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Abstract In this paper, the authors give a uniqueness theorem for the Dirichlet problem
of minimal maps into general Riemannian manifolds with non-positive sectional curvature,
improving [Lee, YI., Ooi, Y. S. and Tsui, MP., Uniqueness of minimal graph in general
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geodesic homotopy of two given minimal maps.
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1 Introduction

Let f = (f1, · · · , fn) be a vector-valued function on a domain Ω ⊂ R
m, Γ(f) := {(x, f(x)) :

x ∈ Ω} be the graph of f , then Γf is a minimal submanifold (i.e., the mean curvature vectors

vanish everywhere) of Rm+n if and only if f satisfies the minimal surface system as follows:

m∑

i,j=1

∂

∂xi

(√
ggij

∂fα

∂xj

)
= 0, ∀α = 1, · · · , n, (1.1)

where (gij) is the inverse of (gij) :=
(
δij +

n∑
α=1

∂fα

∂xi

∂fα

∂xj

)
and g := det(gij). ∆f :=

√
g is called

the slope of f . As a generalization, Schoen [9] introduced the concept of minimal map: Let

(M, gM ) and (N, gN ) be two Riemannian manifolds of dimension m and n, respectively, then a

smooth map f : M → N is a minimal map if and only if its graph is a minimal submanifold in

the product manifold M × N . The research on minimal graphs has a long and fertile history

and a lot of works focus on the Dirichlet problem: Given a bounded domain Ω in M and a map

φ from the boundary of Ω (denoted by ∂Ω) into N , what kind of and how many minimal maps

exist, so that each one f : Ω → N satisfies f |∂Ω = φ.
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For the case of minimal graphs of codimension 1, i.e., N = R, the solution to the Dirichlet

problem is unique (if exists), and the graph of this solution is area-minimizing, i.e., the volume

of this submanifold takes the minimum along all submanifolds with the graph of φ as their

boundary. These conclusions can be derived from the convexity of the volume functional (see

e.g. [1, Chap. 12]). Unfortunately, these beautiful results cannot be generalized to higher

codimensional cases, i.e., n ≥ 2. In their pioneering paper [2], Lawson-Osserman constructed

distinct minimal maps f1, f2, f3 from the unit disk D in R
2 to R

2 sharing the same boundary

data, where f3 corresponds to an unstable minimal graph, i.e., even a little deformation can

decrease its area. Afterwards, by making systematic developments on the Lawson-Osserman

constructions, the authors showed in [10] that there exist infinitely many vector-valued functions

on Euclidean spheres, so that we can find infinitely many solutions to the Dirichlet problem

with each of them as the boundary data. Therefore, it is usually referred to as a restricted class

of submanifolds when we talk about the uniqueness and stability of minimal graphs of higher

codimension.

From the viewpoint of singular values, Lee, Wang, Tsui, Ooi and other mathematicians [3–7]

studied this problem, and produced a series of successive works. Let df be the tangent map

from TxM into Tf(x)N , then for any non-negative number λ, λ is a singular value of df at x if

and only if λ2 is a critical value of the squared norm function

v 7→ gN(df(v), df(v)), ∀v ∈ TxM, |v| = 1. (1.2)

By the theory of singular value decomposition, the slope of f can be written as

∆f =

m∏

i=1

(1 + λ2
i )

1

2 , (1.3)

where λ1 ≥ · · · ≥ λm are all singular values of df at x. As shown in [4],

(x1, · · · , xm) 7→
m∏

i=1

(1 + x2
i )

1

2 (1.4)

is a strictly convex (or convex) function on M (or M), where M consists of all vectors in

R
m
≥0 := [0,+∞)m satisfying

xixj < 1, ∀i 6= j, (1.5)

m∏

i=1

(1 − x2
i ) +

m∑

i=1

(1− x2
1) · · ·x2

i · · · (1− x2
m) > 0, (1.6)

and M is the closure of M. Moreover, in conjunction with the second variation formula of the

volume functional in terms of singular values (see [6]), criteria for the stability and uniqueness

of minimal graphs can be established as follows.
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Theorem 1.1 (see [4]) Let f : M → N be a minimal map, where N has non-positive

sectional curvature everywhere, then the graph of f is stable (or weakly stable) whenever the

singular value vector (λ1, · · · , λm) ∈ M (or M) everywhere on M .

Theorem 1.2 (see [7]) Suppose that f0, f1 : Ω(⊂ M) → R
n are both minimal maps with

the same boundary data, and the singular value vectors of both f0 and f1 all lie in a fixed

symmetric convex subset of M, then f0 = f1.

To prove Theorem 1.2, it is natural to consider the geodesic homotopy {ft : t ∈ [0, 1]} of

f0 and f1, such that for each x ∈ M , γx(t) := ft(x) is a geodesic connecting f0(x) and f1(x).

Along each γx, denote by λ(t) := (λ1(t), · · · , λm(t)) the singular value vector function; then it is

easy to verify that
k∑

i=1

λi(t) is a convex function for each 1 ≤ k ≤ m. Based on this fundamental

fact, we can show the singular value vectors of ft still lie in M, and then f0 = f1 follows from

the second variation formula. However, if we replace the target manifold of minimal maps by

a general Riemannian manifold N with non-positive sectional curvature,
k∑

i=1

λi(t) is no longer

convex, so the above scheme is not feasible.

To overcome this obstruction, we consider the squared singular value vector

λ2(df) := (λ2
1, · · · , λ2

m) (1.7)

in the present paper. Let N be a subset of R
m
≥0, which consists of all such vectors a :=

(a1, · · · , am) satisfying the following two conditions:

aiaj ≤ 1, ∀i 6= j, (1.8)

m∏

i=1

(1− ai) +

m∑

i=1

(1− a1) · · · ai · · · (1− am) ≥ 0. (1.9)

Then obviously

λ2(df) ∈ N ⇔ λ(df) ∈ M. (1.10)

The main goal of this paper is the proof of the following criterion for the uniqueness of mini-

mal maps into Riemannian manifolds with non-positive sectional curvature, which gives some

corollaries.

Theorem 1.3 Let N be a complete Riemannian manifold with non-positive sectional cur-

vature, and f0, f1 : Ω(⊂ M) → N be minimal maps with the same boundary data. If f0 is

homotopic to f1, and both λ2(df0) and λ2(df1) lie in a symmetric convex set C ⊂ N , then

f0 = f1.

Corollary 1.1 Let N be a complete Riemannian manifold with non-positive sectional cur-

vature. Suppose that f0, f1 : Ω(⊂ M) → N are minimal maps with the same boundary data,

which are homotopic to each other, then f0 = f1 if either of the following occurs :
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• The singular values of f0 and f1 all satisfy λ2
i + λ2

j ≤ 2 (∀i 6= j) and
m∑
i=1

λ2
i ≤ 3− 1

m−1 .

• m ≥ 3, and the singular values of f0 and f1 all satisfy λ2
i + λ2

j ≤ 2 (∀i 6= j) and
m∏
i=1

(1 + λ2
i )

1

2 ≤
√
3
(
2− 1

m−1

) 1

2 .

• The slopes of f0 and f1 are no more than
√
3.

In particular, the first conclusion of Corollary 1.1 is an improvement of [3, Theorem 5.2],

which claims f0 = f1 whenever
m∑
i=1

λ2
i < 2.

This paper will be organized as follows. In Section 2, we prove the existence of geodesic

homotopy {ft : t ∈ [0, 1]} of f0 and f1 with the aid of the classical Cartan-Hadamard theorem

and we calculate the second derivative of the volume function of Γ(ft) in terms of the singular

values. Afterwards in Section 3, by applying majorization techniques in convex optimisation

as in [3, 7], we establish the following confined property of the squared singular value vector

function along the geodesic homotopy: For any interval [t1, t2] ⊂ [0, 1], λ2(t1), λ
2(t2) ∈ N

implies λ2(t) ∈ N . In the process, the convexity of the functions
k∑

i=1

λ2
i (t) with 1 ≤ k ≤ m

plays a crucial role. Section 4 will be dedicated to the proof of Theorem 1.3 based on preliminary

works in the last two sections. Finally in Section 5, the construction of symmetric convex subsets

of N enables us to give applications of Theorem 1.3.

2 The Second Variation Formula for the Volume Functional

Let Ω be a bounded domain of an m-dimensional Riemannian manifold (M, gM ), (N, gN )

be an n-dimensional complete Riemanniam manifold with non-positive sectional curvature, i.e.,

KN ≤ 0, and f0, f1 be both smooth maps from Ω into N . Assume that f0, f1 are homotopic to

each other, and f0|∂Ω = f1|∂Ω. Let Ñ be the universal covering manifold of N equipped with the

pull-back metric g
Ñ
, f̃0, f̃1 : Ω → Ñ be lifts of f0, f1, respectively, so that f̃0(x0) = f̃1(x0) for a

fixed x0 ∈ Ω, then K
Ñ

≤ 0 and the classical Cartan-Hadamard theorem implies the existence

and uniqueness of the geodesic γ̃x(t) : [0, 1] → Ñ for each x ∈ Ω, so that γ̃x(0) = f̃0(x),

γ̃x(1) = f̃1(x). Define

f̃t(x) := γ̃x(t), ft := π ◦ f̃t

with π the universal covering mapping from Ñ onto N . Such {ft : M → N | t ∈ [0, 1]} is called

a geodesic homotopy, which satisfies

• ft smoothly depends on t;

• for each y ∈ ∂Ω, t ∈ [0, 1] 7→ ft(y) is a constant function ;

• for each x ∈ Ω, γx(t) := ft(x) is a geodesic in N connecting f0(x) and f1(x).

Given 0 ≤ t ≤ 1, then ft induces an embedding

x ∈ Ω 7→ (x, ft(x)) ∈ M ×N,
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whose image, denoted by Γft , is the graph of ft. For each x ∈ Ω, by the theory of singular

value decomposition, there exist orthonormal bases {ai}mi=1, {bj}nj=1 in TxM and Tft(x)N ,

respectively, such that

dft(ai) =

{
λi(t)bi, i = 1, · · · , r,
0, i = r + 1, · · · ,m,

(2.1)

where

λ1(t) ≥ · · · ≥ λr(t) > λr+1(t) = · · · = λm(t) = 0 (2.2)

are singular values of (dft)x : (Tx, gM ) → (Tft(x), gN), and r is the rank of this tangent map.

As in [3],

λ(t) := (λ1(t), · · · , λm(t)) (2.3)

is called the singular value vector of dft at x. Let

g(t) := gM + f∗
t gN

be the induced metric on Γft , whose corresponding volume form is

dvt =
√
det(gij(t)) dvM (2.4)

with dvM the volume form of M and

gij(t) := gM (ai, aj) + gN (dft(ai), dft(aj)). (2.5)

Denote by V := dft
dt the variation field on Ω, then a straightforward calculation shows

d

dt
gij(t) = 〈∇dft(ai)V, dft(aj)〉+ 〈dft(ai),∇dft(aj)V 〉, (2.6)

d2

dt2
gij(t) = 2〈∇dft(ai)V,∇dft(aj)V 〉

+ 〈R(V, dft(ai))V, dft(aj)〉+ 〈dft(ai), R(V, dft(aj))V 〉

+ 〈∇dft(ai)∇V V, dft(aj)〉+ 〈dft(aj),∇dft(aj)∇V V 〉. (2.7)

Here 〈·, ·〉 := gN (·, ·), ∇ is the Levi-Civita connection associated to gN and

R(X,Y ) := ∇X∇Y −∇Y ∇X −∇[X,Y ] (2.8)

is the corresponding curvature operator. Denote by

A(t) :=

∫

Ω

√
det(gij(t)) dvM (2.9)
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the volume of Γft , then

d

dt
A(t) =

1

2

∫

Ω

m∑

i,j=1

(
gij

dgij
dt

)
dvt, (2.10)

d2

dt2
A(t) = −1

2

∫

Ω

m∑

i,j,k,l=1

gij
dgjk
dt

gkl
dgli
dt

dvt +
1

4

∫

Ω

( m∑

i,j=1

gij
dgij
dt

)2

dvt

+
1

2

∫

Ω

m∑

i,j=1

gij
d2gij
dt2

dvt (2.11)

with (gij) the inverse of (gij). Denoting

piα := 〈∇dft(ai)V, bα〉 (2.12)

and replacing
dgij
dt and

d2gij
dt2 in (2.11) with formulas in (2.6)–(2.7), we have

d2

dt2
A(t) = (i) + (ii) + (iii) + (iv) + (v), (2.13)

where

(i) =

∫

Ω

( ∑

1≤i≤r

p2ii
(1 + λ2

i )
2
+

∑

1≤i,j≤r,i6=j

λiλjpiipjj

(1 + λ2
i )(1 + λ2

j)

)
dvt, (2.14)

(ii) =

∫

Ω

∑

1≤i<j≤r

p2ij + p2ji − 2λiλjpijpji

(1 + λ2
i )(1 + λ2

j)
dvt, (2.15)

(iii) =

∫

Ω

∑

1≤i≤r,r+1≤α≤n

p2iα
1 + λ2

i

dvt, (2.16)

(iv) =

∫

Ω

∑

1≤i≤r

λ2
i

1 + λ2
i

〈∇bi∇V V, bi〉dvt, (2.17)

(v) =

∫

Ω

∑

1≤i≤r

λ2
i

1 + λ2
i

〈R(bi, V )bi, V 〉dvt. (2.18)

As shown in [4], (i) ≥ 0 whenever λ ∈ M, (ii) ≥ 0 whenever 0 ≤ λiλj ≤ 1 for each i 6= j, (iii)

is non-negative, (iv) = 0 since {ft} is a geodesic homotopy and (v) ≥ 0 since KN ≤ 0.

3 Confined Properties of Squared Singular Value Vectors

Definition 3.1 (see [7]) Let x := (x1, · · · , xm), y := (y1, · · · , ym) ∈ R
m. y is called

l-weakly majorized by x, whenever

k∑

i=1

ỹi ≤
k∑

j=1

x̃j

for k = 1, 2, · · · , l, where {x̃i} (or {ỹi}) is a rearrangement of {xi} (or {yi}) in descending

order, denoted by y ≺l x.
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For an arbitrary point x ∈ R
m
≥0, let W (x) := {y ∈ R

m
≥0 : y ≺m x}, E(x) be the set consisting

of all these points (δ1xσ(1), · · · , δmxσ(m)), where σ is an arbitrary permutation of {1, · · · ,m}
and δi = 0 or 1, and H(x) be the convex hull of E(x), then W (x) = H(x) (see [8, Theorem 6]).

The following two lemmas on W (x) shall play a crucial part on the present paper.

Lemma 3.1 Let D be a domain of Rm, F be a strictly convex, symmetric function on D,

such that for each u, v ∈ D, ui ≤ vi for each i = 1, · · · ,m implies F (u) ≤ F (v), and the equality

holds if and only if u = v. Then for each x ∈ D satisfying W (x) ⊂ D, we have F (y) ≤ F (x)

for each y ∈ W (x), where the equality holds if and only if y is a rearrangement of x.

Proof Denote

E(x) = {v1, · · · , vp} (3.1)

with

vα = (δα1 xσα(1), · · · , δαmxσα(m)), (3.2)

then each y ∈ W (x) = H(x) can be written as

y = λ1v1 + · · ·+ λpvp, (3.3)

where λ1, · · · , λp are all non-negative numbers, satisfying
p∑

α=1
λα = 1. Let

wα := (xσα(1), · · · , xσα(m)) (3.4)

and

z := λ1w1 + · · ·+ λpwp ∈ H(x). (3.5)

Combining (3.1)–(3.5), we have yi ≤ zi for all i = 1, · · · ,m. Along with the strict convexity

and symmetry of F , we get

F (y) ≤ F (z) ≤ F (x),

where the equality holds if and only if y = z = wα for some α, i.e., y is a rearrangement of x.

Lemma 3.2 Let C be a symmetric convex subset of N defined in (1.8)–(1.9), then W (x) ⊂
N for each x ∈ C. Moreover, if y ∈ W (x) ∩ ∂N and max{yi} > 1, then

m∑
i=1

yi =
m∑
i=1

xi. Here

∂N consists of all such vectors a := (a1, · · · , am) in N satisfying

max
1≤i<j≤m

aiaj = 1 (3.6)

or

m∏

i=1

(1− ai) +

m∑

i=1

(1− a1) · · · ai · · · (1− am) = 0. (3.7)
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Proof Let y be an arbitrary point in W (x). Since W (x) is preserved under the action of

permutations, without loss of generality we can assume

x1 ≥ · · · ≥ xm, y1 ≥ · · · ≥ ym. (3.8)

If y1 ≤ 1, then y automatically satisfies (1.8)–(1.9) and hence y ∈ N . Now we assume y1 > 1.

In this case, noting that

m∏

i=1

(1 − yi) +

m∑

i=1

(1− y1) · · · yi · · · (1− ym)

=

m∏

i=1

(1 − yi)
( m∑

i=1

1

1− yi
−m+ 1

)
, (3.9)

we have

y ∈ N ⇔ y1y2 ≤ 1 and
1

1− y1
+G(y2, · · · , ym) ≤ m− 1,

y ∈ ∂N ⇔ y1y2 = 1 or
1

1− y1
+G(y2, · · · , ym) = m− 1

(3.10)

with

G : (y2, · · · , ym) ∈ [0, 1)m−1 7→
m∑

i=2

1

1− yi
. (3.11)

Due to the symmetry and convexity of C,

x̂ := (x2, x1, x3, · · · , xm) (3.12)

and

x+ x̂

2
=

(x1 + x2

2
,
x1 + x2

2
, x3, · · · , xm

)
(3.13)

both lie in C, then

y1y2 <
(y1 + y2

2

)2

≤
(x1 + x2

2

)2

≤ 1. (3.14)

Denote

z = (z1, z2, z3, · · · , zm)

:= (y1, x2 + (x1 − y1), x3, · · · , xm), (3.15)

then z is also a convex combination of x and x̂ and hence z ∈ C. By y ≺m x, it is easy to verify

that y ≺m z and

(y2, · · · , ym) ≺m−1 (z2, · · · , zm). (3.16)
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Applying Lemma 3.1 to the function G gives

1

1− y1
+G(y2, · · · , ym) ≤ 1

1− z1
+G(z2, · · · , zm) ≤ m− 1 (3.17)

and then y ∈ N . Particularly if y ∈ ∂N , then (3.10) and (3.14) imply 1
1−y1

+G(y2, · · · , ym) =

m− 1. Thus the equality of (3.17) holds, which forces y = z and then

m∑

i=1

yi =

m∑

i=1

zi =

m∑

i=1

xi. (3.18)

Now we consider the squared singular value vectors

λ2(t) := (λ2
1(t), · · · , λ2

m(t)) (3.19)

along a given geodesic homotopy. Based on Lemma 3.2, we can get a confined property for

λ2(t) as follows.

Proposition 3.1 Let [t1, t2] ⊂ [0, 1] and

µ(t) :=
t2 − t

t2 − t1
λ2(t1) +

t− t1

t2 − t1
λ2(t2)

be the linear function on this interval satisfying µ(t1) = λ2(t1) and µ(t2) = λ2(t2), then

l∑

i=1

λ2
i (t) ≤

l∑

i=1

µi(t), ∀1 ≤ l ≤ m.

Especially if
l∑

i=1

λ2
i (t0) =

l∑
i=1

µi(t0) for some t0 ∈ (t1, t2), we have ∇dft(ai)V = 0 for i = 1, · · · , l,
t ∈ [t1, t2].

Moreover, if both λ2(t1) and λ2(t2) lie in a symmetric convex subset C in N , then λ2(t) ∈ N
for each t ∈ [t1, t2]. Especially if λ2(t0) ∈ ∂N and λ2

1(t0) > 1 for some t0 ∈ (t1, t2), we have

∇dft(ai)V = 0 for i = 1, · · · ,m, t ∈ [t1, t2].

Proof For any fixed t0 ∈ [t1, t2], let {ai} be an orthonormal basis of TxM , such that

〈dft0(ai), dft0(ai)〉 =
{
λ2
i (t0), 1 ≤ i ≤ r := rankdft0 ,

0, r + 1 ≤ i ≤ m.
(3.20)

Now we consider two functions

Fk(t) :=

k∑

i=1

〈dft(ai), dft(ai)〉, (3.21)

Sk(t) :=

k∑

i=1

λ2
i (t) (3.22)
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on [t1, t2]. Due to the properties of singular values, it is easily verified that Sk(t0) = Fk(t0) and

Fk(t) ≤ Sk(t). On the other hand,

d2

dt2
Fk(t) =

d2

dt2

k∑

i=1

〈dft(ai), dft(ai)〉 =
d

dt

k∑

i=1

2〈∇dft(ai)V, dft(ai)〉

= 2

k∑

i=1

〈∇dft(ai)V,∇dft(ai)V 〉+ 2

k∑

i=1

〈∇V ∇dft(ai)V, dft(ai)〉

= 2
k∑

i=1

|∇dft(ai)V |2 + 2
k∑

i=1

〈R(V, dft(ai))V, dft(ai)〉

+ 2
k∑

i=1

〈∇dft(ai)∇V V, dft(ai)〉 ≥ 0 (3.23)

showing Fk(t) is a convex function. Thus

Sk(t0) = Fk(t0) ≤
t2 − t0

t2 − t1
Fk(t1) +

t0 − t1

t2 − t1
Fk(t2)

≤ t2 − t0

t2 − t1
Sk(t1) +

t0 − t1

t2 − t1
Sk(t2)

=
k∑

i=1

µi(t0). (3.24)

Moreover, if Sl(t0) =
l∑

i=1

µi(t0), then (3.24) shows Fl|[t1,t2] is linear and hence (3.23) implies

∇dft(ai)V = 0 for i = 1, · · · , l.
Note that (3.24) is equivalent to saying that λ2(t) ≺m µ(t) for t ∈ [t1, t2]. Once λ2(t1),

λ2(t2) ∈ C, the symmetry and convexity of C ⊂ N show µ(t) ∈ C and hence we get λ2(t) ∈ N
by Lemma 3.2. Moreover, if λ2(t0) ∈ ∂N and λ2

1(t0) > 1, then

Sm(t0) =

m∑

i=1

λ2
i (t0) =

m∑

i=1

µi(t0)

and hence ∇dft(ai)V = 0 for i = 1, · · · ,m and t ∈ [t1, t2].

4 Proof of the Main Theorem

Suppose that f0, f1 : Ω(⊂ M) → N are minimal maps, such that f0, f1 are homotopic to

each other and f0|∂Ω = f1|∂Ω. Let {ft : Ω → N | t ∈ [0, 1]} be a geodesic homotopy of f0 and

f1. For each x ∈ Ω, let λ2(t) := λ2((dft)x) be the squared singular value vector function. By

Proposition 3.1, λ2(0), λ2(1) ∈ C ensure λ2(t) ∈ N , i.e., λ(t) ∈ M and hence d2

dt2A(t) ≥ 0. In

conjunction with d
dt

∣∣
t=0

A(t) = d
dt

∣∣
t=1

A(t) = 0 (since both f0 and f1 are minimal maps), we

have d2

dt2A(t) = 0, i.e., (i) = (ii) = (iii) = 0 for each t ∈ (0, 1) (see (2.14)–(2.16)).
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Define

Λ1 := {t ∈ (0, 1) : λ(t) ∈ M},

Λ2 := {t ∈ (0, 1) : λ2(t) < 1},

· · ·

Λm := {t ∈ (0, 1) : λm(t) < 1},

Λm+1 := (0, 1).

(4.1)

When t ∈ Λ1, as shown in [4, Theorem 3.2], (i) = (ii) = (iii) = 0 implies that piα = 0 for

any 1 ≤ i ≤ m and 1 ≤ α ≤ n and hence

∇dft(ai)V = 0, ∀1 ≤ i ≤ m. (4.2)

By the continuity, this equality holds for each t ∈ Λ1.

If Λ2\Λ1 = ∅, (4.2) always holds in Λ2. Otherwise, for each t in this set, we have λ2(t) ∈ ∂N ,

then λ2
2(t) < 1 forces λ2

1(t) > 1, then Proposition 3.1 and the continuity ensure (4.2) holds for

all t ∈ Λ2.

Next we need to show that the equality (4.2) also holds on each Λi by induction on i.

Suppose that ∇dft(ai)V = 0 holds for all t ∈ Λk with 2 ≤ k ≤ m and the open set Λk+1 \ Λk is

nonempty. For each t ∈ [t1, t2] ⊂ Λk+1 \ Λk, it is easy to see that λ1(t) = · · · = λk(t) = 1 and

1 > λk+1(t) ≥ · · · ≥ λm(t) ≥ 0, which means
k∑

i=1

λ2
i (t) =

k∑
i=1

µi(t), and we can conclude that

∇dft(ai)V = 0, ∀1 ≤ i ≤ k, t ∈ Λk+1 (4.3)

by Proposition 3.1. In combination of (2.14)–(2.16), we have piα = 0 for k + 1 ≤ i ≤ r and

1 ≤ α ≤ n, which means ∇dft(ai)V = 0 for k + 1 ≤ i ≤ m. Together with (4.3) we know (4.2)

also holds for t ∈ Λk+1, finishing the induction step.

Therefore, for each t ∈ [0, 1], V is a parallel vector field on the graph Γft . According to

the boundary condition we can derive V ≡ 0 and hence f0 = f1. This completes the proof of

Theorem 1.3.

5 Applications

In this section, we give some applications of Theorem 1.3.

Let C be a symmetric convex subset of N , then for each a ∈ C, we can proceed as in

(3.12)–(3.14) to show

ai + aj ≤ 2, ∀1 ≤ i < j ≤ m. (5.1)

On the other hand, from this condition, it immediately follows that

aiaj ≤
(ai + aj

2

)2

≤ 1, (5.2)
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i.e., such amust satisfy (1.8). It is natural to ask, besides (5.1), whichever additional restrictions

can make sure a symmetric convex subset of Rm
≥0 completely lies in N . In the following text

we shall consider this question.

Corollary 5.1 Suppose that f0, f1 : Ω(⊂ M) → N are minimal maps with the same bound-

ary data, f0 is homotopic to f1 and KN ≤ 0. If both λ2(df0) and λ2(df1) lie in

Cm :=
{
a ∈ R

m
≥0

∣∣∣
m∑

i=1

ai ≤ 3− 1

m− 1
, ai + aj ≤ 2, ∀1 ≤ i < j ≤ m

}
,

then f0 = f1.

Proof Obviously Cm is symmetric and convex. To show Cm ⊂ N , it remains for us to

consider Condition (1.9) when max{ai} > 1. Due to the symmetry of Cm, we can assume

a1 = max{ai} without loss of generality. As shown in the proof of Lemma 3.2, this condition

is equivalent to

1

1− a1
+G(a2, · · · , am) ≤ m− 1. (5.3)

Here the definition of G is given in (3.11). For each given t ∈ (0, 1], let

Dm−1,t :=
{
(a2, · · · , am) ∈ R

m−1
≥0

∣∣∣
m∑

i=2

ai ≤ 2− t− 1

m− 1
,max

i
ai ≤ 1− t

}
, (5.4)

then

• for a1 = 1 + t, (a1, · · · , am) ∈ Cm if and only if (a2, · · · , am) ∈ Dm−1,t;

• Dm−1,t is a convex polyhedron in R
m−1;

• G is a symmetric, strictly convex function on Dm−1,t, which should take its maximum at

a vertex of this polyhedron.

Therefore

1

1− a1
+G(a2, · · · , am)

≤ sup
{ 1

1− (1 + t)
+ maxG|Dm−1,t

: t ∈ (0, 1]
}

≤ sup
{ 1

1− (1 + t)
+

1

1− (1− t)
+

1

1− m− 2

m− 1

: t ∈ (0, 1]
}

= m− 1. (5.5)

This completes the proof of Cm ⊂ N . Finally, f0 = f1 is a direct corollary of Theorem 1.3.

Corollary 5.2 Suppose that f0, f1 : Ω(⊂ M) → N are minimal maps with the same bound-

ary data, f0 is homotopic to f1 and KN ≤ 0. If both λ2(df0) and λ2(df1) lie in

Vm :=
{
a ∈ R

m
≥0

∣∣∣
m∏

i=1

(1 + ai)
1

2 ≤ µm, ai + aj ≤ 2, ∀1 ≤ i < j ≤ m
}
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with

µm :=
√
3 ·

(
2− 1

m− 1

) 1

2

,

then f0 = f1.

Proof Based on Corollary 5.1, it suffices for us to show Vm ⊂ Cm; equivalently,

m∏

i=1

(1 + ai)
1

2 ≤ µm ⇒
m∑

i=1

ai ≤ 3− 1

m− 1
(5.6)

always holds for each a := (a1, · · · , am) satisfying a1 ≥ · · · ≥ am ≥ 0 and a1 + a2 ≤ 2. We shall

prove (5.6) by using reduction to absurdity. Assume
m∑
i=1

ai > 3− 1
m−1 , then

m∏

i=1

(1 + ai) ≥ 1 +

m∑

i=1

ai + (a1 + a2)
( m∑

i=3

ai

)

> 1 +
(
3− 1

m− 1

)
+ 2

(
1− 1

m− 1

)

= 3
(
2− 1

m− 1

)
, (5.7)

causing a contradiction. This completes the proof of the present corollary.

For any vector a satisfying
m∏
i=1

(1 + ai)
1

2 ≤
√
3, we have

ai + aj ≤
m∑

i=1

ai ≤
m∏

i=1

(1 + ai)− 1 ≤ 2. (5.8)

In conjunction with Corollaries 5.1–5.2, we can establish a uniqueness result for minimal maps

via the slope functions.

Corollary 5.3 Suppose that f0, f1 : Ω(⊂ M) → N are minimal maps with the same bound-

ary data, f0 is homotopic to f1 and KN ≤ 0. If their singular values satisfy
m∏
i=1

(1+λ2
i )

1

2 ≤
√
3,

then f0 = f1.
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