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The Uniqueness of Minimal Maps into Cartan-Hadamard
Manifolds via the Squared Singular Values

Zhiwei JIA! Minghao LI? Ling YANG3

Abstract In this paper, the authors give a uniqueness theorem for the Dirichlet problem
of minimal maps into general Riemannian manifolds with non-positive sectional curvature,
improving [Lee, YI., Ooi, Y. S. and Tsui, MP., Uniqueness of minimal graph in general
codimension, J. Geom. Anal., 29, 2019, 121-133, Theorem 5.2]. The proof of this theorem
is based on the convexity of several functions in terms of squared singular values along the
geodesic homotopy of two given minimal maps.
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1 Introduction

Let f = (f1,---, f") be a vector-valued function on a domain Q C R™, I'(f) := {(z, f(x)) :
x € Q} be the graph of f, then I'y is a minimal submanifold (i.e., the mean curvature vectors

vanish everywhere) of R™*" if and only if f satisfies the minimal surface system as follows:

LN _ofe
3 ain(\/bag”%):o, Va=1,---,n, (1.1)

4,j=1

where (g*/) is the inverse of (gi;) := (s + i O 917) and g := det(g;;). Ay := /g is called
the slope of f. As a generalization, Schoeg:[;)] introduced the concept of minimal map: Let
(M, gar) and (N, gn) be two Riemannian manifolds of dimension m and n, respectively, then a
smooth map f: M — N is a minimal map if and only if its graph is a minimal submanifold in
the product manifold M x N. The research on minimal graphs has a long and fertile history
and a lot of works focus on the Dirichlet problem: Given a bounded domain €2 in M and a map
¢ from the boundary of Q (denoted by 9€Q) into N, what kind of and how many minimal maps

exist, so that each one f: Q — N satisfies f|oq = ¢.
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For the case of minimal graphs of codimension 1, i.e., N = R, the solution to the Dirichlet
problem is unique (if exists), and the graph of this solution is area-minimizing, i.e., the volume
of this submanifold takes the minimum along all submanifolds with the graph of ¢ as their
boundary. These conclusions can be derived from the convexity of the volume functional (see
e.g. [1, Chap. 12]). Unfortunately, these beautiful results cannot be generalized to higher
codimensional cases, i.e., n > 2. In their pioneering paper [2], Lawson-Osserman constructed
distinct minimal maps f1, f2, f3 from the unit disk I in R? to R? sharing the same boundary
data, where f3 corresponds to an unstable minimal graph, i.e., even a little deformation can
decrease its area. Afterwards, by making systematic developments on the Lawson-Osserman
constructions, the authors showed in [10] that there exist infinitely many vector-valued functions
on Euclidean spheres, so that we can find infinitely many solutions to the Dirichlet problem
with each of them as the boundary data. Therefore, it is usually referred to as a restricted class
of submanifolds when we talk about the uniqueness and stability of minimal graphs of higher
codimension.

From the viewpoint of singular values, Lee, Wang, Tsui, Ooi and other mathematicians [3-7]
studied this problem, and produced a series of successive works. Let df be the tangent map
from T, M into Ty, N, then for any non-negative number A, A is a singular value of df at x if

and only if A? is a critical value of the squared norm function
v gn(df(v),df(v), YveTl,M, |v]=1L1. (1.2)

By the theory of singular value decomposition, the slope of f can be written as

m

Ap=TJa+x)7, (1.3)

i=1
where A\; > --- > )\, are all singular values of df at x. As shown in [4],

m
(21, xm) = [[(1+22)3 (1.4)
i=1
is a strictly convex (or convex) function on M (or M), where M consists of all vectors in

RY, := [0, +00)™ satisfying

Tix; < 1, Vi#j, (15)
[[a-2)+>Y —ad)---af---(1—2}) >0, (1.6)
=1 1=1

and M is the closure of M. Moreover, in conjunction with the second variation formula of the
volume functional in terms of singular values (see [6]), criteria for the stability and uniqueness

of minimal graphs can be established as follows.



The Untqueness of Minimal Maps into Cartan-Hadamard Manifolds via the Squared Singular Values 103

Theorem 1.1 (see [4]) Let f : M — N be a minimal map, where N has non-positive
sectional curvature everywhere, then the graph of f is stable (or weakly stable) whenever the

singular value vector (A1, , Am) € M (or M) everywhere on M.

Theorem 1.2 (see [7])  Suppose that fo, f1 : QC M) — R™ are both minimal maps with
the same boundary data, and the singular value vectors of both fo and fi1 all lie in a fized

symmetric conver subset of M, then fo = fi.

To prove Theorem 1.2, it is natural to consider the geodesic homotopy {f: : t € [0,1]} of
fo and f1, such that for each x € M, ~,(¢) := fi(z) is a geodesic connecting fo(z) and f1(z).
Along each v,, denote by A(t) := (A1 (¢),- - , A (t)) the singular value vector function; then it is

k

easy to verify that Y \;(t) is a convex function for each 1 < k < m. Based on this fundamental
i=1

fact, we can show the singular value vectors of f; still lie in M, and then f, = f; follows from

the second variation formula. However, if we replace the target manifold of minimal maps by
k
a general Riemannian manifold N with non-positive sectional curvature, Y A;(¢) is no longer
i=1
convex, so the above scheme is not feasible.

To overcome this obstruction, we consider the squared singular value vector

in the present paper. Let N be a subset of RY,, which consists of all such vectors a :=
(a1, -+ ,an,) satisfying the following two conditions:
a;a; S 1, Vi #], (18)
[[a=a)+> (1 —a)-ai--(1-an) >0. (1.9)
i=1 i=1

Then obviously
N (df) e N & A(df) € M. (1.10)

The main goal of this paper is the proof of the following criterion for the uniqueness of mini-
mal maps into Riemannian manifolds with non-positive sectional curvature, which gives some

corollaries.

Theorem 1.3 Let N be a complete Riemannian manifold with non-positive sectional cur-
vature, and fo, f1 : Q(C M) — N be minimal maps with the same boundary data. If fq is
homotopic to fi, and both A\2(dfo) and N2(dfy) lie in a symmetric convexr set C C N, then

fo=f1.

Corollary 1.1 Let N be a complete Riemannian manifold with non-positive sectional cur-
vature. Suppose that fo, f1 : Q(C M) — N are minimal maps with the same boundary data,

which are homotopic to each other, then fo = f1 if either of the following occurs:
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o The singular values of fo and f1 all satisfy \? + )\2 <2 (Vi #j) and Z A <3 - %
e m > 3, and the singular values of fo and fi all satisfy \? + )\2 < 2 (Vi # j) and

[T+ < VB2 - L)%

k m—1
=1

e The slopes of fo and fi are no more than /3.

In particular, the first conclusion of Corollary 1.1 is an improvement of [3, Theorem 5.2],
which claims fo = f1 whenever i A2 < 2.

This paper will be organizeé:;s follows. In Section 2, we prove the existence of geodesic
homotopy {f; : t € [0,1]} of fo and f1 with the aid of the classical Cartan-Hadamard theorem
and we calculate the second derivative of the volume function of I'(f;) in terms of the singular
values. Afterwards in Section 3, by applying majorization techniques in convex optimisation
as in [3, 7], we establish the following confined property of the squared singular value vector
function along the geodesic homotopy: For any interval [t1,ts] C [O, 1], A2 (t1),\2(t2) € N
implies A?(t) € N. In the process, the convexity of the functions Z A2(t) with 1 <k <m
plays a crucial role. Section 4 will be dedicated to the proof of Theorem 1 3 based on preliminary

works in the last two sections. Finally in Section 5, the construction of symmetric convex subsets

of N enables us to give applications of Theorem 1.3.

2 The Second Variation Formula for the Volume Functional

Let Q be a bounded domain of an m-dimensional Riemannian manifold (M, gas), (N, gn)
be an n-dimensional complete Riemanniam manifold with non-positive sectional curvature, i.e.,
Ky <0, and fo, f1 be both smooth maps from €2 into N. Assume that fy, f1 are homotopic to
each other, and fyloq = fi]oq- Let N be the universal covering manifold of N equipped with the
pull-back metric g5, f'o, ]71 : Q0 — N be lifts of fo, f1, respectively, so that ]70(300) = ﬁ(xo) for a
fixed wg € Q, then K5 < 0 and the classical Cartan-Hadamard theorem implies the existence
and uniqueness of the geodesic 7, (t) : [0,1] — N for each z € €, so that 7,(0) = fo(z),
32(1) = fi(z). Define

file) :=F(), fo=mofs

with 7 the universal covering mapping from N onto N. Such {f; : M — N | t € [0,1]} is called
a geodesic homotopy, which satisfies

e f, smoothly depends on ¢;

e for each y € 99, t € [0,1] — fi(y) is a constant function ;

o for each x € Q, v,(t) := fi(x) is a geodesic in N connecting fo(z) and f1(x).

Given 0 <t <1, then f; induces an embedding

x € Qw (z, fr(x)) € M X N,
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whose image, denoted by I'y,, is the graph of f;. For each x € Q, by the theory of singular
value decomposition, there exist orthonormal bases {a;}7,, {bj};?:l in T,M and Ty, N,

respectively, such that

d )\i(t)bia Z:]w T 91
fulas) = 0, i=r+1,---,m, (2.1)

where
M) > > M) > At () = = An(t) = 0 (2.2)

are singular values of (dft)s : (Te, gnr) — (Tf,(2), 9n), and 7 is the rank of this tangent map.
As in [3],

A) = (M(D), -+ Am(t)) (2.3)
is called the singular value vector of df; at x. Let
9(t) :==gm + fign
be the induced metric on I'y,, whose corresponding volume form is
dv, = y/det(gi;(t)) doas (2.4)
with dvs the volume form of M and
9i5(t) == gm(ai, a;) + gn (dfe(as), dfe(a;))- (2.5)

Denote by V := % the variation field on €2, then a straightforward calculation shows

d
3% (t) = (Vay.(a)Vidfi(a;)) + (dfi(ai), Vag, @) V) (2.6)
d2
2% (1) = 2(Vapen Vs Vasi(anV)
+(R(V,dfi(a:)V,dfi(a;)) + (dfi(a:), R(V,dfi(a;))V)

+ (Vag, () VvVidfi(as)) + (dfila;), Vag, o) Vv V). (2.7)
Here (-,-) := gn(+,-), V is the Levi-Civita connection associated to gy and
R(X, Y) =VxVy - VyVx — V[Xﬁy] (2.8)

is the corresponding curvature operator. Denote by

A(t) ::‘/Q“det(gij(t)) d’UM (29)
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the volume of I'¢,, then

;; =;/ 5 (i,

ng 1
—dgir g dgu 1/ 5490\ 2
— __ ij ~JIIR kl =2 Qw - ( zg_]) d
/9”;19 a9 Tt ”219 at )

m

°9i
/ Z dt; duy (2.11)

with (%) the inverse of (g;;). Denoting

Pia = (Vafi(a)V: ba) (2.12)
and replacing =5 g” and ddtg;] in (2.11) with formulas in (2.6)—(2.7), we have
d2
@A(t) = (i) + (ii) + (iii) + (iv) + (v), (2.13)
where
2
. Dii )\i)\jpiipjj
() =/ PR s vicR D DI g L (2.14)
0 (1<-< LA o, AT AD(+ /\j))
+ 2XiAjpijpji
(i :/ Py +Pj — AN (2.15)
D (S (S

2
(i) = /Q 3 Pia__qy,, (2.16)

1+ A2
1<i<rr+1<a<n + g
(iv) /

Ql<1<r

A +¥

1<i<r

i)dvt, (2.17)

(R(b;, V)b;, Vdu,. (2.18)

As shown in [4], (i) > 0 whenever A € M, (ii) > 0 whenever 0 < \;\; < 1 for each i # j, (iii)

is non-negative, (iv) = 0 since {f;} is a geodesic homotopy and (v) > 0 since Ky < 0.

3 Confined Properties of Squared Singular Value Vectors

Definition 3.1 (see [7]) Let z := (21, - ,Zm), ¥ := (Y1, * ,Ym) € R™. y is called

l-weakly majorized by x, whenever
k k
PRSI
i=1 j=1

for k= 1,2--- 1, where {x;} (or {y;}) is a rearrangement of {x;} (or {y:}) in descending
order, denoted by y <; x.
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For an arbitrary point € R, let W(xz) := {y € RY; : y <, v}, E(z) be the set consisting
of all these points (81Z4(1), -, 0mTo(m)), Where o is an arbitrary permutation of {1,---,m}
and §; = 0 or 1, and H(x) be the convex hull of E(x), then W (z) = H(x) (see [8, Theorem 6]).

The following two lemmas on W (x) shall play a crucial part on the present paper.

Lemma 3.1 Let D be a domain of R™, F be a strictly convex, symmetric function on D,
such that for each u,v € D, u; < v; for eachi =1,---  m implies F(u) < F(v), and the equality
holds if and only if w = v. Then for each x € D satisfying W(x) C D, we have F(y) < F(x)
for each y € W(z), where the equality holds if and only if y is a rearrangement of x.

Proof Denote
E(z) ={v1, -, vp} (3.1)
with
Va = (07T, (1)s "+ OmTan(m)); (3.2)

then each y € W (x) = H(x) can be written as

Y= Av1+ -+ Apvp, (3.3)
where A1, - -+, A, are all non-negative numbers, satisfying 2: Ao = 1. Let
Wo, := (Toy (1)5 " > Tag (m)) (3.4)
and
z:=Mwi + -+ ANw, € H(z). (3.5)

Combining (3.1)—(3.5), we have y; < z; for all i = 1,--- ;m. Along with the strict convexity

and symmetry of F', we get
F(y) < F(z) < F(x),

where the equality holds if and only if y = z = w,, for some «, i.e., y is a rearrangement of .

Lemma 3.2 Let C be a symmetric convex subset of N defined in (1.8)~(1.9), then W (x) C
N for each x € C. Moreover, if y € W(z) N ON and max{y;} > 1, then Y. y; = >_ x;. Here

i=1 i=1
ON consists of all such vectors a := (a1, ,am) in N satisfying

a; =1 .6
| Jnax aia (3.6)

or

[T =a)+> (1 —a) a1 =am) =0. (3.7)
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Proof Let y be an arbitrary point in W (z). Since W (x) is preserved under the action of

permutations, without loss of generality we can assume
TLZ > Ty YL 2 Y (3.8)

If y; < 1, then y automatically satisfies (1.8)—(1.9) and hence y € N. Now we assume y; > 1.

In this case, noting that

we have
_ 1
yeN ey <1  and 1_—+G(y2,---,ym)§m—17
e (3.10)
y€ON yjya =1 or ﬁ—l—G(yg,--- JYm) =m — 1
-1
with
. m—1
G: (Y2, - ,Ym) €[0,1) Hgl_yi. (3.11)
Due to the symmetry and convexity of C,
= (w2, 21,23, , Tim) (3.12)
and
T+ 1+ a0 11+
2 :( 12 27 12 27x37"'7xm) (313)
both lie in C, then
Y1+ Y2\ 2 T1 + T\ 2
e < ( ) =( ) <t (3.14)
2 2
Denote
z = (Z13227Z37 e 7Zm)
= (y1, 72 + (21 — Y1), 73, , Tm), (3.15)

then z is also a convex combination of x and ¥ and hence z € C. By y <, x, it is easy to verify

that y <,,, z and

(Y2, s Ym) =<m—1 (22, , Zm)- (3.16)
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Applying Lemma 3.1 to the function G gives

1 1
- e y) < ——— o Zm) <m—1 1
1_yl+G(y2, Y )_1_21+G(22 Zm) S m (3.17)

and then y € N. Particularly if y € AN, then (3.10) and (3.14) imply 1_1y1 +G (Y2, Ym) =

m — 1. Thus the equality of (3.17) holds, which forces y = z and then

Zyzzzzzzzdh (3.18)

Now we consider the squared singular value vectors
N(t) = (A (1), A5, (1) (3.19)
along a given geodesic homotopy. Based on Lemma 3.2, we can get a confined property for
A2(t) as follows.

Proposition 3.1 Let [t1,t2] C [0,1] and

to—1 o t—1t1 o
= t
plt) = 2N () + N (e)

be the linear function on this interval satisfying p(t1) = A2(t1) and u(tz) = N\%(t2), then

l

l
DNE <) wi(t), Vi<i<m.
i=1

i=1

Especially if zl: A (tg) = Zl: wi(to) for some to € (t1,t2), we have Vay,(a,)V =0 fori=1,--- 1,
t e [tl,tg], - -

Moreover, if both \*(t1) and \(ts) lie in a symmetric convex subset C in N, then \%(t) € N
for each t € [t1,ts]. Especially if N%(to) € ON and \3(to) > 1 for some to € (t1,t2), we have

vdft(ai)v =0 fori = 17" s, m, te [tlatZ]-

Proof For any fixed ¢y € [t1,t2], let {a;} be an orthonormal basis of T, M, such that

A(tg), 1<i<r:=rankdfy,,
(dfio(ai), dfiy(ai)) = { . (3.20)
0, r+1<i:<m.
Now we consider two functions
k
Fi(t) =Y (dfi(as), dfi(as)), (3.21)
i=1
k
Sk(t) =Y A (t) (3.22)
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on [t1,ta]. Due to the properties of singular values, it is easily verified that S (to) = Fx(to) and
Fy(t) < Sk(t). On the other hand,

a2 2 < d <
@Fk(t) =2 > (dfi(ai), dfi(a:)) = P > 2(Vag,(an Vs dfi(a:)
=1 i=1
k k
=2 (Vas,a)Vs Vasiao V) +2 Y (Vv Vay, @) Vs dfe(ai)
=1 =1

_2Z|vdft(ab)V| +2Z (V,dfi(a:))V, dfi(a:))

k
+2> (Vg (an Vv Vidfi(a:)) > 0 (3.23)

i=1

showing FJ(t) is a convex function. Thus

ty —t to —t
Sk(to) = Fi(to) < 2—LFy(t1) + — 1Fk<t2)
to —t1 o —t 1
ty —t t
< 2 OSk(tl)'i‘ 0 Sk(t2)
to —t1 ta — 11
k
= > wilto). (3.24)
=1

1
Moreover, if Sj(tg) = Z i(to), then (3.24) shows Fj|p, ¢, is linear and hence (3.23) implies

VaianV = 0fori=1,.-- L.

Note that (3.24) is equivalent to saying that A?(t) <,, u(t) for t € [t1,t2]. Once A2(t1),
A2(t2) € C, the symmetry and convexity of C C N show u(t) € C and hence we get \%(t) € N
by Lemma 3.2. Moreover, if A?(¢g) € ON and A (ty) > 1, then

= Z/\?(to) = Z,Ui(to)

and hence Vgy,(o,)V =0 fori=1,--- ,mand t € [t1,1s].

4 Proof of the Main Theorem

Suppose that fo, f1 : Q(C M) — N are minimal maps, such that fy, fi are homotopic to
each other and foloa = filaq. Let {fi : Q@ — N |t € [0,1]} be a geodesic homotopy of fy and
f1. For each z € Q, let \2(t) := A\2((df;).) be the squared singular value vector function. By
Proposition 3.1, A2(0), \2(1) € C ensure A\2(t) € N, i.e., A\(t) € M and hence %A(t) >0. In

(t

conjunction with At) = %|t:1A(t) = 0 (since both fp and f; are minimal maps), we

dtle=o0
have %A(t) =0, i.e., (i) = (ii) = (iii) = 0 for each ¢t € (0,1) (see (2.14)—(2.16)).
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Define
Ay :={t€(0,1): A(t) € M},
Ay = {t S (0, 1) : )\Q(t) < 1},

Ap i ={t €(0,1) : A (t) < 1},
Am—i—l = (07 1)
When ¢t € Ay, as shown in [4, Theorem 3.2], (i) = (ii) = (iii) = 0 implies that p;o, = 0 for
any 1 <i<mand 1 <« <n and hence

Vdft(ai)V = 0, V1 < ) <m. (42)

By the continuity, this equality holds for each ¢ € A;.

If A2\ Ay = 0, (4.2) always holds in Ap. Otherwise, for each ¢ in this set, we have \(t) € ON,
then A\3(t) < 1 forces A\?(¢) > 1, then Proposition 3.1 and the continuity ensure (4.2) holds for
all t € As.

Next we need to show that the equality (4.2) also holds on each A; by induction on i.
Suppose that Vg4y,(q,)V = 0 holds for all ¢ € Ay with 2 < k < m and the open set Apyq \ Ay is
nonempty. For each t € [t1,t2] C Agy1 \ Ay, it is easy to see that A\ (t) = -+ = \x(t) = 1 and

k k
1> Agya(t) > -+ > Ap(t) > 0, which means Y A?(t) = 3 p;(t), and we can conclude that
i=1 i=1

Vi)V =0, V1<i<k t€Ap (4.3)

by Proposition 3.1. In combination of (2.14)—(2.16), we have p;, = 0 for kK +1 < i < r and
1 <« < n, which means Vgy,q,)V = 0 for £ +1 <4 < m. Together with (4.3) we know (4.2)
also holds for ¢t € Ay41, finishing the induction step.

Therefore, for each t € [0,1], V is a parallel vector field on the graph I'y,. According to
the boundary condition we can derive V' = 0 and hence fy = f1. This completes the proof of
Theorem 1.3.

5 Applications

In this section, we give some applications of Theorem 1.3.
Let C be a symmetric convex subset of N, then for each a € C, we can proceed as in
(3.12)—(3.14) to show

ai+a; <2, VI<i<j<m. (5.1)

On the other hand, from this condition, it immediately follows that

. N\ 2
%%g(%;%)gL (5.2)
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i.e., such a must satisfy (1.8). It is natural to ask, besides (5.1), whichever additional restrictions
can make sure a symmetric convex subset of R, completely lies in N. In the following text

we shall consider this question.

Corollary 5.1 Suppose that fo, f1: Q(C M) — N are minimal maps with the same bound-
ary data, fo is homotopic to fi and Kyx < 0. If both A\2(dfy) and N\*(df1) lie in

" 1
Cm::{aER?O}ZaiSZi—m_l,ai—kaj§2,V1§i<j§m},
i=1

then fo = fl .

Proof Obviously C,, is symmetric and convex. To show C,, C N, it remains for us to
consider Condition (1.9) when max{a;} > 1. Due to the symmetry of C,,, we can assume
a1 = max{a;} without loss of generality. As shown in the proof of Lemma 3.2, this condition
is equivalent to

1

cee ) <m— 1. .
1_a1—|—G(a2, Jam) <m (5.3)

Here the definition of G is given in (3.11). For each given ¢ € (0, 1], let

G 1
m—1 E
Dm—l,t I:{(G,Q’--. ’a’m)ERZO ‘i_2ai<2—t—m,mlaxai<l—t}, (54)

then
o foray =1+t (a1, -+ ,am) € Cp, if and only if (as, -+, am) € Dim—1.4;
e D,, 1, is a convex polyhedron in R™~ L
e (is a symmetric, strictly convex function on D,,_1 ¢, which should take its maximum at

a vertex of this polyhedron.

Therefore
! +G(a )
1—&1 25 s Um
1
Ssup{m—l—maxGbmflyt it e O, 1]}
< sup { Lot 1 e 0.1])
B S T R (e T ’
m—1

=m— 1. (5.5)

This completes the proof of C,,, C N. Finally, fo = f; is a direct corollary of Theorem 1.3.

Corollary 5.2 Suppose that fo, f1 : Q(C M) — N are minimal maps with the same bound-
ary data, fo is homotopic to fi and Kn < 0. If both \2(dfo) and N2(dfy) lie in

V,, = {aeR’Z”O‘H(l+ai)% < pimai+a; <2V <i<j< m}
=1
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with )
1 =
1= V3 (2= )7

m—1

then fo = fl-

Proof Based on Corollary 5.1, it suffices for us to show V,, C C,,; equivalently,

ﬁ(1+al%§ i 33—%1 (5.6)

i=1
always holds for each a := (a1, -, an,) satisfying a1 > -+ > a,, > 0 and a1 + a2 < 2. We shall
prove (5.6) by using reduction to absurdity. Assume Y a; > 3 — ﬁ, then
i=1
H(l —I—ai) > 1—|—Zai + (a1 —|—a2)(2ai)
i=1 i=1 i=3
1 1
>1+ (3——) +2(1——)
m — 1
1
- 3(2 - —1) (5.7)

causing a contradiction. This completes the proof of the present corollary.
m
For any vector a satisfying [] (1 + a;)2 < v/3, we have
i=1

m

az+aJ<Za1§H1+ai)—1§2. (5.8)

i
In conjunction with Corollaries 5.1-5.2, we can establish a uniqueness result for minimal maps

via the slope functions.

Corollary 5.3 Suppose that fo, f1: Q(C M) — N are minimal maps with the same bound-
ary data, fo is homotopic to fi and Ky < 0. If their singular values satisfy [] (1 —I—/\f)% <3,
i=1
then fg = fl-
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