w”, L) and the Hamil-
tonian system (7*Q,wo, H) under the hyperregular case of L (see [11]).

Proposition 2.1 Assume that L : TQ — R is a hyperregular Lagrangian on T'Q. Define a
function H := Er, - (FL)™! : T*Q — R. Then H is a hyperreqular Hamiltonian on T*Q, and
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the Hamiltonian vector field Xy € TT*Q and the Euler-Lagrange vector field £, € TTQ are
FL-related, i.e., T(FL)-&, = Xg - FL, where T(FL) : TTQ — TT*Q is the tangent map of
FL:TQ — T*Q, and the integral curves of {1, are mapped by FL onto integral curves of Xp.

It is well-known that Hamiltonian reduction theory is one of the most active subjects in
the study of modern analytical mechanics and applied mathematics, in which a lot of deep and
beautiful results have been obtained; for these results, we refer to the studies given in [1-3, 5,
7-11, 13-16], among which the Marsden-Weinstein reduction for the Hamiltonian systems with
symmetry and momentum maps is the most important and foundational. Now, for a regular
Lagrangian system with symmetry and momentum map, we can also give its regular point
reduction as follows.

Let @ be a smooth manifold and T'Q) its tangent bundle with the induced Lagrangian
symplectic form w’. Assume that ® : G x Q — @Q is a smooth left action of a Lie group G
on @, which is free and proper, then the tangent lifted left action ®7 : G x TQ — TQ is also
free and proper. Moreover, assume that the action is symplectic with respect to w’ and admits
an Ad*-equivariant momentum map Jz, : T'Q — g*, where g is the Lie algebra of G' and g* is
the dual of g. For a regular value of Jz, u € g%, denote by G, = {g € G | Adypu = p} the
isotropy subgroup of the co-adjoint G-action at the point x € g*. Since G, (C G) acts freely
and properly on @ and on T'Q, @, = Q/G,, is a smooth manifold, and the canonical projection
pu : Q@ — @ is a surjective submersion. It follows that G, also acts freely and properly on
J (), so that the space (TQ), = J;'(1)/G, is a symplectic manifold with the symplectic

form w! uniquely characterized by the relation
U -wﬁ =Jn Wk (2.3)

The map j, : J;' (1) — TQ is the inclusion and 7, : J;* (1) — (T'Q),, is the projection. The
pair ((TQ),,w,;) is called the regular point reduced space of (TQ,w") at p.

Let L : TQQ — R be a G-invariant hyperregular Lagrangian, the flow F; of the Euler-
Lagrange vector field £, leaves the connected components of J Zl(u) invariant and commutes
with the G-action, so it induces a flow f{* on (7'Q),,, defined by f}' -7, = 7, - F; - j,, and the
vector field &, generated by the flow ff* on ((TQ)N,wﬁ ) is the reduced Euler-Lagrange vector
field with the associated regular point reduced Lagrangian function [, : (T'Q),, — R defined by
ly-7, = L-j,, and the reduced Euler-Lagrange equation igluwﬁ = d£, holds, where the reduced
energy E, : (TQ), — Ris given by Fj, := A, —1,, and the reduced action 4, : (TQ), — R is
given by A, -7, = A-j,, and the Euler-Lagrange vector fields {1 and §;, are 7,-related. Thus,
we can introduce a kind of regular point reducible Lagrangian systems as follows.

Definition 2.3 (Regular point reducible Lagrangian system) A 4-tuple (TQ,G,w*, L),
where the hyperregular Lagrangian L : TQ — R is G-invariant, is called a regular point reducible
Lagrangian system, if there exists a point p € g%, which is a regular value of the momentum
map Jp, such that the regular point reduced system, that is, the 3-tuple ((TQ)M,wﬁ, 1), where
(TQ), = I (1)/G,, (M -wﬁ =Jn- wl 1, -7, =1L-3j,, is a reqular Lagrangian system, which
s simply written as an Ry-reduced Lagrangian system. Where ((TQ)N,wﬁ) 1s the Ry-reduced
space, the function l, : (T'Q), — R is called the R,-reduced Lagrangian.

We know that the orbit reduction of a Hamiltonian system is an alternative approach to
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symplectic reduction given by Kazhdan, Kostant and Sternberg [4] and Marle [6], which is
different from the Marsden-Weinstein reduction. Now, for a regular Lagrangian system with
symmetry and momentum map, we can also give its regular orbit reduction as follows, which
is different from the above regular point reduction.

Assume that ® : G x Q — @ is a smooth left action of a Lie group G on @, if this action
is free and proper, then the tangent lifted left action ®7 : G x TQ — TQ is also free and
proper. Moreover, assume that the action is symplectic with respect to w” and admits an
Ad*-equivariant momentum map Jy : TQ — g*. For a regular value of the momentum map
Jr, pwe g, Op =G -p C g*is the G-orbit of the co-adjoint G-action through the point u.
Since G acts freely, properly and symplectically on T'Q) with respect to w”, the quotient space
(TQ)o, =J Zl(ON) /G is a regular quotient symplectic manifold with the reduced symplectic
form wéu uniquely characterized by the relation

L

Jo, Wt =15, w6, +IL)o, - wo (2.4)

where (J7)o, is the restriction of the momentum map Jz, to J;1(0,), that is, Jr)o, =JIr-jo,-
Here wéj and w(‘gu are the +-symplectic structures on the orbit O, given by

w(L’)t(V)(ga 77) = wat(z/)(gg* (V)ﬂ?g* (V)) = <I/7 [5777]>7 Vv e Ouv 5;77 €49, 59*7779* € g*' (2'5)

The maps jo, : J;'(0,) — TQ and 70, : J;'(0,) — (TQ)o, are natural injection and
projection, respectively. The pair ((TQ)o#,w(LgH) is called the regular orbit reduced space of
(TQ,w") at the point .

Let L : TQ — R be a G-invariant hyperregular Lagrangian; the flow F; of the Euler-Lagrange
vector field &7, leaves the connected components of J Zl(Ou) invariant and commutes with the
G-action. It thus induces a flow fto“ on (TQ)o,, , defined by fto“ ‘7o, = 70, Fi-jo, . The vector
field &, generated by the flow fto " on ((TQ)o“,w(Lg“) is the reduced Euler-Lagrange vector
field, associated with the regular orbit reduced Lagrangian function lo, : (TQ)o, — R defined
by lo, - 10, = L jo,. The reduced Euler-Lagrange equation igloM wéu = dEj,, holds, where
the reduced energy £y, : (TQ)o, — Ris given by Ej,,, = Ao, —lo,, and the reduced action
Ao, : (TQ)o, — R is given by Ao, - T0, = A-jo,. The Euler-Lagrange vector fields £z, and
{lo“ are 7o,,-related. Thus, we can introduce a kind of the regular orbit reducible Lagrangian
systems as follows.

Definition 2.4 (Regular orbit reducible Lagrangian system) A 4-tuple (TQ,G,w*, L),
where the hyperregular Lagrangian L : TQ — R is G-invariant, is called a reqular orbit reducible
Lagrangian system, if there exists an orbit O, u € g*, where p is a reqular value of the momen-
tum map Jr, such that the reqular orbit reduced system, that is, the 3-tuple ((TQ)@MW(LOM J1o,),
where (TQ)o, = J7'(0,)/G, 75, .w(LD“ = Jjo, cwl — Jr)o, -wéj, lo, 10, = L-jo,, is a
reqular Lagrangian system, which is simply written as an R,-reduced Lagrangian system. Where
((TQ)OM,w(L%) is the Ro-reduced space, the function lo, : (TQ)o, — R is called the R,-reduced
Lagrangian.

In the following we shall give a precise analysis for the geometrical structures of the regular
point reduced space ((T'Q),wj;) and the regular orbit reduced space ((TQ)o,,wg, ). Assume
that the Lagrangian L : T'(Q — R is hyperregular; then the Legendre transformation FL :
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TQ — T*Q is a diffeomorphism. If the cotangent lift G-action ®7* : G x T*Q — T*Q is
free, proper and symplectic with respect to the canonical symplectic form w on 7*Q, and has
an Ad"-equivariant momentum map J : 7%Q — g* given by (J(ag),&) = aq(€o(q)), where
ag € T;Q and € € g, {g(q) is the value of the infinitesimal generator {q of the G-action at
g€ Q; (,):g" xg— Ris the duality pairing on dual g* and g. Then we have the following
theorem.

Theorem 2.1 Assume that the Lagrangian L : TQ — R is hyperreqular, and that the
Legendre transformation FL : TQ — T*Q is (®T, ®T*)-equivariant; then the following two
assertions hold:

(i) The momentum map Jr, : TQ — g* gwen by I, =J - FL, is Ad"-equivariant

(il) If p € g* is a regular value of the momentum map J, then p is also a regular value of
the momentum map Jp, .

Proof We first prove that the momentum map Jy : TQ — g* is Ad*-equivariant. Since
the Lagrangian L : T'QQ — R is hyperregular, the Legendre transformation FL : TQ — T*Q
is a diffeomorphism. Because the momentum map J : T*Q — g* is Ad™-equivariant, Ad*-J =
J - ®7*. Note that the Legendre transformation FL : TQ — T*Q is (®7, ®T*)-equivariant, so
we have that ®7* - FL = FL - ®T. From the following commutative Diagram-1,

a7 Jo

TQ TQ g
le le Ad*l
* o7 * J *
T™Q ™Q g
Diagram-1

we can obtain that
Ad*-J, =Ad*J - FL=J-™ . FL=J-FL- o7 =73, -o".

Thus, the momentum map Jr : TQ — g* is Ad*-equivariant.

Next, we prove (ii). If u € g* is a regular value of the momentum map J, then there exists
an a € T*Q such that J(a) = p. Since the Legendre transformation FL : TQ — T*Q is a
diffeomorphism, we have that v = FL™(a) € T'Q satisfies

Jo(v) =3 - FL(FL () = J(a) = u.

Thus, p € g* is also a regular value of the momentum map Jy,.

For a given ;1 € g*, a regular value of the momentum map J : T*Q — g*, denote by G,
the isotropy subgroup of the co-adjoint G-action at the point p; then the Marsden-Weinstein
reduced space (T*Q), = J~'(u)/G,, is a symplectic manifold with the symplectic form w,,
uniquely characterized by the relation

T Wy =1, - w. (2.6)

The map 4, : J7'(u) — T*Q is the inclusion and 7, : J7'(u) — (T*Q), is the projection.
From [8], we know that the classification of symplectic reduced spaces of a cotangent bundle is
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given as follows. (1) If 4 = 0, the symplectic reduced space of cotangent bundle 7*@Q at p = 0 is
given by (T*Q)u,wyu) = (T*(Q/G),w), where & is the canonical symplectic form of cotangent
bundle 7%(Q/G). Thus, the symplectic reduced space ((T*Q),,w,) at p = 0 is a symplectic
vector bundle. (2) If 11 # 0, and G is Abelian, then G, = G; in this case, the regular point
symplectic reduced space ((T%Q),,w,) is symplectically diffeomorphic to symplectic vector
bundle (T*(Q/G),& — B,,), where B, is a magnetic term. (3) If u # 0, G is not Abelian and
G,, # G; in this case, the regular point symplectic reduced space ((T*Q),,,w,,) is symplectically
diffeomorphic to a symplectic fiber bundle over T%(Q/G,,) with fiber being the co-adjoint orbit
O,,, see the cotangent bundle reduction theorem—bundle version, and also see [10]. Comparing
the regular point reduced spaces ((TQ),,w,) and ((T*Q),,w,) at the point u, we have the
following theorem.

Theorem 2.2 Assume that the Lagrangian L : TQ — R is hyperreqular, and that the
Legendre transformation FL : TQ — T*Q is (®T,®T*)-equivariant; then the reqular point
reduced space ((TQ)N,wﬁ) of (TQ,w™) at u is symplectically diffeomorphic to the regular point
reduced space ((T*Q),,wy) of (T*Q,wo) at p, and hence is also symplectically diffeomorphic to
a symplectic fiber bundle.

Proof Since the Lagrangian L : TQ) — R is hyperregular, the Legendre transformation
FL:TQ — T*Q is a diffeomorphism. Because FL is (®7, ®7*)-equivariant, that is, ®7*. FL =
FL-®T we can define a map (FL), : (TQ), — (T*Q), given by (FL), -7, = 7, - FL, and
iy - FL = FL - j,; see the following commutative Diagram-2, which is well-defined and a
diffeomorphism.

TN cTQ T I (u) € TQ

al K

1Q), s (1),

Diagram-2

We shall prove that (FL), is symplectic, that is, (FL)% - w, = w,,. In fact, from (2.6) and
(2.3), we have that

T (FL), - wu = ((FL)p - 70)" - wp = (mp - FL) - wy = (FL) - ), - wy,

FL) iy cw= (i  FL) w=(FL-ju)"  w

:j:j-(fL)*-w:j;-wL:T;-wﬁ.

Notice that 7, is surjective, and hence (F L); Wy = wﬁ. Thus, the regular point reduced space
(TQ)p, wﬁ ) of (T'Q,wr) at u is symplectically diffeomorphic to the regular point reduced space
(T*"Q)pu,wy) of (T'"Q,w) at . From [8], we know that the space ((T7Q),,w,) is symplecti-
cally diffeomorphic to a symplectic fiber bundle, and hence ((T'Q) #,wﬁ) is also symplectically
diffeomorphic to a symplectic fiber bundle.

For a given pu € g*, a regular value of the momentum map J : T°Q — g*, the regular
orbit reduced space (T*Q)o, = J~1(0,)/G is a regular quotient symplectic manifold with the
symplectic form we, uniquely characterized by the relation

-k _ * * +
io, w=mp, wo, +JIo, wg, ; (2.7)
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where Jo, is the restriction of the momentum map J to J71(0,), that is, Jo, =J-io,, and

w(‘gu is the 4-symplectic structure on the orbit O, given by

wh, (V) (&g (), ng=(v)) = (v, [€,m]), Vv € Oy, EmE @, &g g €07 (2.8)

The maps ip, : J71(0,) = T*Q and 7o, : J71(0,) = (T*Q)o, are natural injections and
projection, respectively. In the general case, we may think that the structure of the symplectic

o

orbit reduced space ((T*Q)o, ,wo, ) is more complex than that of the symplectic point reduced
space ((T™*Q)u,wy), but from [16] and the regular reduction diagram, we know that the regular
orbit reduced space ((I"Q)o,, ,wo, ) is symplectically diffeomorphic to the regular point reduced
space ((T™"Q) 4, w,), and hence is also symplectically diffeomorphic to a symplectic fiber bundle.
Comparing the regular orbit reduced spaces ((TQ)o#,w(LgH) and ((I"Q)o,,wo,) at the orbit
O,, we have the following theorem.

Theorem 2.3 Assume that the Lagrangian L : TQ — R is hyperreqular, and that the
Legendre transformation FL : TQ — T*Q is (DT, ®T*)-equivariant; then the regular orbit
reduced space ((TQ)@M,w(L%) of (TQ,wr) at the orbit O, is symplectically diffeomorphic to
the regular orbit reduced space ((T*Q)o,,wo,) of (T*Q,w) at the orbit O, and hence is also
symplectically diffeomorphic to a symplectic fiber bundle.

Proof Since the Lagrangian L : TQ) — R is hyperregular, the Legendre transformation
FL:TQ — T*Q is a diffeomorphism. Because FL is (®7, ®7*)-equivariant, that is, ®7*- FL =
FL-®T, we can define a map (FL)o, : (TQ)o, = (T*Q)o, given by (FL)o, ‘70, = 7o, - FL,
and ip, - FL = FL- jo,; see the following commutative Diagram-3. This map is well-defined
and a diffeomorphism.

N0, cTQ s 3710,) cT*Q

o] o
(TQ)o, hon, (T*Q)o,

Diagram-3

We shall prove that (FL)o
and (2.4)—(2.5), we have that

is symplectic, that is, (FL)p, -wo, = wéu. In fact, from (2.7)

n

Notice that 7o, is surjective, and hence (FL)j, - wo, = w(LgH. Thus, the regular orbit reduced
space ((TQ)o#,w(LQM) of (TQ,wr) at the orbit O, is symplectically diffeomorphic to the regular
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orbit reduced space ((T*Q)o,,wo,) of (IT*Q,w) at the orbit O,. From [16] and the regular
reduction diagram, we know that the regular orbit reduced space ((T#Q)o,,,wo, ) at the orbit
O,, is symplectically diffeomorphic to the regular point reduced space ((17*Q),,w,) of (T*Q,w)
at u, and hence ((TQ)@M,W(LQ“) is symplectically diffeomorphic to the regular point reduced
space ((T*Q),,w,) at p, and is also symplectically diffeomorphic to a symplectic fiber bundle.

Thus, from the above discussion, we know that the regular point or regular orbit reduced
space for a regular Lagrangian system defined on a tangent bundle may not be a tangent bundle.
Considering the completeness of the symmetric reduction, if we may define an RCL system on
a symplectic fiber bundle, then it is possible to describe uniformly the RCL systems on T'Q) and
their regular reduced RCL systems on the associated reduced spaces.

3 Regular Controlled Lagrangian System and Its Dynamics

In order to give a proper definition of CL system, by following the ideas in [12], we first
define a CL system on T'Q) by using the Lagrangian symplectic form, and such a system is called
a regular controlled Lagrangian (RCL for short) system; then we regard a regular Lagrangian
system on T'Q) as a special case of an RCL system without external force and control. Thus,
the set of the regular Lagrangian systems on T'Q) is a subset of the set of RCL systems on
TQ. On the other hand, since the regular reduced system of a regular Lagrangian system
with symmetry defined on the tangent bundle T'QQ may not be a regular Lagrangian system
on a tangent bundle, we cannot define an RCL system on the tangent bundle T'Q directly.
However, from Theorems 2.2-2.3, we know that the regular point reduced space ((TQ),,w,,)
of (TQ,w") at p is symplectically diffeomorphic to a symplectic fiber bundle over T(Q/G,,)
with fiber being the co-adjoint orbit O, and the regular orbit reduced space ((T'Q)o,, , wéu) of
(TQ,wr) at the orbit O, is also symplectically diffeomorphic to a symplectic fiber bundle. In
consequence, if we can define an RCL system on a symplectic fiber bundle, then it is possible
to describe uniformly the RCL systems on 7'Q) and their regular reduced RCL systems on
the associated reduced spaces; we can also study regular reduction of the RCL systems with
symmetries and momentum maps, as an extension of the regular reduction theory of the regular
Lagrangian systems under regular controlled Lagrangian equivalence conditions, and set up the
regular reduction theory of the RCL systems on a tangent bundle by using momentum map,
the associated reduced Lagrangian symplectic form, and the viewpoint of the completeness of
regular reduction.

In this section, we first define an RCL system on a symplectic fiber bundle. Then, by using
the Legendre transformation and the Lagrangian symplectic form on the tangent bundle of a
configuration manifold, we obtain the RCL system on a tangent bundle as a special case and
give a good expression for the dynamical vector field of the RCL system—one that allows us
to discuss RCL-equivalence. Consequencely, we can study RCL systems with symmetries by
combining them with the symmetric reduction of the regular Lagrangian systems with symme-
tries. For convenience, we assume that all controls appearing in this paper are the admissible
controls.

Let (E, M, 7) be a fiber bundle. For each point x € M, assume that the fiber E, = 7~ 1(z)
is a smooth submanifold of E equipped with a symplectic form wg(z); that is, (E,wg) is a
symplectic fiber bundle. Suppose a function L : E — R is a hyperregular Lagrangian, and there



80 H. Wang

is an action function A : E — R and an Euler-Lagrange vector field £, that satisfy the equation
ie,wg = dEr, where Er, : E — R is an energy function given by Ep := A — L. Then (E, wg, L)
is a regular Lagrangian system. Moreover, if considering the external force and control, we can
define a kind of RCL system on the symplectic fiber bundle E as follows.

Definition 3.1 (RCL system) An RCL system on E is a 5-tuple (E,wg, L, FX,CL), where
(E,wg, L) is a regular Lagrangian system, the function L : E — R is called the (hyperreqular)
Lagrangian, a fiber-preserving map F¥ : E — E is called the (external) force map, and a fiber
submanifold C of E is called the control subset.

Sometimes, CL is also denoted as the set of fiber-preserving maps from E to C*. When
a feedback control law u” : E — C* is chosen, the 5-tuple (E,wg, L, F'*,u") is a closed-loop
dynamical system. In particular, if @) is a smooth manifold, with T'Q) its tangent bundle and
T*Q its cotangent bundle with a canonical symplectic form w, assume that L : TQ — R is
a hyperregular Lagrangian on 7'QQ and the Legendre transformation FL : TQ — T*Q is a
diffeomorphism, then (T'Q,w’) is a symplectic vector bundle, where wl = FL*(w). If we take
E = TQ, from the above definition we can obtain an RCL system on the tangent bundle T'Q,
that is, the 5-tuple (TQ,w”, L, FL,CF).

In order to describe the dynamics of the RCL system (E,wg, L, F'*,CY) with a control law
ul : E — CF, we need to give a good expression for the dynamical vector field of the RCL
system. We shall use the notation of vertical lift maps of a vector along a fiber introduced in
[12]. In fact, for a smooth manifold M, its tangent bundle TM is a vector bundle, and for
the fiber bundle 7w : E — M, we consider the tangent mapping T'w : TE — T'M and its kernel
ker(T'm) = {p € TE | Tn(p) = 0}, which is a vector subbundle of TE. We denote VE :=
ker(T'w), which is called the vertical bundle of E. Assume that there is a metric on E, we take
a Levi-Civita connection A on TE, and denote by HE := ker(.A), which is called the horizontal
bundle of E, such that TE = HE & VE. For any x € M, a,;,b, € E,, any tangent vector
p(bz) € Ty, E can be split into horizontal and vertical parts, that is, p(b.) = p"(bs) ® p*(bs),
where p"(b,) € Hy E and p¥(b,) € V3, E. Let v be a geodesic in E, connecting a, and b,. We
denote by pz(am) a tangent vector at a,, which is the parallel displacement of the vertical vector
p?(b;) along the geodesic v from b, to a,. Since the angle between two vectors is invariant under
a parallel displacement along a geodesic, we have T'r(p5(a;)) = 0, and hence pf(a;) € Vg, E.
Now, for a,, b, € E, and tangent vector p(b,) € Ty, E, we can define the vertical lift map of a
vector along a fiber as follows

vlift : TE, x B, — TEy; vlift(p(bs), az) = p5(az).

It is easy to check from the basic fact in differential geometry that this map does not depend on
the choice of 4. If FL' : E — E is a fiber-preserving map, for any € M, we have FX : E, — E,
and TFF : TE, — TE,; thus, for any a, € E, and p € TE,, the vertical lift of p under the
action of F' along a fiber is defined by

(Vft(Fy)p)(az) = VIft(TFy p)(Fy (a2)), az) = (TFy p)5(as),

where v is a geodesic in E, connecting F'(a,) and a,.
In particular, when 7 : E — M is a vector bundle, for any x € M, the fiber E, = 7~1(x) is
a vector space. In this case, we can choose the geodesic v to be a straight line, and the vertical
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vector is invariant under parallel displacement along straight line, that is, pz(aw) = p“(b
Moreover, when E = T'Q, by using the local trivialization of TT'Q, we have that TTQ
TQ x TQ (locally). Since 79 : TQ — Q, and T'7g : TTQ — TQ, in this case, for any
Vg, Wy € T,Q, x € Q, we know that (0,w,) € V,,, T, Q, and hence we can get that

2)-

v1ift ((0, wy ) (wy), ve) = (0, wy)(ve) = % S:O(Uw + swy),

which coincides with the definition of the vertical lift map along a fiber in [11].

For a given RCL system (TQ,w”, L, FL' CF), the dynamical vector field of the associated
regular Lagrangian system (T'Q,w’, L) is the Euler-Lagrange vector field {1, such that ic Lwh =
dE;. When we consider the external force F : TQ) — TQ, by using the above notation of
vertical lift map of a vector along a fiber, the change of £;, under the action of F” is that

VIift (FY)EL (vg) = VIt (TFEL) (F* (02)),v2) = (TF L)Y (ve),

where v, € T,Q, = € @ and the geodesic 7 is a straight line in 7,,Q connecting F*(v,) and
v. Similary, when a feedback control law u” : T@Q — C” is chosen, the change of £;, under the
action of u” is that

vlift(u®)ér (v,) = Viift((Tuér) (u” (vy)), ve) = (TuLgL),”y(vm).

Consequently, we can give an expression for the dynamical vector field of the RCL system as
follows.

Theorem 3.1 The dynamical vector field of an RCL system (TQ,w™, L, F¥ CF) with a
control law u” is the synthesis of the Euler-Lagrange vector field &1, and its changes under the
actions of the external force F¥' and control u”, that is,

§rQwr,n,rrury (V) = 0 (ve) + viift(FE)er (v,) + viift(ul)ér (v,
for any v, € T,Q, x € Q. For convenience, it is simply written as
§rQui,n,Frury = + VIt (FY) + vlift(u”). (3.1)

Where vlift(F'*) = vlift(FL)¢r, and viift(ul) = vlift(u?)¢r, are the changes of &, under
the actions of F'* and u*. We also denote that vlift(C*) = U{vlift(u")¢r| ul € CF}. It is
worth noting that, in order to facilitate deduction and calculation, we always use the simple
expression of the dynamical vector field {7 .z 1, Fr 4z). Moreover, we also use the simple
expressions for the R,-reduced vector field g((TQ)H)wﬁ)lu)f}f)uﬁ) and the R,-reduced vector field
5((TQ)Owwéwlwaéua“é“) in Sections 4-5.

From the expression (3.1) of the dynamical vector field of the RCL system, we know that
under the actions of the external force F and control u”, in general, the dynamical vector
field may not be an Euler-Lagrange vector field, and hence the RCL system may not yet be a
regular Lagrangian system. However, it is a dynamical system closed with respect to a regular
Lagrangian system, and it can be explored and studied by extending the methods for handling
external force and control in the study of the regular Lagrangian system. In particular, it
is worth noting that the energy E is conserved along the flow of the Euler-Lagrange vector
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field &1, if &1 satisfies the second order equation T'rg o &, = idrg. Since T'rg - vlift(FL) =
Ttg - vlift(u®) = 0, from the expression (3.1) we have that T'rg 0 (rQwr,L,FL ut) = idrq, that
is, the dynamical vector field of the RCL system always satisfies the second-order equation.

On the other hand, for two given regular Lagrangian systems (TQ;,wk, L;), i = 1,2, we
say they are equivalent, if there exists a diffeomorphism ¢ : Q1 — Q2 such that their Euler-
Lagrange vector fields &r,,, ¢ = 1,2 satisfy the condition &, - T = T(T'p) - £1,. Here the map
To: TQ1 — TQo is the tangent map of ¢, and the map T'(Tp) : TTQ1 — TTQ- is the tangent
map of Tp. Tt is easy to see that the condition &y, - T = T(Tp) - &1, is equivalent to the
fact that the map Ty : TQ1 — T Q2 is symplectic with respect to their Lagrangian symplectic
forms wl on TQ;, i = 1,2.

For two given RCL systems (T'Q;,w’, L;, FF,CL), i = 1,2, we also want to define their
equivalence, that is, to find a diffeomorphism ¢ : @1 — Q2 such that g(TQ21w§/1L2)F2I/1C2L) Ty =
T(T)- g(TwalLyLlﬁplLyclL). However, it is worth noting that, when an RCL system is given, the
force map F¥ : TQ — TQ is determined, but the feedback control law u” : TQ — C* can be
chosen. In order to explicitly emphasize the impact of external force and control in study of
the RCL systems, by using the above expression (3.1) for the dynamical vector field of the RCL
system, we can describe how the feedback control law modifies the structure of the RCL system,
and thus induce the regular controlled Lagrangian matching conditions and RCL-equivalence
are induced as follows.

Definition 3.2 (RCL-equivalence) Suppose that we have two RCL systems (TQ;,w
FL.cE), i = 1,2, we say they are RCL-equivalent, or simply, (TQq,w¥, Ly, FE,CE)
(TQa,wk, Lo, FF,CL), if there exists a diffeomorphism ¢ : Q1 — Q2 such that the following
regular controlled Lagrangian matching conditions hold:

RCL-1 The control subsets CF, i = 1,2 satisfy the condition C¥ = Tp(CL), where the map
Ty :TQ1 — TQs is the tangent map of p.

RCL-2 For each control law ul : TQy — CE, there exists a control law uk : TQs — CE,
such that the two closed-loop dynamical systems have the same dynamical vector fields, that is,
ErQowt Lo pt k) T =T(T9)  §1q, wh L, 7L ubys where the map T(Tp) : TTQ1 — TTQ:
is the tangent map of T.

RCL
~Y

From the expression (3.1) of the dynamical vector field of the RCL system and the condition
§1Qawb Lo FE k) " T =T(T9) - §1q, wE L, FE uk), We have that

(€L, + VIfE(Fy e, + Viift(uy)Er,) - T = T(T) - [0, + VIft(F)Er, + viift(ug)EL,]-

By using the notation of the vertical lift map of a vector along a fiber, for v, € T, Q1, * € @1,
we have that

T(Tp) - VIift(F{ )L, (vz)
=T (Tp) - VIift(TF{ - €0, )(FY (va)), va)
= vlift(T(Tp) - TF - T(To™ ") - €0,) (T - Ff - T~ - (T v2)), T - )
= vIift((T (( ) F1 Tw_l)-§L1)(T<P'F1L'Tso_l(TsD-vw))aT@-vw)
= vlift(Te ) € (Ty - vs),
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where the map Tp~! : TQy — TQ; is the inverse of the tangent map T'¢. Similarly, we have

that T(T) - vlift(uf)ér, = vlift(Tp - ul - Tp=1) - &1, - T, Thus, the explicit relation between
the two control laws ul : TQ; — CF, i = 1,2 in RCL-2 is given by

(vlift(ul) — vlift (T - uF - Tp™1)) - Ty
= &1, - To+T(Tp)(&L,) + (—VIift(FF) + vlift (T - FL - Tp™1)) - Te. (3.2)

From the above relation we know that, when two RCL systems (T'Q;,wk, L;, F£,CE), i =
1,2, are RCL-equivalent with respect to Ty, the corresponding regular Lagrangian systems
(TQ;,wk, L;), i = 1,2, may not be equivalent with respect to Tp. If the two corresponding
regular Lagrangian systems are also equivalent with respect to T'¢, then the control laws u? :
TQ; — CE, i = 1,2 and the external forces FF : TQ; — TQ;, i = 1,2 in RCL-2 must satisfy

the following condition
vlift (ul) — v1ift (T - ul - Tp™t) = —vlift(FL) + vlift(Te - FE - Te™t). (3.3)

In the following we shall introduce regular point and regular orbit reducible RCL systems
with symmetries, and show various relationships of their regular reducible RCL-equivalences.

4 Regular Point Reduction of the RCL System

We know that, when the external force and control of an RCL system (TQ,w”, L, FL, CTF)
are both zero, that is, F* = 0, and C* = (), then the RCL system is just a regular Lagrangian
system (T'Q,w”, L). Thus, we can regard a regular Lagrangian system on T'Q as a special case of
the RCL system without external force and control. Consequently, the set of regular Lagrangian
systems with symmetries on T'Q) is a subset of the set of RCL systems with symmetries on T'Q). If
we first consider the regular point reduction of a regular Lagrangian system with symmetry, then
we may study the regular point reduction of an RCL system with symmetry, as an extension
of the regular point reduction of a regular Lagrangian system under the regular controlled
Lagrangian equivalence conditions. In order to do this, in this section we consider the RCL
system with symmetry and momentum map, and first give the regular point reducible RCL
system and the RpCL-equivalence, and then prove the regular point reduction theorems for the
RCL system and regular Lagrangian system.

We know that, if an RCL system with symmetry and momentum map is regular point
reducible, then the associated regular Lagrangian system must be regular point reducible. Thus,
from Definition 2.3 and Theorem 2.2, if the Legendre transformation FL : TQ — T*Q is
(®T, ®T*)-equivariant, then we can introduce a type of regular point reducible RCL systems
as follows.

Definition 4.1 (Regular point reducible RCL system) A 6-tuple (TQ,G,w", L, F,CF),
where the hyperreqular Lagrangian L : TQ — R, the fiber-preserving map F* : TQ — TQ
and the fiber submanifold C* of TQ are all G-invariant, is called a regular point reducible RCL
system, if the Legendre transformation FL : TQ — T*Q is (®T, ®T*)-equivariant, and there
exists a point p € g*, which is a reqular value of the momentum map Jr, such that the regular
point reduced system, that is, the 5-tuple ((TQ)M,wﬁ,lﬂ, L CcL), where (TQ), = le(,u)/GM,

A"

T;wﬁ = j;wL; by Tu=1L"ju, FL(le(,u)) C le(,u): f;f T = Ty Ft “Jus cr m']zl(,u) #0,
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Cﬁ = 7,(CE NI (), is an RCL system, which is simply written as the R,-reduced RCL
system. Here, (TQ),,w);) is the Ry-reduced space, the function I, : (TQ), — R is called the
R,-reduced Lagrangian, the fiber-preserving map fL (TQ), — (T'Q), is called the Ry,-reduced
(external) force map, and Cﬁ is a fiber submanifold of (T'Q), that is called the Rp-reduced
control subset.

It is worth noting that for the regular point reducible RCL system (7'Q, G,w*, L, F¥,C*),
the G-invariant external force map F* : TQ — TQ has to satisfy the conditions F¥(J; ' (u)) C
J; N (w), and fE -7, =7, F¥ - j,, so that we can define the Rj-reduced external force map
fL (TQ), — (TQ),. The condition CE' NI ;' (1) # 0 in the above definition ensures that the
G-invariant control subset C* N J Zl(u) can be reduced and that the R,-reduced control subset
is Clr = 7, (C* NI ().

Assume that the dynamical vector field §7q G wr 1,72 ur) Of a given regular point reducible
RCL system (TQ, G,w”, L, F',CF) with a control law u” € C* can be expressed by

E1Q.G b n, Lty = £ + VIift(F) + viift(u®). (4.1)

Then, for the regular point reducible RCL system we can also introduce the regular point
reducible controlled Lagrangian equivalence (RpCL-equivalence) as follows.

Definition 4.2 (RpCL-equivalence) Suppose that we have two regular point reducible
RCL systems (TQ;,Gi,wl, Ly, FE,CEF), i = 1,2, we say they are RpCL-equivalent, or sim-
ply, (TQ1,G1,wl, Ly, FL,CF) RPSL (TQa, Go,wk, Lo, FF CL), if there exists a diffeomorphism
¢ Q1 — Q2 such that the following regular point reducible controlled Lagrangian matching
conditions hold :

RpCL-1 For p; € g7, the regular reducible points of the RCL systems (TQ;, G, wk L;, FE,
Cl), i = 1,2, the map (T) = ji)} - T ju, : (JL) Yw) = (In)y  (p2) is (G, Gops)-
equivariant and C5 0/(Ip)5 " (u2) = (T),(CEN(IL)T (1)), where p = (ul,ug) and we denote
by j;l(S) the pre-image of a subset S C TQq under the map j,, : (Jr.)5 " (u2) — TQ2.

RpCL-2 For each control law ul : TQy — CE, there exists a control law ul : TQs — CE,
such that the two closed-loop dynamical systems have the same dynamical vector fields, that is,

§(1Qa. Gk, Lo Pl k) " L0 =T(T0)  §1q, .G wh L1, FE k-

It is worth noting that for the regular point reducible RCL system, the induced equivalent
map (T'¢), also preserves the equivariance of the G-action at the regular point. If a feedback
control law u* : TQ — C¥ is chosen, and u? € C* N J " (1), and C* NI, ' () # 0, then the
Ry-reduced control law is u; (TQ) —Cl=r,(C* NI (w), and ul -7, = 7, - u¥ - j,. The
R,-reduced RCL system ((TQ) oy W lf, uﬁ ) is a closed-loop regular dynamical system with
the R,-reduced control law uL Assume that its dynamical vector field §((rq) Vsl f L ul) CaN
be expressed by

§((TQ) 0w s o ul) = Sl —|—Vhft(f ) + vlift (u ) (4.2)

where &, is the R-reduced Euler-Lagrange vector field, and vlift(f2) = v1ift(f2)&, , viift(ul) =
vlift(u))&, are the changes of 51 under the actions of the Rj-reduced external force f. and

the R,-reduced control law u’, and the dynamical vector fields of the RCL system and the

J7Ri
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R,-reduced RCL system satisfy the condition

§(TQ) kbt Pty Tu =TT §1Q,G b L, FL b * Ju (4.3)

(see [12, 20]). Then we can obtain the following regular point reduction theorem for the RCL
system, which explains the relationship between the RpCL-equivalence of the regular point
reducible RCL system with symmetry and the RCL-equivalence of the associated R,-reduced
RCL system.

Theorem 4.1 Two regular point reducible RCL systems (T Q;, Gy, wk, L, FF,CE), i = 1,2,
are RpC’L equivalent if and only if the associated R,-reduced RCL systems ((T'Qi)u,,w
Lipir [E it ,CL )i = 1,2, are RCL-equivalent.

L
ipi
Proof If (TQ:,G1,w, L1, FL,CF) ok (TQa,Go,wk | Ly, F¥ CE), then there exists a dif-
feomorphism ¢ : Q1 — Q2 such that for p; € g7,i =1,2, (T'@), = j.,} - Te-jp, : (JL) Yur) —

(J2)7 " (k2) 18 (Gipuy Gapp )-equivariant, and C5 N (J1)3 " (u2) = (T)u(Cf N (I)7 (1)) and
RpCL-2 holds. From the following commutative Diagram-4:

TQu 2 (30)7 ()~ (TQ1),

T«pl (T@)ul (TS");L/Gl
TQy 72 (I1); (12) —2 (TQ2)y,
Diagram-4

we can define a map (T'y), /¢ : (TQ1)u, — (T'Q2)u, such that (T'v), /¢ - Ty = Tu, - (T@) -
Since (@), = (Jr)7 (1) — ()5 (p2) is (Gipy s Gopy )-equivariant, (T'¢)u/c is well-defined.
We shall show that C3,,, = (T¢),/¢(Cl,,). In fact, since (T'Qi, Gi,w), Li, F*,CF), i = 1,2, are
regular point reducible RCL systems, we have that CX N (J1); " (1) # 0 and CE = 7,,(CF N
(30)7 1)), i = 1,2 From C} 1 (31)5 (2) = (T)u(CE N (T5)7 (1)), we have that

Coy = s (C3 N (IL)3  (12)) = Ty - (T)u(CF N ()7 (1)
= (T9)usc - T (CF N (IL)7 (1)) = (T9)uyc(Cla,)-

Thus, the condition RCL-1 holds. On the other hand, for the Rj-reduced control law uf,, :
(TQ1)u, — Cf;,,, we have the control law uf : TQ1 — C{" such that uf,, - 7., = 7, - uf - ju, -
From the condition RpCL-2 we know that there exists the control law u% : TQs — C¥, such
that §(10., szz Lo Fraky - T =T(TQ) {1, a wk 7L17F1 )uf). However, for the control law

TQ2 — C2 , we have the Rj,-reduced control law uQ# (TQ2)p, — CQ#2 such that u2#2 .
TM = Ty - u - j,,. Note that for i = 1,2, from (4.3), we have that

§(TQu wE, i fE i) T = T €100, Guwl L FE )~ Tnis (4.4)
and from the commutative Diagram-4, (T'0),,/¢ - Ty, = Tuy - (T@)y and ., - (T0) = (T@) - s

we have that

5((TQ2)M27w§‘M2712H27f2LM2,ué‘uz) (To)pja T = 5((TQ2)M2Mé‘uz,lgurfzfdufuéw) Ty (TP
=Ty, §(TQ2 Ga,wk Lo, FE uk) " Jpsa (T<P)u =TTy, '§(TQ2,G2,w2 Lo, FF (Tp) “Jua
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=T, - T(Ty) 'f(TQl,Gl,wlL,Ll,FlL,ulL) Jur =TTy - (T)) '§(TQ1,G1,w1L,L1,F1L,u1L) T
=T(Te)u/c * Tus) - f(TQl,Gl,wlL,Ll,FlL,uf)'jul =T((Te)u/c) T 'f(TQl,Gl,wf,Ll,FIL,uIL) I
= T((TSD),LL/G) : 6((TQ1)M1 7wf‘u1’l1lb17flLu1 7“1LM) " Tpa -

Since 7, : (J2)7 (1) — (TQ1),, is surjective, we have that

f((TQ2)“2,wgw,lzw,fgw,ugw) (Te)pyc =T((Te)u/c) 'f((TQl)ul,wle,zml,fle,ufm)a (4.5)

that is, the condition RCL-2 holds. So, the R,-reduced RCL systems ((TQi)M,WiLM,lm” ifw
CiLM), 1 = 1,2, are RCL-equivalent.

Conversely, assume that the Rj-reduced RCL systems ((TQ:)u,, iy, lip:, [l Cli), i
1,2, are RCL-equivalent; then there exists a diffeomorphism (T'¢), /¢ : (TQ1),, — (TQ2),
such that C3,, = (T¢),/c(Cl,,), i € gf, i = 1,2 and for the R,-reduced control law uf,, :
(TQ1)u, — Ci,,,, there exists an R,-reduced control law u,, : (TQ2),, — C3,,,, such that (4.5)
holds. Then from the commutative Diagram-4, we can define a map (T¢), : (Jp);7* (11) —
(J1)5 ' (u2) such that 7., - (T9), = (T¢),/G - Tur» and the map Ty : TQ; — TQs such
that T¢ - ju, = jus - (T@)pu, as well as a diffeomorphism ¢ : Q1 — Q2 whose tangent lift is
just T : TQ1 — TQ2. Moreover, for the above definition of (T'¢),, we know that (T'¢),

is (G1y,, Gy, )-equivariant. In fact, for any 2, € (Jz); (1), gi € Gips» @ = 1,2 such that

29

23 = (Tp)u(z1) and [z2] = (T'p),/c[21], we have that

(T9)u(Prg, (21)) = 7';21 “Tus  (TP)pu(P1g, (21)) = 7';21 Ty - (T0)p(g121)
=7 (T e T (g121) = 7., - (T9)yclz] = 7., [22]

= Tha *Tha(9272) = Pag,y (22) = Pog, - (Tp)u(21)-

Here we denote by 7,.'(S) the pre-image of a subset S C (TQ1),, under the map 7,
(JL)1_1(M1) — (T'Q1)pu,, and for any z; € (JL)l_l(ul), Tu_ll - Ty, (21) = 2z1. So, we obtain
that (T'¢), - P1g, = Pag, - (T'¢)u. Moreover, we have that

Cy N (L) (p2) = 7' - 7 (C5 N (IL)3 H(m2) = 7., - Copy = 7t - (T9) s (Cy)
=70 (T9)uc T (CE N TL)T () =750 Ty - (T9)u(CE N (IL)T (1))
= (T@)u(CE N ()7 (1))

Thus, the condition RpCL-1 holds. In the following we shall prove that the condition RpCL-2

holds. For the above Rj-reduced control laws uf;,, : (TQ:),, — Cl,., i = 1,2, there exist control

laws uf : TQ; — C}, such that uf, -7,

i

=Ty - uF - ju., i =1,2. We shall prove that

§(TQ2,G2,w2L,L2,F2L,u§) To=T(Typ) - §(TQ1,G1,w1L,L1,F1L,u1L)-

In fact, from (4.4) we have that

(TP)1n/G) - E(T Q1) g by sy oFE k)~ Titt
(TQO)M/G) Ty, 'f(TQl,Gl,wlL,Ll,FlL,uf) “Jua
(TP) /G - Tus)  §1Q1 .G wh L1 FE by * I

Thy * (Tgp)#) : f(TQl,Gl,wlL,Ll,FlL,ulL) “Ju
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=T7u, - T(T¢) §1q,.c Wl Ly FE by Jp -

On the other hand,

f((TQg)u2,w2Lu2,l2u2,f2Lu21uL ) (T‘p)u/c Ty = f((TQ2)u2 “’2Lu2 l2p1g s f2Lu2 uk ) CTpo (T(p)ﬂ

2p2 2pg

=TTy, '§(TQ27G2,w2L,L27FL,u2) Jus (T<P)u =TTy, - §(TQ2,G2,w2 Lo, FEuk) Toju-

From (4.5) we have that

Ty, 'f(TQ27G27w2 Lo, FFuk)” T ju, =TTy, -T(Tep) - g(TQhthf‘,Ll, FE by Jua -

Note that the map j,, : (J2)7 (1) — TQq is injective, and T, : T(J 1)y (12) = T(TQ2) s
is surjective, hence we have that

f(TQg,Gz,wz,L27F;,uL) Te=T(Ty)- f(:rQl,Gl,w1 Ly, FE k)

It follows that the theorem holds.

It is worth noting that, when the external force and control of a regular point reducible RCL
system (TQ, G, w”, L, F',CF) are both zero, that is, ¥ = 0 and C* = (), then the RCL system
is just a regular point reducible Lagrangian system (7'Q, G, w*, L). Then the following theorem
explains the relationship between the equivalence of the regular point reducible Lagrangian
systems with symmetries and the equivalence of the associated R,-reduced Lagrangian systems.

Theorem 4.2 Two regular point reducible Lagrangian systems (TQ;, Gy, wF, L;), i = 1,2,
are equivalent if and only if the associated Ry-reduced Lagrangian systems ((T'Q;)u, iL;wlim)a
1= 1,2, are equivalent.

Proof If two regular point reducible Lagrangian systems (7'Q;, Gi,wF, L;), i = 1,2,
are equivalent, then there exists a diffeomorphism ¢ : @1 — Q2 such that Ty : TQ1 —
TQs is symplectic with respect to their Lagrangian symplectic forms w’, i = 1,2, that
i, wf = ()" - wf, and for g € gf, i = 12, (o) = il T oy + (o) (m) =
(J1)3 ' (12) is (Gipy, Gop, )-equivariant. From the above commutative Diagram-4, we can de-
fine a map (T¢), /¢ : (TQl)M1 (T'Q2), such that (T'v),/q - Ty, = Ty, - (T'p),. Since
(T@) = (Jo)7 (1) = (J0)3 () is (Gipuy, Gapy )-equivariant, (T'¢),, /¢ is well-defined. In or-
der to prove that the associated Rj,-reduced Lagrangian systems ((TQZ-)M,wiLM,lmi), 1=1,2,
are equivalent, in the following we shall show that (T'¢), /¢ is symplectic with respect to their
R,-reduced Lagrangian symplectic forms szu ,
t, since Ty : TQ1 — TQ4 is symplectic with respect to their Lagrangian symplectic forms,
the map (To)* : QX TQ2) — Q2(TQ1) satisfies (Tp)*wl = wk. From (2.3) we know that,

- L
jmw- =T Wil

i = 1,2, that is, (T@);/Gwé"u2 = wf,,. In fac-

i =1,2, from the following commutative Diagram-5,

-

Q(TQs) 2 02((31)7 (12) 22— Q2(TQa),)

(T“’)*l <Tga>;l <Tw>z/gl

Q(TQ1) M Q2((I1)7 () 2 Q2(TQ1),)

Diagram-5
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we have that

*

T (T0)/cwi = (T0) /G T ) Wy = (s - (T0) ) wa,

— . * * L
=0 TP Ju) - Thoy W,

=j5 - (T)* - (G ) d,ws
=j5 (T wy =ji wi =75 wi, .

Note that 7,, is surjective, thus (T¢); w5, = wiy, -

Conversely, assume that the Rp)-reduced Lagrangian systems ((7'Q;) M,wﬁti,lwi), 1=1,2,
are equivalent, then there exists a diffeomorphism (T'y),,¢ : (T'Q1),, — (T'Q2)., which is
symplectic with respect to their R,-reduced Lagrangian symplectic forms wl-LM, i1 =1,2. From
the above commutative Diagram-4, we can define a map (T),, : (Jr)7 ' (u1) — (Jr)5 *(12) such
that 7, - (T), = ('), Tu, and the map Ty : TQ1 — TQ2 such that ¢ j,, = ju, - (T)u,
as well as a diffeomorphism ¢ : Q1 — Q2 whose tangent map is just T : TQ1 — T'Qs. From the
definition of (T'¢),, we know that (Ty), is (G1p,, Gau, )-equivariant. In the following we shall
show that Ty is symplectic with respect to the Lagrangian symplectic forms w’, i = 1,2, that
is, wi = (Tp)* - wg. Since (), 6 : (TQ1)u, — (TQ2)u, is symplectic with respect to their
Ry-reduced Lagrangian symplectic forms, the map ((T¢),/c)* : P (TQ2)u,) = L (TQ1),, )

satisfies ((T'¢)u/¢)* 'W2Lu2 = wle. From (2.3) we know that j; cwl = T -wiLM, i=1,2, from
the commutative Diagram-5, we have that

. L L * * L L

J:Zl Wy = 7::1 Wiy T Ty (T‘P)M/G TWopu, = ((T@M/G 'Tﬂl)* T Wy,

= (Tua - (T9))" iy = Gy TP )" Ty Wi

=y (T () iy w0y = Gy, - (T) i
Note that j,, is injective, and hence wi = (T'p)*wf. Thus, the regular point reducible La-
grangian systems (7'Q;, G;,wl, L;), i = 1,2, are equivalent.
Thus, the regular point reduction Theorem 4.1 for the RCL systems can be regarded as an
extension of the regular point reduction Theorem 4.2 for the regular Lagrangian systems under
the regular controlled Lagrangian equivalence conditions.

5 Regular Orbit Reduction of the RCL System

Since the set of regular Lagrangian systems with symmetries on T'Q) is a subset of the set
of RCL systems with symmetries on T'Q). If we first consider the regular orbit reduction of
a regular Lagrangian system with symmetry, then we may study the regular orbit reduction
of an RCL system with symmetry, as an extension of the regular orbit reduction of a regular
Lagrangian system under the regular controlled Lagrangian equivalence conditions. In order to
do this, in this section we consider the RCL system with symmetry and momentum map, and
first give the regular orbit reducible RCL system and the RoCL-equivalence, and then prove
the regular orbit reduction theorems for the RCL system and regular Lagrangian system.

Note that, if an RCL system with symmetry and momentum map is regular orbit reducible,
then the associated regular Lagrangian system must be regular orbit reducible. Thus, from
Definition 2.4 and Theorem 2.3, if the Legendre transformation FL : TQ — T*Q is (®T, ®7*)-
equivariant, then we can introduce a type of regular orbit reducible RCL systems as follows.
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Definition 5.1 (Regular orbit reducible RCL system) A 6-tuple (TQ,G,w”, L, F* CF),
where the hyperreqular Lagrangian L : TQ — R, and the fiber-preserving map F* : TQ — TQ
and the fiber submanifold C* of TQ are all G-invariant, is called a regular orbit reducible
RCL system if the Legendre transformation FL : TQ — T*Q is (®T, ®T*)-equivariant, and
there exists an orbit O,, | € g*, where p is a regular value of the momentum map Jr, such
that the reqular orbit reduced system, that is, the 5-tuple ((TQ)o“,w(LgM,lo“,féM,CéM), where
(TQ)o, = I, (0L)/G, 76,06, = ib,w" = (IL)b,ws! s lo, - 10, = L+ jo,, FF(I1(0,)) C
I 0w, 1§, - 10, = 10, - FX - jo,, and CE NI N (OL) # 0, C5, = 10, (C* NI;H(OL)), is
an RCL system, which is simply written as R,-reduced RCL system. Here, ((TQ)OM,UJ(%M) is
the R,-reduced space, the function lo, : (TQ)o, — R is called the R,-reduced Lagrangian, the
fiber-preserving map fé“ (TQ)o, — (TQ)o, is called the R,-reduced (external) force map,
and Cé# is a fiber submanifold of (TQ)o, that is called the R,-reduced control subset.

It is worth noting that for the regular orbit reducible RCL system (7'Q, G,w*, L, F* C¥),
the G-invariant external force map FX : TQ — TQ has to satisfy the conditions F*(J;'(0,)) C
JZI (0O,), and fé“ “To, = To, P “jo, so that we can define the R,-reduced external force map
f(%“ 1 (TQ)o, — (TQ)o,. The condition CENJI;'(O,) # 0 in the above definition ensures that
the G-invariant control subset CZ N J Zl(ON) can be reduced and that the R,-reduced control
subset is C5 =70, (C* NI (0,)).

Assume that the dynamical vector field §rg g .wz 1,7 ur) Of a given regular orbit reducible
RCL system (TQ, G,w”, L, FL',CF) with a control law u” € C* can be expressed by

10,6t L, 7Lty = &L+ VIt (F) + viift (u”). (5.1)

Then, for the regular orbit reducible RCL system we can also introduce the regular orbit
reducible controlled Lagrangian equivalence (RoCL-equivalence) as follows.

Definition 5.2 (RoCL-equivalence) Suppose that we have two reqular orbit reducible RCL
systems (T'Q;, Gy, wk, Li, FE.CE), i = 1,2, we say they are RoCL-equivalent, or simply, (TQ1,
Gi,wk, Ly, FE.ch) Rogk (TQa, Go,wk Lo, FF CL), if there exists a diffeomorphism ¢ : Q1 —
Q2 such that the following regular orbit reducible controlled Lagrangian matching conditions
hold :

RoCL-1 For O,,, pi € g}, the reqular reducible orbits of RCL systems (TQ;,Gi,wk, Ly,
FECH), i = 1,2, the map (T¢)o, = i, “T-jo,, ()i () = (F1)7(On) is (G, Ga)-
equivariant, and C¥ N (J1);"(Oh,) = (T9)o, (CE N (IL)TH(OL,)), where p = (1, p2), and
denote by ja; (S) the pre-image of a subset S C TQ2 under the map jo,, : (J0)5 1 (0,,) —
TQ,.

RoCL-2 For each control law u¥ : TQ, — C¥, there exists the control law uk : TQy — CL,
such that the two closed-loop dynamical systems produce the same dynamical vector fields, that

is, g(TQ2,G2,w2L,L2,F2L,u2L) To=T(Typ) - §(TQ1,G1,W1L,L1,FlL,uf)-

It is worth noting that for the regular orbit reducible RCL system, the induced equivalent
map (T'¢)o, also preserves the equivariance of the G-action on their regular orbits. If a feedback
control law is u” : TQ — C* is chosen, and v’ € C* NI 1(0,), and C* NI (O,) # 0,
then the Ro-reduced control law ugs : (TQ)o, — C5, = 70, (C* N J;10,)), and up, - 10, =
70, -u’jo,. The R,-reduced RCL system ((TQ)O“,LU(%H o, féu, uéﬂ) is a closed-loop regular
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dynamical system with the R,-reduced control law uéu. Assume that its dynamical vector field

§(TQ)o wh o, 15 ub ) Can be expressed by
(@0 oty don 155wl ) = Sto, T VIEE(SE,) + Vift(ug, ), (5.2)

where &, is the R,-reduced Euler-Lagrange vector field, and vlift( féu) = vlift( fCL)M)&O“,
Vlift(uéu) = Vlift(uéu)&ou are the changes of §,, under the actions of the R,-reduced external
force fé“ and the R,-reduced control law ué“, and the dynamical vector fields of the RCL
system and the R,-reduced RCL system satisfy the condition

é-((,I‘Q)OM )wéu7l0“"féu7uéu) ’ TO“ = TTO“ : é‘(TQ7G7wL,L,FL)uL) : ‘jOM (5.3)

(see [12, 20]). Then we can obtain the following regular orbit reduction theorem for the RCL
system, which explains the relationship between the RoCL-equivalence of the regular orbit
reducible RCL system with symmetry and the RCL-equivalence of the associated R,-reduced
RCL system.

Theorem 5.1 If two regular orbit reducible RCL systems (T'Q;, G, wk, L, FE.CE), i = 1,2,
are RoCL-equivalent if and only if the associated R,-reduced RCL systems ((TQi)OMawiLOMJ

lio,, iLOM,CiLOM), i =1,2, are RCL-equivalent.

Proof If (TQi,G1,wk, L1, FL,cL) "5 (TQs, Go,wk, Ly, FE,CE), then there exists a
diffeomorphism ¢ : Q1 — @2, such that for O,,, p; € g;, the regular reducible orbits, the
map (T'p)o, = j@iz Ty-jo,, I)7HO0u) = ()5 H(O,,) is (G1, Ga)-equivariant, and C4 N
(31)51(Ou,) = (T9)o, (CEN(T L) (O,)), and RoCL-2 holds. From the following commutative
Diagram-6:

Jjo, _ TO,
TQ: +—— (J1);'(On) —= (TQ1)o,,
T“"l (Te)o, l (Te)o, /Gl

TQs <22 (31)71(0p) —225 (TQw)o

M2

Diagram-6

we can define a map (T'p)o, /q : (TQl)o,” = (TQ2)o,, such that (T'p)o,/c - To0,, = TO,, *
(T'p)o,. Because (T'p)o, : (JL)l_l(Om) — (JL)Q_l((’)Mz) is (G1, Ga)-equivariant, (Tv)o, /¢ is
well-defined. We shall show that CQLOH2 = (TQO)OM/G(ClL(DM)' In fact, since (TQ;, Gy, wkF, L;,
FL.cl), i =1,2, are regular orbit reducible RCL systems, we have that CX N (JL)i_l((’)M) #)
and Clp, = 70,,(CF N (J1)71(O)), i = 1,2, From CF N (J1)3'(Oh) = (T)o,(Cf N
(J£)7'(O,,)), we have that

C30,, = 70,,(C3 N (IL)5 " (Op) = To,, - (T)o, (€T N (I)TH(O4))
=(T9)o,/c 70, (CL N (IL)T(O)) = (T‘P)OM/G(ClL(’)M)-

Thus, the condition RCL-1 holds. On the other hand, for the R,-reduced control law ulLO“1 :
(TQ1)o,, — C{“OM, we have the control law uf : TQ; — CF such that U1Lom O, = TO,, UL -
jo,, - From the condition RoCL-2 we know that there exists the control law ug : TQ2 — C3,

such that §(TQ2,G2,Q)§’,L2,F2L,M£‘) . T(p = T(T(p) . g(TQLGLUJf,Ll,FlLy’U‘f)' HOWeVer, for the control
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law uf : TQo — C%, we have the R,-reduced control law uéouz (TQ2)o,, — CzLouz such that
uQLO“2 7O, = TO,, -uk - jo,.,- Note that for i = 1,2, from (5.3), we have that

5((TQi)OM Mf‘ou, lioy, fbu, ﬂ#@u, ) TOu, = TTO!% ’ g(TQmGrnwiI‘»LmF»L»uf‘) "JOu; (5'4)

7

and from the commutative Diagram-6, (T'p)o, /a - T0,, = 70,, - (T¢)o, and jo,, - (T¢)o, =
(Ty) - jo,,, we have that

§(TQ2)0p, o, 120, o, o) (TP)0LIG TOU
= (T Q)0y, who,, 120, o, tho,,) " 0w~ (TP)o,
=T70,, " &(1Qs,Gawk Lo, FE wk) " JO., - (TP)0,
=T70,,  §1qQs.Gouwl Lo, rE uk) " (TP) - Jo,,
=T70,, T(T¢) §1q,.Grwk, L1, FEub) " JO,
=T(10,,  (T¥)o,)  &1q..c1wk L1, FEul) IO,
=T((T)o,/c " T0.,)  &Tq:,G1wk L1, FEuL) " IO,
=T((Te)o,/c) T70,, *&10..c1wh L1, FEul) IO,
= T(

(T0)0,/G)  &(TQu)0,, ko, 1104, Fo, ko, ) TOw
Since 70, : J)7HOu,) — (T'Q1)o,, is surjective, we have that

§(T@2)o,, ko, 430,y T, b0, ) (Ty)o,
=T((T¥)o,/c) - &(ravo,, whop 110 - flo, o, ) (5.5)

that is, the condition RCL-2 holds. So, the R,-reduced RCL systems ((TQi)ow,wiLOM lio,,, s
i]bw,CiLOM), i = 1,2, are RCL-equivalent.

éonversely, assume that the R,-reduced RCL systems ((TQi)o,, WiLoM Jlio,. Z%M , CiLOM),
i = 1,2, are RCL-equivalent; then there exists a diffeomorphism (T'p)o, /¢ : (TQ1)o,, —
(TQ2)o,,, such that CQLO“2 = (T@)OM/G(ClLOM)’ VO,,, i € g, @ = 1,2 and for the R,-
reduced control law ulLO“1 (T@h)o,, — ClLO“1 , there exists the R,-reduced control law uéow :
(TQ2)o0,, — C2Lou2v such that (5.5) holds. Then from commutative Diagram-6, we can define
amap (Tp)o, : (J£)7 " (Ou,) = ()3 ' (O,,) such that 70,,  (T')o, = (T'y)o,/a - To0,,, and
the map Ty : TQ1 — TQ2 such that Ty - jo, = jo,, " (T'¢)o,, as well as a diffeomorphism
v Q1 — Q2, whose tangent lift is just T : TQ1 — T Q2. Moreover, for the above definition
of (Tp)o,, we know that (Tp)o, is (G1,G2)-equivariant. In fact, for any z; € (J.); ' (Op,),
gi € Gi, i = 1,2 such that zo = (T'p)o, (21), [22] = (TY)o, /alz1], we have that

(T9)o, (Prg, (21) = 70, T0,, - (T9)o, (R4, (21)) = 70, T0,, - (T¢)o,(9121)
=10, (T9)o,/c 10, (n121) = 15, (TP)o,/cla] =15, - [2]
= 7552 "TO., (9222) = Pag, (22) = Pay, - (T'p)o, (21)-
Here we denote by 7531 (S) the pre-image of a subset S C (TQl)om under the map 7o, :

(JL)l_l(Om) - (TQ1)o,, , and for any z; € (JL)l_l((’)m), 75:1 “ 710, (21) = 21. So, we obtain
that (T'p)o, - P19, = Pay, - (T')o, . Moreover, we have that

€y N(I1)3 (Op) =175, 70,,(C5 N (I1)3 " (Op,))
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=10, C30,, =0, (T¥)o,/c(Cio,,)
=7o,, (T9)o./c 10,1 N(JIL)7" (Op))
=10, 10, " (T9)o, (€1 N(I1)7 ' (Ow))
= (T9)o,(CT N (IL)7 (O))-

Thus, the condition RoCL-1 holds. In the following we shall prove that the condition RoCL-2

holds. For the above Ro-reduced control laws ufy, —: (T'Qi)o,, — Clp, , i = 1,2, there exist

control laws ulL TQ; — CZ-L, such that uiLOM “TO,, = TO,, ulL “Jo,,, i =1,2. we shall prove
that
f(TQz,G2,w2L,L2,F2L,u§) Ty =T(Typ)- f(TQl,Gl,wlL,Ll,FlL,ulL)-

In fact, from (5.4) we have that

(T0)0,/6) E((1Q1)0,, who, 110, o, ko, ) TOm
(Te)o,/c) T70,, &1, ,G1wh L1, FEul) IO,
(TSD)O;L/G ’ TOM) ' g(TQ17G17wf‘,L1,F1L7u1L) 'jom

70,, " (T9)0.)  §1q, .G wk L1, FL uk) " JO,,

0., - T(TP) - §(1Q, 61wk L1, FE ub) - JOu, -

On the other hand,
g((TQ2)Ou2 ’“’2Lou2 ’l2ou2 ’f2LOp.2 ’“2Lou2) ’ (T@)OM/G ’ TOM
— 5((TQ2)OM2 wfo,. 1200, flp,, uko,)) “TO,, (Tp)o,
=T170,, * §TQs.Gowk Lo FE uk) * J0,., - (TP)o,

=T70,, " §(TQs.Gowl Lo, FEuk) " TP JO,, -

From (5.5) we have that

TTOuz 'g(TQ2,G2,w§,L2,F2L>U2L) Ty jom - TTOuz ’ T(TQO) ’ g(TQl,Gl,wf,LhFlL,uf) 'jom'

Note that the map jo,, : (J2)71(0,,) — TQq is injective, and Tro,, : TJ); " (0,) —
T(T'Q2)o,, is surjective, hence we have that

f(TQQ,Gz,sz,L27F2L,u§) T =T(Typ)- g(TQl,Gl,wlL7L17F1L7u1L)'

It follows that the theorem holds.

It is worth noting that, when the external force and control of a regular orbit reducible RCL
system (T'Q, G, w”, L, F' CF) are both zero, that is, F* = 0 and C* = (), then the RCL system
is just a regular orbit reducible Lagrangian system (TQ, G,w”, L). Then the following theorem
explains the relationship between the equivalence of the regular orbit reducible Lagrangian
systems with symmetries and the equivalence of the associated R,-reduced Lagrangian systems.
It is worthy of noting that for the regular orbit reducible Lagrangian system, the induced
equivalent map (7)o, not only keeps the equivariance of G-action on their regular orbits, but
also keeps the restriction of the (+)-symplectic structure on the regular orbit to J;'(O,,).
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Theorem 5.2 If two regular orbit reducible Lagrangian systems (TQ;, Gi,wk, L;), i = 1,2,
are equivalent, then their associated R,-reduced Lagrangian systems ((TQ)o, ., wiLOM, lio,,), 1=
1,2, must be equivalent. Conversely, if the R,-reduced Lagrangian systems ((TQ)@M,WZ-LOM,
lio,,), i = 1,2, are equivalent, and the induced map (T¢)o, : I£)7H0,) = (I1)3 (Ou,),

L+ L+

such that (JL)TO“1 Wi, = (Tcp)’(i)“-(JL);(f)“2 Wy, » then the regular orbit reducible Lagrangian

systems (T'Q;, Gy, wF, L;), i = 1,2, are equivalent.

Proof If two regular orbit reducible Lagrangian systems (TQ;, G;,wl, L;), i = 1,2, are
equivalent, then there exists a diffeomorphism ¢ : Q1 — Q2 such that Ty : TQ, — T'Q2 is sym-
plectic with respect to their Lagrangian symplectic forms w’, i = 1,2, and for Ouiy i €95, 1=
1,2, (Ty)o, = j@; Ty-jo,, : I)7H0m) = (I0)51(0,,) is (G, Go)-equivariant. From the
above commutative Diagram-6, we can define a map (T'¢)o,/q : (T'Q1)o,, — (TQ2)o,, such
that (T¢)o,. /¢ T0,, = T0,, (TP)o,. Since (Tp)o, : (J)7 ' (Ou) = (J£)3 " (Op) is (G1, Ga)-
equivariant, (T'¢)p, /¢ is well-defined. In order to prove that the associated R,-reduced La-
grangian systems ((7Q)o,, ., wiLOuv ,lio,, ), i = 1,2, are equivalent, in the following we shall prove
that (Tgo)ou /a is symplectic with respect to their R,-reduced Lagrangian symplectic forms
wiLoi, i = 1,2, that is, (Tcp)’(i)u/c 'WQL(’)M = oJlLOM. In fact, since Ty : TQ1 — TQ2 is symplec-
tic with respect to their Lagrangian symplectic forms, the map (Tp)* : Q*(TQ2) — Q2(T'Q1)
satisfies (T)" - w§ = wi’. From (2.4), we have that j§ -w/ =75 -wl, +IL)o,. -wiLoti,
i=1,2, and (JL)’{O“1 ~w1Lg“1 =((Ty)o,)" - (JL)§(9“2 -wQLgM. From the following commutative
Diagram-7:

3o, _ ou
P(TQ2) — = D*((Jr)7'(Op,)) " P((TQ2)0,,)
@or | )5, | TVo,c |

*

Q2TQ1) s 2((I)1 (0n) 2 (TQ1)o,,)
Diagram-7

we have that

O, - (TQO)?DM/GLU%OM =((TY)o,/c T0,,)" ""2Lf9u2
= (10,, - (T¥)o,)* - wio,,
(Te)o,)" 76

Jor, T jo,)" - ib

L
] wZOuz

L * * L+
wy W2 T (T<F7)oM : (-]L)zoﬂ2 "W20,,

L
5, - (T) ok — (n)io,, - wld

* L * L+
O,y W1 (JL)lou1 "Wi0,,

* L
TOMI . wloul .

Since 7o, is surjective, we have that ((T9)o,/c)" - w3, = wio, -

Conversely, assume that the R,-reduced Lagrangian systems ((TQi)OwawiLo“»liOui)a 1=
1,2, are equivalent; then there exists a diffeomorphism (T'p)o, /¢ @ (TQ1)o,, — (TQ2)o,,;
which is symplectic with respect to the R,-reduced Lagrangian symplectic forms wiLoi, 1=1,2,

that is, (Tgo)*bu /G -wQLOM = WlL(’)M . Thus, from the above commutative Diagram-6, we can define

amap (T'p)o, : (JL)l_l((’)m) — (JL)Q_l((’)#z), such that 70, - (Tp)o, = (T'Y)o,/a - To,, , and
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map Ty : TQ1 — TQs2, such that jo,, - (Te)o, = Ty - Jo,,, as well as a diffeomorphism
¢ : Q1 — @2, whose tangent map is just T'¢ : TQ1 — T'Q2. From definition of (T'p)o
know that (T'v)o
Now we shall show that T is symplectic with respect to the Lagrangian symplectic forms
i =1,2, that is, wl = (Tp)* -wk. In fact, since (Tp)o,/c: (TQ1)o,, — (TQ2)o,, is sym-
plectic with respect to their R,-reduced Lagrangian symplectic forms, the map ((T'p)o, /a)*
92((TQ2) ) = LP((TQ)o,,) satisfies (T)o, /)" 'szoM = oJlLOM. From (2.4) we have

u’

. 18 (G1, Ga)-equivariant.

UJ

7

that jo, -wj =15, ~wlo, + )0, -wiLOti, i = 1,2. From the commutative Diagram-7, we
have that

-k L _ _x . L * . L+

Jo,, Wi =To,, ~wio,, + JL)io,, ‘wio,,

* L * L
=To,,  (T¥)o,/c)"  wio,, + TL)io,, ‘w5,
L * L
= (TQO)OM/G 7'(')“1) "0, + (JL)loﬂ .wlgw

L * L+
(Tp)o,)" -wio,, + (Jr)io,, o,

(

= (10

= (Jo TSD Jou, )t 16, - wio,, + (JL)io,, -wid
]

j

M1

-(Tw) (oy,)"  170,, i = (L0, wsa,, ]+ (TL)io,, "wio

ey b1

M2

(Te)" - wk ~ (T9)o,)" - ()i, -whd,, + Tn)io,, -wid, -

Note that jo,, is injective, and by our hypothesis,

Jr)io,, "wia,, = (T9)o,) - (FL)so,, wsd,,

we have that wf = (T'¢)*w¥. Thus, the regular orbit reducible Lagrangian systems (T'Q;, G
wl L), i =1,2, are equivalent.

Thus, the regular orbit reduction Theorem 5.1 for the RCL systems can be regarded as an
extension of the regular orbit reduction Theorem 5.2 for the regular Lagrangian systems under
regular controlled Lagrangian equivalence conditions.

6 RCL System on a Generalization of Lie Group

As an application of regular point reduction of the RCL system with symmetry and a
momentum map, in this section, we study the regular point reducible RCL system on the
generalization of a Lie group, and give its Rj,-reduced RCL system, which is an RCL system
on the generalization of a coadjoint orbit of the Lie group.

Let G be a Lie group with Lie algebra g and T'G its tangent bundle and TG its cotangent
bundle with the canonical symplectic form w. Assume that L : TG — R is a hyperregular
Lagrangian, and that the Legendre transformation FL : TG — T*G is a diffeomorphism.
By using the Legendre transformation we can induce a Lagrangian symplectic form w’ on
the tangent bundle TG, that is, w? := (FL)*w. Define an action A : TG — R given by
A(v) := FL(v)v, Yv € TyG,g € G and an energy Er, : TG — R given by E := A— L. If
there exists an Euler-Lagrange vector field {7, on T'G, such that the Euler-Lagrange equation
i¢, wl' = dEy holds, then the triple (T'G,w”, L) is a regular Lagrangian system. An RCL system
on G is a 5-tuple (T'G,w”, L, F*,CY), where (T'G,w”, L) is a regular Lagrangian system, and
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the fiber-preserving map FL : TG — TG is an (external) force map, and the fiber submanifold
CL of TG is a control subset. In the following we shall give an R,-reduced RCL system on a
coadjoint orbit of the Lie group G.

We know that the left and right translations on the Lie group G induce the left and right
actions of G on itself. If Iy : G — G; I4(h) = ghg™' = Ly - R,~1(h), for g,h € G, is the inner
automorphism on G, then the adjoint representation of a Lie group G is defined by Ad, =
Tely=Ty1Ly-TeRy1 : g — g, and the coadjoint representation is given by Ad}l gt — g%
(Adg-1(n), &) = (u, Adg-1()), where g* is the dual of g, and p1 € g*, and £ € g and (,) denotes
the pairing on g* and g. We now identify locally T'G and G x g, as well as T*G and G x g*,
by using the left translation. In fact, the map A : TG — G x g, A(vg) := (g, (TeLy) - vy), for
any vy € T4G, which defines a vector bundle isomorphism usually referred to as the local left
trivialization of T'G. If the left G-action L, : G — G is free and proper, then the tangent lift
of the action to its tangent bundle T'G, given by ®7 : G x TG — TG, g - (h,w) := (gh,w), for
any g,h € G, w € g, and the cotangent lift of the action to its cotangent bundle T*G, given
by ®1* : G x T*G — T*G, g- (h,v) := (gh,v), for any g,h € G, v € g*, are also the free
and proper actions, and the orbit spaces (T'G)/G and (T*G)/G are both smooth manifolds and
716 : TG — (I'G)/G and 7 : T*G — (T*G)/G are both smooth submersions. We note that
(TGQ)/G is diffeomorphic to (G x g)/G and (T*G)/G is diffeomorphic to (G x g*)/G, since G
acts trivially on g and g*, it follows that (G x g)/G = g and (G x g*)/G = g*. And hence
(TG)/G is diffeomorphic to g and (T*G)/G is diffeomorphic to g*.

Assume that the tangent lifted left action ®7 : G x TG — T'G is symplectic with respect to
Lagrangian symplectic form w’, and that the action admits an Ad*-equivariant momentum map
Ji : TQ — g*. For aregular value of Jp, u € g*, denote G, = {g € G' | Adj = p} the isotropy
subgroup of the coadjoint G-action at the point u € g*, the coadjoint orbit O, = le(u)/GH

is a symplectic manifold with the symplectic form wﬁ uniquely characterized by the relation
* L _ % L
Ty W, =7, w”. (6.1)

The map j, : le(u) — T'G is the inclusion and 7, : le(u) — O, is the projection. The pair

((Op,w) is called the regular point reduced space of (T'G,w") at p.
On the other hand, from [1], we know that g* is a Poisson manifold with respect to the
(£)-Lie-Poisson bracket {-,-}+ defined by

of dg

{f,9}+(p) == i<u, [@’ &

[} vrgec @) new, (6.2)
where the element g—i € g is defined by the equality <’U, §—£> := Df(u) - v for any v € g*. Thus,
for the coadjoint orbit O, p € g*, the orbit symplectic structure can be defined by

w5, (V) (adg(v),ady (v) = £, [€.m]), VEn€g veO, g, (6.3)

I

which coincide with the restriction of the Lie-Poisson brackets on g* to the coadjoint orbit
O,,. Consequently, the coadjoint orbit (O, w(;u), 1 € g*, is symplectically diffeomorphic to an
Ry-reduced space (O,,w)) of (T'G,w") at p.

In the following we consider the Lagrangian L(g,€) : TG = G x g — R, which is usual the
kinetic minus the potential energy of the system, where (¢,£) € G X g, and & € g, regarded as
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the velocity of system. We can introduce the conjugate momentum p; = g—é, i=1,---,n, n=

dim G, and define the Legendre transformation FL: TG =G x g — T*G ~ @G x g%, (9%, &) —
(¢%,p;). If FL : TG — T*G is a diffeomorphism, then the Lagrangian L : TG — R is
hyperregular. Assume that the hyperregular Lagrangian L : TG — R is G-invariant, and that
the Legendre transformation FL : TG — T*G is (®1, ®T*)-equivariant, and that the fiber-
preserving map F'Y : TG — TG and the fiber submanifold C of TG are both left tangent
lifted G-action ®7 invariant. If the Euler-Lagrange vector field £, satisfies the Euler-Lagrange
equation i¢, wl' = dEy, where the energy Er, : TG — R given by E, := A — L, and the action
A:TG — Rgiven by A(v) := FL(v)v, Yv € TyG, g € G, and the flow F; of the Euler-Lagrange
vector field &, leaves the connected components of J Zl(u) invariant and commutes with the
G-action, then it induces a flow ff* on O, defined by f} -7, = 7, - F; - j,, and the vector field
&, generated by the flow f{* on (Ou,wﬁ ) is the Rj,-reduced Euler-Lagrange vector field with
the associated Rj,-reduced Lagrangian function [, : O,, — R defined by I, - 7, = L - j,, and
the Ry-reduced Euler-Lagrange equation ig, wr, = df;, holds, where the Rp-reduced energy
E;, : O, — R given by E;, := A, — l,, and the R,-reduced action A, : O, — R given by
Ay -1, = A-j,, and the Euler-Lagrange vector fields { and &, are 7,,-related. Thus, we obtain
the R,-reduced Lagrangian system ((’)#,wﬁ, 1) as follows.

Theorem 6.1 Assume that the Lagrangian L : TG — R is hyperregular, and that the Legen-
dre transformation FL : TG — T*G is (®T, ®T*)-equivariant. Then the 6-tuple (TG, G,w’ L,
FL.CE) is a regular point reducible RCL system on Lie group G, where the Lagrangian L :
TG — R, the fiber-preserving map FL : TG — TG and the fiber submanifold C¥ of TG are all
left tangent lifted G-action ®T invariant. For a point u € g*, the reqular value of the momen-
tum map Jr : TG — g*, the Ry-reduced system, that is, the 5-tuple (Ouvw(;uv Ly, ff,Cﬁ), s an
RCL system, where O, C g* is the coadjoint orbit, wo, s orbit symplectic form, 1, -1, = L-j,,
FEI () € I ), fEomy =70 FE G, CENI T (1) # 0, CE = 7,(CE NI (). Moreover,
two regular point reducible RCL systems (T'G;, G;,wk, L, FL,CL), i = 1,2, are RpCL-equivalent
if and only if the associated Ry,-reduced RCL systems (Oi#mwéw , lw”fiiﬂcL

im)’ 1=1,2, are
RCL-equivalent.

Moreover, we can study the regular point reduction of an RCL system with symmetry and
a momentum map on the generalization of a Lie group T'Q), where the configuration space
Q =G xV, G is a Lie group and V is a k-dimensional vector space. Define the left G-action
:GxQ — Q, (g, (h,0)) := (gh,0), for any g,h € G, 6 € V, that is, the G-action on
Q is the left translation on the first factor G, and G acts trivially on the second factor V.
Since TQ = TG x TV, and TV =2 V x V, by using the left trivialization of T'G, that is,
TG =2 G x g, we have that TQQ = G x g x V x V. If the left G-action ® : G x Q@ — @
is free and proper, then the tangent lift of the action to its tangent bundle T'Q), given by
T .G xTQ — TQ, T (g, (h,n,0,k)) := (gh,n,0,k), for any g,h € G, n € g, 0,k € V, is also
a free and proper action, the orbit space (T'Q)/G is a smooth manifold and 7 : TQ — (TQ)/G
is a smooth submersion. Since G acts trivially on g and on V' x V, it follows that (T'Q)/G is
diffeomorphic to g x V x V.

For u € g*, the coadjoint orbit O,, C g* has the orbit symplectic forms wgu. Let wy be the
canonical symplectic form on T*V =V x V* given by

wv (01, A1), (02, A2)) = (A2, 01) — (A1, 02),
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where (6;,\;) € V x V* i =1,2, (-,-) is the natural pairing on V* and V. Since V and V* is
isomorphic, there is a map o : V. — V* such that \; = 0(9;), for 6; € V,i = 1,2, we can induce
that a symplectic form w‘L, on TV 2V x V is given by

wir((61,61), (02,62)) = wy (61, A1), (02, A2)) = (A2, 01) — (A1, 62).

Thus, we can induce a symplectic form a(:ngVXV = T(*guwa + Tpw{ on the smooth manifold
O, x V x V, where the maps 70, : O, XV xV = Oy and 7v : Oy x V. xV = V XV are
canonical projections.

On the other hand, the cotangent bundle 7% has a canonical symplectic form wg, and the
tangent bundle T'Q) has a Lagrangian symplectic form wé = (FL)'wq, from TQ = TG xTV we
have that wé = 1wl +r3wl on TQ, where w is the Lagrangian symplectic form on TG and the
maps 71 : Q =GXxV = Gand o : Q = GxV — V are canonical projections. Assume that the
tangent lift of the left G-action ®7 : G xT'Q — T'Q is symplectic with respect to wé, and admits
an associated Ad*-equivariant momentum map J(L;, : T'QQ — g* such that Jé-’i’f = Jé, where Jé :
TG — g* is a momentum map of left G-action on T'G and we assume that it exists, if 4 € g* is a
regular value of J§, then u € g* is also a regular value of J§ and (J5) ™! () = (J§)~* (u) x VXV,
Denote G, = {g € G | Ad, u = p} the isotropy subgroup of coadjoint G-action at the point
p € g*. It follows that G, acts also freely and properly on (Jé)_l(u), the regular point
reduced space (TQ), = (J§) ' (1)/Gu = (TG), x V x V of (TQ,ws) at p, is a symplectic
manifold with the reduced Lagrangian symplectic form w’
ol =

[l
7t (3G) (1) = (TQ), is the projection. Since ((T'G),,w)) is symplectically diffeomorphic to

. uniquely characterized by the relation

j;wé = j;Tl*wé + j;TQ*OJ‘L/, where the map j, : (J(L;,)_l(,u) — T'Q is the inclusion and

(Ou,wg, ), we have that ((7T'Q), wy;) is symplectically diffeomorphic to (O, x V' xV, a’(;fx\/xv)'

Now we identify TG and G x g, by using the left translation, and TV =2 V x V, then TQ =
G xgxV xV. Consequently, we consider the Lagrangian L(g, &, 0, 9) TQEGxgxVxV =R,
which is usually the total kinetic minus potential energy of the system, where (g,&) € G x g,
and @ € V, & and 9 = 9 (j =1,--- ., j=1,--- ,k,n =dimG, k = dimV), regarded as
the velocities of the system. We can introduce the conjugate momentum p; = %, l; = %,
i1=1,---,n, j=1,---  k, and define the Legendre transformation F.L: TQ =2 GxgxV xV —
T*Q = Gxg*xVxV* (¢¢,&,07,09) = (¢', ps, 09, ;). U FL:TQ — T*Q is a diffeomorphism,
then the Lagrangian L : T'QQ — R is hyperregular. We can define the Lagrangian symplectic
form on T'Q) given by wé = (FL)*wq, and the momentum map Jé :TQ — g* given by
Jé = Jg - FL. If the Legendre transformation FL : TQ — T*Q is (®T, ®T*)-equivariant,
from Theorem 2.1 we know that J é is Ad*-equivariant, and if ;4 € g* is a regular value of the
momentum map Jg, then p is also a regular value of the momentum map J é Moreover, we
consider the regular point reduced space ((T'Q), = (J§) ™' (1) /Gy, wf) of (TQ,w") at p, from
Theorems 2.2 and 6.1, we know that ((7'Q) ., wﬁ) is symplectically diffeomorphic to the regular
point reduced space ((T*Q)u,w,) of (T*Q,wq) at p, and hence symplectically diffeomorphic
to the orbit space (O, x V x V, @55vav), e g*.

Assume that the hyperregular Lagrangian L : T'QQ — R is G-invariant, and that the Euler-
Lagrange vector field £, satisfies the Euler-Lagrange equation i¢, w” = dEy, where the energy
E;, : TQ — Ris given by Ey, := A — L, and the action A : TQ — R is given by A(v) :=
FL(v)v, Yo € T,Q, g € Q. If the flow F; of the Euler-Lagrange vector field {; leaves the
connected components of (J&) ! (1) invariant and commutes with the G-action, then it induces
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a flow f{' on (T'Q),, defined by ff'- 7, = 7, - F; - j,, and the vector field &, generated by
the flow f{' on ((TQ),,w) is the Rj-reduced Euler-Lagrange vector field with the associated
Rp-reduced Lagrangian function [, : (T'Q),, — R defined by [, -7, = L- j,,, and the R,-reduced
Euler-Lagrange equation igluw L = dEj, holds, where the Ry-reduced energy E;, : (TQ), — R
given by Ej := A, —1l,, and the Rj-reduced action A, : (T'Q), — R, given by A, -7, = A j,,
and the Euler-Lagrange vector fields £, and §;, are 7,-related. Thus, we obtain the R,-reduced
Lagrangian system ((T'Q),, wﬁ, 1,). Moreover, if the hyperregular Lagrangian L : TQ — R, the
fiber-preserving map F : TQ — T'Q and the fiber submanifold C* of T'Q are all left tangent
lifted G-action ®” invariant, then we have the following theorem.

Theorem 6.2 Assume that the Lagrangian L : TQ — R is hyperregular, and that the Legen-
dre transformation FL : TQ — T*Q is (®T, ®T*)-equivariant. Then the 6-tuple (TQ,G,w”, L,
FL CE) is a regular point reducible RCL system, where Q = G x V', and G is a Lie group and
V' is a k-dimensional vector space, and the Lagrangian L : TQ — R, the fiber-preserving
map F¥ : TQ — TQ and the fiber submanifold C* of TQ are all left tangent lifted G-
action ®T invariant. For a point pu € g*, the regular value of the momentum map Jé :
TQ — g*, the Ry-reduced system, that is, the 5-tuple (O, x V x V,(:J(T)fxvxv,lﬂ,ff,clg),
is an RCL system, where O, C g* is the coadjoint orbit, @55vav s orbit symplectic for-
mon O, xV xV, 1, -1, =1L-j,, FL((Jé)_l(,u)) C (Jé)_l(,u), flf 7, =10 FE G,
CENIG) " Hp) #0, CL =7,(CHN(IG) (). Moreover, two regular point reducible RCL sys-
tems (TQ;, Gi,wk, L, F£,CL), i = 1,2, are RpCL-equivalent if and only if the associated R,,-
reduced RCL systems (O, x Vi x Vi,fu(;iixwxw, Lips lﬁi,CiLM),i = 1,2, are RCL-equivalent.
7 Conclusions

The theory of controlled mechanical system is a very important subject, and its research
gathers together some separate areas of research; such as mechanics, differential geometry and
nonlinear control theory, etc., and the emphasis of this research on geometry is motivated by
the aim of understanding the structure of equations of motion of the system to aid both analysis
and design. Following the theoretical development of geometric mechanics, a lot of important
problems about this subject were being explored and studied (see [12, 18-27]). In particular, it
is worth noting that the research idea and work in [12] are very important, the authors set up
the regular reduction theory for the standing regular controlled Hamiltonian systems defined on
a symplectic fiber bundle, from the viewpoint of completeness of Marsden-Weinstein reduction.

In this paper, following the ideas in [12], we define an RCL system which is a standing
regular Lagrangian system in a symplectic fiber bundle, by using the vertical lift map of the
external force and the control, and describing the dynamical vector fields of the RCL system as
the synthesis of Euler-Lagrange vector field and its changes under the actions of the external
force and the control. Moreover, we can describe the RCL-equivalence, the RpCL-equivalence,
and the RoCL-equivalence, and prove the regular point and regular orbit reduction theorems
for the RCL system and the regular Lagrangian system with symmetry and a momentum map.
Thus, we set up the regular reduction theory for the RCL system defined on a symplectic fiber
bundle, by carefully analyzing the geometrical and topological structures of the phase space and
the reduced phase space of the corresponding regular Lagrangian system. The reduction ex-
tends the symmetric reduction theory for a regular Lagrangian system under regular controlled
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Lagrangian equivalence conditions.

We know that the different geometric structures determine the different controlled mechan-
ical systems. It is a natural idea to develop a variety of reduction theory and applications for
RCH systems and RCL systems, in particular, in celestial mechanics, hydrodynamics and plas-
ma physics. In addition, it is also an important topic for us to explore and reveal the deeply
internal relationships between the geometrical structures of phase spaces and the dynamical
vector fields of the controlled mechanical systems. However, it is an important task for us to
correct and develop well the research work of Professor Jerrold E. Marsden, such that we never
feel sorry for his great cause.
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